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Abstract

■ Decision-making often requires retrieval from memory.
Drawing on the neural ACT-R theory [Anderson, J. R., Fincham,
J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends
in Cognitive Sciences, 12, 136–143, 2008] and other neural models
of memory, we delineated the neural signatures of two funda-
mental retrieval aspects during decision-making: automatic and
controlled activation of memory representations. To disentangle
these processes, we combined a paradigm developed to examine
neural correlates of selective and sequential memory retrieval in
decision-making with a manipulation of associative fan (i.e., the
decision options were associated with one, two, or three attri-
butes). The results show that both the automatic activation of all

attributes associated with a decision option and the controlled se-
quential retrieval of specific attributes can be traced in material-
specific brain areas. Moreover, the two facets of memory retrieval
were associated with distinct activation patterns within the fronto-
parietal network: The dorsolateral prefrontal cortex was found to
reflect increasing retrieval effort during both automatic and con-
trolled activation of attributes. In contrast, the superior parietal
cortex only responded to controlled retrieval, arguably reflecting
the sequential updating of attribute information in working mem-
ory. This dissociation in activation pattern is consistent with ACT-R
and constitutes an important step toward a neural model of the
retrieval dynamics involved inmemory-based decision-making. ■

INTRODUCTION

Memory processes are an explicit part of many models of
decision-making (Thomas, Dougherty, Sprenger, & Harbison,
2008; Schooler & Hertwig, 2005; Juslin & Persson, 2002).
However, the neural underpinnings of the memory dy-
namics involved are only poorly understood. On the basis
of theories of information processing such as ACT-R (e.g.,
Anderson et al., 2004) and search of associative memory
(Raaijmakers & Shiffrin, 1981) as well as on previous em-
pirical findings (e.g., Kuhl, Johnson, & Chun, 2013; Nyberg,
2006), we assume that two separate retrieval processes
contribute to the decision process: (1) incidental activa-
tion of all memory representations associated with a deci-
sion option, resulting from automatic activation spread,
and (2) intentional activation due to a controlled focusing
on task-relevant information. In a previous behavioral
study (Khader, Pachur, & Jost, 2013), we had obtained
evidence for a contribution of both automatic and con-
trolled retrieval during decision-making. Our goal in this
article is to delineate the neural systems that underlie
automatic and controlled retrieval during the decision pro-
cess, thus embedding memory-based decision-making
within a broader neurocognitive framework.
The retrieval of knowledge—whether automatic or

controlled—activates memory representations stored in

(material-specific) posterior brain areas (for a review,
see Danker & Anderson, 2010). Executive processes oper-
ating on these representations have been found to be
mediated by a frontoparietal network (e.g., Badre&Wagner,
2002, 2007; Buckner & Wheeler, 2001), with different sub-
components making distinct contributions to automatic
and controlled memory activation (Borst & Anderson,
2013; Anderson, Fincham, Qin, & Stocco, 2008). Speci-
fically, the lateral pFC (BA 9, 44, 45, and 46) has been found
to respond to increased effort involved in retrieving infor-
mation frommemory (Anderson et al., 2008; see also Badre
& Wagner, 2002; Buckner & Wheeler, 2001) and should
thus be sensitive to both the controlled and automatic
activation of memory representations during decision-
making. Activity in the posterior parietal cortex (BA 7, 39,
and 40), by contrast, has been found to reflect the updating
of currently relevant information in workingmemory (WM;
e.g., Borst & Anderson, 2013; Anderson et al., 2008) and
should thus be involved in controlled retrieval only.

In an fMRI study, we tested whether evidence for a
neural dissociation of these retrieval mechanisms can be
found during memory-based decision-making. Participants
were instructed to use the “take-the-best” heuristic (TTB;
Gigerenzer & Goldstein, 1996), a strategy typically em-
ployed for decisions from memory (Pachur & Aebi-Forrer,
2013; Bröder & Schiffer, 2003, 2006). TTB requires the
sequential retrieval of attributes in the order of their im-
portance and stops information search as soon as a given
attribute allows for making a decision. This sequential
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processing requires controlled retrieval from long-term
memory (LTM) and, consequently, a repeated updating
of WM content. We manipulated controlled retrieval by
varying the number of attributes required by TTB. To
manipulate automatic memory activation, we additionally
varied the fan level (Anderson, 1974), that is, the number
of associations with a retrieval cue, by varying the num-
ber of attributes to which a decision option is associated.
Increased fan levels have been found to prolong RTs—a
finding that has been explained by increased interfer-
ence due to automatic activation spread (e.g., Anderson
& Reder, 1999). Importantly, a similar fan effect has also
been observed in decision-making (see Khader et al.,
2013).

We predicted that both manipulations—number of re-
quired attributes and fan level—modulate the activation
of attribute-specific memory representations. Regarding
the frontoparietal network, we expected that the lateral
pFC, being generally related to retrieval activity, reflects
both controlled and automatic retrieval. In contrast, we
expected the posterior parietal cortex, which reflects up-
dating processes in WM, to be sensitive only to the number
of required attributes, but not to fan level.

METHODS

Participants were instructed to use the TTB heuristic for
decisions based on memory (see Bröder & Schiffer, 2003,
2006). They had to decide which of two fictitious com-
panies would be more successful in the future, relying
on previously memorized attribute information. In TTB,
attributes are processed sequentially according to their
importance. Accordingly, participants had to first com-
pare the decision options on the attribute that was most
predictive of the company’s success, namely, its location
(in northern or southern Germany). If the companies
differed on this attribute, no further attribute was to be
inspected and the company with a positive value (i.e., the
one indicating success) on that attribute was to be se-
lected. If the most predictive attribute did not discrimi-
nate between the companies (e.g., if both companies
were located in the south), then the attribute with the
next-highest rank in importance was to be inspected.
This was the manager of the company (Manager A or
B). If the managers did not differ either, the third attri-
bute was to be inspected, which was the product manu-
factured by the company (cups or plates). Application of
TTB thus required the retrieval of one, two, or three
attributes from LTM to make a decision, depending on
which companies were compared (see Figure 1). Because
of TTB’s stopping rule, memory search should extend only
to those attributes that are relevant for the decision―a
selective and therefore controlled retrieval process.

