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HIGHLIGHTS

® A novel unified hierarchical framework for DCM is presented.

e Simultaneous parameter inference, unsupervised learning and empirical Bayes.
® MCMC sampling for inference.

® Improved model evidence over non-hierarchical DCM.
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“generative embedding” approaches have used DCM-based connectivity parameters for supervised classi-
fication of individual patients or to find unknown subgroups in heterogeneous groups using unsupervised
clustering methods.

New method: We present a novel framework which combines DCMs with finite mixture models into a

gﬁi’ :::rr:fg single hierarchical model. This approach unifies the inference of connectivity parameters in individual
Dynamic causal modelling subjects with inference on population structure, i.e. the existence of subgroups defined by model param-
DCM eters, and allows for empirical Bayesian estimates of a subject’s connectivity based on subgroup-specific
Markov chain Monte Carlo sampling prior distributions. We introduce a Markov chain Monte Carlo sampling method for inversion of this
MCMC hierarchical generative model.

Mixture model Results: This paper formally introduces the idea behind our novel concept and demonstrates the face
Psychiatric spectrum diseases validity of the model in application to both simulated data as well as an empirical fMRI dataset from
Schizophrenia healthy controls and patients with schizophrenia.

Comparison with existing method(s): The analysis of our empirical fMRI data demonstrates that our
approach results in superior model evidence than the conventional non-hierarchical inversion of DCMs.
Conclusions: In this paper, we have presented a novel unified framework to jointly infer the effective
connectivity parameters in DCMs for multiple subjects and, at the same time, discover connectivity-
defined cluster structure of the whole population, using a mixture model approach.

© 2016 Elsevier B.V. All rights reserved.
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healthy volunteers, it has proven far more difficult to establish clin-
ically useful neuroimaging procedures that operate at the level of
single subjects (for review, see Kloppel et al., 2012; Orru et al.,
2012; Wolfers et al., 2015). Despite the development of powerful
supervised (classification) and unsupervised (clustering) methods
for neuroimaging data analysis (e.g. Schrouff et al., 2013), few prac-
tical applications have managed to enter clinical practice. These
successful examples can mainly be found in neurology where, for
example, EEG-based classification has enabled brain-computer-
interfaces for patients with locked-in syndrome (Sellers et al.,
2014) or differential diagnosis of comatose states (Cruse et al.,
2011).

By contrast, we presently lack convincing neuroimaging-based
clinical tools for diagnosis and prediction in major psychiatric
diseases. One major reason for this is that although numerous clas-
sification analyses of neuroimaging data, in particular fMRI, exist,
these have largely been cross-sectional studies which attempted
to differentiate conventionally defined psychiatric patients from
healthy volunteers. This, however, ignores the fact that our current
disease classifications in psychiatry rest on syndromatic concepts
which define diseases as clusters of symptoms over certain peri-
ods. These disease definitions likely group together heterogeneous
patient groups characterised by a diversity of pathophysiological
mechanisms (Casey et al.,2013; Krystal and State, 2014). This prob-
able heterogeneity in terms of disease mechanisms is the reason
why many major diseases are increasingly conceptualised as “spec-
trum” diseases and explains why existing disease definitions in
psychiatry lack predictive validity, i.e. assignment to a diagnostic
category predicts neither clinical trajectory nor treatment response
(Kapur et al., 2012).

As a consequence, a longstanding debate has concerned the
question how psychiatric diseases should be redefined. Previous
proposals have referred to genetics (Smoller, 2013) or classi-
cal cognitive and neuroimaging methods (Cuthbert and Insel,
2013). An alternative “translational neuromodelling” strategy pro-
motes the use of neurocomputational models for discovery of
mechanistically more homogenous patient groups (Stephan and
Mathys, 2014; Stephan et al., 2015). Here, model-based esti-
mates of patient-specific disease mechanisms, obtained from
individual neuroimaging and/or behavioural data, are used as a
basis for splitting a heterogeneous spectrum disease into sub-
groups or defining general dimensions of a disease across the
spectrum.

A practical strategy for implementing this general idea is “gener-
ativeembedding” (Brodersenetal.,2011,2014).Thisapproachrests
on using generative models of neuroimaging data and behaviour
to estimate parameters encoding subject-specific mechanisms
underlying the individual measurements. The ensuing parameter
estimates serve to define a feature space as a basis for sub-
sequent supervised (classification) or unsupervised (clustering)
learning. This approach has two major strengths. First, the genera-
tive model serves as an informed dimensionality reduction device,
providing a compact summary of how data are generated and
removing uninformative noise. Second, the resulting classes or
clusters have mechanistic interpretations because the underlying
feature space is directly connected to the model. The advantages
of generative embedding have been demonstrated in two fMRI
studies where generative embedding (based on dynamic causal
models, DCMs, of fMRI data) not only provided a more mecha-
nistic interpretation of classification/clustering results compared
to conventional approaches based on local activation measures or
functional connectivity, but also demonstrated significantly supe-
rior performance for classifying/clustering patients with stroke
(Brodersen et al., 2011) and schizophrenia (Brodersen et al., 2014),
respectively.

So far, generative embedding analyses of neuroimaging data
have employed a two-step procedure where a given DCM was
initially fitted to data from each individual separately and the
resulting subject-specific parameter vectors were subsequently fed
into a classification (support vector machine, Brodersenetal.,2011)
or clustering (Gaussian mixture model, Brodersen et al., 2014)
procedure. In this article, we extend the scope of generative embed-
ding for unsupervised clustering and present a novel hierarchical
generative model which can be applied to data from all individ-
uals at once. This approach allows for simultaneous inference on
individual parameter estimates and group structure (number and
composition of clusters). An important motivation for this exten-
sion is that in our unified hierarchical model, these two aspects are
allowed to interact. That is, the hierarchical structure of our model
allows for an empirical Bayesian type of inference, where subgroup-
specific priors are estimated from the group data and inform
parameter estimates of individual subjects; conversely, defini-
tion of subgroups (clustering) is informed by parameter estimates
across subjects. This mutual dependency between finding sub-
groups in the sample and regularisation by subgroup-dependent
priors is a novel concept with potential for future clinical applica-
tions.

The goal of this paper is to introduce the general idea behind this
novel concept and to demonstrate its practical feasibility. By con-
trast, it does not aim for demonstration of its general superiority
compared to established methods, nor does the model formulation
presented in this paper already address all facets of the general
problem of combining hierarchical inference and subgroup detec-
tion (see Section 4).

