CHAPTER 1

THE PHYSIO TOOLBOX
FOR LOCALIZED
PHYSIOLOGICAL NOISE
CORRECTION

1.1 Physiological Noise in fMRI Data

Physiological Noise is a major limitation for BOLD sensitivity.
Originally, it was defined in contrast to thermal noise as any
“signal-proportional” fluctuation (Kriiger and Glover, 2001). In our
framework, physiological noise refers to true magnetization
changes in the brain, which stem from physiological, non-BOLD
sources. Specifically two main generators of physiological noise
have been identified besides subject bulk motion: the cardiac and
the respiratory cycle (Figure 1.1).

For the cardiac cycle, the noise generating mechanism arises from
the antagonistic flow dynamics during systole and diastole within a
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heartbeat. During systole, the pulse pressure wave of the blood
reaches the brain, leading to an increase in blood volume and
expansion of the transporting arteries (Soellinger, 2008). Since
total cranial volume is invariant due to the skull boundaries, this
brain expansion has to be compensated by an outflow of
cerebrospinal fluid (CSF) via the fourth ventricle into the spinal
canal. Conversely, during diastole, blood volume is reduced,
leading to a slight shrinkage of the brain and a back-flow of the
CSF into the ventricles and subarachnoid space from the spinal
canal. Thus, three effects on magnetization follow from the cardiac
cycle: pulsatile flow of the CSF through ventricles and aqueduct,
alterations in brain voxel composition due to local blood volume
changes, and tissue displacement at brain/CSF and brain/vessel
boundaries. The tissue displacement is maximal in inferior brain
regions, e.g. amounting to about 1-2 mm shift in head-foot
direction for the brainstem (Soellinger, 2008).

The respiratory cycle, as second physiological noise generator,
injects image fluctuations via encoding field changes on the one
hand, and changes in tissue oxygenation on the other hand
(Windischberger et al., 2002). Changes in the encoding magnetic
fields are typically of low spatial order in the brain, since they
originate from distant magnetization changes through tissue
displacement surrounding the lungs. Consequently, if uncorrected
during image reconstruction, respiratory field fluctuations induce
rather global effects in the image, such as shifts or scaling for EPI
acquisitions. The changes in oxygenation level, on the other hand,
lead to more local effects, since they alter the voxel composition
and susceptibility distribution through the relative oxygen content
in the tissue. Note that this oxygen fluctuation is independent of
the energy consumption effects investigated by BOLD fMRI,
varying purely with the phase of the respiratory cycle.
Furthermore, cardiac and respiratory noise generators also interact
by the respiratory-sinus arrhythmia. Lung expansion during
inhalation leads to an increase in heart rate, while heart rate
decreases during exhalation.
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In summary, physiological noise is a major source of signal
variability in voxel time series that accounts for up to 60 % of the
observed fluctuations and occurs distributed at many sites all over
the brain, including OFC, brainstem, and cortex adjacent to
ventricles and subarachnoid space. Consequently, suitable
correction methods for physiological noise are recommended for
both task-based and resting-state fMRI studies, increasing the
sensitivity for effects of interest and lowering the risk of spurious
physiological correlations in functional connectivity analyses,
respectively (Birn, 2012; Birn et al., 2006; Harvey et al., 2008;
Hutton et al., 2011).
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FIGURE1.1  Mechanisms of physiological noise generation in the brain. (Top)
Source of physiological noise. (Center) Specific localization or property where
physiological noise manifests. (Bottom) Entry point of noise into the MR image
encoding (cf. Chapter 2, Figure 2.5). The schematic depicts an image-based
perspective where uncorrected field fluctuations lead to changes in the estimated,
i.e. apparent magnetization.
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1.2 Image-based Physiological Noise Correction

To identify and correct for physiological noise in image time series,
exploratory techniques, such as independent component analysis
(ICA(Beckmann and Smith, 2004; Perlbarg et al., 2007), as well as
voxel-wise noise modeling have been suggested (Glover et al.,
2000). Both approaches focus on isolating the typical periodicity of
the cardiac and breathing cycle (Figure 1.2).

ICA methods, since they do not employ concurrent measures of
physiology, have to rely on prior assumptions about the structure
of physiological noise. For example, spatial ICA (sICA, (Thomas et
al., 2002) classifies components post-hoc as physiological noise, if
their representative time series is dominated by the characteristic
breathing and heart rate, i.e. 0.2-0.3Hz and about 1Hz,
respectively. An alternative approach, termed CORSICA
(CORrection of Structured noise using spatial Independent
Component Analysis(Perlbarg et al., 2007), instead utilizes the
spatial ~characteristics of physiological noise to identify
components. Specifically, the larger blood vessels (basilar artery,
circle of Willis) are major sites of pulsatile displacement, while
CSF reservoirs (ventricles, subarachnoid space) experience flow
effects, and cortex/CSF boundaries are sensitive to global
displacements.

Voxel-wise physiological noise modeling, on the other hand, relies
on peripheral physiological time series, acquired from e.g.
pneumatic breathing belts, electrocardiograms (ECG) or pulse
oximetry units (attached to the finger/wrist). Different ways to
utilize the information in this peripheral data have been proposed,
most prevalently its frequency content via RETROICOR
(RETROspective Image CORrection (Glover et al.,, 2000)). This
approach is similar to sICA in that it focuses on the periodicity of
the physiological noise as captured by the cardiac and respiratory
phase (Figure 1.3). Herein, the cardiac phase at time t is expressed
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as the time passed since the last heartbeat relative to the duration
of the current cycle, i.e.