To simultaneously study automatic activation of mem-
ory representations, we incorporated the fan paradigm
(Anderson, 1974, 1983) into the design; that is, we also
manipulated the number of attributes associated with

the companies (see Figure 1). Retrieval is typically found
to take longer the more memory representations are
associated with a retrieval cue. This fan effect is assumed
to result from activation that automatically spreads from
the retrieval cue to all associated memory represen-
tations. The relevant association is then more difficult
to discriminate from the coactivated interfering represen-
tations (“network interference”; Anderson & Reder,
1999).
Participants learned the associations between company

names and attributes in an initial learning phase. Attributes
were chosen such that dissociable and material-specific
representation areas became activated during retrieval
allowing to track the activation of specific attributes: the
geographical location of the company (spatial informa-
tion), the face of the manager of the company (face infor-
mation), and the product manufactured by the company
(object information). These brain areas were defined by
means of an fMRI localizer task.

Participants

Thirty-ninemale, right-handed students at the University of
Marburg, Germany, with normal or corrected-to-normal
vision participated (mean age= 23.9 years, SD=2.4 years).
They gave informed consent and were reimbursed for
their participation. All participants were naive with respect
to the objective of the study and had no history of neuro-
logical or psychiatric illness. Three participants had to be
excluded, because their responses in the decision task
deviated from the decisions predicted by TTB in more
than 15% of the trials. The final sample thus consisted
of 36 students (mean age = 23.7 years, SD = 2.4 years).
Because of technical problems during the functional loca-
lizer scan of one participant, the analysis of the localizer
data is based on 35 participants.

Material

Twenty-four pronounceable nonwords with a length of
five to six letters were taken from the ARC Nonword
Database (www.psy.uwa.edu.au/MRCDataBase/uwa_mrc.
htm; Rastle, Harrington, & Coltheart, 2002; see Figure 1
for examples) and used as fictitious company names. The
attributes were represented by the same visual stimuli as
in Khader et al. (2011, 2013; see Figure 1; for details, see
Khader et al., 2011). As mentioned above, the selection
of the stimuli was based on findings indicating that they
are represented in dissociable posterior cortical areas.
Specifically, we used faces assumed to be represented
in the fusiform gyrus (Ishai, Ungerleider, Martin, & Haxby,
2000; O’Craven & Kanwisher, 2000) to code the company
manager, spatial locations assumed to be represented in
the inferior parietal and parahippocampal cortex (Khader
et al., 2007; O’Craven & Kanwisher, 2000; Moscovitch,
Kapur, Köhler, & Houle, 1995) to code where the company
is located, and visual objects assumed to be represented in

70 Journal of Cognitive Neuroscience Volume 28, Number 1



visual association areas (Khader et al., 2007; Grill-Spector,
Kourtzi, & Kanwisher, 2001; Ishai et al., 2000; Moscovitch
et al., 1995) to code the product manufactured by the
company.
To create different levels of associative fan, we associ-

ated the company names with one, two, or three attri-
butes (depicted in the rows of Figure 1). Specifically,
eight companies were associated with information on
only the most important attribute (i.e., locations), eight
companies were associated with information on the
most and the second-most important attributes (i.e.,
locations and faces), and another eight companies were
associated with all three attributes (i.e., locations, faces,
and objects). To be able to compute group averages from
the fMRI data (see below), we had to keep the attribute
hierarchy constant across participants. Note, however,
that the basic findings regarding selective retrieval in
TTB seem to be independent of the specific attribute
hierarchy (Khader et al., 2011, 2013). The mapping of
the companies to the attribute patterns was random for
each participant. The assignment of attribute values (e.g.,
cups or plates for the objects attribute) to companies was
pseudorandom, with the restriction that every attribute

value and combination of attribute values had to occur
equally frequently at each fan level.

The trials in the decision task were constructed such
that only companies with the same number of attributes
were compared with each other and that TTB always led
to an unambiguous decision. Specifically, 16 pairs of
companies with one associated attribute could be con-
structed by pairing the four companies with one attribute
value with the four companies with the other attribute
value. For these pairs, TTB required comparison of only
one attribute. For companies with two associated attri-
butes, there were 16 pairs for which TTB required com-
parison of only one attribute (i.e., the companies could
be discriminated on the most important attribute) and
8 pairs for which comparison of two attributes was re-
quired (as only the second-most important attribute dis-
criminated between the companies). For companies
with three associated attributes, 16, 8, and 4 pairs could
be constructed in which comparisons of one, two, or
three attributes were required, respectively. To keep
the number of trials and hence the signal-to-noise ratio
comparable across the different levels of the factor “num-
ber of required attributes,” we presented company pairs

Figure 1. Overview of the experimental conditions, with examples of the pseudowords that were used as company names and the visual stimuli that
were used as attributes. Companies were associated with either one, two, or three attributes (see rows). The attributes were the location of the
company (north or south Germany; represented by a spatial position), the manager of the company (manager A or B; represented by a face),
or the product made by the company (cups or plates; represented by an object). In each trial, the TTB decision heuristic requires the sequential
retrieval of one, two, or three attributes in the order of their relative importance (see columns). The most important attribute was “location”;
the second most important, “face”; and the least important, “object.”
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with two required attributes twice (8 × 2 = 16 trials) and
company pairs with three required attributes three times
(4 × 3 = 12 trials).1 In summary, there were 16 trials each
for company pairs with one required attribute and either
one, two, or three associated attributes; 16 trials each for
company pairs with two required attributes and either two
or three associated attributes; and 12 trials for company
pairs with three required attributes and three associated
attributes, resulting in a total of 92 experimental trials.

Procedure

Learning Tasks prior to the Decision Task

The experiment started with several learning tasks in which
participants were taught (1) the associations between
company names and attributes, (2) how to use TTB, (3) the
attribute hierarchy (i.e., how important the various attri-
butes were for predicting a company’s success), and (4) the
attribute direction (i.e., which of the two locations, man-
agers, or objects, respectively, indicated success of a com-
pany and which not). All learning tasks are described in
detail in Khader et al. (2011, 2013).

In the first learning task, participants learned to associ-
ate each of the 24 company names with one, two, or
three attribute stimuli (depending on the fan level) by
trial and error in a self-paced way. For each attribute, they
learned the attribute value by selecting one of the two
picture stimuli (e.g., one face or the other), followed
by feedback. The correct stimulus was then presented
until participants started the next trial. Participants were
instructed not to verbalize the stimuli but to encode
them visually. After all attributes of a company had been
learned (with the learning criterion that correct re-
sponses had been given twice in a row for all attributes),
the next company was presented. After all companies had
been presented, the whole learning cycle was repeated
(with the companies and their attributes presented in a
new random order) until perfect performance was
achieved in two successive learning cycles. This task took
on average 1 hr 42 min (range: 1 hr 00 min to 3 hr 45 min).
Participants returned to the lab on the following day.
They freshened up their attribute knowledge until again
reaching the learning criterion. This took between 6 and
60 min.