This paper is structured as follows. In Section 2, we first pro-
vide a summary of DCM for fMRI, followed by an outline of how
single subject inference (parameter estimation) can be achieved
by Markov chain Monte Carlo (MCMC). This serves to introduce
the notation which is then used for defining a novel multi-subject
hierarchical model for joint parameter estimation and clustering.
We conclude this section by outlining our approach to inference
based on an MCMC algorithm. In Section 3, we present two appli-
cation examples. First, we demonstrate the face validity of our
models by applying it to simulated fMRI data. In a second appli-
cation to empirical fMRI data from patients with schizophrenia
and healthy controls, we find that our method has comparable
performance in separating patients and controls, in an unsuper-
vised way, as previous analyses. Importantly, model comparison
demonstrates that the full hierarchical model (combining empir-
ical Bayes and clustering) outperforms a model using empirical
Bayes alone; furthermore, the latter is superior to the conven-
tional DCM approach which considers each subject in isolation.
In Section 4, we evaluate the pros and cons of our method
compared to “classical” generative embedding, consider current
limitations of our method, and outline further developments for the
future.

2. Methods
2.1. Dynamic causal modelling

Dynamic causal models (DCM) are generative models of neu-
roimaging data like fMRI (Friston et al., 2003) or EEG (David et al.,
2006). They usually serve to infer on the effective connectivity
between neuronal populations and are applied to single-subject
data. Their structure consists of two hierarchical layers, a model of
hidden neuronal states and an observation or forward model. At the
neuronal level, differential equations describe a dynamical system
of interacting brain regions; the forward model describes how the
ensuing neuronal states give rise to observed measurements, e.g.
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Fig.1. Anabstract graphical representation of a single-subject DCM where x denotes
neuronal states, y refers to region-specific measurements, and u represent the inputs
to the system.
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electrical signals measured at EEG sensors or blood oxygen level
dependent (BOLD) signals measured by fMRI. This forward model
takes into account the biophysical foundations of the respective
imaging modality as well as measurement noise.

In contrast to statistical characterisations of measured data,
DCM thus describes (unobservable) neuronal processes underlying
the observed measurements. Although the mathematical equations
represent a highly simplified model of neuronal dynamics, they
provide a mechanistic perspective on how measured data were
generated, with estimates of neurobiologically interpretable quan-
tities such as the effective connection strength between distinct
neuronal populations. An example of a single-subject DCM with
three regions or nodesis giveninFig. 1. The neuronal layer describes
the dynamics between the three regions, and the forward model
captures the generation of observations given the neuronal states
of each region.

The models described in this article will focus entirely on
fMRI data where the forward model describes the generation
of BOLD signals (Friston et al., 2000; Stephan et al., 2007). The
full generative model for an fMRI-DCM can be summarised as
follows:

O ~ Normal(pte, Z.)
n ~ logNormal(up, X,)
d
di); = fl X, UCa u
dh O O
a f2 h, X, Og, O (1)
0 0
b = g h, L, lgq
1 ~ logNormal(u  , X ﬁ)
y ~ Normal b, Al

Here, [ are parameters of the neuronal layer (connectivity and
input strengths), [, are the forward hemodynamic model param-
eters, [l are biophysical constants of the forward model, u are
external (e.g. sensory) inputs over time, ({1, X ) are the parame-
ters of the Normal distribution, y represents measured data, and [
is the precision matrix of observation noise (with hyperparameters
11, described below). Where it is necessary to restrict parameter val-
ues to positive values, the prior normal distributions are over the
log of the parameters rather than the parameters themselves. The

o
.
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Fig. 2. A probabilistic graphical model for the generation of BOLD signals from a
DCM. The dotted lines indicate a deterministic relationship whereas the solid arrows
indicate a probabilistic dependency. The intermediate dotted region represents the
function which is derived by integrating the dynamical system described in the text.

deterministic dynamical system, represented by f;(.), models the
hidden dynamics of the neuronal layer, where x denotes the neu-
ronal state variables (e.g. one per region or neuronal population),
and h denotes the state variables of the hemodynamic forward
model.

The neuronal state equation fi(.) can be derived from a low-
order Taylor series approximation to any nonlinear dynamical
system (where the expansion point is at rest, i.e. x=0, u=0). For
example, using an approximation to second order yields (Stephan
et al., 2008):

dx Ed [R

— —AX+ UmBmX + Cu +

= x-DrX, (2)

m=1 r=1

where M is the number of inputs, R is the number of regions, A
describes connections between regions, B describes modulatory
effects of inputs on connections between regions, C describes the
driving effect of inputs on regions, and D describes the modulatory
effect of regional activity on connections. Linear DCMs use A and
C matrices only, bilinear DCMs contain a non-zero B matrix, and
non-linear DCMs contain a non-zero D matrix.

The hemodynamic model has separate parameters for each
region in the model. This is important as it allows for taking
into account regional variations in the hemodynamic response
function (cf. David et al., 2008). The version presently used in
DCM rests on the so-called “Balloon model” initially proposed by
Buxton et al. (1998) and later extended by Friston et al. (2000) and
Stephan et al. (2007). Details of the hemodynamic equations used
in the present paper can be found in Stephan et al. (2007); a brief
summary is provided in the Appendix A. The function g() is a
nonlinear static output function operating on states (volume and
deoxyhemoglobine content) provided by the nonlinear differen-
tial equations of hemodynamics represented by f,(.). Since it is not
analytically feasible to solve these differential equations, suitable
numerical integration schemes (like the matrix exponential under
bilinear approximations or Euler integration) are used in practice
(cf. Friston, 2002; Daunizeau et al., 2014).

The graphical model for a single subject DCM is given in Fig. 2.
The corresponding joint distribution of parameters, hyperparame-
ters and data from R regions is as follows:

U U g U ]
p Yy, UC7 “h> q>» A S8 Normal(ylg ~¢y “ho Uq ’ A_ )

Normal(¢| (¢, Xc)logNormal(Ty |, X))
(3)
[k
logNormal( |75, [14).
r=1
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Table 1
Priors over connection and hemodynamic parameters for a single-subject DCM. The
hemodynamic parameters «, 7, ¢ are described in detail in the Appendix A.

