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Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using
neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to
external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctua-
tions in neuronal activity and their interaction with task-specific processes may be of particular importance
for studying state-dependent interactions. Furthermore, allowing for random neuronal fluctuations may render
DCMmore robust to model misspecification and finesse problemswith network identification. In this article, we
examine stochastic dynamic causal models (sDCM) in relation to their deterministic counterparts (dDCM) and
highlight questions that can only be addressed with sDCM. We also compare the network identification perfor-
mance of deterministic and stochastic DCM, using Monte Carlo simulations and an empirical case study of
absence epilepsy. For example, our results demonstrate that stochastic DCM can exploit the modelling of neural
noise to discriminate between direct and mediated connections. We conclude with a discussion of the added
value and limitations of sDCM, in relation to its deterministic homologue.

© 2012 Elsevier Inc. Open access under CC BY license.
Introduction

This article is about modelling distributed neuronal activity in the
brain that is mediated by connections among different brain areas
or sources. Brain connectivity can be characterised in three distinct
ways: (i) structural connectivity, (ii) functional connectivity and
(iii) effective connectivity (e.g., Sporns, 2007). Structural connectivity;
i.e. the anatomical layout of axons and synaptic connections, deter-
mines which neural units interact directly with each other (e.g., Zeki
and Shipp, 1988). Functional connectivity subsumes non-mechanistic
(often whole-brain) descriptions of statistical dependencies among
measured neuroimaging time series (e.g., Greicus et al., 2002). Finally,
effective connectivity refers to causal effects; i.e. the directed influence
that system elements exert on each other (Friston et al., 2007a). This
article is concerned with the analysis of effective connectivity using
dynamic causal modelling (DCM, see Daunizeau et al., 2010 for a recent
review).

DCM is used widely in the neuroimaging community and has
proven useful in disclosing neurobiological mechanisms underlying,
for example, associative learning (Den Ouden et al., 2010), speech
comprehension (Leff et al., 2008) or motivational processes (Schmidt
et al., in press). The DCM framework has two main components:
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biophysical modelling and statistical data analysis (probabilistic infer-
ence). As with any modelling endeavour, both components rests on the
plausibility of the modelling assumptions and the simplifications that
modelling inevitably entails (e.g., Roebroeck et al., 2011). In particular,
classical DCM implementations, particularly for fMRI, have assumed
deterministic neuronal processes and ignore random fluctuations of
physiological states. Stochastic DCM departs from deterministic DCM in
that it allows for unknown (random) fluctuations or innovations to
drive the neural system, in addition to the known (deterministic)
experimental stimulation or control. In theory, accounting for random
effects on the system's dynamics allows us to cope with imperfect
model assumptions and non-specific physiological perturbations
(Valdés-Sosa et al., 2011). However, it is not trivial to determine the
impact of neural noise on system dynamics, particularly in the presence
of nonlinearities. Furthermore, the identification of stochastic nonlinear
dynamical systems is notoriously difficult (Kloeden and Platen, 1999).

We have previously proposed variational Bayesian approaches to the
identification of stochastic nonlinear dynamical systems (Daunizeau
et al., 2009; Friston et al., 2008, 2010). In addition to themodel evidence,
these approaches furnish an approximation to both the posterior densi-
ties of model parameters and states. Although these schemes were
evaluated on benchmark stochastic nonlinear dynamical systems, they
were not systematically evaluated in relation to the specific challenges
that effective connectivity analyses face in practice. For instance, one of
the main difficulties for these schemes is to identify the respective
contributions of between-region coupling and local random fluctuations.
Thus, one has to carefully consider the net advantages (or disadvantages)
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Fig. 1. Non quasi-deterministic DCM example: network structure. This network com-
prises two regions, equipped with full state–state coupling (black connections) and al-
most full nonlinear gating effects (red connections). In addition, node 1 receives tonic
(constant) input of unit magnitude.
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of introducing state noise in the generative model, and to what extent
these advantages depend upon nonlinearities and signal-to-noise ratio.
For example, can themodelling of neural noise improve network identifi-
cation? These pragmatic questions address the feasibility and added value
of stochastic dynamic causal modelling of neuroimaging data.