In the subsequent strategy-learning task, participants
were trained to make decisions using TTB in a fictitious
applicant selection scenario. Specifically, they were asked
to use TTB to indicate (based on three attributes such as
programming experience, presented along with their
importance for the decision) which of two candidates
would be more suitable for the job. Only pairs of appli-
cants were used in which TTB led to a different decision
than a strategy that integrates across all attributes (e.g.,
an equal-weight strategy). This enabled us to ensure that
the participants indeed used TTB. This task took be-
tween 3 and 20 min.

In a final learning task, participants learned (by trial
and error) the attribute hierarchy, that is, how important
each attribute was for the decision, and which of the two
values of each attribute indicated success. Each attribute
was presented separately, and participants had to indi-
cate its importance (10, 9, or 8, respectively, with higher
numbers indicating higher importance) by pressing the
F10, F9, or F8 keys, respectively. This task was repeated
until correct responses were given for all attributes three
times in a row. Participants were then presented with the
two stimuli of each attribute (e.g., cup and plate for the
product attribute) and asked to select which stimulus
indicates success until correct responses were given for all
attributes twice in a row. To ensure that participants were
able to apply the attribute hierarchy and direction quickly
during the subsequent decision task, we had them repeat
this task under time pressure (only 2 sec to respond).
Participants needed 5–20 min to complete this task.

Decision Task

In the main task, the decision task with fMRI recorded,
participants were shown pairs of company names, with
one presented on the left and the other one on the
right side of a fixation cross (until a response was given)
and asked to decide, using TTB, which company would
be more successful in the future. The interval between
a decision and the next trial was randomly set to 2, 4,
or 6 sec. Stimuli were projected on a canvas visible via
mirrors mounted on the MRI head coil. Responses were
given via two MRI-compatible response boxes attached to
the participants’ thighs. The company on the right side
was selected by pressing (with the index finger) a button
on the right response box; the company on the left side, by
pressing a button on the left response box. Participants
were instructed to decide as quickly and as accurately as
possible. No feedback was provided during the fMRI
session.
In addition to the six experimental conditions (see

Figure 1), the decision task included a baseline condition
with 16 trials (randomly interspersed among the others)
in which no decision was required and thus no attributes
had to be retrieved. Here, the same company name was
shown on the left and the right side of the fixation cross,
and participants were instructed to press both response
buttons simultaneously. Thus, in the baseline condition,
participants were exposed to the same visual stimulation
as in the experimental conditions and were also required
to respond, but, importantly, they did not need to re-
trieve any information from memory.
The 92 experimental + 16 baseline trials were equally

distributed across two runs. Each run lasted about 10–
12 min, depending on participants’ RTs. Before the first
run, several practice trials were administered to familiarize
the participant with the testing procedure. Between the
two runs, an anatomical reference volume was recorded,
which took about 10 min.
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Finally, a functional localizer task was administered to
identify attribute-specific processing areas. Here, partici-
pants were presented with pictures of locations, faces,
and objects that were either part of the learned attribute
set or new (for each type two old and two new pictures).
The task was to discriminate between old and new items,
that is, to make an old–new decision by pressing the left
or right button (counterbalanced across participants).
Each stimulus was presented centrally for 2 sec, followed
by a fixation cross for 4–7.5 sec (varied randomly in steps
of 500 msec). Trial order was random. Each stimulus was
presented six times, resulting in 72 trials with a total dura-
tion of 9 min and 30 sec. The rationale for the localizer
task was based on the theory of cortical reactivation (e.g.,
Squire & Alvarez, 1995; Damasio, 1989; for reviews, see
Danker & Anderson, 2010; Khader & Rösler, 2009), which
states that information is stored in a material-specific way
in those brain areas that are also active during the sensory
processing of the information.

fMRI Data Acquisition, Preprocessing,
and Statistical Analysis

Data Acquisition and Preprocessing

Participants lay in the MRI scanner in supine position
with their head immobilized by a soft foam pillow to min-
imize involuntary head movements. Headphones were
used to dampen scanner noise. Anatomical and func-
tional imaging was performed with a 1.5T MR scanner
(Signa, GE Medical Systems, Fairfield, CT). Functional
BOLD images with 19 oblique slices covering the whole
brain were acquired with a T2*-weighted EPI sequence
(repetition time [TR] = 2 sec, echo time [TE] = 60 msec,
flip angle = 80°, field of view [FOV] = 240/240 mm,
matrix = 64 × 64, ascending slice acquisition, slice thick-
ness = 5mm, interslice gap = 1mm, in-plane resolution =
3.75 × 3.75 mm) using a standard quadrature head coil.
Anatomical whole-head images were acquired from

124 axial slices (1.4 mm thick) using a spoiled gradient
recalled acquisition sequence (FOV = 240 × 180 mm,
TE/TR = 6.0 msec/33.0 msec, flip angle = 40°, 256 ×
192 acquisition matrix, in-plane resolution = 0.9375 ×
0.9375 mm).

All analyses were performed with the BrainVoyagerQX
software package (www.brainvoyager.com). The first four
volumes of each run were discarded to allow for signal
equilibration. After motion and slice scan time correction,
temporal filtering (0.01 Hz high-pass), and linear trend
removal, the functional data were aligned with the indi-
vidual anatomical reference from the same session, trans-
formed into Talairach space (Talairach & Tournoux, 1988),
spatially smoothed with a Gaussian kernel (FWHM =
8 mm) and z standardized for each run. The experimental
conditions were modeled with separate predictors in a
random-effects general linear model. This model also
included six motion parameter vectors from the realign-
ment procedure to account for signal variance induced
by head motion.

Definition of ROIs

The functional localizer was used to identify the brain
areas involved in the representation of the different attri-
butes. Responses to each were modeled with boxcar
functions of 1 TR (2 sec) length, that is, the time that the
stimuli were shown, convolved with the model HRF. Each
attribute category was contrasted with the two other
categories (with contrast coefficients 2, −1, −1), yielding
attribute-specific ROIs.

With respect to the face attribute, numerous studies
have shown the fusiform gyrus to play a central role in
face processing (e.g., O’Craven & Kanwisher, 2000).
Therefore, an ROI was defined by masking the activation
pattern found by the functional localizer ( p < .01 uncor-
rected), with an anatomical template of the fusiform gy-
rus as provided by the BrainVoyager software (see
Figure 2A and the upper part of Table 1).