Parameters Mean Variance log-mean log-var
A (self-connections) -0.5 1/(8R)

A (other connections) 1/(64R) 8/R

B 0 1

c 0 1

D 0 1

K log(0.64) 0.0025
T log(2) 0.0025
£ 0 0.0025
Ar 0 1

2.2. Priors over model parameters

There are three sets of parameters in the model, the neu-
ronal parameters =(A,B,C,D), the hemodynamic parameters
n=(k,7,6), and the hyperparameters A, of the observation noise
precision matrix [ (see Eq. (4) below). For most parameters, the
priors are normal distributions. Only in cases where positivity is to
be enforced, the parameters follow a log-Normal distribution (see
Table 1). For the connection matrices, there are informed priors
on self-connections and shrinkage priors on all other connections;
please see Table 1 for details. To facilitate comparison with previ-
ous work, the priors for noise and hemodynamic parameters were
matched to SPM8 release 5236 (http://www.fil.ion.ucl.ac.uk/spm/).
The observation noise precision matrix A is represented as a
linear combination of predefined matrices (inverse covariance are
precision components Q) whose contributions are scaled by hyper-
parameters A,. The Q;’s can be defined to account for regional
differences in signal variance and to capture temporal autocorrela-
tion (for details, see Friston et al., 2002, 2003). In the current model,
we assume that the time series have been whitened (as, for exam-
ple, can be done automatically in SPM when extracting timeseries
for DCM) and only deal with the region-specific variances in BOLD
signal. In other words, for a single-subject DCM, we consider a pre-
cision (inverse covariance) matrix A which has diagonal structure,
with region-specific precisions along the diagonal

A =3 0Q (4)

where Ris the number of regions. Here, each Q; is simply a diagonal
matrix where diagonal elements belonging to region r have the
value 1 (and zero elsewhere). The resulting precision matrix A is
then a diagonal with Trepeated values A, for each regionr, where T
is the number of scans. To provide an example, for the specific case
of two regions, this matrix is:

[)q o 0o .. ol
0 4y 0 ... 0
A= ) (5)
0 0 ... I, O
0 0 0 ...

2.3. Parameter inference

Parameter estimation in DCMs rests on Bayesian inference
(Gelman et al., 1995). Model inversion yields the posterior distri-
bution over the parameters, given the prior distribution and the
observations. Using Bayesian inference, we can not only obtain
point estimates of parameters, but their full posterior distribution,
including estimates of uncertainty and parameter interdepen-
dency (posterior covariance). Since the nonlinearities in the state
equations above prevent an analytic derivation for the posterior

distribution of DCMs, a standard method for inverting DCMs is
variational Bayes (VB) under a Laplace approximation (Friston
et al., 2003, 2007). While VB is very fast, it is susceptible to local
extrema and can be affected by suboptimal assumptions made
about the posterior distribution (see the discussion of its use
for DCM in Daunizeau et al, 2011 and Lomakina et al., 2015).
Furthermore, it can be difficult to derive the required update equa-
tions for inference, particularly for complex models as in this
paper.

Here, we consider the use of Markov Chain Monte Carlo (MCMC)
sampling, based on a Metropolis—Hastings scheme, which involves
generating approximate samples from the posterior distribution
and then using these samples to estimate the properties of the pos-
terior distribution (for previous applications to DCM, see Chumbley
etal,2007 and Senguptaetal., 2015). For the model specified above,
the goal is to obtain the posterior distribution over the (hyper)
parameters [, [ and A, where the connection weights . are of
primary interest. The following equations summarise MCMC sam-
pling in our context:

0
p(Ocle) prIg(-),A‘1 p(ellle, X¢)

P('9h|') X prIg(’)tA_lﬂip(uhth’ Eh) (6)
p(Ale) o p ylg(e), A™1 p(AIT , Z,),

“w »

where “o” denotes all the remaining variables.

The advantage of using MCMC is that we can avoid distributional
assumptions and complex derivations; furthermore, it is asymptot-
ically exact, i.e. as the sample size goes to infinity it converges to
the true posterior distribution. On the other hand, MCMC sampling
can be computationally expensive and may require a long time to
converge.

2.4. A hierarchical model with embedded clustering

Above, we have described the existing framework for single-
subject connectivity inference in DCMs. It is possible to extend
this framework for multiple subjects using the notion of genera-
tive embedding for model-based inference. Generative embedding
involves a two-stage process: (1) inference on model parameters
and (2) using these parameters to construct a feature space for
(un)supervised learning problems like classification or clustering
(Brodersen et al., 2011). In essence, this involves embedding the
observed data into a parameter space and performing learning in
this new feature space. This method comes under the umbrella
of emerging hybrid discriminative-generative approaches, as dis-
cussed in Doyle et al. (2013).

In this work, we extend the notion of generative embedding
and construct a multi-subject model which unifies inference on
subject-specific parameters and detection of subgroups in the pop-
ulation. This is done under an empirical Bayesian inversion scheme
in which the latent layer of the prior distributions over subject
parameters is also estimated. This combines the two-stage process
of generative embedding into one unified hierarchical generative
model.

Practically, this is achieved by combining the existing frame-
work of DCMs with the framework of finite Gaussian mixture
models. This allows for simultaneous inference on the connec-
tivity parameters for each subject, given their individual fMRI
measurements, and defines clusters or subgroups of subjects based
on their patterns of connectivity parameter estimates. From a
mixture-model perspective, the ‘observations’ are the subject-
specific vectors of connectivity parameter estimates. From the
perspective of the DCM framework, this requires a re-definition of
the connection priors for each subject as a mixture of normal dis-
tributions rather than the previously defined normal distribution.



10 S. Raman et al. / Journal of Neuroscience Methods 269 (2016) 6-20

o>
G b

@Bt~ —®

Fig. 3. A unified probabilistic model for joint clustering (with respect to K mixing
components) and parameter estimation in N subjects. The cyan shaded regions are
fixed hyperparameters or biophysical constants, the green shaded region represents
observed data. Square regions with variables indicate multiple copies of the variable.

These parameters further form the basis of a generative model for
a DCM through which the truly observed values, like BOLD signals
in the case of fMRI data, are generated.

Assuming that the numbers of clusters K are set in advance,
the full generative model is specified as follows (see Fig. 3 for a
representation as graphical model):

14

Dirichlet(«e, M)(mixing probabilities)

U Oy

dy . ~ Categorical(1)(cluster assignment index)
D n=

Hi» 2k ~ NormallnvWishart ([, Ko, v, o) (moments of Gaussians)
0o Oy

Odn . ~ Normal(/tq,, X4,) (connection parameters)
0 oy

Ohn ; ~ logNormal (i, 2,)(hemodynamic model parameters)

n=

[ [k 0 0

Ar . ~ logNormal p,, (rjz\ (noise parameters)

. il

Y ~ Normal g Tay, Thgs Tq »A;! (BOLDsignals)

(7)

where R and N represent the number of regions and subjects,
respectively. g, and [, are the neuronal and hemodynamic
parameters, respectively, for subject n. (7, ;) are the parame-
ters for the k-th cluster whose prior is defined as the conjugate
Normal-InverseWishart distribution. [; are hemodynamic con-
stants as defined in the Appendix A. d; is the n-th subject’s cluster
assignment which is based on the categorical distribution 7 which
describes the mixing proportions of the clusters. The prior over
the mixing proportions is a Dirichlet distribution where M is a
categorical distribution and « is a scalar quantity which repre-
sents the level of confidence in the prior mean M of the Dirichlet
distribution.