_tl

Pcara(t) =21 : (1.2)

=04
with t; being the time of the last heartbeat, and t, the time of the
next one (Figure 1.3 A).

The respiratory phase, ¢, on the other hand, is computed using
an equalized-histogram transfer function, accounting for the
differing breathing amplitudes in each cycle:
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Herein, R(t) is the amplitude of the respiratory signal and H is the
histogram capturing the frequency of each breathing amplitude
over the course of the time series (Figure 1.3 BC). The use of the
histogram-equalization ensures maximum sensitivity of the phase
for the most frequently occurring amplitudes. Furthermore, a full
breathing cycle is attained only if inhalation and exhalation are
both complete. The sign of ¢,., is determined by the temporal
derivative of R, i.e. positive for inhalation (dR/dt > 0), and
negative for exhalation (dR/dt < 0).

In RETROICOR, the periodic physiological noise time series is then
modelled as a Fourier expansion of both cardiac and respiratory
phase.

N
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where N,, is the order of the expansion, and 4,,, B;, are the Fourier
coefficients that have to be estimated for each voxel time series
individually. Considering higher harmonics (N, > 1) of the
estimated physiological frequencies is a consequence of the low
sampling rate of fMRI, typically 0.3-0.5 Hz (TR 2-3 seconds). Thus,
aliase.ing occurs such that the under-sampled breathing and
cardiac signals (0.25 Hz and 1 Hz) fold back into the spectrum of
the sampled time series at different frequencies. To account for
interaction effects between respiratory and cardiac cycle, e.g. via
the respiratory-sinus arrhythmia, extensions to RETROICOR
incorporating multiplicative Fourier terms have been proposed
(Brooks et al., 2008; Harvey et al., 2008).

N
xcareresp(t) = Z Am
m=1
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' Sin(m(pcard) ' Cos(m(presp) + Cm

' Cos(m(pcard) ' Sin(m(presp) + Dm

' Sin(m(pcard) ' Sin(m(presp) .

Beyond frequency content, other aspects of the physiological signal
have been considered as independent noise sources, such as heart
rate variability or respiratory volume per time (Birn et al., 2006;
Chang et al., 2009). This follows the rationale that the arterial CO,
level governs vasodilation and -constriction, thus altering blood
flow (Shmueli et al., 2007), and is in itself modulated by heart rate
and respiratory volume. Modeling their impact on the image voxel
time series follows an approach analogous to BOLD modeling in
the GLM (Chapter 2.2). Instead of a hemodynamic response
function, which translates hypothesized neural activation into
BOLD changes, cardiac and respiratory response functions were
proposed to map heart rate and respiratory volume per time onto
physiological noise of the fMRI time series. Assuming a linear,
time-invariant (LTI) system, the noise model time series can then
be retrieved as a convolution between the respective response
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function and the physiological input time series. The concrete form
of these response functions was determined from experimental
calibration data.

Specifically, for the respiratory response function RRF(t), the LTI
was probed by single impulses, i.e. observing the BOLD response to
single deep breaths (Birn et al., 2006). As functional form for the
RRF, the difference of two gamma variate functions was proposed,
which are typically used to describe bolus experiment dynamics,
and the fit to the experimental data yielded:

t t
RRF(t) = 0.6t21e 16 — 0.0023t35%¢ 725 (15)

This function is convolved with the estimated respiratory volume
per time (RVT), i.e. the local integral of breathing belt amplitude,
to yield the physiological noise time series.

To determine the cardiac response function CRF(t), a free-form
Gaussian-process deconvolution of BOLD data was performed with
respect to the estimated current heart rate (Chang et al., 2009).
Post-hoc, the resulting CRF was fitted to a combination of a
gamma variate and Gaussian function, yielding

(t) 27,1 @127 (1.6)
CRF(t) =0.6t“’e 16 — e 45 1.
V18w

As for the RRF, the resulting physiological noise time series can be
retrieved by convolving the CRF with the running estimate of the
heart rate (typically via a sliding-window average over 6 seconds).

Finally, the overall impact of physiological noise on the voxel time
series is then modelled as a linear superposition of all the above-
mentioned different Fourier and/or convolution terms, i.e.
assuming that there is no further interaction between the different
aspects of physiology. For actual noise correction, the weighting
parameters (e.g. Ay, By,) of the different noise time series have to
be fitted to the voxel time series and projected out of the data.
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Conveniently, for the mass-univariate analysis approach prevalent
in fMRI (Chapter 2.2), this amounts merely to an inclusion of these
different noise mode time series into the design matrix of the GLM
(Josephs et al., 1997). Thus, physiological noise time series, sampled
at the volume acquisition times, become confound regressors,
analogous to movement parameters or session means of the BOLD
time series. Finally, this inclusion into the fMRI analysis enables to
evaluate the significance of physiological noise removal via F-tests
on the estimated weighting parameters (Chapter 2.3). Furthermore,
since the F-test reports the extra-sum-of-squares explained by the
physiological noise regressors, this also provides a quantitative
measure of the efficacy of physiological noise removal.
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FIGURE1.2  Different image-based physiological noise correction methods.
Individual methods are given in boxes with reference of first occurrence. White boxes
indicate specific input data or priors of each method.
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FIGURE1.3  Cardiac and Respiratory Phase Estimation in RETROICOR. (A) For the
cardiac phase, the R-peaks of the ECG-wave are detected and the phase at slice
acquisition time is estimated by the relative position within the current heartbeat
duration. (B) For the respiratory phase, the amplitude of the breathing signal R is
transformed into a positive phase (inhalation) or negative phase (exhalation). The
peak absolute phase of m is only reached for maximum amplitude over the whole time-
course. (C) The mapping from respiratory volume to respiratory phase is non-linear,

realized by a histogram-equalized transfer function that allocates sensitivity for the

most frequently occurring respiration amplitudes.
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1.3 Implementation of Noise Correction in the
PhysIO Toolbox

