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Diagnosis and individualized treatment of autism spectrum disorder (ASD) represent 
major problems for contemporary psychiatry. Tackling these problems requires guid-
ance by a pathophysiological theory. In this paper, we consider recent theories that 
re-conceptualize ASD from a “Bayesian brain” perspective, which posit that the core 
abnormality of ASD resides in perceptual aberrations due to a disbalance in the pre-
cision of prediction errors (sensory noise) relative to the precision of predictions (prior 
beliefs). This results in percepts that are dominated by sensory inputs and less guided 
by top-down regularization and shifts the perceptual focus to detailed aspects of the 
environment with difficulties in extracting meaning. While these Bayesian theories 
have inspired ongoing empirical studies, their clinical implications have not yet been 
carved out. Here, we consider how this Bayesian perspective on disease mechanisms 
in ASD might contribute to improving clinical care for affected individuals. Specifically, 
we describe a computational strategy, based on generative (e.g., hierarchical Bayesian) 
models of behavioral and functional neuroimaging data, for establishing diagnostic tests. 
These tests could provide estimates of specific cognitive processes underlying ASD and 
delineate pathophysiological mechanisms with concrete treatment targets. Written with 
a clinical audience in mind, this article outlines how the development of computational 
diagnostics applicable to behavioral and functional neuroimaging data in routine clinical 
practice could not only fundamentally alter our concept of ASD but eventually also 
transform the clinical management of this disorder.

Keywords: autism spectrum disorder, asperger syndrome, translational research, diagnostic tests, generative 
modeling, Bayesian inference, Bayesian models, neuroimaging

introdUCtion

An important precondition for successful translation of basic scientific theories into clinical appli-
cations is the knowledge of the most pressing unresolved problems in clinical practice. The care 
for affected individuals can only be improved effectively if these priority problems are identified 
and used to guide the design of scientific studies. In heterogeneous disorders, such as autism 
spectrum disorder (ASD), cross-sectional comparisons of patients vs. controls may provide coarse 
contours of some characteristics of the spectrum, but are usually not sufficient to inform changes 
in clinical practice (1).
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In this article, we adopt the clinician’s perspective as starting 
point for outlining how a computational modeling strategy, based 
on Bayesian theories of ASD (2–4), could inform the develop-
ment of diagnostic and predictive tests for improving clinical 
care for individuals with ASD. For the non-clinical reader, we 
begin with an introduction to the nosology and current clinical 
management of ASD. For the clinical audience, later sections on 
computational theories are written in a non-mathematical way 
and complemented by figures that illustrate basic principles of 
Bayesian theories.

Features of asd – a Brief overview
Nosology
Autism spectrum disorders are developmental disorders of 
variable severity and heterogeneous phenotypes. Core diagnostic 
criteria are persistent deficits in social communication and inter-
action and restricted, repetitive behaviors and interests. Most 
affected individuals also show altered reactivity to sensory input 
or unusual interests in sensory aspects of the environment (5, 6) 
and motor skill deficits or clumsiness (7). The features are present 
across the life span, but may remain hidden until unmasked by 
enhanced social demands during development; conversely, they 
may become less visible in adulthood due to the development 
of coping strategies. The spectrum ranges from very severe 
forms – individuals with absent development of verbal language 
and complete dependence on support –  to light expressions of 
autistic traits that may be masked by learned coping strategies. 
Generally, there is a smooth transition from pervasive expressions 
of autistic traits, which cause significant disability and distress to 
the affected individual, to autistic personality traits that can be 
regarded as “normal” variations of human personality and do not 
cause suffering or impairment.

The severe manifestation of ASD, early childhood autism, 
often co-occurs with intellectual disability and was first 
described by Leo Kanner in 1943 (8). The term “autism” was 
introduced to diagnostic classifications in 1976 (ninth revision 
of the International Classification of Diseases, ICD-9) and 1980 
(third revision of the Diagnostic and Statistical Manual of Mental 
Disorders, DSM-III), respectively. Lighter manifestations were 
first described by Hans Asperger (9) and introduced to the 
diagnostic classifications in 1992 (ICD-10) and 1994 (DSM-IV), 
respectively, as “Asperger syndrome” (10). In contrast to early 
childhood autism, Asperger syndrome lacks a general retarda-
tion in language and is not associated with intellectual disability. 
Its recognition and introduction to disease classifications trig-
gered a reframing of the earlier category “autism” as “childhood 
autism.”

This historical background explains why, for almost two dec-
ades, the psychiatrists’ and the public’s concept of “autism” was 
shaped by the severe form. Awareness for lighter manifestations 
on the spectrum started to grow only slowly after the release of 
ICD-10 and DSM-IV. Over time, childhood autism and Asperger 
syndrome were understood as differential expressions on a spec-
trum with hypothesized similar pathophysiological mechanisms. 
Accordingly, the latest revision of the DSM (DSM-5) merged 
them into a single diagnostic category called ASD.

Epidemiology
Interestingly, the prevalence of autistic spectrum disorder has 
substantially increased between 1990 and 2010, and around 1% 
of the population is now thought to be affected by ASD (11). This 
rise can be explained by the expansion of the diagnostic criteria 
(inclusion of Asperger syndrome) and increased awareness of 
both the public and professionals, leading to more diagnoses 
without an increased rate of the disorder per se (12, 13).

Etiology
With regard to etiology, epidemiological studies have long 
pointed to high heritability and a strong genetic contribution to 
the risk of ASD, finding concordance rates of 60–70% in monozy-
gotic twins and 18–33% in siblings (14, 15). This strong genetic 
influence has been further elucidated by recent genome-wide 
analyses of large populations that suggested two different types 
of genetic contributions to the risk of ASD (16): while some rare 
de novo mutations can be sufficient to convey risk, in other cases, 
a wide range (>1000) of common single nucleotide variants may 
interact in conveying the risk for developing ASD (17). Many of 
the risk genes for ASD, identified so far, appear to impact primar-
ily on synaptic plasticity and alter connectivity of neural circuits 
(16). This focus on synaptic connectivity is of relevance for the 
computational theories discussed below; by contrast, it has not 
yet been translated into specific therapies.

Treatment
Current treatment concepts of ASD include behavioral interven-
tions, psychotherapy, and pharmacological approaches. In chil-
dren, early behavioral interventions that foster social interaction 
and speech development (18, 19) are well established and have 
proven efficacy (20). Adolescents profit from explicit teaching of 
social skills in groups (21). For adults with ASD, we lack estab-
lished disorder-specific psychotherapy concepts, so far, that go 
beyond social skills trainings (22, 23). Available approaches can 
be divided into psychoeducation (i.e., providing a concept of the 
disorder and how the individual symptoms relate to it), teaching 
of coping strategies, and therapy of comorbidities (e.g., depression 
or anxiety) with currently available options of psychopharmacol-
ogy and/or psychotherapy. In pharmacotherapy of ASD, the most 
frequently prescribed and only FDA-approved substance is the 
dopamine D2 receptor antagonist risperidone (24). This drug has 
approval for sedation in the presence of aggression or irritability, 
in ASD. Off-label use of pharmacotherapy mainly rests on the 
dopaminergic and noradrenergic stimulant, methylphenidate 
(25). Its effectiveness is mainly documented in the context of 
comorbid attention-deficit symptoms (26, 27).