Figure 2. Face- and location-
specific areas (ROIs) in the
posterior cortex as determined
by the functional localizer.
(A) The face ROI was defined
by an overlap of the activation
with an anatomical template of
the fusiform gyrus (shown in
pink). The overlap is shown in
brown. (B) For locations, the
area that included the voxels
with the highest t values was
selected, located in the left
supramarginal gyrus (see
Methods for details). Activations
are projected on the anatomical
volume or partially inflated
cortex reconstruction of one
participant.
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For the location attribute, the respective contrast
yielded more than one posterior brain area when it was
thresholded at the same significance level as used for
the face ROI. We therefore chose the area that included
the voxels with the highest t values, which was located
in the left supramarginal gyrus (see Figure 2B and the
lower part of Table 1). To define the ROI, we adjusted
the significance threshold to p < .00001 uncorrected,
such that the number of voxels in this area was roughly
comparable to that of the face ROI (see Table 1).

In contrast to our previous study (Khader et al., 2011),
in which the same stimulus material was used, we did not
find a reliable ROI for the object attribute. However, as
will be explained below (see Results), the face and loca-
tion attributes are sufficient to delineate specific effects
of controlled and automatic retrieval processes.

Statistical Analysis

First, we investigated the effects of controlled and auto-
matic activation in the material-specific posterior represen-
tation areas. To this end, BOLD signals were aggregated
across all voxels of an ROI.2 Conditions were then con-
trasted by means of t tests of average beta weights. We
assumed that the activation within an ROI would increase
both when the respective attribute was required for the
decision (controlled retrieval) and when it wasmerely asso-
ciated with the decision option (automatic activation).

Second, we attempted to locate the different retrieval
processes within the frontoparietal network. For that
purpose, we delineated, by means of a whole-brain anal-
ysis, the brain areas that were generally related to the

increasing cognitive effort associated with retrieving an
increasing number of required and associated attributes,
respectively. To account for the fact that RTs varied
substantially across trials (depending on the number of
required and associated attributes, but also due to sub-
stantial inter- and intraindividual variations in RT within
an experimental condition), we adjusted the regressor
functions by convolving the model HRF with a boxcar
function with length = RT.
Neural correlates of automatic memory activation were

captured by contrasting conditions with different num-
bers of associated attributes (i.e., fan levels), while keep-
ing the number of required attributes constant (see
Figure 1)—that is, contrasts of 1 < 2 and 2 < 3 associated
attributes for trials in which one attribute was required
and of 2 < 3 associated attributes for trials in which
two attributes were required.
Neural correlates of controlled retrieval, that is, the

selective retrieval of attribute information as required
by TTB, were captured by isolating voxels that showed
systematic signal increases with an increasing number
of required attributes, while keeping the number of asso-
ciated attributes constant. Trials in which one, two, or
three attributes were required (using companies that
are associated with three attributes; see the first “column”
of the experimental design as depicted in Figure 1) were
combined with the baseline condition in a parametric
contrast (0 < 1 < 2 < 3 required attributes). This contrast
was computed by means of a conjunction analysis of two
contrasts (with coefficients −3, −1, 1, 3 for the first and
1, 1, 1, 1 for the second contrast). Note that such a para-
metric contrast could, in principle, also be conducted for

Table 1. Material-specific Posterior Representation Areas (Face and Location ROIs) as Determined by the Functional Localizer

Region BA x y z t(34) No. of Voxels

Faces

p < .01 uncorr.

Lingual/fusiform gyrus 18/37 10 −85 −15 9.23 25633

Anatomical template

Fusiform gyrus −1 −48 −16 21819

Overlap of activation and
anatomical template

Fusiform gyrus 18/37 15 −80 −14 9.23 2092

Locations

p < .00001 uncorr.a

Left supramarginal gyrus 40 −38 −44 32 9.05 2231

BA = Brodmann’s area; xyz = Talairach coordinates; t = peak t value.

aThe significance threshold was adjusted such that the number of voxels was comparable to that of the face ROI.
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the analysis of automatic activation, by combining the
baseline condition with the three conditions with differ-
ent numbers of associated attributes. However, as the
baseline condition included companies varying in the
number of associated attributes, we refrained from con-
ducting this analysis.
For the parametric contrast of controlled retrieval, we

chose a significance threshold of p < .001 uncorrected,
similar to our previous fMRI study. For the contrast of
automatic retrieval, we chose a slightly lower significance
level of p < .005, because behavioral effects of fan level
are substantially smaller than the effects of required
attributes (see below and Khader et al., 2013).

RESULTS

Behavioral Data

For the RT analysis, incorrect decisions (i.e., responses
inconsistent with TTB) and outliers (>3 SD, computed
separately for each participant and condition) were ex-
cluded. As can be seen in Figure 3, both RTs and error
rates in the decision task increased with both the number
of attributes required by TTB and the number of attri-
butes associated with the companies, replicating previ-
ous findings (Khader et al., 2011, 2013; Bröder &
Gaissmaier, 2007). An independent assessment of these
effects is possible only when one factor is varied while
the other is kept constant. Therefore, we will assess the
effect of the number of required attributes only between
conditions with the same number of associated attributes

and the effect of the number of associated attributes only
between conditions with the same number of required
attributes.

For companies with three associated attributes, there
was a main effect of the number of required attributes
(1, 2, 3), F(2, 70) = 94.62, p < .001. t tests revealed sig-
nificant differences between trials with one versus two
and two versus three required attributes, t(35) = 7.87,
p < .001, and t(35) = 8.25, p < .001, respectively. For
companies with two associated attributes, the difference
between trials with one versus two required attributes
was also significant, t(35) = 6.90, p < .001 (as we had
directional hypotheses, all p values are one-tailed and
Bonferroni-corrected for three tests).

For companies with one required attribute, automatic
activation was reflected by a main effect of the number of
associated attributes (1, 2, 3), F(2, 70) = 17.67, p < .001.
t tests revealed a significant difference between com-
panies with one versus two associated attributes, t(35) =
3.59, p = .002. For companies with two required attri-
butes, the differences between trials with two versus
three associated attributes was also significant, t(35) =
3.82, p < .001. All in all, these results show that the RTs
were modulated by both controlled retrieval and
automatic activation.

Because of the intensive training of attribute knowledge
and the decision strategy, error rates were very low. As
Figure 3 (bottom) shows, the pattern of error rates across
conditions was very similar to the pattern of RTs, showing
increases with the number of required and associated
attributes. For companies with three associated attributes,
the statistical analysis revealed a significant main effect of
the number of required attributes (1, 2, 3), F(2, 70) =
7.86, p < .01. t tests showed that the differences between
one and two, as well as between two and three, required
attributes were significant, t(35) = 2.22, p < .05, and
t(35) = 2.41, p< .05, respectively. Effects of the number
of associated attributes did not reach significance.

fMRI Data

Controlled and Automatic Activation of
Attribute Knowledge in Material-specific
Posterior Brain Areas

As outlined in the Methods, for faces and locations, we
identified material-specific areas (ROIs) in which the
respective attributes are assumed to be represented.
The location attribute was the most important one for
the decision. It was associated with every company and
had to be inspected in every trial. The face attribute
was second-most important, was not associated with
every company, and had to be retrieved only in a subset
of trials. The face ROI was therefore crucial in capturing
effects of controlled and automatic memory activation,
with activation being expected to increase when faces
were required or only associated. The location ROI, by

Figure 3. RTs and error rates in the decision task (the error bars
represent standard errors of the mean), showing that both measures
increased not only with the number of attributes required for a decision
but also with the number of attributes associated with a company.
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contrast, served as a control and was not expected to
show such effects, as locations were associated and re-
quired in every trial.