1.3.1 Overview

The physlO Toolbox was developed within this work to provide
state-of-the-art model-based physiological noise correction for
fMRI using peripheral measurements. The toolbox models voxel-
wise physiological noise components via RETROICOR (Glover et
al., 2000; Harvey et al., 2008) as well as cardiac and respiratory
response functions (Birn et al.,, 2006; Chang et al., 2009). A
particular focus of the implementation of this software was
robustness and ease-of-use for large-scale studies. Hence,
considerable effort went into standardizing and automatizing the
processing stream for various kinds of MR systems and peripheral
measurement devices. The physlO toolbox is aimed at both
researchers and clinicians, and provides seamless integration with
existing packages used in the neuroscientific community, in
particular Statistical Parametric Mapping (SPM,
www.fil.ion.ucl.ac.uk/spm/). Furthermore, it was implemented
platform-independent in Matlab and as part of the software suite
TAPAS (TNU Algorithms for Psychiatry-Advancing Science,
http://www.translationalneuromodeling.org/tapas/) of the
Translational Neuromodeling Unit (TNU), that offers long-term
support and development.

The workflow of the toolbox consists of five major modules that are
explained in more detail in the following sections (Figure 1.4): (1)
read-in of (vendor-specific) physiological log-files, (2) pre-
processing of noisy peripheral physiological data, (3) physiological
noise modeling using RETROICOR and cardiac/respiratory
response functions, (4) physiological noise correction by providing
confound regressors for the mass-univariate GLM analysis and (5)
assessment of noise correction efficacy using automated F-contrast
generation in SPM.
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The overall workflow is executed by running the main function
tapas physio main create regressors. This function
takes one input argument, the physIO-structure, which holds all
parameter and processing choices for the workflow. PhysIO is
created by the constructor-function tapas physio new.

The generation and modification of the physIO-structure, as well
as the execution of the toolbox functions, can be inspected for
various example datasets in the examples/-folder provided with
the toolbox. For example, the standard use case using ECG and a

pneumatic breathing belt is illustrated in
examples/Philips/ECG3T/main ECG3T.m

In the following, we will dissect the workflow of the physlO
toolbox along by a commented step-wise walk-through of
tapas physio main create regressors.
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FIGURE1.4  The Workflow of the PhysIO Toolbox. (Left) Modules of the PhysIO
Toolbox. (Center) Typical graphical output in respective modules. (Right) Most
relevant functions within module (function name prefixed with tapas_physio ).
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1.3.2 Read-in of Physiological Log files

Currently, physiological log-files from Philips and General Electric
(GE) MR systems are natively supported by the physIO Toolbox.
For both vendors, measurements of electrocardiograms (ECG),
pulse plethismograph/oximetry units (PPU) and pneumatic
respiration belts are accepted inputs. This first module of the
physlO Toolbox reads in the physiological log files and
synchronizes the scan timing to the physiological measurements.

To specify the input files for read-in, the physIO-structure has to
be initialized first by a call of the constructor:

physIO = tapas physio new();

Then, the following parameters in the physIO.log files and
physio.thresh sub-structures have to be set:

thresh.cardiac.modality ‘PPU’ or ‘ECG’

log files.vendor ‘Philips’ or ‘GE’

log files.cardiac ‘SCANPHYSLOG*.log’ or
‘ECGData epiRT*’

log files.respiration ‘SCANPHYSLOG*.log’ or
‘RespData epiRT*’

log files.

sampling interval in seconds, e.g. 2e-3,

40e-3

Note that for Philips, both cardiac and respiratory information are
saved in the same log file, SCANPHYSLOG <timestamp>.log.,
and the sampling interval of the physiological log file is fixed (2 ms,
500 Hz sampling rate).

In the main function of the toolbox,
tapas physio main create regressors, this input
information is used to generate the raw vectors of sampling time
and physiological information (PPU or ECG time course, breathing
belt amplitude signal) by calling
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[ons secs.c, ons secs.r, ons secs.t,
ons_secs.cpulse] =
tapas physio read _physlogfiles(log files,
thresh.cardiac.modality) ;

where the output is saved in the physIO.ons secs substructure
(“onsets in seconds”).

Ons_secs.c [nSamples, 1] vector of
cardiac signal time course
(ECG/PPU)

ONns_secs.r [nSamples, 1] vector of
respiratory amplitude signal

ons_secs.t [nSamples, 1] Vector of
sampling times (in seconds)

ons_secs.cpulse [nBeats,1l] vector of
heartbeat onsets (in
seconds) - if provided by the
log file

For other vendors, the physlO toolbox can be used as well, if
physIO.ons secs is created manually with the aforementioned
fields. @ The  tapas physio main create regressors-
function has to be slightly adapted then by replacing the
tapas physio read logfiles with a custom-made read-in
function.