Recent studies have reported effective connectivity analyses using
stochastic DCM. For example, Friston et al. (2011) show how stochastic
DCM can be used in combination with post-hoc model comparison
(Friston and Penny, 2011) to explore large model spaces. Li et al.
(2011) examined several methodological issues raised by stochastic
DCM (e.g., comparison of different methods for inversion of stochastic
DCMs): however, we did not evaluate the relative performance of
deterministic and stochastic DCMs in the absence and presence of neu-
ronal state noise. The aim of this paper is to provide a systematic inves-
tigation of how stochastic DCM compares to deterministic DCM, in
terms of the relative statistical efficiency of parameter estimation and
model comparison — and ask whether the modelling of neural noise
can improve network identification.

This paper comprises three sections. In thefirst, we present the basic
elements of stochastic dynamic causal models, and consider their prop-
erties, in relation to their deterministic variants. This section serves to
illustrate the dynamic repertoire of stochastic systems, and identifies
non-trivial stochastic phenomena that could be expressed in measured
neuroimaging time series. We then ask whether these are accurately
captured by probabilistic inference, using both simulation series and
empirical data. The second section serves to evaluate the face validity
of stochastic DCM.More precisely, we examine the twomain lines of in-
ference in DCM; namely, parameter estimation and model comparison
— the latter being evaluated in the context of discriminating direct ver-
sus mediated (indirect) connections. The focus here is on an extensive
comparisonwith deterministic DCM, across awide range of experimen-
tal conditions. In the third section,we turn to an empirical demonstration
and applyDCM to data froman fMRI study of an epileptic patient. Our ob-
jective was to illustrate the added value of stochastic DCM in a context
where (deterministic) experimental control is lacking. We close with a
discussion of the implications of our findings in the final section.

List of acronyms

The following acronyms will be used throughout this manuscript

s/d DCM stochastic/deterministic dynamic causal modelling
VBL Variational Bayes under the Laplace assumption
MSE mean squared error
MCB mean confidence bias
LBF log-Bayes factor
PFC prefrontal cortex
GSW generalized spike-and-wave

Stochastic dynamic causal modelling: theory and methods

In this section, we describe a broad class of hierarchical generative
models, which we call stochastic dynamic causal models. These com-
bine nonlinear stochastic differential equations governing the evolution
of hidden-states and a nonlinear observer function, to provide a non-
linear state-space model of data. This section describes stochastic
DCMs and their properties, in relation to their deterministic variant. In
the next section, we compare stochastic and deterministic DCM with
respect to parameter estimation and model comparison.

The generative model

All variants of DCMs are based on “generative models”; i.e. a prob-
abilistic and quantitative description of the mechanisms by which
observed data are generated. Typically, both hemodynamic (fMRI)
and electromagnetic (EEG/MEG) signals arise from a network of func-
tionally segregated sources (neuronal populations or cortical areas).
This network can be thought of as a directed graph, where sources cor-
respond to nodes and conditional dependencies among the hidden
states of each node are mediated by effective connectivity (edges).
The generative model m of a stochastic DCM rests on two causal
equations:

• The evolution equationdescribes how experimentalmanipulations (u)
and stochastic input (ϖ) influence the dynamics of hidden (neuronal)
states (x) of the system. The Langevin form of the evolution equation
of stochastic DCM can be written as follows:

_x ¼ f x;u; θð Þ þϖ; ð1Þ

where _x is the rate of change of the system's states x, θ is a set of un-
known evolution parameters andϖ is a stochastic (time-dependent)
process that is not experimentally controlled. We will refer to ϖ as
state noise. In this formulation, f summarizes the deterministic bio-
physical mechanisms that are parameterized by θ and underlie the
temporal evolution of x; hence the name evolution function. The struc-
ture of the evolution or state equation determines both the presence
and absence of edges in the graph and how these influence the dy-
namics of the system's states (see Fig. 1).

• The observation equation is a static nonlinear mapping from the
system's hidden states (x) to experimental measures (y):

y ¼ g x;φð Þ þ ε; ð2Þ

where g is the observation function, φ is a set of unknown observa-
tion parameters and ε are (time-dependent) model residuals. We
will refer to ε as the measurement noise.