We expected that controlled activation would be re-
flected in activation modulated by the retrieval demands
of TTB, that is, whether one, two, or three attributes
were required for the decision (see the “columns” of
the experimental design in Figure 1). Generally, to the
extent that an ROI is sensitive to the controlled activation
of the attribute it represents, it should show higher acti-
vation when the attribute is required for the decision
than when it is not required. Accordingly, the face ROI
should show increased activation when two versus one
attribute(s) are required (locations + faces vs. locations
only). Such a contrast can be computed for companies
with two associated attributes (locations and faces) as
well as for companies with three associated attributes
(locations, faces, and objects). As can be seen in the first
two rows of Table 2, both of these contrasts were signif-
icant in the face ROI, suggesting a boost of activation in
the attribute-specific area when the respective attribute
was required for a decision. This shows that the face
ROI is sensitive to the requirement to retrieve face infor-
mation during decision-making.

However, further analyses are necessary to show that
this boosting in the face area is specific to the controlled
retrieval of faces. First, an additional requirement to re-
trieve attributes other than faces—that is, objects—
should not lead to comparable boost in the face ROI.
Accordingly, we contrasted activation in the face ROI
for trials differing in the requirement to retrieve objects.
As shown in the third row of Table 2, this contrast yielded
a smaller effect (as indicated by smaller beta weights and
t values). Second, when faces are required, there should
be no boost in the ROIs representing other attributes,
that is, locations. A contrast of trials in which faces were
required versus not required showed smaller effects in
the location ROI than in the face ROI (Rows 4 and 5 vs.

Rows 1 and 2 in Table 2). Finally, a contrast of trials
differing in the requirement to additionally retrieve
objects in the location ROI also yielded a rather small
effect (shown in Row 6 of Table 2). Overall, these results
suggest that the increased activation in the face ROI
when faces are required for a decision does not reflect
a general effect of the requirement to retrieve an addi-
tional attribute, but a controlled and specific boosting.
This is in accordance with previous findings (Khader
et al., 2011).
Automatic activation of attributes should be reflected

in neural activation that is modulated by fan level, that
is, whether one, two, or three attributes are associated
with the companies (see the different “rows” of the ex-
perimental design in Figure 1). If the fan effects apparent
in the behavioral data are due to the activation of asso-
ciated but currently not required attributes, then the
attribute-specific areas should show higher activation
when the respective attribute is associated with the com-
panies than when not. Accordingly, the face ROI should
show higher activation when two versus one attributes
are associated (locations + faces vs. locations only),
but only one (locations) is required. As can be seen in
the first row of Table 3, this contrast was significant (de-
picted as the left-most bar in Figure 4A), indicating an
increase in activation of the face ROI when faces were
associated with the companies. This provides evidence
that the face ROI is sensitive to the available, although
irrelevant, knowledge of the face attribute. The specificity
of this effect is substantiated by the finding that the
additional association of objects did not lead to a signifi-
cant activation increase in the face ROI (see the two
other possible comparisons between fan levels in Rows
2 and 3 of Table 3, depicted as the second and third bars
in Figure 4A). Moreover, when faces are associated with
the companies, there should be no increased activation
in ROIs representing attributes other than faces, that is,
locations. Consistent with this prediction, the contrast of

Table 2. Controlled Activation in Material-specific Posterior Representation Areas: Effects of the Number of Required Attributes

Contrast Name Beta SE t(35) p

Face ROI

2 vs. 1 required (Loc + Face vs. Loc), 2 associated 0.615 0.143 4.291 <.001

2 vs. 1 required (Loc + Face vs. Loc), 3 associated 0.571 0.139 4.114 <.001

3 vs. 2 required (Loc + Face + Obj vs. Loc + Face), 3 associated 0.416 0.150 2.772 <.01

Location ROI

2 vs. 1 required (Loc + Face vs. Loc), 2 associated 0.430 0.138 3.178 <.01

2 vs. 1 required (Loc + Face vs. Loc), 3 associated 0.140 0.128 1.091 ns

3 vs. 2 required (Loc + Face + Obj vs. Loc + Face), 3 associated 0.384 0.146 2.629 <.05

Beta = average beta value difference; Loc = location; Obj = object.
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faces being associated versus not associated was not sig-
nificant in the location ROI (Row 4 of Table 3). Also, the
additional association of objects was not accompanied
by an increase in activation of the location ROI (Rows 5

and 6 of Table 3, depicted as the two bars on the right of
Figure 4A). These results support the specificity of the
fan-related activation. Last but not least, the increased
activation in the face ROI when faces were associated

Figure 4. (A) Automatic
activation in posterior material-
specific representation areas.
Shown are the different fan
effects (contrasts of different
numbers of associated
attributes) for the face and
location ROIs. Activation in the
face ROI significantly increased
when faces were additionally
associated, but irrelevant. An
additional association of objects
did not lead to a significant
activation increase in the face
ROI. Moreover, in the location
ROI the additional associations
of neither faces nor objects
led to a significant activation
increase (see Table 3 for
statistical values). (B)
Correlations of the face-specific
fan effect in the face ROI with
the behavioral data (left graph)
and with the corresponding
effect in the left DLPFC (right
graph). Both correlations were
significant with p < .05,
suggesting that the fan-related
activation in the posterior
representation area is
behaviorally relevant and
linked to prefrontal retrieval
processes.

Table 3. Automatic Activation in Material-specific Posterior Representation Areas: Effects of the Number of Associated Attributes

Contrast Name Beta SE t(35) p

Face ROI

2 vs. 1 associated (Loc + Face vs. Loc), 1 required 0.444 0.133 3.336 <.01

3 vs. 2 associated (Loc + Face + Obj vs. Loc + Face), 1 required −0.000 0.151 −0.001 ns

3 vs. 2 associated (Loc + Face + Obj vs. Loc + Face), 2 required −0.044 0.134 −0.325 ns

Location ROI

2 vs. 1 associated (Loc + Face vs. Loc), 1 required 0.133 0.161 0.827 ns

3 vs. 2 associated (Loc + Face + Obj vs. Loc + Face), 1 required 0.132 0.125 1.053 ns

3 vs. 2 associated (Loc + Face + Obj vs. Loc + Face), 2 required −0.166 0.110 −1.519 ns

Beta = average beta value difference; Loc = location; Obj = object.
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(i.e., the difference in average beta values in the face ROI
for two vs. one associated attribute(s) when only one
attribute was required) was found to be correlated with
the amount of behavioral slowing in the RTs (the
RT difference between the two conditions), with r = .46,
p < .01 (Figure 4B, left graph).