The second important functionality of this module is the
synchronization of the physiological data with the scan timing,
which is crucial for the correction of the fMRI voxel time series
later on. The nominal scan timing is defined in the
physIO.sgpar-substructure (“sequence parameters”), holding
the following parameters:

sgpar.Nslices number of slice per
volume
sgpar.NslicesPerBeat default: Nslices; for



16 The PhyslO Toolbox for Localized Physiological Noise Correction

triggered sequences:
number of slices per
heartbeat

sgpar.TR repetition time
(seconds)

sgpar.Ndummies number of dummy volumes
before first scan

sgpar.Nscans number of scans
(volumes) 1in session

sgpar.Nprep number of preparation
scans; leave [] or set
to integer value

sgpar.TimeSliceToSlice time between acquisition
of subsequent slices; if
[], TR/Nslices 1is
assumed, enter a
duration for non-
equidistant slice
spacing

sgpar.onset slice default: Nslices/2;
reference slice for
timing within a volume

From these inputs, the physIO toolbox generates the nominal scan
timing of each slice and volume acquisition (LOCS, VOLLOCS
given in sample indices) during the run via the function

[VOLLOCS, LOCS] = tapas physio create nominal
scan_timing(ons secs.t, sgpar);

with

VOLLOCS [nPrep+nDummies+nScans, 1]
vector of volume scan onsets
(in sample indices of
ons_secs.t)

LOCS [nSlices*nVolLocs, 1] vector
of slice onsets (in sample
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indices of ons secs.t)

If sgpar.Nprep is empty ([]), the toolbox assumes that the
physiological log files end exactly when the last slice of the last
volume of the fMRI run has been acquired and counts slices and
volumes from the end of the files. Conversely, if Nprep has an
integer value > 0, the toolbox ignores the start of the log file up to
time (Nprep+Ndummies)* TR, and then creates slice and scans
timestamps in a forward direction.

For Philips SCANPHYSLOG-files, given appropriate software keys,
a more accurate way to determine the exact scan timing relative to
the physiological time courses is available. Specifically, the gradient
time course during the scan is also logged in the SCANPHYSLOG-
file. The PhyslIO toolbox provides functions to extract the onset of
every slice and volume acquisition that is accurate up to 10 ms, i.e.
on the order of one slice. To activate this functionality, the
physio.thresh.scan timing substructure, that is empty per
default, has to be defined with the following fields

scan_timing.grad  ‘x’, ‘y’ or ‘z’; specifies

direction which physical gradient time
course shall be used

scan_timing.zero e.g. 1500; amplitudes below

this value are not considered
for slice detection

scan_timing.slice e.g. 1700; minimum peak
height of a slice-encoding
gradient (arbitrary units)

vol e.g. 1800; minimum peak
height of a preparation
gradient at the start of a
volume

vol spacing e.g. 20e-3 (in seconds);
instead of the vol amplitude
threshold, vol spacing can be



18 The PhyslO Toolbox for Localized Physiological Noise Correction

specified as the time gap
between the last slice and
first slice of the next
volume

Then, the slice and volume acquisition time-stamps are retrieved
by the following call:

[VOLLOCS, LOCS] =
tapas physio create scan timing from
gradients philips( log files,
thresh.scan timing, sgpar, verbose);

The values of the thresholds have to be determined for each fMRI
sequence individually (but can be kept between different subjects
and sessions). By setting verbose =2, the physlO toolbox
provides informative plots about the gradient time course and the
current thresholds, thus enabling their effective adjustment to the
sequence, in order to detect all slice/volume acquisitions.

Finally, for the workflow realized in
tapas physio main create regressors, the complete
scan timing is converted into seconds and inserted into
physIO.ons secs via

[ons secs.svolpulse, ons_ secs.spulse,
ons_secs.spulse per vol, verbose] =
tapas physio get onsets from locs (
ons_secs.t, VOLLOCS, LOCS, sgpar, verbose);

1.3.3 Pre-Processing of Peripheral Physiological Data

After read-in of the raw physiological data, both the respiratory
and cardiac signal time courses have to be pre-processed to
improve SNR for subsequent noise modeling.
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Typically, the respiratory amplitude signal recovered from
pneumatic breathing belts is rather robust, if the belt was properly
attached to the subject. Hence, simple band-pass filtering and
outlier removal suffice for respiratory pre-processing. In the
physIO toolbox, a 2" order Butterworth bandpass filter (0.1-5 Hz)
is implemented that accounts for long-term drifts (e.g. through
loosening of the belt) and high-frequency noise (micro-movement,
digitization noise). Furthermore, extreme apparent breathing
amplitudes, e.g. through subject movement, exceeding more than 3
amplitude standard deviations are removed as outliers. Both,
filtering and outlier removal are performed via a call to

ons_secs.fr =
tapas physio filter respiratory(ons secs.r,
log files.sampling interval);

where physIO.ons secs.fr holds the filtered respiratory
signal.

The cardiac signal, on the other hand, requires more pre-
processing for both ECG and PPU data, since the amplitude signal
of these devices has to be transformed into the phase information
of the cardiac cycle. Specifically, cardiac pulses, i.e. the R-wave
peaks of the ECG signal or maxima of the pressure wave of the PPU
have to be detected. However, especially at high field or with badly
attached electrodes, the ECG signal acquired in the MR
environment is typically very noisy due to magneto-hydrodynamic
effects. Similarly, hand movement affects pulse oximetry units
attached to the finger. Thus, the default prospective R-wave or
plethysmograph peak detection of the MR system, which is used
for cardiac triggering, frequently fails in this situation, and cardiac
pulse time stamps in the log-files are incomplete.