Theories
Theories of ASD have either focused on the social symptoms 
of ASD [e.g., as a deficit of theory of mind (28), reduced social 
salience (29, 30), or a lack of social motivation (29, 30)] or on 
peculiarities of autistic perception [e.g., “weak central coherence” 
(31–33)]. By contrast, there is no universally accepted mechanis-
tic theory so far, which provides a unifying explanation across the 
entire range of autistic symptomatology.
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A candidate theory that might fill this gap is what one might 
refer to as the “Bayesian brain” perspective on ASD (2–4). This 
is an umbrella term for several similar theories that conceptual-
ize ASD under a predictive coding or hierarchical inference 
framework and explain autistic cognition as the consequence 
of fundamental abnormalities in perception and learning. This 
computational view on ASD suggests concrete models that can be 
tested by cognitive and neurophysiological studies and that may 
provide a fundament for developing clinically useful tests. This is 
the topic of this paper.

Contemporary Challenges in Clinical 
Care for asd
The present clinical management of ASD is not satisfactory in 
several regards. In the following, we outline some key challenges 
in diagnosis and treatment of children and adults along the autism 
spectrum, where we see particular opportunities for Bayesian 
theories to contribute to improvements.

Diagnostic Challenges
Today’s diagnostic criteria defined in ICD and DSM and respective 
diagnostic procedures were derived from Kanner’s and Asperger’s 
descriptions of the behavior and development of affected young 
boys (8, 9). Factors that cause heterogeneity in developmental 
trajectories of affected individuals and, therefore, observable 
manifestations of ASD are the degree of severity, the absence or 
presence of spoken language, gender, age, intelligence, and the 
individual history of life experience and learning (spontaneous 
or fostered by training). This heterogeneity causes problems in 
the diagnosis of ASD.

Since mechanistic definitions and measures of ASD are lack-
ing, diagnosis rests, as for all psychiatric disorders, on symptoms 
and signs and the developmental history. The Autism Diagnostic 
Observation Schedule (ADOS) has been developed as a semi-
structured assessment tool to standardize clinical examination 
of the diagnostic criteria of ICD-10 and DSM-IV (34). In com-
bination with the Autism Diagnostic Interview (revised version, 
ADI-R) (35), which is conducted with parents or caregivers of 
affected children, it is regarded as gold standard of ASD diagnosis, 
particularly for children at the more severe end of the spectrum 
(36). This, however, directly leads us to the first clinical challenge: 
(i) ADOS and ADI-R are time-consuming procedures, which rely 
on the availability of specifically trained and experienced clini-
cians. It would be extremely desirable to have a quicker, easier, 
and less resource-demanding diagnostic test, which could be 
applied by non-specialized professionals. This would consider-
ably facilitate early diagnosis, which, in turn, is essential for the 
success of therapeutic (behavioral) interventions at an early stage.

Autism Diagnostic Observation Schedule and ADI-R have less 
sensitivity in children and adults with higher functioning and 
milder forms of ASD. This is a result of the greater variance in 
observable symptoms in these individuals, e.g., due to acquisition 
of coping strategies (37). In individuals at the lighter end of the 
spectrum, symptoms may be covered in childhood, until social 
demands exceed available coping strategies. Later in develop-
ment, symptoms may become masked by acquired strategies that 

facilitate social interaction and communication. This variability 
renders the diagnosis of children, and particularly adults, at the 
milder end of the spectrum, challenging. Even if these highly 
functional individuals may show few classical autistic symptoms 
at first sight, their ability to cope with complex environments and 
daily demands can be frail. This causes significant exhaustion and 
suffering, and promotes comorbidities, e.g., depression, anxiety, 
or substance abuse (38).

The diagnosis of individuals at the lighter end of the spectrum, 
therefore, requires the detection of subtle signs. For example, 
peculiarities in social interaction and communication become 
apparent only in deeper interactions and/or over longer periods 
of observation. The repetitive nature of behavior manifests itself 
on larger temporal or spatial scales than in children. Reliable 
diagnosis often requires an extensive exploration of the patient’s 
way of perceiving and understanding the world, themselves, and 
others. Such diagnostic exploration can be instructive in adult 
ASD patients with a high degree of socioemotional development, 
who have established a concept of their differences to others. 
However, compared to non-developmental psychiatric disorders, 
two complications frequently arise. First, for the patient, his/her 
autistic symptoms have always been present, and there is no 
non-affected state to which a comparison could be established. 
Second, the establishment of abstract representations of the 
(autistic) self and (non-autistic) others is a core problem in 
ASD and renders the recognition and description of one’s own 
particularity difficult.

Another difficulty of recognizing ASD arises in this same 
group of less severely affected individuals by the fact that, at first 
clinical contact, their autistic symptoms are often overshadowed 
by acute exacerbation of secondary effects or comorbidities, such 
as depression, which often represent their main motivation for 
seeking clinical help (39–41).

Taken together, a second challenge is the (ii) diagnosis of mild 
forms of ASD due to the great variance of presented symptoms 
and the difficulty in exploring the inner world of an autistic mind 
in the absence of quantitative tools. Experienced clinicians, who 
are able to detect these mild forms of ASD by clinical examina-
tion, are even rarer than experts in ADOS/ADI-R. This is because 
awareness of the lighter forms of ASD has grown only slowly, 
especially in adult psychiatry, where many older patients remain 
misdiagnosed because they entered clinical care before the intro-
duction of the diagnostic classification of Asperger syndrome in 
the 1990s (42, 43).

A third challenge is the (iii) detection of very young children at 
risk, such as siblings of already diagnosed children. Their geneti-
cally increased risk for ASD makes them candidates for screen-
ing and early intervention in order to optimize their long-term 
outcome (15). The diagnosis in these very young infant siblings 
is based on close monitoring of behavioral development (44), but 
complicated by various onset patterns and the limited repertoire 
of observable behavior at this early developmental stage (45). Eye 
tracking of visual scanning patterns is a potentially promising 
marker of altered cognition at this early stage (46), but remains 
to be validated in prospective studies.

A fourth diagnostic challenge concerns (iv) the assessment 
of intelligence in ASD patients without spoken language at the 
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severe end of the spectrum. There is evidence that the degree of 
intellectual disability in ASD individuals with no verbal com-
munication skills is overestimated (47), with possibly severe 
consequences for the patient. Again, objective and quantitative 
assessment tools are lacking so far.

In summary, so far, appropriate diagnostic procedures are 
available only for a limited group of ASD patients with specific 
degrees of severity and age. Furthermore, their reliance on 
specific expertise and training makes it difficult for the average 
psychiatrist to achieve reliable clinical diagnoses of ASD.

Treatment Challenges – Behavioral Therapy 
and Psychotherapy
As described above, several effective concepts of early behavioral 
intervention and social skills training are established for children 
across the whole spectrum. By contrast, the follow-up treatment 
in adulthood still poses considerable problems. This brings us to 
further concrete challenges:

(v) So far, there are no concepts of behavioral interventions 
that foster socioemotional development of severely affected 
individuals in adulthood, especially not for those without spoken 
language and possibly underestimated intelligence (48).

(vi) For the mild end of the spectrum, some first concepts of 
social training for adults do exist (23, 49, 50). However, treatment 
concepts focusing on “hidden” autistic symptoms in adults, such 
as sensory oversensitivity, detail-dominated perception, or the 
need for structure and rituals in self-organization are still to be 
developed (51).

(vii) There is a lack of concepts how the psychotherapy of 
comorbid disorders, such as depression, needs to be adjusted in 
the specific context of ASD (52).

Treatment Challenges – Pharmacotherapy
(viii) There is a complete lack of pharmacological therapies 
that are motivated by concrete pathophysiological theories and 
influence either the neurodevelopment in children or tackle 
the mechanisms behind autistic symptoms in adolescents and 
adults (53, 54). This lack is remarkable, given that ASD is now 
considered to represent one of the most strongly heritable and, 
therefore, biologically determined psychiatric disorders (11, 55).

