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Neuronal responses exhibit two stimulus or task-related components: evoked and induced. The functional
role of induced responses has been ascribed to ‘top-down’ modulation through backward connections and
lateral interactions; as opposed to the bottom-up driving processes that may predominate in evoked
components. The implication is that evoked and induced components may reflect different neuronal
processes. The conventional way of separating evoked and induced responses assumes that they can be
decomposed linearly; in that induced responses are the average of the power minus the power of the average
(the evoked component). However, this decomposition may not hold if both components are generated by
nonlinear processes. In this work, we propose a Dynamic Causal Model that models evoked and induced
responses at the same time. This allows us to explain both components in terms of shared mechanisms
(coupling) and changes in coupling that are necessary to explain any induced components. To establish the
face validity of our approach, we used Bayesian Model Selection to show that the scheme can disambiguate
between models of synthetic data that did and did not contain induced components. We then repeated the
analysis using MEG data during a hand grip task to ask whether induced responses in motor control circuits
are mediated by ‘top-down’ or backward connections. Our result provides empirical evidence that induced
responses are more likely to reflect backward message passing in the brain, while evoked and induced
components share certain characteristics and mechanisms.
medical Engineering, National
oyuan County 32001, Taiwan.
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© 2011 Elsevier Inc. Open access under CC BY license.
Introduction

Neuronal activity exhibits a broad range of event-related electro-
magnetic oscillations (Crone et al., 1998a, 1998b; Grosse et al., 2002;
Kilner et al., 2003). Event-related cortical oscillatory activity can be
divided into evoked and induced components (Galambos, 1992;
Tallon-Baudry and Bertrand, 1999). Evoked and induced responses
are elicited by endogenous or internal changes (e.g. a thought) or
exogenously (e.g. a stimulus) or both. Operationally, the difference
between evoked and induced responses is their phase-relationship to
a timed event, such as a presented stimulus. Specifically, evoked
components are phase-locked to the stimulus, whereas induced
responses show trial-to-trial variations in latency. A growing number
of studies have demonstrated that induced responses increase with
cognitive demand; such as attention, expectation, learning and
perception, especially in gamma-band range (30–70 Hz) (Chen
et al., 2009; Gilbert and Sigman, 2007; Kaiser and Lutzenberger,
2003; Lee et al., 2003; Tallon-Baudry et al., 1997). The functional role
of induced responses has therefore often been interpreted as
reflecting ‘top-down’ modulation through backward or lateral
connections; as opposed to the bottom-up driving processes that
may be more manifested in evoked components mediated by forward
projections (Tallon-Baudry and Bertrand, 1999). The implication is
that the evoked and induced responses may reflect different neuronal
processes and mechanisms. However, a recent study using simulated
data has reported that the evoked and induced responses may “share”
common generative mechanisms, up to a certain level (David et al.,
2006). For example, if there are amplitude variations in stimulus-
locked inputs (“dynamic causes”), the evoked power will be
recapitulated in the induced power as the variance of the amplitude
increases; although the evoked responses remain the same (see David
et al., 2006 for details). One possible explanation for these amplitude
variations (gain effects) is the effect of attention (McAdams and
Maunsell, 1999; Treue and Martinez-Trujillo, 1999). Moreover, the
detection of induced responses relies upon careful comparisons
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between carefully matched experimental and control conditions
(Kaiser and Lutzenberger, 2003) and the results may be confounded
by uncontrolled factors contributing to experimental conditions. For
instance, attention is rarely an all-or-none event; rather, attention is
engaged in a graded fashion (Gilbert and Sigman, 2007; Joseph, et al.,
1997). Therefore, a generic model, which accounts for the generating
mechanisms shared by both induced and evoked responses, may be
necessary when inferring the underlying neuronal processing. Indeed,
the conventional way of separating evoked and induced responses
assumes that they can be decomposed in a linear fashion (see Tallon-
Baudry and Bertrand, 1999 for an example). This linear assumption is
questionable given the evidence that various empirically observed
neuronal (population) responses, such as sustained oscillatory dynam-
ics, are difficult to explain without invoking context-dependent or
nonlinear mechanisms (Deco et al., 2008).