Activation in the Frontoparietal Retrieval Network

Having investigated controlled and automatic memory
activation in the attribute-specific representation areas,
we examined how the frontoparietal network responded
to the manipulation of controlled and automatic retrieval.
We therefore ran whole-brain analyses with factors number
of required and number of associated attributes.

As outlined in the Methods, we tested for controlled
retrieval by means of a parametric contrast representing
the conditions with the different numbers of required
attributes. The results of this analysis are shown in
Figure 5A and the upper part of Table 4. The left dorso-
lateral pFC (DLPFC; middle frontal gyrus, BA 9/46) and
the left superior parietal lobe (BA 19/39) responded max-
imally to the increasing number of required attributes
(accompanied by a smaller activation in the left precu-
neus). These areas correspond closely to those found in
two previous experiments on controlled retrieval in TTB
(see Figure 3 in Khader et al., 2011). To further verify this
overlap, we used the activation clusters in the left middle
frontal and left inferior parietal lobe of the previous study
(Experiments 1 and 2) as ROIs. These analyses revealed
that effects of controlled retrieval were also highly sig-
nificant in these regions ( p < .001). This correspondence
is important, as we used different attribute hierarchies
across studies. Accordingly, the increased activations in
the frontoparietal network are not material-specific, sug-
gesting that they reflect general mechanisms of controlled
and sequential memory retrieval as required by the TTB
strategy.

In the next step, we examined effects of the number of
associated attributes in the frontoparietal network, which
can be assumed to reflect retrieval processes related to
automatic activation of attributes that are not required
for the decision. As will be shown, automatic retrieval
showed similar but also distinct activations as compared
to controlled retrieval.

As can be seen in Figure 5B and the lower part of
Table 4, a higher number of associated attributes (i.e.,
fan level) was accompanied by increased activation in
the left DLPFC, the right frontopolar cortex (BA 10),
and the left precuneus. More specifically, these areas
showed higher activation for two than for one associated
attribute(s), that is, for locations + faces versus locations
only, when only locations were required. Two further
contrasts between fan levels can be used to examine
effects of automatic activation (see Figure 1), namely,
comparisons of trials with three versus two associated

Figure 5. Common and distinct activations in the frontoparietal
network for controlled and automatic retrieval. (A) Controlled retrieval
was captured by means of a parametric contrast of conditions with
an increasing number of required attributes, revealing activations in
the left DLPFC and left superior parietal lobe, accompanied by a
smaller activation in the left precuneus (see also Table 4, upper part).
(B) Automatic retrieval was captured by means of contrasting two versus
one associated attribute(s), that is, locations + faces versus locations
only, when only locations were required. This contrast also revealed
activation in the left DLPFC (accompanied by activations in the left
precuneus and right frontopolar cortex; see Table 4, lower part),
but, importantly, no significant activation of the left superior parietal
lobe. Activations are projected on the anatomical volume of one
participant.
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attributes (locations + faces + objects vs. locations +
faces) when either one or two attributes are required.
These contrasts showed no significant effects. Note that
the contrast that did reveal significant activations might
be considered as the “purest” one to capture effects of
automatic memory activation. Here, two conditions are
compared with minimal numbers of additionally asso-
ciated, but irrelevant, attributes (zero vs. one). The data
for the other contrasts might be considerably noisier be-
cause of the higher numbers of associated and required
attributes.
To further substantiate the functional role of the left

DLPFC in automatic memory activation, we correlated
the fan-related increase in activation in this area with
the respective effect in the relevant representation area
(i.e., in the face ROI). These analyses revealed a sig-
nificant positive correlation of r = .36 ( p < .05; see
Figure 4B, right graph). This finding corroborates the
link between the coactivation of attribute knowledge
that is irrelevant for the decision and prefrontal retrieval
processes.
The results so far show that the left DLPFC and the

left superior parietal cortex responded to controlled acti-
vation and that the left DLPFC along with the right fronto-
polar cortex responded to automatic activation. Thus, as
expected, the left pFC was sensitive to both types of re-
trieval processes. To further substantiate that controlled
and automatic retrieval processes share a common neural
substrate, we conducted an ROI analysis to test whether
the fan effect was also significant in the voxels in themiddle
frontal/precentral gyrus (BA 6/9/46) that were found to be
sensitive to the number of required attributes (see Table 4).
In this ROI, activation was significantly affected by fan
level (i.e., 2 vs. 1 associated attributes with one attribute
required), t(35) = 1.778, p < .05 (one-tailed). Note that

this ROI is much larger (7909 voxels) than the set of voxels
that proved to be significant in the direct test of auto-
matic retrieval (285 voxels; see Table 4). This finding
speaks for the robustness of the fan effect—that is, the
fan-related activation is not restricted to the voxels that
showed up in the direct analysis. Taken together, the
common activation for automatic and controlled activa-
tion in the DLPFC suggests that this brain area responds
to general retrieval effort.

In addition to the common activation in the left
DLPFC, controlled and automatic retrieval also showed
distinct activation patterns, namely, the right frontopolar
cortex for automatic retrieval and the left superior parie-
tal cortex for controlled retrieval. Whereas we had no a
priori expectations for the right frontopolar cortex, the
result pattern for controlled retrieval in the left superior
parietal cortex (BA 19/39) replicates previous findings
with the same paradigm (Khader et al., 2011) and is con-
sistent with the notion that it mediates WM updating pro-
cesses (Borst & Anderson, 2013; Anderson et al., 2008;
Sohn, Goode, Stenger, Carter, & Anderson, 2003). In this
line of reasoning, the sequential comparison mandated
by TTB specifically activates the parietal cortex because
of the necessity to update the contents of WM with each
additionally required attribute. As additionally associated
but irrelevant attributes are not part of TTB’s sequential
retrieval process (and thus do not need to be updated), a
fan effect should not appear in this area. Consistent with
this hypothesis, the left superior parietal lobe did not
show an effect of fan level, even when further lowering
the significance threshold from p < .005 (as in Figure 5B)
to p < .05. Note that the contrast for automatic retrieval
also yielded activation in the left precuneus that roughly
corresponded in terms of location and size to the respective
activation found for the contrast for controlled retrieval