(ix) Trial and error psychopharmacological approaches show 
some beneficial effect in individual patients. An individualized 
prediction of treatment response could save time and prevent 
patients’ suffering from unnecessary side effects of ineffective 
medication attempts.

a CoMpUtationaL FraMeWorK 
For asd

Computational approaches to psychiatric 
disorders
Addressing the clinical challenges highlighted above represents 
a daunting problem. Without a fundamental mechanistic 
explanation for the manifold clinical manifestations of ASD, 
we lack a fundament for developing diagnostic tests and new 
treatment strategies. Clearly, this situation is not unique to ASD: 

psychiatry generally lacks mechanistically grounded diagnostic 
tests. In  contrast to other areas of medicine where hidden disease 
mechanisms can often be inferred by advanced measurements of 
downstream consequences (e.g., biochemical or immunological 
assays of blood samples), the diagnosis of psychiatric disorders 
is hampered by lack of access to disease-relevant tissue (i.e., the 
brain) and the absence of biochemical or genetic markers with 
predictive utility (56, 57). Similarly, while structural neuro-
imaging techniques are used in clinical practice to rule out 
non-psychiatric disorders (“organic” causes), their functional 
counterparts are remote from neuronal processes of interest, e.g., 
neuromodulatory signals. More than two decades of functional 
neuroimaging research have yielded no application that has 
entered routine psychiatric practice so far (1, 58).

A potential alternative to classical neuroimaging is offered by 
emerging computational methods based on generative models of 
measurable behavior or brain activity (59). Generative models are 
forward models that describe how latent (hidden) cognitive or 
physiological processes x could have generated experimentally 
measured data y (Figure  1). Based on Bayes’ theorem (60), 
generative models allow for solving the inverse problem of 
inferring the hidden processes from empirical data, yielding the 
posterior probability p(x|y) of the hidden cause of interest. This 
computational approach allows one to compute subject-specific 
parameters that determine the hidden neuronal or cognitive states 
of a circuit. Furthermore, the plausibility of different generative 
models can be evaluated using statistical model comparison 
techniques (61, 62).

In the context of psychiatric disorders, the relatively straight-
forward availability of behavioral or brain activity measurements 
suggests that validated generative models could be developed 
into clinically applicable “computational assays,” in analogy to 
biochemical assays in internal medicine (63). A series of recent 
proof of concept studies (64–66) have been an important stimu-
lant for the development of the emerging field of computational 
psychiatry (59, 67–69).

the “Bayesian Brain”
Overall View
Bayesian inference is remarkably analogous to perception, 
where the challenge is to distil meaning from noisy and 
ambiguous s ensory inputs. Based on the principles of probability 
theory, Bayesian interpretations of cognition refer to “beliefs” as 
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probability distributions (i.e., a probabilistic representation of a 
particular state of the world) and how these beliefs are updated in 
the light of experience (observed data). Bayes’ theorem describes 
how the observation of new data (likelihood) changes a prior 
belief into a posterior belief. This posterior belief represents the 
inference about the most likely cause behind the observed data, 
given the previous knowledge, and becomes the new prior belief 
or prediction for future observations (see Figure 2).

We refer to a Bayesian perspective on cognition as the 
“Bayesian brain hypothesis,” an umbrella term for several related 
concepts (70–73). All of them regard the brain as an inference 
machine, resting on a generative model of sensory inputs, which 
are caused by states of the environment. For simplicity, we will 
often refer to this generative model of sensory inputs as the brain’s 
internal model of the external world. By inverting its generative 
model, the brain can infer the most likely environmental state 
(cause), given the sensory inputs it has received. Furthermore, the 

brain can use its internal model for prediction and compute the 
probability of certain environmental states arising from chosen 
actions (74).

This Bayesian interpretation of perception has become a 
widely used perspective and has enabled the understanding of 
many perceptual phenomena, including a unification of percep-
tual laws (75), multisensory integration (76, 77), and the nature 
of sensory illusions (78).

Learning
The brain’s internal model can be updated over time; this cor-
responds to learning and rests on a key quantity, the prediction 
error. This is the difference between the predicted and the actual 
sensory input and constitutes part of an approximation to sur-
prise (Figure  3A) (72). An influential recent hypothesis  –  the 
so-called “free-energy principle” (79, 80) – is that perception and 
action selection are governed by one overarching objective: the 
minimization of surprise and hence the avoidance of prediction 
errors. The free-energy principle essentially views the Bayesian 
brain as implementing a homeostatic principle of information 
processing where the absence of prediction error represents the 
set point against which actions are chosen.

In principle, there are two ways of minimizing prediction 
errors. First, a prediction might be fulfilled by choosing the 
appropriate action. This includes moving one’s sensors (e.g., eyes, 
limbs, or the entire body) to parts of the environment where the 
sensory inputs better match the predictions (Figure 3B). Second, 
the brain can use surprise as teaching signal to adjust its beliefs. 
This corresponds to learning or updating its generative model, 
so that the current prediction error is explained away and more 
accurate future predictions become possible (Figure 3C).

Uncertainty
Importantly, however, not all unpredicted inputs are equally 
informative. Due to stochasticity in the environment and noise 
inherent to all sensory organs, not all prediction errors signal true 
changes in learnable regularities. Given this uncertainty, updating 
the generative model in response to each and every input could 
result in overfitting, i.e., an overly precise and brittle model with 
limited generalizability over time. Instead, belief updates should 
be governed by the balance between two quantities: the uncer-
tainty about the sensory input (i.e., expected signal-to-noise 
ratio), and the uncertainty of the prior belief. For a wide range 
of learning models, this can be described by an iconic equation 
(Eq. 1). That is, any change in belief is proportional to prediction 
error, but weighted by the ratio of the precision of the sensory 
input and the precision of the prior belief (81).

 ∆belief
precision

precision
prediction errinput

prior belief

∝ × oor  (1)

This precision ratio can be regarded as dynamic learning rate: 
it is high whenever the confidence in the sensory input (bottom-
up information) is higher than the confidence in the current 
belief (top-down predictions of the model), or conversely, when 
the uncertainty of the predictions provided by the internal model 
is higher than the uncertainty about the sensory input. The higher 
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this precision ratio, the more informative surprising input and the 
more pronounced the updating of the internal model.

Cognitive Hierarchies
The causal structure of the world, with its nested spatial and 
temporal scales, implies that the brain’s internal model also 
possesses a hierarchical structure, which is a natural form for 
Bayesian inference: hierarchical models allow to encode infor-
mation about the precision of beliefs at one level by values of 
hierarchically higher levels (81–83) (Figure 3D). In a hierarchical 
setting, information passes from sensory cortical areas to update 
higher levels within the cortical hierarchy, representing more 

and more abstract information on higher temporal and spatial 
scales [cf. (84)]. The more precise these abstract representations 
are established, the less impact any surprising experience has on 
revising the established internal model. In other words, more 
precise high-level beliefs exert stronger guidance in interpreting 
new experiences and shield against continuous reshaping of the 
brain’s model of the external world.

Homeostasis and Psychopathology
Theories like predictive coding or the free-energy principle are 
theories of cognitive homeostasis: they describe how a system 
responds adaptively to a mismatch between desired (predicted) 
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inputs and actual inputs. A mismatch (prediction error, surprise) 
represents a stressor to the cognitive system and triggers adaptive 
responses, such as the change of internal settings (update of 
beliefs) or outputs (motor actions). In the context of predictive 
coding, the adaptive updating of internal beliefs is also referred 
to as “explaining away” prediction errors. An acute or chronic 
impairment in explaining-away prediction errors represents 
a form of “cognitive stress” and will be registered by higher 
model levels on the cognitive hierarchy involved in monitoring 
the cognitive performance of the lower levels of the internal 
model (85).