In this paper, we propose a generic dynamic causal model (DCM)
(Chen et al., 2008; Friston et al., 2003; Kiebel et al., 2009) that can
explain both evoked and induced responses jointly in a single
experimental dataset. This genericmodel uses bilinear state equations
to model spectral density dynamics (Chen et al., 2009), in terms of a
single neuronal architecture; however, it tries to explain both evoked
and induced responses (obtained through different pre-processing of
the same data), simultaneously, as different trial types or conditions.
In this way, condition-specific changes in coupling strength reflect the
mechanisms associated with induced responses that cannot be
explained by the evoked ones. In other words, this approach allows
the direct study of the relationship between the evoked and induced
neural activity with respect to the underlying generativemechanisms.
Critically, our model explicitly accounts for nonlinear neuronal
mechanisms that are expressed in terms of cross-frequency coupling
(Chen et al., 2008).

To establish the face validity of this model, two synthetic data sets
were created to test the identifiability of various generating
mechanisms using Bayesian Model Selection (BMS). Having estab-
lished the face validity of the scheme we applied it to an empirical
MEG dataset to ask whether induced responses in the motor control
circuits are mediated by ‘top-down’ or backward connections. We
illustrate this application using data from a hand-grip paradigm,
which have been used previously to address a fundamental issue
about nonlinearities in neuronal networks in the motor system (Chen
et al., 2010). On the basis of our previous findings, we tested three
models (forward, backward and forward-backward) which differ in
the connections that are modulated by the induced condition, relative
to evoked. This paper is organised as follows: in the next section, the
generic model used in this work will be reprised briefly. This is
followed by a description of the simulation studies used to validate
the scheme and the empirical (MEG motor study) data used to
illustrate its application. The final section presents the results of the
simulated and empirical analyses.

Materials and methods

A generic model of evoked and induced responses

This model is exactly the same as the DCM described in Friston
et al. (2003) and Chen et al. (2008), but is recapitulated here to
highlight how we model the difference between evoked and induced
responses. The underlying state equations of this DCM describing the
motion of spectral density measures g(ω, t)=[g1(ω, t),…,gn(ω, t)]T in
n sources have a bilinear form:

τġ = A + vBð Þg + Cu: 1

The matrices A and C contain coupling parameters that control
changes in spectral activity induced by other sources and exogenous
(e.g., stimulus) inputs, u(t). The matrices B are introduced to encode
the coupling changes induced by the condition effects, v∈{0,1}. In our
particular application, the condition effects represent whether the
data features reflect evoked (v=0) or induced (v=1) responses, for
any particular trial type. Evoked and induced ‘conditions’ are created
during pre-processing by performing the time-frequency analysis
after (evoked) and before (induced) trial averaging. As in conven-
tional DCM for induced responses, the coupling matrices decompose
into:

Aij =

a11ij ⋯ a1Kij

⋮ ⋱ ⋮

aK1ij … aKKij

2
66664

3
77775

Bij =

b11ij ⋯ b1Kij

⋮ ⋱ ⋮

bK1ij … bKKij

2
66664

3
77775

Ci =

c1i

⋮

cKi

2
6664

3
7775 : 2

Under this model, the scalar aijkl encodes how changes in the k-th
frequency in the i-th source depend on the l-th frequency in the j-th
source. The leading diagonal elements are aii

kk=−1; this means that
each frequency has an intrinsic tendency to decay or dissipate.
Similarly, cik controls the frequency-specific influence of exogenous
inputs on the k-th frequency in the i-th source. Together, this
parameterization enables coupling due to linear (within-frequency)
and nonlinear (between-frequency)mechanisms within and between
sources (for details, see Chen et al., 2008). In this generic model the A
coupling matrices model the ‘shared’ influences mediating both the
evoked and induced activities, while the B matrices model influences
that are specific to induced response components. Note that we ignore
in Eq. (2), for readability, the trial type index for matrices B.