Table 4. Brain Areas in the Frontoparietal Network that Reflect Controlled Retrieval (the Number of Required Attributes) and
Automatic Retrieval (the Number of Associated Attributes), as Obtained from Whole-brain Analyses

Region BA x y z t(35) No. of Voxels

Controlled Retrieval

p < .001 uncorrected

L middle frontal/precentral gyrus 6/9/46 −40 7 38 6.11 7909

L superior parietal lobe 19/39 −32 −68 33 7.70 5560

L precuneus 31 −5 −64 25 5.11 754

Automatic Retrieval

p < .005 uncorrected

L middle frontal gyrus 6/9/46 −32 12 29 3.74 285

R middle frontal gyrus 10 28 36 18 3.57 573

L precuneus 31 −4 −66 21 3.77 414

BA = Brodmann’s area; xyz = Talairach coordinates; t = peak t value; L = left; R = right.
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(see Table 4). Therefore, the lack of parietal activation
for the fan effect cannot be due to global differences be-
tween the contrasts, such as a generally weaker signal-to-
noise ratio.

Additional Analyses

As shown above, our analyses clearly speak for a role of
the DLPFC in the controlled and automatic activation of
memory representations during memory-based decision-
making. This result is consistent with our previous fMRI
study (Khader et al., 2011) and other studies that have
found a link between the DLPFC and retrieval control
(see, e.g., Penolazzi, Stramaccia, Braga, Mondini, &Galfano,
2014; Jaeger, Selmeczy, O’Connor, Diaz, & Dobbins,
2012; Wheeler & Buckner, 2003). However, it should
be noted that numerous studies have also highlighted
a possible role of the ventrolateral pFC (VLPFC; encom-
passing BA 45/47) for this function (see, e.g., Barredo,
Öztekin, & Badre, 2013; Badre & Wagner, 2007). There-
fore, we directly tested for VLPFC activation in our study
by computing ROI analyses of BA 45 and 47. These tests,
however, did not show any significant effects, neither for
controlled [t(35) = .91; p = .371] nor for automatic re-
trieval [t(35) = 1.18; p = .246]. One possible explanation
of the lack of an activation in the VLPFC in our studies is
that we used visual information, whereas the studies re-
viewed by Badre and Wagner (2007) mainly employed
verbal material. In addition to the type of material, also
the specific cognitive operation involved in the task
might determine the site of activation within the lateral
pFC. As has been delineated in reviews by Ranganath
(2006) and Ranganath and D’Esposito (2005), the DLPFC
is more strongly involved in the relational processing of
maintained items, whereas the VLPFC is more strongly in-
volved in maintaining task-relevant items. Our task consists
of comparing retrieved attributes and thus requires rela-
tional processing, and this could thus be the reason for the
more dorsal activation we consistently find in our studies.

Finally, given that several studies have found support
for a contribution of the hippocampus in memory pro-
cesses (see, e.g., Derdikman & Knierim, 2014, for a recent
review), one might have suspected hippocampal involve-
ment in this study as well. Our results, however, did not
provide evidence for a contribution of the hippocampus.
But note that this does not rule out that the hippocampus
contributes to memory-based decision-making in general;
it only suggests that it does not respond to an increasing
number of associated or required attributes. However,
it is also possible that the retrieval of highly overlearned
associations, as realized in our study, might indeed be
accomplished with only minimal hippocampal support.

DISCUSSION

What are the retrieval dynamics in memory-based decision-
making and how are they reflected neurally? On the basis

of previous findings (Khader et al., 2011, 2013), we
distinguished between two fundamental and distinct pro-
cesses that contribute to memory-based decision-making—
automatic activation and controlled retrieval of memory
representations—and investigated their neural under-
pinnings by drawing on the neural model of ACT-R theory
(e.g., Anderson et al., 2008). To disentangle these pro-
cesses during memory-based decision-making, we com-
bined an experimental paradigm developed to examine
the neural correlates of selective and sequential memory
retrieval in people’s decisions (Khader et al., 2011) with
the fan manipulation (Anderson, 1974, 1983). The results
show that both the automatic activation of all attributes
associated with the decision options and the controlled
sequential retrieval of attributes can be traced in material-
specific brain areas. Moreover, the two facets of memory
retrieval were associated with distinct activation patterns
within the frontoparietal network.
To investigate the activation of memory representa-

tions, we defined, by means of a functional localizer,
areas that are specific for a decision attribute and that,
according to the theory of neocortical reactivation (e.g.,
Squire & Alvarez, 1995; Damasio, 1989; for reviews, see
Danker & Anderson, 2010; Khader & Rösler, 2009), are
assumed to store the respective memory representations.
Crucial for this study and the specific attribute hierarchy
was the face-specific area located in the fusiform gyrus
(see Figure 2A). It showed increased activation when
the face attribute was required for the decision, but also
when it was merely associated with a decision option. This
indicates the existence of both controlled and automatic
activation of memory representations during decision-
making, with both processes affecting decision times.
We further expected that automatic and controlled re-

trieval would be mediated by distinct subcomponents
within the frontoparietal network. Specifically, based on
the current neural implementation of the ACT-R cogni-
tive architecture (Borst & Anderson, 2013; Anderson
et al., 2008), we assumed that the retrieval of stored infor-
mation is managed by the lateral pFC (termed the “declar-
ative module”), a notion that is also supported by other
neural models of memory (e.g., Badre & Wagner, 2002;
Buckner & Wheeler, 2001). Furthermore, we assumed,
based on ACT-R, the updating of the current task repre-
sentation in WM to be mediated by the superior parietal
cortex (termed the “imaginal module,” also referred to as
the “problem-state module”).
Our study indeed showed an activation pattern consis-

tent with these predictions: The left lateral pFC re-
sponded systematically to the number of attributes
required for a decision (replicating our previous findings;
Khader et al., 2011). In addition, we found that the acti-
vation of the lateral pFC also increased with the number
of associated attributes (i.e., fan level). The apparent sen-
sitivity of this area to both controlled and automatic re-
trieval suggests that it is related to general retrieval effort.
According to ACT-R, the declarative module, located in
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the lateral pFC (BA 9, 44, 45, and 46) serves the role of
maintaining the retrieval cue (Anderson et al., 2008).
Therefore, its activation depends on the duration of the
retrieval process. Our data are consistent with this
notion: Increasing the number of required attributes
made retrieval more effortful, prolonged decision times,
and increased the activation in the lateral pFC. This
also held for the number of associated attributes: With
retrieval interference arising from task-irrelevant asso-
ciations, the retrieval of the task-relevant attribute becomes
more effortful and thus takes longer (see Danker, Fincham,
& Anderson, 2011; Sohn et al., 2003, 2005, for similar find-
ings that the lateral pFC also responds to manipulations of
fan level or associative interference).
Besides the declarative module, ACT-R assumes an