Since the majority of current computational concepts of psy-
chiatric disorders regard aberrant learning and inference as core 
components of maladaptive cognition (59), the three elements 
in Eq. 1 – prediction, prediction error, and precision – offer an 
interesting perspective for clinicians. They suggest that cognitive 
stress due to maladaptive inference arises from alterations in one 
or several of these three core components. These quantities span 
a three-dimensional space where different pathologies could be 
located (86). This means that similar psychopathological pheno-
types (based on disturbances of Bayesian inference) could arise by 
several pathomechanisms, affecting differentially the biological 
basis of one or more of these computational quantities.

Individual differences in the structure of internal models or 
model parameters represent specific cognitive styles or cogni-
tive strategies and would manifest in behavioral differences. 
Provided one has generative models that can infer, from subject-
specific behavior, on the structure and parameterization of an 
individual brain’s generative model, powerful diagnostic tests 
might become possible. Such computational assays  –  which 
correspond to generative models of generative models – would 
become particularly powerful, if mappings between the above 
computational quantities and specific neurophysiological enti-
ties could be established.

a “Bayesian Brain” perspective on asd
A Clinician’s View as Starting Point
Autism spectrum disorder is clinically characterized by promi-
nent perceptual aberrations, which appear to map naturally on 
impairments of hierarchical Bayesian inference. Individuals with 
ASD have striking difficulties in distinguishing between relevant 
(informative) details and irrelevant, random changes. For exam-
ple, during the interaction with another person, a patient with 
ASD may direct more attention to a new haircut or the color 
of the shirt than to the emotional expression of the other’s face. 
Furthermore, ASD patients struggle to establish generalizable, 
abstract representations by making meaningful connections and 
tend to have overly precise representations of single observations 
and detailed sensory aspects. For example, they take expressions 
too literally, or do not know how to behave in  situations that 
only subtly differ from known constellations; small details, e.g., 
variations in location or timing, can be sufficient to induce feel-
ings of uncertainty and lack of control. Finally, they experience 
a chronic sensation of being unprepared for whatever happens, 
unless they can exert control (and thus avoid surprise) in a stable, 
well-known environment. This may underlie their desire for fixed 

rituals, such as never changing the exact order of a sequence of 
actions in everyday life.

Summary of Current Theories
Several recent articles have suggested that aberrant Bayesian 
inference underlies perceptual abnormalities in ASD. For exam-
ple, Pellicano and Burr (2) proposed that ASD is characterized 
by overly flat priors, which lead to percepts dominated by the 
sensory input. Their proposal was extended by Lawson et  al. 
(3), who pointed out that the precision of top-down predictions 
need to be weighed against the expected precision of bottom-up 
sensory input (Figure 2C; compare Eq. 1). They highlighted the 
importance of postsynaptic gain control as a potential neurobio-
logical mechanism for precision weighting and hypothesized that 
GABA, acetylcholine, and oxytocin could play a central role in the 
adjustment of precisions at different hierarchical levels. Finally, 
Van de Cruys et al. (4) pointed out that normal, or even tight, 
high-order beliefs could be present in ASD, provided that their 
effects are outweighed by overly high precision of sensory pre-
diction errors. Again, this speaks to the crucial role of precision 
ratios (see Eq. 1) for dynamically governing belief updates across 
hierarchical levels.

Autistic Perception
Impairments of hierarchical Bayesian inference provide an 
explanation for the different clinical symptoms described above. 
Specifically, aberrant updating of the internal model due to over-
estimating the precision of bottom-up sensory input in relation 
to the precision of top-down predictions (see Figures 2B,C and 
Eq. 1) would lead to a perceptual style, which is dominated by 
detailed but irrelevant aspects of the environment and a difficulty 
in establishing stable and precise representations of abstract 
quantities at high levels of the perceptual hierarchy (Figure 4A). 
Interestingly, this suggests a concrete computational mechanism 
for the long-standing concept of “weak central coherence,” which 
postulates that processing of local details dominates perception in 
ASD, at the expense of global integration of information (31, 32). 
The overweighting of uninformative sensory prediction errors 
leads to constant fluctuations and large uncertainty at higher 
levels in the generative model, which represent overarching, 
abstract concepts. Additionally, a relative failure of encoding or 
updating high-level precision implies that even relatively predict-
able stimuli will be perceived as continuously surprising. Overall, 
the proposed dysbalance in low- vs. high-level precisions result in 
an overfitted model that is dominated by sensory details and has 
limited generalizability.

Autistic (Inter-)Action
Our inner representation of the world not only explains what we 
perceive but also guides our interactions with the world. Models 
that concentrate on detailed aspects of the sensory world (i.e., 
overly high precision of sensory prediction errors) elicit actions 
that serve to explain away these prediction errors (such as seen 
in precisely defined autistic rituals, Figure  4B). Importantly, 
this interferes with adaptive actions in the presence of irrelevant 
changes in details. This difficulty of establishing and applying 
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abstract representations to interpret sensory inputs and guide 
action causes greatest difficulties in highly unpredictable envi-
ronments, such as completely novel situations or social interac-
tions, which are particularly dynamic and ambiguous (noisy) 
(Figure 4C). Similar problems can be expected in areas, where 
highly abstract contents are exchanged, like in human communi-
cation. Hence, the Bayesian perspective offers an intuitive expla-
nation for the theory of mind deficits in ASD. From this point 
of view, ASD can be seen as a general disorder of hierarchical 
inference that manifests most prominently in the social domain 
without being limited to it.

The Spectrum Nature
Autism spectrum disorder shows pronounced heterogeneity, 
both with respect to the behavioral phenotype and severity 
of impairments. The hypothesized fundamental mechanism 
affected in ASD, hierarchical Bayesian learning, is based on three 
main pillars: predictions, prediction errors, and the respective 
precisions. As indicated above, these three variables span an 
explanatory space of the potential computational pathomecha-
nisms that could underlie impairments in hierarchical Bayesian 
learning. For example, predictions and/or prediction errors 
could be incorrectly calculated at the level of specific neurons 
(e.g., abnormal integration of dendritic inputs to supragranular 
pyramidal cells), or they could be conveyed incorrectly to 
target neurons (e.g., presynaptic or postsynaptic deficiencies of 
long-range connections). Alternatively, as suggested by Lawson 
et al. (3) and Van de Cruys et al. (4), precisions could be tuned 
abnormally. This could arise, for example, from a dysregulation 
of neuromodulatory transmitters (e.g., dopamine, acetylcholine, 
noradrenaline), which affect postsynaptic gain by modulating 
calcium-dependent potassium channels. Due to the anatomy of 
their specific projection pathways, the individual neuromodula-
tors (and their potential dysregulation) impact differentially on 
different cortical areas (e.g., affecting different sensory modalities 
and different levels of the cognitive hierarchy).

This list of possibilities is not exhaustive, but illustrates how 
the phenotypic and clinical variability of ASD patients could arise 
from different impairments of hierarchical Bayesian inference. In 
other words, different autistic phenotypes could arise from different 
impairments in the computation of key variables, such as precisions 
or prediction errors. The present framework, thus, offers a broad 
range of explanations, how the spectral nature of ASD – in severity 
and phenotype – could arise, and suggests possibilities to disen-
tangle potential mechanistically different subtypes of the disorder.