To enable reliable cardiac pulse detection, the physIO toolbox
pursues a two-step procedure for retrospective detection of the
cardiac pulse onsets. The options for this pulse detection are set in
physio.thresh.cardiac. In the first pass, pulses can be either
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loaded from the prospective algorithm logged by the MR-system or
re-estimated via autocorrelation with a representative time-course
during a single heartbeat. For ECG-data at and below 3 Tesla, the
prospective detection by the system is usually sufficient, and data
can be adopted from the Philips SCANPHYSLOG-file by setting

thresh.cardiac.modality ‘ECG’
thresh.cardiac.initial
cpulse select.method ‘load from logfile’.

However, at high field (7 Tesla and above), it is recommended to
determine the R-peaks of the ECG by auto-correlating it with a
single representative QRS-wave for the subject. This is
accomplished by setting

thresh.cardiac.modality ‘ECG’
thresh.cardiac.initial

cpulse select.method ‘manual’
thresh.cardiac.initial
cpulse select.file <filenameECGWave>

and subsequently running

[ons secs.cpulse, verbose] =
tapas physio get cardiac pulses(
ons secs.t, ons secs.c,
thresh.cardiac.initial cpulse select,
thresh.cardiac.modality, [], verbose);

The selected QRS-wave is stored in <filenameECGWave>, and
repeated runs (e.g. for other sessions) of the cardiac pulse
detection can afterwards be performed by setting

thresh.cardiac.modality ‘ECG’
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thresh.cardiac.initial

cpulse select.method ‘load’
thresh.cardiac.initial
cpulse select.file <filenameECGWave>.

For PPU data, the manual waveform selection can be omitted
thanks to a self-calibrating technique for cardiac pulse estimation
developed by Steffen Bollmann (Children’s Hospital Zurich). This
method has been optimized for very noisy peripheral data in a
patient population (children with ADHD). Specifically, expected
heart rate and the representative time-course for autocorrelation
are estimated iteratively from the data. To use this automatic first
pass pulse detection for PPU data, the only required setting in the
thresh.cardiac structure is

thresh.cardiac.modality ‘oXYy’,

followed by the above call to

[ons secs.cpulse, verbose] =
tapas physio get cardiac pulses(
ons secs.t, ons secs.c,
thresh.cardiac.initial cpulse select,
thresh.cardiac.modality, [], verbose);

The second pass is an optional manual R-wave/pulse oximetry peak
selection implemented by Jakob Heinzle (Translational
Neuromodeling Unit, University of Zurich and ETH Zurich).
Herein, a graphical user interface is presented in Matlab that shows
the cardiac time course with the detected pulses and asks for
manual addition and removal of pulses via mouse clicks. This
functionality is activated by setting

thresh.cardiac.posthoc ‘manual’
cpulse select.method
thresh.cardiac.posthoc
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cpulse select.file <filenameManualPulses>

before calling

[ons secs, outliersHigh, outliersLow] =
tapas_ physio correct cardiac pulses
manually (ons_ secs, thresh.cardiac.posthoc
cpulse select);

The close-up region chosen for display and manual pulse
selection/removal can be modified by adjusting the outlier
detection parameters in cardiac.posthoc cpulse select:

posthoc cpulse e.g. 80; percentile of beat-to-
select. beat interval histogram that
percentile constitutes the "average heart
beat duration" in the session
posthoc cpulse  e.g. 80; minimum exceedance

select. (in %) from average heartbeat
upperThresh duration to be classified as

missing heartbeat
posthoc cpulse e.g. 60; minimum reduction

select. (in %) from average heartbeat
lowerThresh duration to be classified an

abundant heartbeat

As for the QRS-wave, the manually detected and removed pulses
are stored in <filenameManualPulses> and can be loaded by
setting posthoc cpulse select.method=’1load’. If no post-
hoc manual pulse selection is desired, set
cardiac.posthoc cpulse select.method='off’.

Finally, preprocessing of the physiological time courses, i.e. the
filtered respiratory time course ons secs.fr and the vector of
cardiac pulse occurrences, ons secs.cpulse, is concluded by
cropping them to the time interval relevant for scanning, i.e. from
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the start of the first scan (after dummy scans) until the end of the
last scan of the session:

[ons secs, sgpar] =
tapas physio crop scanphysevents to
acqg window (ons secs, sgpar);

The uncropped time series are preserved in a substructure
Ons_secs.raw.

1.3.4 Physiological Noise Modeling

Given the cropped physiological time series of filtered breathing
belt amplitude and onset times of heartbeats, the modeling of the
physiological noise time series can take place.

The physIO Toolbox offers to model Fourier expansions of cardiac
and respiratory phase according to RETROICOR (Glover et al.,
2000; Harvey et al., 2008), as well as noise modeling of heart rate
variability (HRV) and respiratory volume per time (RVT) utilizing
the cardiac and respiratory response function, respectively (Birn et
al., 2008; Chang et al., 2009).