Notably, in the present work, the clustering of subjects is
only informed by the neuronal parameter estimates. This is not
a fixed property of the method, however, and it would be per-
fectly possible to inform clustering by hemodynamic parameters
as well. This might be of utility for studying diseases where con-
tributions of vascular impairments are known to differ across
subforms, for example, dementia. Generally, whether the inclusion
of hemodynamic parameters improves the overall model, can be
tested by model selection based on the (log) model evidence (see
below).

Fig. 3 shows the graphical model for these conditional distri-
butions. The noise and hemodynamic parameters are estimated
independently for each subject. The final equation for y, describes
the generative model of a single-subject DCM (see previous sec-
tion). The priors are the same as listed in Table 1; the key difference
concerns the prior distributions over connection parameters A, B

and C which are now defined over clusters of parameters rather
than over subjects’ parameters directly.

Such a unified hierarchical model offers the opportunity of using
regularities across subjects and cluster structure of the group in
order to select more informed priors for estimating DCM parame-
ters in each individual subject. That s, in our generative model, each
cluster represents a prior distribution for the parameters of the sub-
jects assigned to that cluster. Hence, we can view this as an implicit
learning of hyperparameters of the prior distribution of connectiv-
ity parameters in single-subject DCMs by pooling the data across
all subjects while respecting the cluster structure of the population.
This amounts to an interaction between ‘empirical Bayesian’ infer-
ence and unsupervised generative embedding which is enabled by
the hierarchical structure of our model. Another advantage of our
hierarchical model is with respect to the use of point estimates
(like posterior expectations) as compared to entire posterior dis-
tributions for clustering purposes. In the conventional two-stage
process, point estimates like posterior expectations have been
used so far (Brodersen et al., 2011, 2014). By contrast, our unified
model uses all the available distributional information to specify
clusters.

A special case of this unified model is a single cluster model
where all subjects have the same latent prior distribution. This
drops the ambition to detect structure in the population but
still represents a significant step beyond current non-hierarchical
schemes for DCM inversion. Specifically, the introduction of a
latent layer essentially means that we adopt an empirical Bayesian
perspective, and makes it possible to infer the prior distribu-
tion and subject posterior estimates under the same scheme.
Below, we use an empirical dataset to demonstrate that such a
model enhancement can lead to a significant increase in model
evidence.

2.5. MCMC for inference

We now describe the inference for the finite mixture frame-
work using MCMC sampling. The posterior distribution of our finite
mixture model is not analytically tractable. Approximations to the
posterior distribution could be obtained using either MCMC sam-
pling or variational Bayes. In this work, we chose MCMC sampling;
variational Bayes will be considered in future work. We constructed
a blocked Gibbs sampler mixed with Metropolis—Hastings steps
whenever exact posterior conditional distributions are not easily
derived as in the sampling of the subject specific parameters. The
joint model can be described as follows:

P({}’n} 3 uda uh, u, dv 7/'Lka Ek7’ Al.) X
£y 0 0
Normal(y,lg @, e g » An1)

n=1
Normal(‘g, |1 g, Za,)
logNormal( T, 10 ¢, Zp) ®

logNormal(nr[(15, 3)

Og, NormallnvWishart (rty, Xle)
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Fig. 4. The figure shows the two DCMs used for simulations. (A) A two-region linear DCM with two inputs. (B) A three-region bilinear DCM with two inputs.
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Fig. 5. Clustering results for the simulation based on the two-region DCM (Fig. 4A).
Colours indicate the two clusters. The trace of the cluster sizes over the MCMC
iterations indicate rapid convergence to two clusters and is stable across the entire
chain. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

The posterior sampling distributions for the Gaussian distribu-
tions describing each cluster given subject-specific connectivity
parameter estimates can be expanded as follows:

p(Xgle)~ InvWishart (2| Zo + C + ..
[gn - — T O
k — — p—
.. T 9k Uo )(9k !_\0) ,(1)+le) (9)
g .- ; O
- Kollg + 1k
p(pkl X, o) Normal gl oty Kok K

where Cj is the covariance matrix of the connection parameters of
subjects assigned to the k-th cluster and 6 is the mean of the g, s
of subjects assigned to cluster dn, i.e. 6 = 1/mZq, _, Ta,, Where ny
is the number of subjects assigned to cluster k. The posterior sam-
pling distributions for the remaining variables (DCM parameters
and hyperparameters) are:

P(Bdq > Thple) o p(ynle)Normal(Ca, |, 2k)logNormal( Ty, 7y, Xp)

K] (10)

p(log(An)le) o p(ynle)  Normal(log(An,)|7 5, 74).

r=1

Finally, the sampling of subject-wise cluster assignments is done
by computing the probabilities of assigning a subject to each cluster
given all the other parameter values.

Based on the above list of posteriors, it is straightforward to
construct an MCMC algorithm that samples from the posterior dis-
tributions. The algorithm is described in Algorithm 1.

Algorithm 1

Function MCMCInference(maxIterations)
Initialize all variables 6,p,Z
r=1
Initialize SamplelList
While r NotEqualTo maxIterations
For: all subjects
Sample cluster assignment for subjects
End
For: all clusters
Sample cluster parameters p, X
End

(see eqgn 9.)

For: all subjects
Sample subject parameters 8, .8, (see egn 18.)
End
For: all subjects
Sample noise parameters A (see eqn 18.)
End
Add Samples to Samplelist
r=r+1
End
return Samplelist
End Function

The MCMC algorithm described above is implemented in Mat-
lab. In the current version of the code, sampling is initialised based
on prior means and by learning the single subject estimates with-
out taking clustering into consideration; empirically, this proved
to ensure faster convergence. Furthermore in the present code,
the numerical integration scheme used to solve the differential
equations is Euler’s method (step size of roughly 0.1s) which is
implemented in C for computational efficiency. Our model will be
made available as part of the open source toolbox TAPAS (http://
www.translationalneuromodeling.org/tapas).

3. Results
3.1. Simulations
We tested the ability of our model inversion scheme to provide

veridical estimates of cluster assignments and individual param-
eter estimates in simulations. To this end we generated synthetic
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Fig. 6. Parameter recovery for the simulation based on the two-region DCM (Fig. 4A). The figure plots the estimated means of the cluster parameters for all clusters (in this
case two), along with a box plot to illustrate the variance in the estimate. It can be seen that all the parameter estimates are close to the values used for the simulation.

multi-subject BOLD data, with added observation noise, using two
different DCMs. To ensure that data were simulated from a sta-
ble system, we chose A matrices in the simulations according to
the stability criterion for dynamical systems in continuous time,
i.e. ensuring that the largest eigenvalue of the coupling matrix was
negative.