Simulated data

The goal of the simulations was to test whether our scheme can
correctly recognise the underlying mechanisms generating induced
and evoked response components. In particular, we wanted to see if
we could explain the two components in terms of a (phenomenolog-
ically) plausible model of spectral dynamics. To this end, two
synthetic datasets were generated using the model in Eq. (1) and
the distributed source architecture described below. These datasets
differed in terms of whether their generation mechanisms specific for
induced responses or not. The first (ER+IR) set allowed the induced-
condition to switch on selected B parameters; while the second (ER)
used B=0. Fig. 1 shows the model architecture and the parameters
used to generate the ER+IR dataset. The example in this figure
comprises two areas, where the spectral dynamics of each area are
modelled as a time-varying mixture of two frequency profiles or
modes (S1 and S2), whose profiles are shown in the insets. These
profiles were based on empirical results from a previous study (Chen
et al., 2010). Fluctuations in time-frequency responses about the
baseline are modelled in terms of these modes, whose dynamics
depend on the coupling within (linear) and between (nonlinear)
modes, within (intrinsic) and between (extrinsic) areas (see figure
legend for details). In this model, we allowed for both linear and
nonlinear connections; and changes in these connections to explain
induced components (above and beyond evoked components). Three
test models were then used to invert both synthetic datasets. The first
(ER+IR) model, allowed changes in the B parameters, while the
second and the third models precluded these bilinear (induced)
effects. The second (ER1) model, has the ‘correct’ priors on the A
matrices, which were identical to the connections used to generate
the data (see Table 1 and Fig. 3a for these connections). The third
(ER2) model allows for non-zero values in all A connections. The ER2
model was used to test if preventing optimum changes in the B
parameters leads to the discovery of some ‘false’ connections. Using
BMS, we hoped to show that the scheme could disambiguate among
the three competing models properly.



Fig. 1. (a) Simulation architecture and parameters. The two grey circles represent the two areas in this model, while S1 and S2 denote two frequency modes within each area.
A frequency mode corresponds to a pattern of frequency-specific deviations from the baseline spectral profile (these patterns are shown as a function of frequency in the inserts).
Time-dependent modulations of these frequency modes correspond to evoked and induced responses. The solid lines represent nonlinear connections because they connect
different frequency modes, while the dashed lines couple the same frequency modes and therefore model linear coupling. The red lines indicate the connections that can change in a
condition-specific fashion (here, whether we are trying to explain induced or purely evoked spectral responses). (b) The time-frequency data generated by this model. These are
linear mixtures of the two time-varying frequency modes above. Left column: Area 1; right column: Area 2.
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Empirical data

Experimental protocol and pre-processing
Nine healthy, right-handed (mean age 26, range 20–32 years of

age) subjects participated in this study. Written consent was obtained
from all subjects, in accordancewith the Declaration of Helsinki. Some
of these data have been reported in Chen et al. (2010). We briefly
summarise the experimental protocol here. Subjects were instructed
to perform a visually cued ballistic isometric grip, using their
dominant handwith an inter-trial interval of 7±2 s. Prior to scanning,
subjects were asked to grip a manipulandum to generate a maximum
voluntary contraction (MVC) and then were trained to approximate a
target force (45% of MVC) with visual feedback. During scanning, no
visual feedback of force was provided. This design tries to engage
modulation/supervision mechanisms in the motor system as well as
tominimise activity in occipital and parietal sources. Force output was



Table 1
Simulation parameters and results (signal-to-noise ratio=13.8 dB).

