
2nd-level analyses

1-way ANCOVA
Factor: pharmacological group

2-way ANCOVA
Factor 1: pharmacological group
Factor 2: genetics

Analyses

Experimental Procedure
Sample: 73 healthy, male volunteers.

Pharmacological Interventions:
• Amisulpride (400 mg): antagonistic effects on D2/D3 dopaminergic receptors
• Biperiden (4 mg): antagonistic effects on M1 cholinergic muscarinic receptors
• Placebo
Double-blind, between-subject, placebo-controlled design

EEG data acquisition: 64-channels cap (EASYCAP GmbH), 10-20 system. Subject-specific
electrode positions.
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Our computational trial-wise EEG analysis captures hidden mechanisms of learning and
allows for examining the temporal relation of different computational quantities.
Furthermore, employing EEG permits us to inspect pharmacological effects on the
electrophysiological measure independent of possible drug-induced changes in vascular
responses, a major confound for pharmacological fMRI studies.

Whole-brain EEG results from the 1-way ANCOVA suggest an early processing of choice
prediction error at the first level cδ# (136 ms after outcome presentation) at antero-frontal
sensors. These results could be related to the time course of PE signalling by DA neurons
[4]. In a later time window (340-368 ms after outcome presentation), precision-weight at
the first level ( ⁄%π# π') related activity is seen at central and frontal channels. Together,
this suggests a temporal succession in the encoding of the low-level PE and its precision-
weight.
Reducing the search volume to the clusters that showed a significant representation in
the EEG signal (negative and positive t-contrast) of the low-level precision weight,
disclosed an interaction between the pharmacological substance and ChAt (2-way
ANCOVA). In particular, compared to placebo, biperiden diminished the representation of
the low-level precision-weight, ⁄%π# π', for the AG genotype of ChAt (compared to the GG
genotype) at 380 ms post-feedback. This finding suggests that the low-level precision-
weight might be modulated by ACh, genetically and pharmacologically.
On the other hand, no significant results were detected for the other computational
quantities or for the DA-related gene COMT.

Future analyses will focus on biophysical models for discriminating between DA and ACh
effects on synaptic plasticity in individual subjects. In clinical studies, this may prove
useful for detecting pathophysiological subgroups (e.g. within the schizophrenia
spectrum [5]) and to generate individual treatment predictions [6].

Results
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Analyses

Introduction
Action optimization relies on learning about the success of past decisions and on
accumulated knowledge about the (in)stability of the environment [1]. In hierarchical
Bayesian models of learning and decision-making, belief updating is informed by multiple
precision-weighted prediction errors (PEs) that are related hierarchically [2].

Previous work has examined these computational quantities with fMRI, suggesting that
hierarchically different precision-weighted PEs may be encoded by specific
neurotransmitters such as dopamine (DA) and acetylcholine (ACh) [3]. By contrast, the
timing of these different PEs is poorly understood.

Using a reward-based associative learning task in which the contingency between cues
and rewards changed over time, we inferred, from subject-specific behavioral data, a low-
level choice PE (cδ#) about the reward outcome, a high-level PE (δ') about the probability
of the outcome as well as the respective precision or uncertainty weights and used them,
in a trial-by-trial analysis, to explain EEG signals.

Furthermore, the current study employed pharmacological interventions and genetic
analyses (COMT and ChAT) to probe DA and ACh modulation of these quantities.

1st-level analysis

Reward-associative learning task
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Posterior Probabilities

genotype 1

genotype 2
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genotype 1

genotype 2
Sleepiness,
overall mean-centered

Drug plasma levels,
interaction with pharmacological group

COMT:
genotype 1 = Val/Met
genotype 2 = Met/Met
ChAt:
genotype 1 = AG
genotype 2 = GG

Conclusions

1-way ANCOVA, whole-brain analysis 2-way ANCOVA, mask analysis
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