First, we simulated data using a two-region linear DCM with
two inputs, as shown in Fig. 4A. The BOLD signal data were
simulated for 40 subjects with signal-to-noise ratio (SNR)=1,
time to repetition (TR)=2, number of scans per subject=256,
number of clusters =2 (20 subjects from each cluster), cluster vari-
ance=0.05, cluster means—{A; =[-0.4 0.5;0 -0.6], C;=[0.3 0;0
0.8]3, {A2 =[-0.6 —0.2;0 —0.4], C; =][0.8 0; 0 0.3]}. The inputs were
boxcar functions with a time-step of 0.125 s. Using the fixed cluster
parameters, the parameters of each subject were sampled from the
respective cluster distributions. Notably, in our simulations, SNR
was defined as the ratio of signal standard deviation to noise stan-
dard deviation (cf. definition 4 in Welvaert and Rosseel 2013). The
log of the square of this ratio corresponds to a decibel value (note
the standard definition of decibel as the logarithmic unit of the
ratio of powers or intensities). In our case, the chosen SNR of 1
corresponds to 0db. Considering that DCM analyses use regional
time series that are de-noised by taking the first principal compo-
nent (eigenvariate) over tens to hundreds of voxels, our scenario
represents a relatively challenging case.

The MCMC algorithm was applied to the synthetic data from
all virtual subjects and executed for 200,000 iterations, where the
burn-in was taken to be 100,000 iterations. The results are sum-
marised by Figs. 5-7 showing the recovery of the clusters (Fig. 5),
cluster parameters (Fig. 6), and subject assignments (Fig. 7).

Our current implementation requires that the number of clus-
ters K is predefined. The question how many clusters are plausible,
given the data, is basically a question of model selection. That is,
inverting the model under different values of K and comparing the
respective model evidence enables one to determine the most likely
number of clusters. In the context of the present example, we sim-
ulated this scenario, running the inference for K e {1, 2, 3, 4} and
computed the model evidence for each value of K using thermody-
namic integration (see Aponte et al., 2016). The results are shown
in Fig. 8 and indicate that in this ground truth scenario the model
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Fig. 7. Cluster assignments for the simulation based on the two-region DCM
(Fig.4A). The plot shows inferred cluster assignments for each subject. It matches the
ground truth perfectly (data were generated with the first half of subjects assigned
to cluster 1 and the second half to cluster 2).

correctly detects that the data were generated under the existence
of two clusters (K=2).

In a second simulation study, we repeated the same procedure
for the three-region bilinear DCM shown in Fig. 4B. Data for 40
subjects was simulated using two clusters (20 subjects each) of
three region bilinear DCMs. This is a more challenging case than
the linear DCM since there are more parameters to be estimated
with a relatively small number of subjects and low SNR. The data
was generated using the same procedure and parameters as for the
two-region linear DCM, except that the cluster means in this case
were {A; =[-0.5-0.010;0.2 -0.60;0.010.40 —-0.4],C; =[0.30;00;0
0], B2(32y=0.6} and {A; =[-0.6 —0.4 0;0.01 —0.4 0;0.3 —-0.01 -0.6],
(,=[0.6 0;00;00], B2(3)=0.3} and the cluster variance =0.01. The
results are shown in Figs. 9-11. We can see that the procedure
does detect the presence of two major clusters. Moreover, subject
assignments are recovered with high accuracy along with some of
the cluster parameters. However, in this more challenging simula-
tion, not all parameters were recovered well (Fig. 10); the possible
reasons for this are addressed in Section 4.

Additionally, as in the case of the simulated linear DCM, we
inverted the model under different values of K e {1, 2, 3, 4} and
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Fig. 10. Parameter estimates for the simulation based on the three-region DCM (Fig. 4B). The figure shows the estimated mean cluster parameters for all clusters (in this
case two) along with the box plot to visualise the variance in the estimates. Although the clusters have been identified well, not all parameters are close to the ground truth.
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Fig. 11. Cluster assignment results for the simulation based on the three-region
DCM (Fig. 4B). The inferred assignments of subjects to clusters show high accu-
racy with respect to the ground truth. The data were generated with subjects 1-20
belonging to cluster 1 and subjects 21-40 belong to cluster 2.

compared the respective model evidences to determine the most
likely number of clusters. The results are shown in Fig. 12 and indi-
cate that in this ground truth scenario the model correctly detects
that the data were generated under the existence of two clusters
(K=2).

3.2. Empirical fMRI data: working memory task in patients with
schizophrenia and healthy controls

Following the above simulations, we applied our unified hierar-
chical model for embedded clustering to an empirical fMRI dataset
consisting of 83 subjects engaged in a working memory task
(Desernoetal.,2012).This sample comprised 41 patients diagnosed
with schizophrenia according to DSM-IV (10 female; mean age
34.1 years; SD 10.4) and 42 healthy controls (19 female; mean age
35.4; SD 12.2). Full details of this dataset can be found in Deserno
et al. (2012). Here we used this dataset to test whether our model
could identify the two groups (patients and healthy individuals) in
an unsupervised way, under the assumption of a particular DCM
(i.e. fixed network structure). Additionally, we also tested different
models for parameter estimation to verify the gains achieved by
using our novel framework. For these analyses, the priors for noise
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Fig. 13. This plot shows the DCM network model used for the empirical analyses.
This is the winning model chosen in Brodersen et al. (2014).

and hemodynamic parameters were matched to the SPM version
used by the original analyses by Deserno et al. (2012), i.e. SPM8
release 4010. The model that is used for these analyses is the same
model as in Brodersen et al. (2014) and is shown in Fig. 13.

3.3. Unsupervised discrimination of healthy subjects vs. patients

We tested how well our model would discriminate, in an unsu-
pervised way, the two groups from the fMRI data, i.e. patients
and healthy individuals. In this context, it should be mentioned
that, in distinction to previous analyses of this dataset, our current
methodology does not yet allow for a straightforward correction
for potential confound variables. For example, since age and sex are
major determinants of working memory processes (e.g. Pauls et al.,
2013; Spencer-Smith et al., 2013), a previous cluster analysis of this
dataset using the generative embedding approach employed mul-
tiple regression to adjust individual connectivity estimates for age,
sex and handedness before applying clustering (Brodersen et al.,
2014).

3 4

2
Number of clusters assumed in the model

Fig. 12. Comparison of models (bilinear DCM) with different assumptions about the underlying number of clusters (K=1-4). We see that the model with K=2, which

corresponds to the ground truth, is correctly identified as the most plausible model.
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Fig. 14. This plot shows the cluster evolution for the empirical fMRI dataset. One
can see two stable cluster sizes emerge.

In the present analysis, application of our finite mixture model
(200,000 MCMC iterations) yielded two stable clusters. The evolu-
tion of cluster size, cluster assignment, and parameter estimates in
both clusters are shown in Figs. 14-16.