Values used to generate data ER+IR data

A =

λ 0:3 −0:6 0:3
0:1 λ 0 0:1
0 0:2 λ −0:1
0 0:7 0:4 λ

2
664

3
775

B =

λ 0 0 0
0 λ 0 0
0 0:15 λ 0
0 −0:1 0 λ

2
664

3
775

ER data

A =

λ 0:3 −0:6 0:3
0:1 λ 0 0:1
0 0:2 λ −0:1
0 0:7 0:4 λ

2
664

3
775

Estimates using the ER+IR model
A =

λ 0:325 −0:661 0:239
0:097 λ 0 0:059
0 0:105 λ −0:021
0 0:638 0:3975 λ

2
664

3
775

B =

0 0 0 0
0 0 0 0
0 0:138 0 0
0 −0:029 0 0

2
664

3
775

F=−3613.2; MSE=9.08%

A =

λ 0:257 0:411 0:240
0:101 λ 0 0:032
0 0:036 λ 0:002
0 0:552 0:142 λ

2
664

3
775

B =

0 0 0 0
0 0 0 0
0 0:012 0 0
0 −0:010 0 0

2
664

3
775

F=−3862.5; MSE=71.13%

Estimates using the ER1 model
A =

λ 0:161 0:410 0:100
0:103 λ 0 0:051
0 0:074 λ −0:027
0 0:685 0:165 λ

2
664

3
775

F=−3645.3; MSE=51.83%

A =

λ 0:338 −0:135 0:523
0:080 λ 0 0:009
0 0:016 λ −0:023
0 0:579 0:403 λ

2
664

3
775

F=−3855.1; MSE=33.51%

Estimates using the ER2 model
A =

λ 0:176 0:478 0:123
0:098 λ 0:205 0:041
0:014 0:031 λ 0:026
0:076 0:123 0:564 λ

2
664

3
775

F=−3653.6; MSE=85.37%

A =

λ 0:328 −0:024 0:278
0:139 λ −0:048 −0:019
0:035 −0:065 λ −0:009
0:030 0:203 0:059 λ

2
664

3
775

F=−3902.4; MSE=77.64%

Wavelet

transform

Trial by trial

Average

across trials

Average

across trials

F
re

q
u

en
cy

 :
H

z

Induced spectrum

Evoked spectrum

F
re

q
u

en
cy

 :
H

z

Wavelet

transform

F
re

q
u

en
cy

 :
H

z

Fig. 2. The flowchart of data preparation for evoked (upper) and induced (lower) responses. The red rectangles represent the time window of interest from−500 to 1000 ms. Note
that the spectral densities have been normalised individually.
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recorded using a MEG-compatible gripper and was used to identify
movement onset (i.e. the reaction time, from the onset of the visual
cue until the onset of the ballistic grip), the grip duration and force
level. MEG signals were measured continuously at 240 Hz during task
performance using a whole-head CTF Omega 275 MEG system. At the
beginning and end of each measurement, the positions of three
anatomical landmarks (bilateral pre-auricular points and nasion)
were recorded to exclude excessive head movement (thresholded at
1.5 cm and the measured maximal translation across subjects
b1.3 cm; 2.68–12.68 mm).

The MEG data were pre-processed offline using SPM8 (Wellcome
Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/).
The data were epoched from −500 to +1000 ms, where time zero
indicates movement onset. Poorly performed (reaction times of more
than one second) and artefact contaminated (MEG amplitu-
deN500 fT) trials were excluded from further analysis; resulting in
88–98 artefact-free epochs (88 98 90 98 94 96 90 93 95) across
subjects, with 642.66±54.92 ms mean reaction time and 639.45
±54.48 ms grip duration. The mean force level was 37.73±20.27% of
subject-specific MVC, suggesting that the subjects followed the
instructions and performed the task well. Artefact-free epochs were
averaged across trials to compute evoked responses. Then, both the
individual artefact-free epochs and their average (the evoked
response) were projected from channel space to source space using
the generalised inverse of the lead-field matrix for our chosen sources
(see Model specification below). The spectral density from 4 to 48 Hz
at each source was estimated over peri-stimulus time using a time-
frequency Morlet wavelet transform (wavelet number: 7). The
frequency ranges cover the theta (4–8 Hz), alpha (8–15 Hz), beta
(15–30 Hz), and gamma (N30 Hz) bands. The absolute values of the
resulting time-frequency responses were averaged over artefact-free
epochs to produce the induced response. The corresponding trans-
form of the trial averaged data constituted the spectral density of the
evoked response. Baseline power was removed by subtracting the
frequency-specific power at the first time-bin to furnish the evoked
and induced conditions that were subsequently modelled. Fig. 2
illustrates this data preparation. For computational expediency, we
reduced the dimensionality of spectra into four principal frequency
components derived from a Singular Value Decomposition of the
spectra that are subject-specific. This procedure accounts for the large
inter-individual variability of frequencies seen in the motor system
(Aoki et al., 2001; Kilner et al., 2003; Kristeva et al., 2007; Omlor et al.,
2007) and preserved over 93% of the spectral variance in all subjects
(range 93%–97%). The resulting spectral dynamics of evoked and
induced components are the observations that the model is trying to
explain.