Modeling options for the physiological noise can be set in the
physio.model-substructure:

model. type ‘RETROICOR’ , ‘HRV'’, ‘RVT’ or
any combination of them, e.g.
‘RETROICOR_HRV’ ,
‘RETROICOR_HRV_RVT’, ‘HRV_RVT’

model.order.c e.g. 3; order of cardiac phase
Fourier expansion
model.order.r e.g. 4; order of respiratory

phase Fourier expansion
model.order.cr e.g. 1; order of sum/difference

of cardiac/respiratory phase

expansion (phase interaction)
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For both the cardiac and respiratory RETROICOR regressors, the
regressor generation consists of three steps: (1) phase estimation,
(2) downsampling to the acquisition time-points (at a reference
slice of each scan volume defined by sgpar.onset slice) and
(3) generation of different noise time series via Fourier expansion.
Finally, an interaction between cardiac and respiratory phases can
be modelled via an expansion of their phase sum and differences
(Brooks et al., 2008; Harvey et al., 2008).

These three steps are comprised in one function for cardiac,
respiratory and interaction terms

[cardiac sess, respire sess, mult sess,
ons_secs] =
tapas physio create retroicor regressors (
ons_secs, sqgpar, model.order, verbose);

with the following output parameters:

cardiac_ sess [nScans, 2*model.c] Fourier
expansion (cosine/sine columns)
of cardiac phase at reference
slice for each scan

respire sess [nScans, 2*model.r] Fourier
expansion of respiratory phase
for each scan

mult sess [nScans, 4*model.cr] Fourier
expansion of sum and difference
of cardiac and respiratory
phase for each scan

ons_secs. [nScans, 1] cardiac phase

c_sample phase sampled at reference slice for
each scan

ons_secs. [nScans, 1] respiratory phase

c_sample phase sampled at reference slice for

each scan
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Within tapas physio create retroicor regressors,
step (1), the phase estimations, are performed via

¢ _phase =

tapas physio get cardiac phase(ons secs.cpulse,
sgpar.spulse) ;

r phase =
tapas physio get respiratory phase(
ons secs.fr, log files.sampling interval);

for cardiac and respiratory data, respectively. These functions
implement equations (1.1) and (1.2) (cf. Figure 1.3), following the
original RETROICOR publication (Glover et al., 2000). Step (2), the
downsampling to one reference time-point per scan, is
accomplished by two functions:

sample points =
tapas physio get sample points(ons_ secs,
sgpar) ;

c_sample phase =
tapas physio downsample phase (spulse,
c_phase, sample points,
log files.sampling interval);

r sample phase =
tapas physio downsample phase (spulse,
r phase, sample points,
log files.sampling interval);

Finally, step (3), the Fourier expansion, is performed via
tapas physio get fourier expansion for cardiac,
respiratory and interaction regressors:

cardiac sess =
tapas physio get fourier expansion
c_sample phase,order.c);

respire sess =
tapas physio get fourier expansion(
r sample phase,order.r);

crplus sess =
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tapas physio get fourier expansion

c_sample phase+r sample phase,order.cr);
crdiff sess =

tapas physio get fourier expansion

c_sample phase-r sample phase,order.cr);
mult sess = [crplus sess crdiff sess];

For the impulse-response function based noise models, the
confound regressors are generated in three different steps by (1)
estimation of the time series of the respective physiological signal
component, i.e. heart rate and respiratory volume per time, (2)
convolution with the corresponding response functions at a high
temporal resolution (slice TR) and (3) extraction of the reference
time-points within each scan volume.

These three steps are summarized in one function for each heart
rate variability (HRV) and respiratory volume per time (RVT)
regressors:

[convHRV, ons secs.hr, verbose] =
tapas physio create hrv regressor (ons_ secs,
sgpar, verbose);
[convRVT, ons secs.rvt, verbose] =
tapas physio create rvt regressor (ons_ secs,
sgpar, verbose);

The relevant output parameters of these functions are:

convHRV [nScans, 1] heart-rate
variability regressor;
convolved with cardiac response
function

convRVT [nScans, 1] respiratory volume
per time regressor; convolved
with respiratory response
function

ons_secs.hr [nScans, 1] estimated heart rate
at reference slice during each
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scan

ons_secs.rvt [nScans, 1] estimated
respiratory volume per time at
reference slice during each
scan

Within tapas physio create hrv regressor, the heart
rate is (1) computed from the cardiac pulse data for all slices by
calling

hr = tapas physio hr(ons secs.cpulse,
sample points);

This vector hr is (2) convolved with the cardiac response function
tapas_physio crf realizing equation (1.6) before (3) being
reduced to the values at the reference slice.

Similarly, tapas physio create rvt regressor computes
(1) the respiratory volume per time for all slices via

rvt = tapas physio rvt(ons secs.fr, ons secs.t,
sample points);

and then (2) convolves the sampled rvt with the respiratory
response function tapas_physio_rrf, which implements
equation (1.5). The resulting vector is (3) reduced to the final
convRVT by extracting the values at the reference slice time for all
scans.

1.3.5 Physiological Noise Correction

The estimated noise time series are summarized as a design matrix
of nuisance or confound regressors by the physlO Toolbox.
Specifically, RETROICOR, HRV and RVT regressors are
concatenated - if existing — as subsequent columns to yield

physIO.model.R = [cardiac sess, resp sess,
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mult sess, convHRV, convRVT];

This design matrix can be appended to the specified design matrix
of a mass-univariate GLM employed in fMRI analysis.