By labelling the clusters based on the diagnostic status of the
majority of subjects contained by them (see Fig. 16), we can test
whether the clustering allows for accurate distinctions. Specifi-
cally, the degree to which the inferred labels agree with the true
diagnostic labels can be measured using the “balanced purity”
(Brodersenetal.,2014). This criterion improves upon the more con-
ventional “purity” measure, which indicates how well the cluster
composition matches an external class label. While simple, purity
is strongly affected by imbalance in the data, e.g. when subgroups
differ considerably in size. Balanced purity shields against such
distortions and provides an unbiased estimate for cluster valida-
tion. In our analysis, we obtained a balanced purity of 65%. Using
the distribution over randomly assigned labels as null distribution,
this clustering-based discrimination of groups is highly significant
(p=0.0032).

3.4. Model comparison

One might wonder whether the relatively complex method-
ology we have presented here conveys any advantages over
conventional approaches to DCM. This question can be addressed
by model comparison: the fact that our framework rests on a
generative model enables us to compute the evidence for dif-
ferent models and thus formally decide whether a hierarchical
(empirical Bayesian) formulation conveys an advantage over the
conventional non-hierarchical approach, as well as to investigate
whether simultaneously taking into account group substructure
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Table 2

Log model evidences for the three different modelling approaches with different
assumptions about the prior distributions and group structure using the simulated
examples for linear and bilinear DCMs described earlier and the empirical dataset for
the working memory task. The hierarchical mixture model performs best, followed
by the hierarchical single-cluster model. Both these hierarchical extensions in turn
perform far better than the non-hierarchical model. Please note that a log evidence
difference of three is considered a strong indication of one model being superior to
another (Kass and Raftery, 1995).

Log model evidence Non- Hierarchical Hierarchical
hierarchical (single cluster) (mixture model)
Linear DCM (simulated) 32,015.0 32,123.0 32,126.0
Bilinear DCM (simulated) 14,058.0 14,277.0 14,279.0
Working memory(empirical) —4282.7 —4080.9 —4064.6

(clustering) is advantageous. We addressed this question both in
the context of our simulations and the above empirical dataset,
comparing three models of the data. The first model used the con-
ventional non-hierarchical approach in which parameter estimates
are obtained independently for each subject, with fixed priors
over the parameters. The second model was of the hierarchical
form introduced in this paper, but assuming that all subjects came
from the same group (i.e. their connectivity parameters were sam-
pled from the same prior). This represents a special case of our
framework where the cluster size is set to one. Finally, the third
model exploited the full functionality of our approach, adopting
a hierarchical (empirical Bayesian) perspective while allowing for
simultaneous clustering into two subgroups; in other words, the
procedure determined subgroup-specific priors in order to com-
pute subject-specific parameter estimates.

In order to obtain an approximation to the log evidence as a
basis for model comparison, we employed thermodynamic inte-
gration (TI) (Gelman and Meng, 1998). Our implementation of TI
is an extension to the single chain MCMC approach, using mul-
tiple chains at different temperatures in order to obtain a robust
estimate of the model evidence. Details of this TI implementa-
tion are described elsewhere (Aponte et al., 2016; Raman et al.,
in preparation).

For both linear and bilinear DCM simulations as well as for the
empirical working memory dataset, the ensuing model compari-
son, based on log evidence estimates obtained by TI, indicates that
a hierarchical model is clearly superior to conventional inversion of
DCMs; additionally, the mixture model formulation (with two clus-
ters) is found to be a more adequate explanation of the data than a
single cluster formulation. These results are described in Table 2.

For the empirical dataset, the results are summarised by Table 2;
here the benefit obtained from the interaction between an empiri-
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Fig. 15. This plot shows the assignment of subjects to the two clusters.
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Fig. 16. This figure plots the average connectivity parameter estimates for the two clusters (using the labels “healthy” and “patients” based on the true diagnostic label of

the majority of subjects in the cluster).

Table 3

Root mean square error (RMSE) averaged over all subjects for the two simulated
DCMs (linear and bilinear) and for the three different modelling approaches with
different assumptions about the prior distributions and group structure. There is a
clear improvement of parameter value recovery (RMSE) when moving from conven-
tional DCM to a hierarchical model, with a further, less pronounced improvement
when adding the mixture model formulation.

RMSE (average) Non- Hierarchical Hierarchical
hierarchical (single cluster) (mixture model)

Linear DCM (simulated)  2.3530 0.1165 0.0894

Bilinear DCM (simulated) 2.7939 0.3793 0.3625

cal Bayesian perspective and clustering is even more beneficial: the
log evidence differences between the best model (the hierarchical
mixture model assuming two groups) and its two competitors are
approximately 16 and 218 and thus considerably higher than the
conventional requirement of a log evidence difference of 3 for dis-
tinguishing models (Kass and Raftery, 1995). In other words, for
this dataset, it is advantageous to learn the prior distribution over
parameters using the data from all subjects but, at the same time,
determine the priors in a group-specific way.

Furthermore, we investigated how accurately subject wise
parameter values were recovered, using the standard root mean
squared error (RMSE) criterion for estimation accuracy. Specifically,
we computed and report the average RMSE (between the estimated
and true connection parameters) over all subjects. Of course, this
can only be done for the simulated data since the true (genera-
tive) parameter values are not known for the empirical data. The
results for the two simulated datasets show a clear improvement
when using the hierarchical model, with an additional, albeit less
dramatic benefit under the mixture model (Table 3).

4. Discussion

In this paper, we have presented a novel framework to jointly
infer the effective connectivity parameters in DCMs for multi-
ple subjects and, at the same time, discover connectivity-defined
cluster structure of the whole population, using a mixture model
approach. While mixture models have found successful applica-
tions in a variety of scenarios (de la Torre et al., 2006; Hurn et al.,
2003; Lenk and DeSarbo, 2000; Qi et al.,, 2007), they have only
relatively recently been introduced to neuroimaging data analy-

sis (e.g. Thirion et al., 2007; Woolrich et al., 2005; Lashkari et al.,
2010; Stingo et al., 2013). Our model is novel in that the features
which enter a generative mixture model represent the full poste-
rior parameter distributions from another (embedded) generative
model,i.e.a DCM for fMRI data. This represents a hierarchical exten-
sion of previously introduced generative embedding procedures
(Brodersen et al., 2011, 2014) and unifies inference on individual
connectivity with inference on population subgroups.