Developmental Trajectories
Bayesian theories of ASD also provide an explanation for 
the spectrum of developmental trajectories and how they are 
influenced by the history of life experience and learning. The 
hypothesis that ASD is characterized by an inflated ratio of the 
precision of bottom-up sensory input in relation to the preci-
sion of top-down predictions (Eq. 1) makes concrete predictions 
about the learning conditions under which ASD patients can 
benefit. These conditions match precisely the conditions to which 
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behavioral therapy for children with ASD has converged over the 
years (20): a well-known environment that causes little surprise 
and offers new inputs with little noise (unexplainable variability) 
across many repetitions. According to the therapeutic experi-
ence of the authors, new actions are best learned by step-by-step 
instruction (as opposed to mere observation), and abstract 
concepts are easiest learned through explicit definition (rather 
than by intuitive buildup) (21). If such conditions are present 
and an affected individual is exposed to enough inputs over a 
longer time, a sufficiently rich representation of the world and 
successful behavioral strategies can be learned. Variations in the 
occurrence of these conditions in different domains or stages of 
life could explain the evolution of symptoms over time in form of 
developmental steps and functional adjustment through training.

Comorbidities
Comorbidities occur frequently and can impede this progress of 
adjustment. The most frequent and relevant ones are stress-related 
disorders, such as depression or anxiety (87). From the Bayesian 
brain perspective, these can be interpreted as a consequence of 
chronically elevated cognitive stress levels in individuals with 
ASD, which originates from their impaired ability to explain 
away prediction errors. As alluded to above, a persistent impair-
ment of minimizing prediction errors in a specific processing 
stream is likely registered by higher systems for self-monitoring 
(85) and creates the continuing experience of an unpredictable 
environment of bewildering complexity. This may engender to 
the meta-cognitive evaluation that the brain’s model of the world 
is inadequate to deal with its complexity, leading to estimates 
of low self-efficacy (88) and a pervasive feeling of vulnerability 
(Stephan et al., In preparation1). This, in turn, may constitute a 
fundament for the development of comorbidities like depression 
and anxiety in ASD.

Similarities with Schizophrenia
It is of interest to note that similar Bayesian theories have previ-
ously been stated in the context of schizophrenia (63, 68, 89–92). 
ASD and schizophrenia exhibit some striking similarities in 
certain symptoms. In fact, the term “autism” was introduced 
by Bleuler when referring to symptoms like social withdrawal 
in schizophrenia (93). Perceptual aberrations, e.g., a reduced 
tendency to illusions (75), take a similar form in both disorders, 
suggesting that similar impairments in Bayesian inference may 
be present in both disorders. However, the markedly different age 
of onset of the two disorders requires an explanation why a com-
mon mechanism, such as aberrant belief precisions, may reach 
a critical threshold at different times during development. One 
might speculate that this results from epigenetic differences in 
the two disorders, i.e., differential interactions of genetic predis-
positions with environmental influences. Also, salient symptoms 
as the presence of positive symptoms in schizophrenia deserve 
attention (94). Notably, psychotic episodes are not uncommon 

1 Stephan KE, Manjaly ZM, Weber L, Paliwal S, Mathys C, Gard T, et  al. From 
dyshomeostasis to fatigue and depression – a Bayesian account of metacognition 
and self-efficacy. (In preparation).

in adolescents with ASD, although they are mostly shorter in 
duration and present less well-established delusions than in 
schizophrenia (10, 38, 95). Furthermore, neurobiologically, ASD 
and schizophrenia share putative risk genes (96) and may involve 
analogous abnormalities in the neuromodulatory regulation of 
postsynaptic gain, as described further below (3, 92).

Considerations For FUtUre stUdies

present empirical Findings
The recently developed Bayesian brain theories of ASD can not 
only explain cardinal features of autistic symptomatology but also 
a broad range of previous empirical findings in the domain of 
neuropsychology, neurophysiology, and functional neuroimag-
ing. A comprehensive overview of these interpretations goes 
beyond the scope of this article, but can be found in several recent 
articles on Bayesian brain theories of ASD (2–4).

In the elaboration of the Bayesian brain hypothesis of ASD 
(2) and subsequent theoretical papers (3, 4, 97–99), results from 
numerous earlier cognitive and psychophysical studies were re-
interpreted post hoc in the novel framework. So far, only a few 
subsequent experimental studies in individuals with ASD were 
designed a  priori to test the predictions of the Bayesian brain 
hypothesis. For example, a psychophysical study by Palmer 
et  al. (100) showed that adults with ASD exhibited the typical 
perceptual effects of the rubber hand illusion but showed reduced 
influence of the illusion on subsequent grasp movements. This 
result speaks against a general insusceptibility of ASD individuals 
to the illusion and is better explained by a stronger weighting 
(precision) of proprioceptive sensory input relative to reliance 
on prior context information. Another psychophysical study 
demonstrated decreased loudness adaptation in adults with ASD, 
in accordance with the notion that a failure of updating precision 
of beliefs (predictions) slows down surprise reduction during a 
series of predictable stimuli (101). Similarly, an EEG study using 
a mismatch negativity design which showed that, compared to 
unaffected participants, children with ASD display a diminished 
top-down P300 amplitude for unexpected stimuli and a greater 
amplitude for expected stimuli. Again, both results are compatible 
with a reduction in the precision of predictions (priors) in autistic 
patients compared to healthy subjects (102). Finally, a behavioral 
study of adults with ASD showed reduced learning performance 
in a volatile compared to a stable environment, consistent with 
the proposed inability to establish stable high-level representa-
tions of abstract rules (103).

These emerging empirical findings speak to the utility of the 
Bayesian brain perspective for understanding aberrant compu-
tation and pathophysiology in ASD. However, a direct link to 
clinical challenges and practice has been missing so far.

Modeling Cognition
Bayesian brain theories can be implemented by a variety of 
different models (72, 104). These typically take a hierarchical 
form where messages are exchanged bottom-up and top-down 
between layers, resembling the architecture of the cortex with 
its hierarchically organized connections (105). One well-known 
hierarchical Bayesian model is predictive coding (72, 106), which 
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posits that each information processing level (e.g., cortical area) 
predicts the activity in the next lower level of the hierarchy and 
sends this prediction via top-down or backward connections. The 
lower level computes a prediction error (the difference between 
its actual and the predicted activity), weighted by the precision 
of the prediction, and returns this precision-weighted prediction 
error by bottom-up or forward connections to the higher level 
where it serves to update the prediction. This process takes place 
across all hierarchical levels until prediction errors are minimized 
throughout the entire hierarchy.

This model, and variants thereof, has already found widespread 
application to other psychiatric disorders with perceptual aberra-
tions, in particular schizophrenia (63, 89, 90, 92, 107). Notably, it 
contains the three main building blocks of inference mentioned 
above (predictions, prediction errors, and precision), each of which 
has some putative physiological counterparts. For example, predic-
tion error signaling in cortex likely rests on fast glutamatergic trans-
mission, probably involving fast AMPA receptors under regulation 
by slower NMDA receptors (91, 108); predictions are probably 
conveyed by glutamatergic backward connections and exclusively 
via slow NMDA receptors (72, 91); finally, precision, which is 
essential for the context-dependent weighting of prediction errors, 
may be regulated by neuromodulators (dopamine, acetylcholine, 
noradrenalin, etc.) and local GABAergic interneuron activity, both 
of which modulate the gain of the postsynaptic neuron (92).