Optionally, some of the physiological regressors can be
orthogonalized to each other by specifying

model.order.orthogonalise ‘none’, ‘cardiac’,
‘resp’, ‘mult’, ‘all’

We have found this to be beneficial for fMRI sessions acquired with
cardiac triggering, since cardiac regressors tend to be nearly
constant there due to recurring cardiac phases for the same slice
over scans (Kasper et al., 2009).

Furthermore, other confound regressors, e.g. motion parameters,
can be appended to model.R by specifying the name of an ASCII-
file with the same [nScans, nRegressors] matrix structure:

model.input other multiple e.g.‘rp fMRI 001.txt’
_regressors

The final nuisance matrix will be saved to the file specified in
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model.output multiple filename, e.g.
_regressors ‘multiple regressors.txt’

If the filename contains an extension other than .mat (e.g. . txt),
the matrix is saved as ASCII-file, in which each column represents
one physiological regressor, and the rows contain regressor entries
for each scan in ascending order. For SPM in particular, the output
file can also be specified as .mat-file, holding a variable R. In both
cases, this output file can serve as “multiple regressors” entry for
the first level GLM specification in SPM. Thus, the physlO Toolbox
provides a direct interface of noise correction using the established
GLM framework (Josephs et al., 1997). The voxel-wise estimation of
the physiological noise component itself is performed by the fMRI
analysis software of choice, e.g. SPM, independent of the physlO
Toolbox.

1.3.6 Assessment of Noise Correction Efficacy

The efficacy of voxel-wise physiological noise correction can be
assessed using F-contrasts, as mentioned in section 1.2. Therefore,
the physIO Toolbox provides scripts to automatically create the
relevant contrasts for physiological regressors in SPM and
subsequently report the statistical maps of physiological noise
distribution in a PostScript-file. Specifically, family-wise error
corrected contrasts are displayed on a structural overlay, centered
on the global maximum F-value, for each subject and all existing
sets of physiological noise regressors, including movement
parameters.

The script to run this automated assessment of noise efficacy is
tapas physio check efficacy.m. Herein, all paths at the
beginning of the script (flagged by #MOD) have to be modified to
match the actual study/subject/GLM/physlO-code folders. All
relevant auxiliary functions to this script are also prepended with
tapas physio check and include SPM-jobs for contrast
creation and results reporting, as well as functions to extract
regressor names and columns from the SPM.mat-file itself.
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A typical output page of the script can be found in Figure 1.5.

F_AB_5211 - All Phys Regressors

4&%’ f};s 2

cortrasd(s)

o

' SPMF 10,1200}

10 20 3
Cesgn matrx

FIGURE1.5  Typical output  page of  PostScript-file created by
tapas_physio check efficacy-script using SPMizb.
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1.4 Applications of the PhysIO Toolbox

To date, the PhyslO Toolbox has been successfully used in a
number of fMRI studies covering sensory-reward-learning
paradigms (Iglesias et al., 2013), social learning experiments
(Diaconescu et al., 2013), real-time feedback fMRI (Sulzer et al.,
2013) and high-field fMRI (Kasper et al., 2009). Furthermore, its
complementary value for noise reduction in combination with
magnetic field monitoring was demonstrated utilizing basic visuo-
motor tasks and resting-state fMRI (Kasper et al., 2014). In fact, for
any kind of fMRI experiment, physiological noise correction is
highly recommended. Benefits of model-based physiological noise
correction have been reported for both task-based (Hutton et al.,
201) and resting-state fMRI (Birn, 2012; Birn et al., 2006).

In particular for the classical mass-univariate GLM analysis, as e.g.
implemented in SPM, a three-fold improvement due to
physiological noise correction is anticipated on the single-subject
level. First and foremost, the reduction in unexplained variance, i.e.
residual noise, directly enhances the sensitivity for relevant task
effects in statistical parametric maps. Both t- and F-values contain
an expression of residual noise in the denominator (cf. Chapter
2.3). Thus, t- and F-based statistics will improve through proper
physiological noise correction, since unexplained variance
decreases. Secondly, physiological noise modeling will reduce the
risk of false positives and negatives for the contrasts of interest.
Specifically, false positives are avoided, because task regressors that
are partially correlated with physiology contain shared variance
with physlO regressors and thus lower parameter estimates after
noise correction. False negatives, on the other hand, are mitigated
by reducing effects of partial anticorrelation between task and
physiological regressors. Thirdly, physiological noise modeling
removes the long-lasting autocorrelation in fMRI voxel time series
due to the approximate periodicity of cardiac and respiratory
fluctuations. Hence, the AR(1)-assumptions of the hyperparameter
estimations are better fulfilled for the empirical Bayesian model
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inversion procedure of the GLM in SPM, presumably providing
more accurate parameter and contrast estimates (Kiebel and
Holmes, 2007).

In principle, all these improvements of first-level analyses through
the physlO Toolbox propagate to the second-level, i.e. group
effects, directly, if a full random-effects analysis is performed
(Penny and Holmes, 2007). However, practically, the summary
statistics approach is typically employed in second-level analysis
(Holmes and Friston, 1998). Herein, only contrast estimates (i.e.
numerators of t-contrasts) are taken to the second level to perform
a t-test, assuming an equal noise distribution between subjects;
Thus, the above-mentioned first improvement of first-level
statistics through residual error reduction does not translate into
improved second-level sensitivity. Nevertheless, both the more
accurate parameter estimation for regressors correlated with
physiology as well as AR(1) hyperparameters will render the
second-level results more accurate.