In addition to introducing the mathematical details of our new
approach, this paper used simulations and empirical data to probe
the validity of our model. In this context, one needs to distinguish
between different kinds of validity (face, construct, and predictive
validity). Our simulations were designed to test face validity. That
is, we asked: if data are generated by the generative process embod-
ied by the model, are we able to recover the parameter values and
model structure (e.g. true number of clusters)? This is not nec-
essarily given. For example, our implementation could be flawed
(coding errors); or the model might have a likelihood function
which introduces profound convergence problems during optimi-
sation or significant non-identifiability problems. It is these type
of problems which can be detected by face validity tests based
on simulated data. Furthermore, our empirical analyses assessed
predictive validity: here, we used the empirical schizophrenia
dataset to assess the correspondence of our clustering solution to
external labels (diagnostic status). By contrast, construct validity
concerns the question to what degree a model delivers compara-
ble results as alternative techniques (cf. Lee et al., 2006). In this
paper, we do not address construct validity with regard to non-
DCM generative models, but hope to address this issue in future
work.

It is worth reiterating that the focus of this initial paper is not
on establishing a procedure with higher accuracy than existing
schemes; instead, the main purpose of this paper is to introduce
the idea behind our novel approach and demonstrate its prac-
tical feasibility. To this end, we assessed the accuracy of model
inversion using simulations and applied our model to an empir-
ical fMRI dataset consisting of two groups, healthy controls and
schizophrenic patients performing a working memory task. The
simulations in this paper demonstrate that our current implemen-
tation performs well, even under a relatively challenging scenario
of non-trivial observation noise (compare Figs. 5-10). The appli-
cation to the empirical data by Deserno et al. (2012) produced
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results similar to those from an earlier analysis of this dataset by
Brodersen et al. (2014). Specifically, our model was able to distin-
guish patients and controls in an unsupervised way with highly
significant accuracy (65%; p=0.0032). This is similar to the 71%
classification accuracy reported by Brodersen et al. (2014). Gener-
ally, given the simplicity of our cortical circuit model (comprising
merely 6 connections and 3 inputs), the accuracy reported here
does not fare too badly compared to previous attempts of distin-
guishing between schizophrenic patients and healthy controls on
the basis of whole-brain connectivity estimates, resulting in accura-
cies in the range of 60-90% (e.g. Anticevic et al., 2015; Arbabshirani
et al, 2013; Venkataraman et al., 2012; Fekete et al., 2013).

Several reasons might explain the slightly lower performance of
our method, compared to Brodersen et al. (2014), in this particular
application case. First, our model inversion scheme uses a less accu-
rate method (Euler integration, instead of the matrix exponential)
forintegrating the differential equations of the neuronal state equa-
tions. This choice was motivated by the goal of reducing compute
times as much as possible. In future implementations, GPU-based
implementations will allow for more accurate integration schemes
without significant increase in compute time (cf. Aponte et al.,
2016). Second, and more importantly, in contrast to Brodersen
et al. (2014), the implementation presented in this paper does
not yet incorporate a correction for confounding variables (such
as age, handedness or sex) which might have considerable impact
on the definition of subgroups. This is an important extension of
our method which we hope to present in future work and which
is of particular relevance for identification of subgroups in hetero-
geneous spectrum diseases (see Wiecki et al., 2015). That is, unless
inter-individual variability due to disease-irrelevant confounds can
be distinguished from the variability due to disease-relevant fac-
tors, putative cluster structures in data from patient populations
with known heterogeneity are difficult to interpret or trust.

Importantly, our new framework rests on a single generative
model that can be reduced to two special cases: (i) a hierarchical
which assumes that all subjects come from a single cluster; this cor-
responds to an empirical Bayesian perspective without embedded
clustering; and (ii) a non-hierarchical framework; this is identical
to the conventional approach where parameters from each sub-
ject are estimated independently under fixed priors and without
clustering. This allows one to use model comparison to address
the question which of these perspectives is most appropriate for
explaining multi-subject fMRI data with DCM. Here, we have shown
that for the dataset by Deserno et al. (2012) our unified frame-
work has considerably higher evidence when compared to either
of the other two cases. In other words, allowing for regularisation
of subject-specific parameters by estimating subgroup-specific pri-
orsis, at least for this application, superior to the conventional DCM
approach.

Compared to previous two-step generative embedding proce-
dures (Brodersen et al., 2011, 2014) our model has two distinct
advantages. First, the hierarchical structure of our model allows
one to exploit across-subject information in order to define cluster-
specific priors for DCM parameter estimation. This corresponds to
an ‘empirical Bayesian’ inference scheme and may result in more
appropriate priors than the currently used fixed shrinkage prior.
Second, our hierarchical model uses the entire information from
the posterior distributions for clustering, not only point estimates
(like posterior expectations). More recently, an elegant and compu-
tationally extremely efficient Bayesian reduction strategy (Friston
et al., 2016) has been proposed for empirical Bayesian estimates
in DCM: this corresponds to the special case of a single cluster
in our model. In comparison, our approach is computationally far
more expensive. However, our approach is more general in that it
does not assume that the models are nested; furthermore, it does
not make any distributional assumptions regarding the posterior

distribution of the connectivity parameters. This may be an impor-
tant asset when dealing with highly non-linear models such as
conductance-based DCMs (Moran et al., 2011). Second, our frame-
work can be extended to an infinite mixture model, thus providing
a principled solution to tackling the general and difficult prob-
lem of inferring the number of subgroups within a population of
subjects. In the present formulation, determining the number of
clusters corresponds to a classical model selection problem: it can
be achieved by running the model under different assumed values
of K and comparing the resulting log evidences (see Fig. 8). It is
worth emphasising that this type of model comparison is critically
important, because wrong assumptions about the number of clus-
ters can have deleterious consequences on inference. That is, under
false assumptions about the number of clusters erroneous merging
or splitting of clusters will necessarily occur, with possible impact
on parameter estimates of individual subjects within the respective
clusters. However, our current implementation not only allows for
model selection with regard to cluster number, but also estimates
the uncertainty (posterior variance) of the cluster assignments and
thus allows for detecting potentially problematic cluster solutions.

Having said this, the implementation of our approach presented
in this paper also has several important limitations (as already
touched upon above) which we will address in future work. Five
further aspects of the model are particularly prominent targets for
improvement. The first concerns a reduction of the computational
cost of the inference scheme. Although MCMC is an attractive infer-
ence scheme due to its simplicity, it is computationally expensive.
This may become prohibitive with large DCMs and large subject
population. For larger studies, this can be partly rectified by par-
allelizing the sampling of connectivity parameters of individual
subjects (cf. Aponte et al., 2016). To further improve scalability to
large DCMs, as a next step, we are currently pursuing a variational
Bayesian approach to inference and will examine whether this
allows for substantial computational gains without compromising
the accuracy of inference. Another alternative is to employ Gaus-
sian processes for model inversion, an approach we have recently
introduced to DCM (Lomakina et al., 2015). Additionally, we aim
to improve upon the current single chain MCMC implementation
by extending the population MCMC scheme in Aponte et al. (2016)
which uses multiple chains for better convergence.