Predictive coding is a model of inference and does not directly 
account for across-trial learning. A hierarchical Bayesian model 
that shares key features with predictive coding but focuses on 
learning under the influence of different forms of uncertainty is 
the Hierarchical Gaussian Filter (HGF) (81, 109). Using a vari-
ational approximation, it derives analytical update equations with 
subject-specific parameters that encode an individual’s approxi-
mation to ideal Bayesian learning. The HGF can be applied in a 
meta-Bayesian way, with an examiner (e.g., psychiatrist) using 
Bayesian inference, to infer on Bayesian inference processes that 
underlie the observed behavior of a patient (110).

The HGF is particularly suitable for complex probabilistic 
learning tasks, whose statistical structure is volatile. Its hierar-
chical structure captures the relations of coupled quantities in 
the world, such as how sensory inputs depend on probabilistic 
associations (contingencies) which, in turn, evolve as a function 
of environmental volatility. Each of these quantities evolves 
as a Gaussian random walk, with its precision determined by 
the level above, and belief updates are governed by precision-
weighted prediction errors as shown by Eq. 1. This formulation 
has found successful application in several recent studies with 
healthy participants, showing that the HGF explains learning and 
decision-making under volatility better than other commonly 
used models (111–113). Associative learning tasks that include 
phases of volatility (i.e., weakening or reversal of previously 
learned associations) represent attractive paradigms to study 
potential peculiarities in hierarchical inference in individuals 
with ASD, since their problems in establishing abstract high-level 
representations arise mainly in contexts with either high levels of 
sensory noise (where increased precision of bottom-up signaling 
is detrimental) or temporal uncertainty (where weak top-down 
predictions are further diminished by volatility).

Modeling neurophysiology
The Bayesian brain perspective is an attractive framework for 
understanding pathophysiology in ASD. In principle, one could 
imagine that carefully designed behavioral tasks alone could 
support model-based diagnostics and predictions. However, the 
utility of the Bayesian brain perspective extends beyond modeling 
cognition. In particular, generative models of behavior can finesse 
analyses of functional neuroimaging data and allow to identify 
potential neurophysiological fundaments of computational 
processes. For example, trial-by-trial estimates of computational 
quantities, such as prediction errors or precisions, can be used as 
parametric modulators in a general linear model (GLM) of fMRI 
data, an approach commonly referred to as “model-based fMRI” 
(114). This approach has been used, for example, to identify links 
between activity in neuromodulatory nuclei and computational 
trajectories, such as (precision-weighted) prediction errors or 
uncertainty (111, 115–117). For example, Iglesias et  al. (111) 
showed that low-level precision-weighted prediction errors about 
visual stimulus outcome were reflected by fMRI activity in the 
dopaminergic midbrain, whereas high-level prediction errors 
about stimulus probabilities were encoded in the cholinergic 
basal forebrain.

Establishing computational neuroimaging probes of neuro-
modulation is a theme of general importance in computational 
psychiatry, since this may provide a physiologically interpretable 
stratification of patients from spectrum disorders with direct 
implications for individual treatment (118). In the context of 
ASD, a dysregulation of neuromodulatory mechanisms could 
underlie abnormal precision-weighting of prediction errors (and 
the ensuing behavioral consequences) in a subgroup of patients. 
While group-level abnormalities of serotonergic and dopamin-
ergic transporter activity have been reported by previous studies 
using single-photon emission computed tomography and posi-
tron emission tomography in individuals with ASD (119, 120), 
the results are mixed, presumably due to the spectrum nature of 
ASD. This likely pathophysiological heterogeneity is also reflected 
by the highly variable response of ASD patients to a variety of 
commonly used psychiatric drugs, which affect neuromodulatory 
transmitters, including antipsychotics and stimulants (121, 122). 
Individualizing pharmacotherapy would require a non-invasive 
and easily applicable assay of neuromodulatory function in indi-
vidual patients. Developing such assays on the basis of generative 
models of behavior and computational functional neuroimaging 
represents a central goal for model-based diagnostics in ASD.

In addition to model-based fMRI investigations that are sup-
ported by modeling of behavior, the Bayesian brain perspective 
on ASD also makes predictions about neurophysiology that 
can be examined on their own, without reference to behavior. 
Most importantly, as alluded to above, the form of hierarchical 
Bayesian models such as predictive coding, with their emphasis 
on exchange of predictions and prediction errors across hierarchi-
cal levels, shows a remarkable correspondence to structural and 
functional principles of the cortex (72). That is, sensory processing 
streams in cortex, such as the visual, auditory, or somatosensory 
system, are characterized by a hierarchical structure that rests on 
interregional forward (bottom-up) and backward (top-down) 
connections with laminar and functional specificity (123–125). 
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Numerous neurophysiological studies have provided evidence 
for signaling of prediction errors along forward connections and 
predictions along backward connections [(63, 72) for reviews 
see (126, 127)]. As a consequence, a putative pathophysiological 
mechanism that alters the signaling of predictions or prediction 
errors, respectively – either on their own or by abnormal precision-
weighting – should be expressed in selective changes of forward 
or backward connections in a particular sensory hierarchy. This 
implies an important role for models that can infer changes in 
these connections from functional neuroimaging data.

A generative modeling framework, which is capable of dif-
ferential inferences about forward and backward connections, 
is dynamic causal modeling (DCM). This approach has been 
implemented for a range of measurements, including fMRI (128) 
and EEG (129). DCM of fMRI represents a generative model of 
local BOLD signals in a distributed set of regions, describing how 
the measured fMRI signals arise from net population activity 
of large populations of neurons that communicate via synaptic 
connections (128). Inverting this model allows for estimating the 
strengths of directed synaptic connections between regions, thus 
moving beyond purely correlational statements about network 
architecture as obtained by functional connectivity analyses.

Dynamic causal modeling is beginning to find widespread use 
in psychiatry. In the context of schizophrenia, several studies have 
been conducted in individuals at risk (130, 131) and in patients 
during the first episode (132), early course (133), or chronic state 
of schizophrenia (134). These studies demonstrated differences 
in functional network architecture and effective connectivity 
compared to healthy controls across various tasks. More recently, 
DCM studies have been conducted in individuals with ASD. 
Radulescu et  al. (135) examined connectivity during a verbal 
fluency task and found that adults with ASD relied more strongly 
on bottom-up connections, compared to dominance of top-down 
connections in the control group. Gu et al. (136) used DCM to 
infer connection strengths between the extrastriate body area, the 
anterior insular cortex, and the lateral prefrontal cortex during an 
empathy for pain task. They found a greater disinhibition in the 
anterior insula in a group of high-functioning adults with ASD 
compared to a control group. In brief, the results of DCM studies 
in both schizophrenia and the ASD point to dysconnectivity of 
cortical areas and altered functional integration at different levels 
of perceptual hierarchies.

Dynamic causal modeling also allows for incorporating 
trial-wise computational quantities obtained from generative 
models applied to behavioral task data (e.g., precision-weighted 
prediction errors). This opens new avenues to derive a joint 
 physiological–computational characterization of network 
dynamics during the performance of a task. Vossel et al. (137), 
for example, have demonstrated in healthy adults, using DCM 
for fMRI and the HGF, that during a combined attention/learning 
task (Posner’s paradigm), the functional coupling between tem-
poral and frontal regions was modulated by trial-wise estimates 
of attention (precision of the predictability of targets).