Beyond mass-univariate GLM analyses, physiological noise
correction using the physlO toolbox can both impact on functional
connectivity analysis of resting-state data (Beckmann and Smith,
2004; Biswal et al., 1995) and DCM-based effective connectivity
measures (Friston, 2007). For functional connectivity analyses, it is
essential to remove physiological noise, because it is often
correlated over brain regions, and can thus be misinterpreted as
the neuronally-induced BOLD coupling targeted in resting-state
fMRI (Birn, 2012; Cole et al., 2010). For effective connectivity
analyses, on the other hand, the modelled time series extracted
from brain regions of interest can be adjusted for the physlO
contrasts. Thereby, unexplained variance of the time series due to
physiological fluctuations is reduced and the estimates of relevant
connectivity parameters become more robust.

The aforementioned conceptual benefits of applying the physIO
toolbox have been validated on empirical data, as well as the
robustness of the employed noise modeling approach. To illustrate
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the effect of physlO-based noise correction, we conclude with
some examples from a recent cognitive neuroscience fMRI study
focusing on social learning (Diaconescu et al., 2013). In this
experiment, participants had to make decisions based on the
advice of another agent. Hence, they had to learn the advice
reliability to perform optimally. In the study, the observable
learning signals in the fMRI data were hypothesized to be
hierarchical prediction errors that contrasted the predicted advice
reliability with the actual advice validity on every single trial.

With regard to the robustness and reproducibility of the noise
correction, we find the same spatial noise distribution patterns for
physlO regressors in every subject (Figure 1.6 A). Fluctuations
correlated to the cardiac cycle manifest around major vessels
(basilar artery, anterior communicating arteries, internal carotid
arteries, sagittal sinus) and in pulsatile CSF regions (especially
surrounding the brainstem), but also more distributed in gray
matter cortical areas. The breathing cycle, on the other hand,
particularly induces fluctuations close to tissue and brain
boundaries as well as inferior brainstem areas (pons). Interactions
between cardiac and respiratory cycle generate additional noise
foci in the aqueduct, temporal horn of the lateral ventricle, and the
inferior part of the pons, close to the basilar artery.

These fluctuations, if unaccounted for, increase the voxel variance
by up to 70 % (Figure 1.6 A). Consequently, on the single-subject
level, we found that the application of the physlO-based noise
correction lead to widespread variance reduction in the brain,
significant after whole-brain multiple comparison correction in
every subject (family-wise error rate p=0.05). The spatial extent of
the clusters affected by physiological noise varied between
subjects, but not the qualitative localization mentioned in the last
paragraph (Figure 1.6 B).

Furthermore, we found that physiological noise correction does
not only improve BOLD sensitivity for physiology-related tasks, but
also in subtle cognitive paradigms, like learning from social
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information and reward. We observed that, for the relevant
learning-related contrasts, a higher sensitivity at the group level
could be accomplished through physiological noise correction
(Figure 1.7). Specifically, predictions of advice reliability could be
localized in the bilateral fusiform-face area (FFA), the right
posterior superior temporal sulcus (STS), anterior temporal-
parietal junction (TPJ), and dorsomedial prefrontal cortex (dmPFC)
in GLMs including physIO regressors. These areas have been
implicated in social learning and learning from facial expressions in
previous studies (Diaconescu et al., 2013). In contrast to that,
without physiological noise correction, only the left FFA was
robustly recovered. Similarly, social prediction error signals could
be captured in the bilateral superior occipital cortex (SOC) and
right dmPFC after physiological noise correction, but only in the
SOC without noise modeling. Interestingly, false positives were
also reduced through the physlO-based noise correction for the
prediction error contrast. Part of the substantia nigra (SN) that
seemed to correlate with prediction error in the absence of
physiological noise modeling, did not exhibit significant activation
after applying the physlO correction. This emphasizes the need for
a rigorous physiological noise correction, since a priori the SN is
both a region connected to prediction error learning and a site of
particularly high fluctuations.

In summary, the correction for physiological fluctuations in fMRI
data is an essential component of fMRI analysis, regardless of the
experimental paradigm (resting or task-based), research area (e.g.
cognitive or sensory-motor processes) or analysis approach (GLM,
functional/effective connectivity). Explicit physiological noise
modeling, as offered by the physIO Toolbox, improves the
robustness of statistical findings, enables the detection of subtle
cognitive effects, and prevents from interpreting false positives
arising from non-BOLD physiology.
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A 2nd-level F-Contrasts
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FIGURE1.6  Robust Noise Reduction through physIO Regressors (A) Average
additional noise variance explained by physIO regressors (relative to residual after
correction) over subjects (N=35); F-value corrected for degrees of freedom (B) Subject
count for significant physiological noise detected in each voxel (whole brain FWE-
corrected p=0.05)
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FIGURE1.7  Improvement in Sensitivity through Physiological Noise Correction in a
Cognitive Paradigm. (A) Group statistics for t-contrast modeling the prediction of
advice reliability. Only by using PhysIO noise correction, bilateral FFA, TP] and
dmPFC can be identified as task-relevant regions. (B) Group statistics for t-contrast
modeling the prediction error learning signal. Involvement of dmPFC is implicated
only after physiological noise correction. (C) Prevention of false positives through
physIO noise correction. The correlation of midbrain (substantia nigra) activity with
prediction error can be explained away by shared variance with physiological
fluctuations, preventing false conclusions of the involvement of the midbrain in this

task.
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