imaginal module being located in the posterior parietal
cortex (BA 7, 39, and 40) and reflecting the updating of
task-relevant representations in WM (Borst & Anderson,
2013; Anderson et al., 2008). It is thus similar to the
“focus of attention” concept in current WM theories
(e.g., Oberauer, 2002; Cowan, 1999, 2001). These theo-
ries claim that “there is some part of the LTM system that
is not presently in the focus of attention, but…can easily
be retrieved into that focus if it is needed for successful
recall” (Cowan, 2001, p. 92). Consistent with these no-
tions, in both our previous and present studies, activation
in the superior parietal cortex increased as a function of
the number of attributes to be retrieved. TTB requires
the sequential retrieval of attributes in the order of their
importance, starting with the most important attribute. If
this attribute is not differing between the companies, the
next-important attribute has to be retrieved. This means
that the task-relevant representation has to be updated,
which requires a shift of the attentional focus to a new
attribute. Importantly, the parietal cortex did not show
an effect of associative fan, suggesting that it is not sen-
sitive to retrieval interferences triggered by additional
activations. This is also in line with the assumptions of
ACT-R theory: As the irrelevant attributes producing the
fan effect are not part of TTB’s sequential retrieval pro-
cess, they do not require an updating of the task-relevant
representation.
We also obtained an additional activation in the right

frontopolar cortex that exclusively responded to the
number of associated attributes (i.e., fan level). Together
with the superior parietal cortex being exclusively related
to the number of required attributes, this activation pat-
tern constitutes a double dissociation between automatic
and controlled retrieval during memory-based decision-
making. The functional role of the right frontopolar
cortex for automatic retrieval, however, is yet to be deter-
mined. The right pFC has repeatedly been linked to
inhibitory control in different cognitive domains (Aron,
2007; Aron, Robbins, & Poldrack, 2004). With respect to
memory retrieval, it has been suggested that this area
might be involved in the inhibition of competing memo-
ries during the attempt to retrieve a target memory.

Whether the activation we observed here indeed reflects
this kind of regulatory process to counteract fan-related
interference has to be investigated in future studies.

Overall, we regard this study as an important step
toward a neural model of the retrieval dynamics involved
in memory-based decision-making. These dynamics can
be outlined as follows: First, upon presentation of a deci-
sion option, all memory representations associated with
it are automatically activated in the material-specific pos-
terior brain areas (state of automatic activation). This
leads to retrieval interference between the activated attri-
butes, prolonging decision times and activating the left
DLPFC to maintain the retrieval cue until the retrieval
of task-relevant information is completed successfully.
Second, the attribute that is relevant for a decision is
moved into the focus of attention, leading to a boost of
activation in the attribute-specific representation area
(state of controlled activation). Whereas the increased
retrieval effort (associated with both states of activation)
is reflected by activation in the left DLPFC, the updating of
WM is specifically mediated by the left superior parietal
cortex.

Our findings also have implications for current theories
of decision-making. The evidence for automatic activa-
tion during the decision process suggests that memory
processes involved in decision-making may not operate
in a purely controlled and sequential fashion, as implied
by the commonly accepted process description of TTB
(Gigerenzer & Goldstein, 1996). A more complete and
neuronally plausible account of memory-based decision-
making also needs to accommodate the automatic acti-
vation of attribute knowledge. Current cognitive models
of decision-making, by contrast, typically focus either on
controlled retrieval (e.g., Pachur, Hertwig, & Rieskamp,
2013; Brandstätter,Gigerenzer,&Hertwig, 2006;Gigerenzer
& Goldstein, 1996; Payne, Bettman, & Johnson, 1993) or on
automatic activation spread (Thomas et al., 2008; Schooler
& Hertwig, 2005; Juslin & Persson, 2002; Dougherty, Gettys,
& Ogden, 1999; Fiedler, 1996).

Furthermore, our work complements the “neuroeco-
nomics” literature, which has been mainly concerned with
the neural mechanisms of risk and reward processing
(Rangel, Camerer, &Montague, 2008;Glimcher&Rustichini,
2004), by elaborating the mnemonic and attentional pro-
cesses involved in decision-making. Given that economic
decisions often involve information stored in memory
(e.g., risk information, reinforcement history), a next step
is to combine the insights regarding memory and reward-
related mechanisms within a common framework.

The findings from this study might also contribute to a
better understanding of variations in decision-making
due to situational conditions, changes across the life
span, and individual differences in general. For instance,
the distinction between automatic and controlled re-
trieval bears resemblance to the distinctions between famil-
iarity and recollection (Yonelinas, 2002), associative and
strategic aspects of memory (Shing, Werkle-Bergner, Li,
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& Lindenberger, 2008), and incidental and intentional/goal-
directed reactivation (e.g., Kuhl et al., 2013; Nyberg, 2006).
An understanding of the contribution of memory pro-
cesses to decision-making may thus make it possible to
explain differences in decision-making on a functional
level. To illustrate, in cases where the ability to selectively
retrieve specific attributes is compromised (e.g., due to a
reduction of frontoparietal control functions), automatically
activated attributes would have a stronger impact on
decision-making, rendering decisions less consistent with
decision heuristics that require controlled selective retrieval.

To conclude, this study shows for the first time that
different retrieval processes contributing to memory-
based decision-making are associated with distinguish-
able neural structures. It demonstrates the usefulness
of combining memory and decision-making research
with neural measures to investigate the mechanisms of
decision-making on the basis of information stored in
memory and to embed decision-making within a broader
neurocognitive framework.
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Notes

1. Note that repeating company pairs might introduce prim-
ing effects. On a behavioral level, these would supposedly facil-
itate the comparison processes, leading to faster decisions. On
a neural level, it has been found that repetition priming typically
leads to decreased BOLD signals (for a review, see, e.g., Martin,
2007). Because the repeated pairs are those in which a higher
number of attributes needs to be retrieved, the effect of the
repetitions is likely, if anything, to counteract our hypothesis
of prolonged RTs and higher BOLD signals when a larger num-
ber of attributes has to be retrieved.
2. Material-specific memory activation could, in principle, be
also assessed by means of multivoxel pattern analysis (see
Rissman & Wagner, 2012, for a review). However, the complexity
of our design and, in particular, the large RT differences between
some of the conditions represent a major challenge for any
decoding analysis (Woolgar, Golland, & Bode, 2014; Todd,
Nystrom, & Cohen, 2013). Therefore, the applicability of multi-
voxel pattern analysis to our data seems limited.
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