The fine temporal resolution of electrophysiological recordings 
provides much richer information on neurophysiological processes 
than fMRI. The generative model of DCMs for EEG exploits this 
information to describe how electrophysiological measurements 

are generated from cortical microcircuits ( columns) with synaptic 
connections between different types of neurons (129). Validation 
studies in humans and animals have shown that DCM for EEG is 
capable of capturing short-term changes in synaptic efficacy, such 
as neuromodulation of glutamatergic receptor conductances, and 
distinguish different types of synaptic plasticity in cortical micro-
circuits (66, 132, 138–140) and, therefore, represents a promising 
approach to quantify the status of neuromodulatory systems in 
cortical microcircuits and may provide a foundation for clinically 
applicable tests.

implications for translational studies
The pathomechanistic hypotheses of ASD that arise from the 
Bayesian brain perspective and the computational modeling 
techniques afford new avenues toward developing clinical tests 
for addressing problems of diagnosis and treatment in ASD. 
Initially, this will require a series of translational studies that 
evaluate the practical utility of different paradigms and models 
in patient studies.

In a first step, the preliminary evidence for disturbances in 
Bayesian inference in ASD (100–103) should be extended to 
multilevel hierarchical Bayesian learning paradigms in individu-
als with ASD. For this, the HGF framework provides a suitable 
platform as it allows for obtaining individual parameter estimates 
(encoding the influence of different forms of uncertainty or preci-
sion on learning) from relatively short behavioral measurements. 
At its simplest, one could adopt a cross-sectional design and test 
for group differences in these parameter estimates between ASD 
patients and adequately matched control groups. Additionally, 
the statistical comparison of different alternative models (within 
or beyond the HGF framework) could yield information about 
potential different subgroups of patients applying different cogni-
tive strategies [cf. (113, 141)].

Model comparison also addresses an issue that has been a 
limitation in neuropsychological assessments of high-functioning 
individuals with ASD. Many tasks can be solved by applying dif-
ferent cognitive strategies, and this is not necessarily reflected by 
differences in average performance levels. Such hidden individual 
differences can be detected by formulating alternative computa-
tional models, each reflecting different cognitive strategies, and 
subjecting them to Bayesian model selection (62). Importantly, 
this can clarify whether any individual differences in task perfor-
mance are due to the deployment of different cognitive strategies, 
or due to differences in implementing these strategies (141).

The diagnostic challenges in ASD particularly affect those 
individuals whose symptoms deviate from the classical clinical 
picture described by Kanner and Asperger, due to the factors 
described in the Section “Introduction.” To test the hypothesis 
of a shared underlying pathomechanism despite diverse clinical 
presentations, the behavioral cross-sectional studies described 
above should be carried out both in children with the classical 
picture and diagnosed by the current gold standard (ADOS/ADI-
R) and in individuals with less specific symptoms but diagnosed 
with ASD by experienced specialists.

The behavioral studies are ideally combined with the acquisi-
tion of functional neuroimaging data. This would enable the 
deployment of a model-based analysis, using computational 
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trial-wise quantities, such as precision-weighted prediction errors, 
to test for potential differences in neuromodulatory regions of 
interest [cf., Ref. (111)]. This investigation could clarify to what 
degree the impairment of different neuromodulatory systems 
across patients, causing disturbances in hierarchical inference, 
could represent a source of heterogeneity in individuals with 
ASD. Furthermore, one could also inform models of effective 
connectivity like DCM by trial-wise computational quantities 
[(137), cf., Ref. (142)], and test for group differences in Bayesian 
message passing in sensory hierarchies.

Notably, all of the above possibilities could be pursued in a 
multivariate setting, where individual parameter estimates are 
used to specify the feature space for subsequent supervised (clas-
sification or regression) or unsupervised (clustering) learning. 
This strategy is known as “generative embedding” (64, 65) and 
offers two major advantages over conventional machine learning 
applications that operate directly on features of the measured data. 
First, provided one has a good model, generative embedding typi-
cally results in substantially higher performance since the model 
is used as a theory-led feature selection device, which retains 
only dimensions of interest and discards irrelevant data features. 
Second, the classification or clustering results have a mechanistic 
interpretation since the dimensions of the feature space are given 
by specific model parameters. In ASD research, generative embed-
ding based on hierarchical Bayesian models of behavioral data in 
conjunction with DCMs of effective connectivity might allow for 
designing powerful classifiers that support differential diagnosis. 
Additionally, an unsupervised approach would be of interest in 
order to identify potential mechanistically different subgroups. 
This is of special interest, since pharmacological therapy in ASD 
is presently trial and error; furthermore, many pharmacological 
substances targeting neuromodulatory mechanisms are available 
that have not yet found therapeutic use in ASD.

If initial studies indicate that discriminative parameters can 
be obtained and have high predictive power regarding diagnosis 
and/or treatment response, a necessary next step would be to turn 
the research-driven paradigms into easily applicable clinical tests. 
To minimize the influence of motivation and attention – poten-
tial limitations to this approach – and to ensure patient compli-
ance and applicability in non-research settings, any cognitive 
paradigms would have to be relatively short or inherently appeal-
ing, with little or no need for specific instructions. Attractive 
candidate paradigms include tasks that neither require verbal 
instruction nor voluntary responses, such as implicit learning 
tasks or games that register involuntary responses such as eye 
movements (143) or electrophysiological mismatch negativity 
(144). The former could also be developed for infants (46). 
This would open up the possibility of characterizing potentially 
affected infants at a very early stage and following them up in 
longitudinal studies to study their developmental trajectories.

If modeling results imply that subgroups of patients exhibit 
pathophysiological mechanisms that can be targeted by existing 
interventions – for example, disturbances of specific neuromodu-
latory systems that could be targeted by selective drugs, or abnor-
mal changes in the precision of beliefs about sensory inputs to 
which psychotherapeutic interventions might be directed – this 
would provide a foundation for planning randomized clinical 

trials. This could involve longitudinal clinical studies with phar-
macological interventions, optimally in conjunction with tailored 
psychotherapeutic interventions (145) to guide the learning of 
new experiences in an optimally designed context in adults or 
combined with early behavioral training in children.

potentiaL BeneFits For FUtUre 
CLiniCaL praCtiCe

Clearly, solving the current clinical problems is an ambitious and 
long-term goal, which will take many years to reach. However, 
we believe that the framework outlined above has the potential of 
addressing the challenges described in the Section “Introduction.”

diagnosis
In the long run, clinically applicable, computerized trial-by-trial 
cognitive paradigms with accompanying generative models for 
the acquired data and “pushbutton” procedures for statistical 
inference could evolve into attractive computational assays 
providing estimates of ASD-specific disturbances in hierarchical 
Bayesian inference in individual patients.

Optimally, these assays should rest on paradigms, which are 
sufficiently appealing and independent of verbal instruction, 
such that they could be applied to young children. If success-
ful, they could potentially replace the laborious gold standard 
ADOS/ADI-R diagnostics and provide an easier, faster diagnosis 
without reliance on trained specialists in expert institutions 
(challenge i). If such computerized assays are combined with 
response recording via eye tracking, they could become appli-
cable in very young infants and potentially solve the problem of 
early recognition in high risk children at infant age (challenge iii). 
Similarly, they could be used for individuals without verbal skills 
at the severe end of the spectrum and help discriminate between 
ASD individuals with intellectual disability and those without 
spoken language but preserved intellectual and learning abilities 
(challenge iv).

Furthermore, such diagnostic assays could also solve the 
problem of recognizing autistic symptoms that are concealed by 
well-developed coping strategies in adolescence and adulthood 
(challenge ii). In this context, the Bayesian brain perspective 
has something to offer even before the development of novel 
diagnostic tests by suggesting a fundamentally novel theoretical 
explanation of the origin of autistic symptomatology. Its proposal 
of an abnormal balance in the precisions of sensory inputs and 
higher-order beliefs may facilitate a better understanding of 
the internal world of affected individuals, beyond the variety of 
observable manifestations. This novel explanatory model may 
support the education of clinicians with little previous exposure 
to individuals with ASD and help them grasp the potential range 
of clinical presentations. This alone may already help to reduce 
the number of unrecognized individuals with ASD (mainly in 
adult psychiatry).