DCM specification (sources and coupling)

The source locations for modelling the empirical data were taken
from the group results of an fMRI study using an identical task; where
five subjects performed 25 ballistic isometric hand grips to 45% of
MVC (for details, see Ward et al., 2008). The locations were taken as
the peak coordinates in the Montreal Neurological Institute (MNI)
space within each significant cluster (voxels significant at pb0.05,
corrected for multiple comparisons across the whole brain), including
bilateral primary motor cortex, (M1; [−41 −26 56] and [49 −27
56]), bilateral premotor cortices (PM; [−30−8 64] and [46 0 58]) and
left supplementary motor area (SMA; [−2 −2 62]). In addition, right
M1 was included because of significant task-related deactivation
during hand grip (Ward et al., 2008). Using these five sources and,
from our previous Bayesian Model Selection result on the best
connectivity architecture (see Chen et al., 2010 for details and Fig. 3a;
left), we specified the three different models shown in Fig. 3b. These
models test where the induced effects arise, in terms of interactions
(connections) among sources. We wanted to test whether the
induced responses are mainly mediated by backward (B) or forward
(F) or both (FB) connections in the motor network (Fig. 3b). We
focused on the induced (bilinear) effects in the left hemisphere, since
this is a right hand movement task (Fig. 3a; left; red rectangle). In
these models, the SMA is assumed to be higher in the motor hierarchy
than PM and MI, as suggested by studies in which the Bereitschaft-
spotential (BP; or readiness potential/field) has been measured; these
studies suggest that the SMA is involved in the planning and initiation
of movement (Deecke, 1987, 1990; Keller and Heckhausen, 1990;
Praamstra et al., 1995; Shibasaki and Hallett, 2006). In addition, we
add an ‘all-linear’ model (Fig. 3a; right) based on the winning model
of the three comparing models specified above to test whether
nonlinear mechanism is crucial to explain the dataset, in particular,
the induced responses.

Inference on models

The testing DCMs were inverted (fitted) for each subject. To
identify the best models at the group level, we compared the log
evidences or marginal likelihoods between models (Penny et al.,
2004), after pooling over subjects under fixed effect assumptions. This
assumes that all subjects use the same model. In addition, we
employed random effects BMS (Stephan et al., 2009) to accommodate
inter-individual variability in the structure of models or functional
architectures that gave rise to subject-specific brain activity during
our task.

Inference on the parameters of the winning model

Subject-specific estimates of the modulation matrices Bij (see
Eq. (2)) from all subjects, under the best model identified by BMS,
were smoothed (to account for inter-subject variability in frequency-
to-frequency coupling) using a Gaussian kernel with a Full-width
half-maximum of 8 Hz. These matrices summarise the frequency-to-
frequency coupling associated with each connection. Statistical tests
were applied to each element of these coupling parameter matrices to
establish the significance of coupling over subjects (in relation to
intersubject variability) using classical inference. This can be regarded
as a standard summary statistic approach to random effects inference,
using the posterior coupling estimates as subject-specific summary
statistics. The corresponding SPMs of the T-statistic (thresholded at
pb0.005 uncorrected) were computed for ‘excitatory’ (positive) and
‘inhibitory’ (negative) effects respectively.

Results

Simulation results

Table 1 summarises our simulation results. It can be seen that
using BMS, the ER+IR and the ER1models were identified as the best
models when using the ER+IR and ER data, respectively. Note that
BMS is based on the log-evidence (F), which considers both accuracy
and complexity of competing models (Stephan et al., 2009). Our
model selection results are thus not confounded by the higher
complexity of ER+IR relative to ER1.

Evaluating the quality of our parameter estimates in terms of mean
squared error (MSE), showed that the best models (in terms of model
evidence) also had the minimal MSE (9.08% and 33.51%, respectively)
among the models tested (see Table 1). In addition, it is evident that
the ‘left-out effect’ in the B matrices does not necessarily lead to
inference on ‘false’ connections, as the ER2model does not explain the
ER+IR data better. Similarly, for the ER data, both ER+IR and ER2
models have a lower model evidence even though they entail more
parameters than the ER1model. This result provides another example
of the well-known fact that a more complexmodel is not necessarily a
better model (Chen et al., 2009, 2010).

http://www.fil.ion.ucl.ac.uk/spm/
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Altogether our simulation results thus instil confidence that our
DCM correctly disambiguates evoked and induced components of
event-related responses in terms of their generative mechanisms. In
the next step, we applied the model to our empirical MEG data.
Experimental results