Second, an extension to population MCMC may provide a rem-
edy for a potential problem we encountered above. This concerns
the fact that our more complex simulations of a bilinear DCM
indicated that not all generative parameter values were recovered
correctly. There could be multiple reasons for this. One possibility is
that the more complex likelihood function induces partial param-
eter dependencies; such dependencies can lead to mathematically
entirely correct but seemingly counterintuitive deviations of pos-
terior estimates from “ground truth” parameter values (see the
discussion of a similar observation in Lomakina et al., 2015). We
checked the resulting posterior covariance matrices and found only
relatively moderate dependencies. An alternative explanation is
that, for finite runtime, there is no guarantee that MCMC is not
getting stuck in certain parts of the posterior distributions. The like-
lihood of this possibility can be reduced significantly by population
MCMC, and we will explore the benefits of this extension in future
work.

A third extension of the model concerns feature selection and
multi-view clustering (Niu et al., 2012). This is also an ongoing
project within our group, where we hope to find that both feature
selection and multi-view clustering conveys further improvements
with respect to finding unknown subgroups in subject populations.

Fourth, we will extend the current formulation from finite mix-
ture to infinite mixture models (Rasmussen and Ghahramani, 2002)
based on Dirichlet processes (Neal, 2000). This will eschew the
necessity of specifying the number of clusters in advance and make
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model comparison (between models with different values of cluster
number K) superfluous. Instead, this formulation would allow for
inferring the number of clusters together with all other parameters.

Finally, as mentioned earlier and perhaps most urgently, we
strive to extend the model such that potential confounds - e.g. sex,
age, handedness, medication, etc. - can be removed which might
otherwise affect the clustering results (cf. Stingo et al., 2013). The
importance of confound removal is an important theme in cur-
rent discussions of model-based clustering (e.g. Brodersen et al.,
2014; Wiecki et al., 2015), and is likely to improve the results
of the preliminary analyses of empirical data described in this
study. Extending the current model to deal with confound vari-
ables, will also enable us to investigate the heterogeneity within
the patient group itself, similar to Brodersen et al. (2014), without
being affected by differences in age, sex, and medication.

It should be emphasised that the framework presented in this
paper is neither restricted to DCM nor to indices of connectiv-
ity, but can, in principle, be applied to any generative model. This
is important to highlight because connectivity estimates are not
the only pathophysiologically relevant indices for describing dis-
ease mechanisms and defining patient subgroups. The translational
neuromodelling strategy we pursue is equally interested in com-
putational characterisations of individual patients, and how these
may be linked to neurophysiological processes such as neuromod-
ulation (Stephan and Mathys, 2014; Schlagenhauf et al., 2014). For
example, generative models of behaviour can be applied to individ-
ual responses, yielding subject-specific trajectories of prediction
errors and uncertainty (or its inverse, precision) which, in turn,
have been found to correlate with BOLD signals in neuromodulatory
nuclei like the dopaminergic midbrain or the cholinergic basal fore-
brain (D’Ardenne et al., 2008; Iglesias et al., 2013; Schwartenbeck
et al.,, 2014), or in dopaminoceptive regions like the ventral stria-
tum (O'Doherty et al., 2003; Deserno et al., 2015). Furthermore,
a recent pharmacological MEG study using L-Dopa has shown
that single-region conductance-based DCMs for electrophysiologi-
cal responses can provide plausible estimates of dopaminergically
mediated changes in glutamatergic receptor conductances (Moran
etal., 2011). Integrating these generative models for behavioural or
MEG/EEG data into the hierarchical model presented in this paper
might allow for clustering patients according to individual profiles
of neuromodulation. This is an intriguing possibility of high clinical
relevance, given that the large majority of drugs used in psychia-
try target neuromodulatory mechanisms (e.g. dopamine receptor
antagonists in psychosis, blockade of serotonin or noradrenaline
reuptake in depression, inhibition of acetylcholine breakdown
in dementia). In other words, unsupervised clustering based on
indices of neuromodulation might delineate patient subgroups
with different treatment predictions (Stephan et al., 2015). Given
the modular structure and the generic and robust inference scheme
of the unified framework for model-based clustering presented in
this paper, it can easily be extended to other generative models. In
this regard, we plan to implement this framework for other DCMs,
such as DCM for event-related responses (David et al., 2006) and
conductance-based DCMs (Moran et al., 2011), as well as hierarchi-
cal Bayesian models of learning (Mathys et al., 2011).

In summary, this paper has introduced a novel hierarchical
model for simultaneous inference on single-subject connection
strengths and cluster structure in the population. We hope that
this model will become a useful tool for detecting pathophysiolog-
ical subgroups in psychiatric and neurological spectrum diseases
and for assigning single patients to such subgroups. While many
future improvements and extensions are conceivable and desirable,
a clear strategy exists for evaluating the utility and robustness of
this approach in practice, i.e. prospective patient studies in which
the predictive strength of individual subgroup assignment can be

tested against clinically relevant outcome criteria, such as individ-
ual treatment response (Stephan and Mathys, 2014).

Software note

The code of the hierarchical model presented in this paper will
be made available as part of the open source software TAPAS (http://
www.translationalneuromodeling.org/tapas).
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Appendix A. Hemodynamic equations in DCM for fMRI

This section provides a brief summary of the hemodynamic for-
ward model in DCM which translates neuronal population activity
(neuronal state x) into an observable BOLD signal y. This model was
inspired by the Balloon model initially proposed by Buxton et al.
(1998) and then subsequently extended by Friston et al. (2000) and
Stephan et al. (2007) as follows:

ds
at =x—kKks—0(f-1)
df
E —S
f%’ o (11)
dg -0 -E)'" .4
o s
AS o . q .
y=—-=Vo ki(1-q@)+ky 1—= +k3(1-v)
SO v

wheres, f, v, g represent vasodilatory signal, blood flow, and deoxy-
hemoglobine content. Vy=4, Eg=0.4, «=0.32, y=0.32, po=40.3,
TE =0.04, g =25 are biophysical constants (see Stephan et al., 2007
for details). Furthermore, the final line of Eq. (11) represents a
nonlinear static output equation which links blood volume and
deoxyhemoglobine content to the observed BOLD signal y. This
output equation is determined by three coefficients:

ki = 43,00EOTE

](2 = ¢rgEgTE (12)

k3= e-1,

The remaining quantities in Eq. (11) represent subject- and
region-specific parameters that can either be fixed to typical val-
ues or treated as free parameters (see Stephan et al., 2007 for
details). In the present application, we matched the hemodynamic
model to the version used by Deserno et al. (2012), allowing for
the estimation of three free parameters, i.e. 6, = («, t, €), with prior
distributions as indicated in Table 1. Notably, there is a separate
parameter set for each region, i.e. regional differences in hemody-
namics are taken into account by the model.
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