One could speculate that, provided the research agenda 
outlined in this paper were successful, at some point in the 
future ASD might be redefined as “congenital perceptual 
inference disorder.” This redefinition on the basis of a generic 
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pathomechanism might also affect other current diagnostic 
entities of adult psychiatry, such as schizoid or anankastic 
personality disorder. Given that their diagnostic criteria show 
major overlap with those of ASD, they could be regarded as 
foothills of the autism spectrum, with a possible relation to the 
same pathomechanism (146).

Behavioral and psychotherapy
The hierarchical Bayesian perspective may be useful for a better 
understanding of existing therapies. For example, the effective-
ness of early intensive behavioral training to foster social interac-
tion and speech development (18, 19) can be understood as a 
result of gently enforcing the child’s engagement in an interaction 
with the social environment, which is usually too noisy and 
dynamic for the affected child to be regarded as learnable and 
with which it, therefore, does not interact spontaneously. The 
core idea of the therapy is to reduce the complexity of social 
interactions to single, frequently repeated moments of interac-
tions that slowly become interpretable (i.e., representable by 
a generative model) to the child and, therefore, manageable. 
From the Bayesian perspective, learning in ASD is more or 
less severely altered, but, nonetheless, possible throughout life, 
given optimal preconditions, such as little noise and dynamics 
in the exposed environment, and sufficient motivation for a 
high amount of repetitions. This view may trigger attempts to 
overcome the lack of behavioral therapies for severely affected 
adults (challenge v), as it suggests that these individuals should 
not be regarded as fundamentally limited in their capacity to 
learn. A continuation and adaptation of early behavioral training 
programs throughout life could slowly but steadily expand their 
scope of action and understanding. This approach is admittedly 
not without limitations. Actual intellectual disabilities – even if 
frequently overestimated  –  are certainly present, and a lack of 
motivation or resources are obvious obstacles, which cannot be 
overcome by theories alone.

Regarding autism-specific psychotherapy that goes beyond 
social skills training (challenge vi), two aspects can benefit from 
the explanatory appeal of the Bayesian brain perspective: psych-
oeducation, i.e., providing an explanation of the disorder, and 
psychotherapy in the strict sense, i.e., providing help in dealing 
and coping with the disorder. Concerning the former, and as 
observed ubiquitously across medicine, patients have a profound 
need to develop a concept of their disease and construct an expla-
nation for their suffering. The perspective offered by the Bayesian 
brain theory can be useful in this regard, since it can be explained 
with reference to specific aspects of behavior and perception. It is 
the personal experience of the authors that this approach is useful 
for autistic patients and their relatives (but also their physicians) 
in order to establish a concept of their symptoms and suffering.

In treating autistic symptoms, two practical aspects take 
center stage: dealing with the perceived excessive complexity of 
everyday life and the fostering of developmental steps in the sense 
of expanding the scope of action. Generally, the principle “reduc-
tion of surprise by making the world predictable/understandable” 
may help patients deal with stress, sensory oversensitivity, and 
cognitive exhaustion by proactively seeking or creating predict-
able and controlled areas in both the personal and social domain. 

Complex social interactions can be rendered less perplexing or 
surprising by helping the patient to develop a generative model, 
by providing explicit explanations for the behavior of others 
and teaching them about possible reactions to chosen actions. 
In order to expand the scope of possible actions, the lack of 
spontaneous exploration and intuitive learning by generalization 
can be compensated by precise step-by-step instructions toward 
new actions that can be strengthened by excessive repetition. 
The generalization of such new abilities could be facilitated by 
explicit elaboration and memorization of the underlying abstract 
principle behind the behavior.

In the future, model-based estimates of individual abnormali-
ties in hierarchical Bayesian inference could help facilitate the 
development of novel targeted psychotherapeutic interventions 
and subject-specific strategies for coping with cognitive deficits. 
For example, for patients where the relative overweighting of 
low-level vs. high-level precision (cf. Eq.  1) primarily derives 
from a deficit at high levels – for example, flat priors due to an 
overestimation of volatility –  suitable interventions and coping 
strategies are likely to differ substantially from patients in whom 
overestimation of low-level sensory precision is the dominant 
problem. In the former case, inadequate higher cognitive levels 
of abstraction (flat top-down priors) might be sharpened by 
explicit teaching of abstract principles behind complex everyday 
processes, to buildup higher model levels without having to 
rely on the intuitive extraction of principles from exposure and 
imitation. In the latter case, efforts to reduce sensory overload by 
adaptions to the surrounding environment (at home, school, or 
work) seem more paramount.

The development of autism-specific psychotherapy of comor-
bidities (challenge vii) can likely profit from the novel explanatory 
perspective of ASD. Especially comorbidities, such as low mood 
or anxiety, can be understood as consequences rather than as inci-
dental comorbidities with pathomechanisms that are completely 
independent from those of ASD. Their psychotherapy could also 
become more specific if patients understand these symptoms as a 
consequence of a fundamental perceptual problem, which causes 
chronic cognitive stress.

pharmacotherapy
Pharmacotherapy, in ASD, is presently mostly off-label (challenge 
viii) and, in the absence of predictive tests, necessarily relies on trial 
and error (challenge ix). The use of the approved dopamine receptor 
antagonist (risperidone) is of questionable benefit for cognition in 
ASD, as its antagonistic effects at dopamine receptors may interfere 
with precision-weighting of prediction errors, and thus updating 
of priors, in high-level regions of the cognitive hierarchy such as 
prefrontal cortex (91), which are critical for the development of 
abstract representations. Indeed, empirical studies demonstrate 
that core symptoms of ASD do not benefit from this medication 
(147). Perhaps not surprisingly, this purely symptomatic approach 
is rarely subjectively experienced as helpful by patients. Off-label use 
of pharmacotherapy mainly consists of stimulating different neu-
romodulatory systems that may be involved in precision-weighting 
of prediction errors: there is evidence of benefit by dopaminergic 
and noradrenergic stimulation with methylphenidate (25) and 
of purely noradrenergic stimulation with atomoxetine (148). The 
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evidence for benefit of treatment with selective serotonin reuptake 
inhibitors is mixed (149). Several recent studies document first 
promising results for cholinergic stimulation (150) and oxytocin 
application (151). Future clinical studies in patient subpopulations, 
which are stratified by model-based indices of pathophysiology, 
might enable to select more effectively among available treatments; 
this could benefit in particular from computational functional 
neuroimaging analyses with potential sensitivity for alterations of 
neuromodulatory systems (118).

ConCLUsion

Recently developed theories of ASD, which posit a fundamental 
perceptual abnormality due to an aberrant balance of precision 
estimates in hierarchical Bayesian learning, offer a novel and 
rich perspective on this spectrum disorder. In this paper, we 
have described the implications of this perspective for address-
ing central problems in the contemporary clinical management 
of ASD. We suggest that generative models of behavioral and 

functional neuroimaging data could play a key role in establish-
ing novel objective diagnostic tests, which disambiguate patients 
characterized by different causes of the proposed perceptual aber-
ration. Such models could become useful for selecting between 
existing pharmacological interventions and for developing novel 
behavioral/cognitive training programs. Close collaborations 
between clinicians and computational scientists will be essential 
for conducting the necessary translational studies.
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