Inference on model space
Firstly, three DCMs were inverted for each subject as described

above. Bayesian Model Selection supported the B model (with
modulations of backward connections): the summed log-evidences
over subjects (under fixed effects assumptions) were −255490,
−242540 and −272900 for F, B and FB model, respectively. This
means that Bayesian Model Selection identified the B model (relative
log-evidence=30358; posterior model probability N0.99) as the best
model, given the data (Fig. 4a, left), followed by the F and FB models.
An additional random effects analysis gave equivalent results,
choosing the B model as the best model with an exceedance
probability (i.e., probability of the selected model being more likely
than all othermodels) of 0.7598, followed by the Fmodel (exceedance
probability 0.2211) and the FB model (exceedance probability 0.091)
(Fig. 4a, right). In other words, when accounting for between-subject
variability in model structure (for example, subject-dependent
cognitive strategies), the model with induced components mediated
by backward connections (the Bmodel) was superior to the other two
models, whereas the FB model was clearly the worst. As in the above
simulations, note that the most complex model (here, the FB model)
did not turn out to be the best model.

Having established the best model, B model, we then further test if
an “all-linear” backward model is sufficient to explain the data. In
other words, we wanted to examine whether the nonlinear
connections are important to the induced responses. It can be seen
in Fig. 4b that the previous winning B model (with nonlinear
connections; termed nonlinear B) remained superior to the linear B
model and supported the idea that nonlinear connectivity is essential
to the generating of induced responses.
Inference on coupling parameters
Fig. 5 shows the corresponding SPMs (T-statistic map; thresholded

at pb0.005 uncorrected) of the bilinear (induced) matrices for
significant ‘excitatory’ (positive; red blobs) and ‘inhibitory’ (negative;
green blobs) effects respectively. As seen in Fig. 5, we found several
instances of consistent nonlinear interactions in the backward
connections across all subjects. For example, low frequency oscilla-
tions (b10 Hz) in SMA facilitate the beta rhythm (20–30 Hz) in LPM;
and the gamma rhythm (30–40 Hz) in the SMA has an inhibitory
effect on the gamma (N40 Hz) rhythm in LPM (Fig. 5; upper panel;
yellow arrows). A further example can be seen in the modulatory
interactions between SMA and LMI, in which the gamma rhythm
(N40 Hz) from SMA enhances the beta rhythm (20–30 Hz) and
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suppresses the gamma rhythm in the LMI (Fig. 5; lower panel; right;
yellow arrows).

Discussion

Model specification in DCM

A question central in hypothesis-driven modelling like DCM is
whether it is possible to identify a ‘true’ or ‘correct’ model
architecture. This is a difficult question (see Stephan et al., 2010 for
a detailed discussion). First, a model is, by definition, a simplification
of real world complexity; for this reason there is no such thing as a
‘true’model (cf. Box and Draper, 1987). One can, however, establish a
ground truth artificially by specifying a model and generating
synthetic data sets (with added noise), asking whether the known
model architecture can be inferred from the noisy simulated data. This
is the approach taken here (and in previous work on DCMs of different
data types, e.g. Chen et al., 2008; David, in press; Moran et al., 2009;
Reyt et al., 2010; Stephan et al., 2008), with reassuring results. A
second problem is that even if a ‘true’ model existed, it may not be
included in the set of alternative hypotheses one is comparing. As
discussed in Stephan et al. (2010), since there are an infinite number
of model alternatives, all one can do is “motivate model space
carefully”, using prior knowledge of the problem and the neuronal
system in question. It is generally helpful to specify and test the
important dimensions in amodel space systematically; for instance, in
a factorial fashion (Chen et al., 2009; Chen et al., 2010; Daunizezau et
al., in press; Stephan et al., 2007). In our simulations, we have shown
that BMS can select the optimal model from the tested alternatives.
For example, when we compare the ER+IR, ER1 and ER2 models,
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Fig. 5. The corresponding SPMs (T-statistic map; thresholded at pb0.005 uncorrected) of the connection-specific modulationmatrices for significant ‘excitatory’ (positive; red blobs)
and ‘inhibitory’ (negative; green blobs) effects respectively. The yellow arrows indicate several instances of consistent nonlinear interactions in the backward connections across all
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given the (noisy) ER data, BMS correctly chooses the ER1 model
(Table 1; right column). In other words, adding more connections and
making the model more complex (as in the ER2 model) do not make
this model superior. This is because in DCM, the causality (i.e.
temporal precedence) entailed by the connections is embedded in the
(differential) state equations and, under optimisation of the log-
evidence, these connections must be able to explain the data both in a
parsimonious and accurate fashion. Therefore, by increasing model
complexity toomuch (i.e., addingmore connections than needed), the
evidence of the model diminishes.

Clearly, although our simulations were based on biologically
plausible parameter values from previous empirical studies (Chen et
al., 2010), they were rather limited in scope. They are presented as a
sufficiency proof of face validity, rather than an exhaustive explora-
tion of parameter space. We imagine that people could repeat these
tests of face validity for any architecture (DCM) under consideration,
using the procedures that we have described.

Possible mechanism of evoked and induced responses

A wealth of neuroanatomical evidence suggests that backward
connections are more modulatory in relation to the driving effects of
forward connections (Angelucci et al., 2002a, b; Lamme et al., 1998;
Murphy and Sillito, 1987; Salin and Bullier, 1995; Sandell and Schiller,
1982). Furthermore, the underlying generative mechanisms of back-
ward connections are likely to be nonlinear (Chen et al., 2009, 2010;
Salin and Bullier, 1995; Sherman and Guillery, 1998). Combined with
cognitivefindings (Galambos, 1992; Tallon-Baudry andBertrand, 1999),
it has been suggested that induced responses are an expression of these
top-down modulatory effects mediated by backward connections. In
this study, we report that the backward connections from higher to
lower areasmediate induced responses in themotor system that cannot
be explained by forward connections. As noted by one of our reviewers,
because DCM tries to explain responses in dynamical terms, it supports
systems-level interpretations: For example, the re-entrant backward
connections of the DCM allow longer responses (that persist through
recurrent message passing). This may therefore provide an explanation
for induced responses that typically last longer than evoked response
(see Fig. 2). These additional backward influences are expressed in our
DCM as induced components of event-related activities. This is in line
with the notion of top-down modulation and partially dissociates the
nature of induced from evoked responses. Importantly, as this task is
pre-programmed in the brain during the training phase, this backward
modulatory coupling is in consistent with active inference and
predictive coding (Friston, 2010; Rao and Ballard, 1999) that the
planned (predicted) movement representation in the higher level (i.e.
SMAand/or PM) influences themotor predictions in the lowerM1 level.

The most prevalent hypothesis about evoked responses is that they
reflect bottom-up driving processes mediated by forward connections
and employ mainly linear mechanisms. This had been seen at the
mesoscopic scale where the propagation of signals through the cell
layers of the cortex is a linear phenomenon (Yamawaki et al., 2008).
Furthermore, the functional properties of forward connections are
predominantly, but not exclusively, linear; see Friston et al. (2003) and
Sherman and Guillery (1998) for a summary of the neurophysiological
evidence. However, evidence is emerging for nonlinear coupling in
forward connections in several networks at the system level (Chen et al.,
2009, 2010). In these studies, we found evidence that forward
connections also employ nonlinear mechanisms (in terms of cross
frequency coupling).

Recent studies of event-related potentials (i.e. evoked responses)
suggest that backward connections are essential in explaining the late
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ERP components in mismatch negativity studies (Garrido et al., 2007,
2009). Taken together, both empirical and simulation data (David
et al., 2006) suggest that evoked and induced responses may rest on
commonmechanisms that generate both components to facilitate the
functional integration among brain areas. Evoked and induced
components may share certain characteristics, but induced responses
may depend more heavily on top-down or backward connections.
Further investigation of the frequency-specific coupling in forward
and backward connections may help to differentiate the neuronal
mechanisms that give rise to evoked and induced responses.

Conclusion

In this study, we present a generic scheme for Dynamic Causal
Modelling of evoked and induced responses. This scheme accounts for
the shared mechanisms generating evoked and induced responses
and allows the direct study of their relationship in terms of cortico-
cortical coupling. Using simulations and BMS, we were able to show
that the true generative model can be correctly identified. The
empirical findings reported in this paper suggest that induced
responses are more likely to be mediated by backward or top-down
connections in motor circuits, while accepting that evoked and
induced components are generated by some common mechanisms.
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