Critically, neither the states nor the parameters of the generative
model are known. Hence, additional assumptions about both the state
and the measurement noise are needed to fully specify the generative
model. If we assume that these processes are analytic, then the covari-
ance of generalizedmeasurement noise ~ε ¼ ε; _ε ; €ε ;…½ �T is well defined;
similarly for the generalized state noise ~ϖ ¼ ϖ; _ϖ; €ϖ;…½ �. This means
we can parameterise the random part of the generative model in
terms of the covariance (inverse precision) of the noise terms. Under
local linearity assumptions, the above generative model can be
expressed in generalized coordinates of motion, as follows:

~y ¼ ~g ~x; θð Þ þ ~ε
D~x ¼ ~f ~x; ~u;φð Þ þ ~ϖ

; ð3Þ
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where D is a temporal derivative matrix operator and ~f and ~g are gen-
eralized evolution and observation functions (Friston et al., 2008):

D ¼
0 1

0 1
⋱ ⋱

2
4

3
5 ; ~f ~x; θ;uð Þ ¼

f
∂f
∂x

_x þ ∂f
∂u
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⋮

2
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75 ; ~g ~x;φð Þ ¼
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_x

⋮

2
64

3
75:
ð4Þ

In addition to Eqs. (3) and (4), priors on the generalized state noise
~ϖ and residuals ~ε , as well as on the evolution and observation parame-
ters θ and φ, are required to fully specify the generative model. Without
loss of generality, these are usually taken to be zero-mean Gaussian
random variables:

p ~ϖjmð Þ ¼ N 0;Ψϖð Þ
p ~ε jmð Þ ¼ N 0;Ψεð Þ
p θjmð Þ ¼ N 0;Ψθð Þ
p φjmð Þ ¼ N 0;Ψφ

� � ð5Þ

whereΨ• are either fixed or unknown covariancematrices. In the latter
case, Ψ• is generally taken to be a mixture of covariance components,
with unknown hyperparameters λ•, i.e. Ψ• ¼ ∑

i
λ•i Q •i, where the Q•

are covariance componentmatrices1 (see e.g., Friston et al., 2008). Hier-
archical priors p(λ|m) on hyperparameters are thus required for esti-
mating noise covariances. We will see examples of this hierarchical
structure later.

Statistical assumptions about the higher order motion of the gener-
alized state noise ~ϖ implicitly specify its degree of smoothness. Inter-
ested readers will find a theoretical motivation for using analytical
state noise in the context of studying brain dynamics in Friston et al.
(2011). Note that standard stochastic differential equations (and related
Ito calculus) rely uponϖ being amixture ofWiener processes, which are
non differentiable functions of time (Kloeden and Platen, 1999). This
corresponds to a special case of generalized state noise ~ϖ whose high
order motion _ϖ; €ϖ;… have infinitely high prior variance (unbounded
roughness). Within the above class of generalized state-space models,
standard Wiener based state-space models are thus the least informed
or constrained. Within the context of biological time series analysis
(such as neuroimaging), using such non-analytical or rough state noise
might thus be unrealistic. However, in this paper, we will focus on
standard state space models under Markovian (Wiener) assumptions,
because these are the most established and ubiquitous models (Valdes-
Sosa et al., 2011). We will return to the properties of generalized state
noise in the discussion.

What does neural noise add to DCM?

Adding stochastic forcing (random state noise or fluctuations) to a
deterministic system can have intriguing dynamical consequences.
What follows is a summary of themost salient differences between sto-
chastic and deterministic systems. We sacrifice a little mathematical
rigour for simplicity, in the hope of providing a didactic overview of
the role of neural noise in DCM.

The effect of random fluctuations on the dynamical behaviour of a
system depends upon the nature of the system itself: it turns out that
some systems are so simple that any trajectory of states – in their sto-
chastic form – resembles the deterministic path when the state noise
variance is sufficiently small (in the limit Ψϖ→0). Such systems
are called quasi-deterministic systems (Tropper, 1977), because their dy-
namical behaviour can be understood from that of their deterministic
1 The second-order moments of generalized state-noise can be state-dependent
(see, e.g., Friston et al., 2010). Furthermore, one can also decompose the inverse covari-
ance matrix, known as the precision matrix, into a linear mixture of precision
components.
variant. Systems whose deterministic variant is sufficiently insensitive
to initial conditions (e.g., linear systems) are quasi-deterministic.

In contrast, in systems that are not quasi-deterministic, a trajectory
can diverge from its deterministic evolution, even at the limit of very
small noise. Here, the impact of stochastic noise is the result of the
tendency of small perturbations that are normal (orthogonal) to the de-
terministic path to decay or to grow (in locally stable or unstable parts
of state-space respectively). This can be seen as follows. Let x0(t) be a
solution of the deterministic version of Eq. (1), and x(t)=x0(t)+δx(t)
be a perturbed trajectory. If the initial perturbation δx(0) is sufficiently
small its evolution can be described by the linearised equation:

d
dt

δx ¼ Jδx

J ¼ ∂f
∂x

: ð6Þ

The Jacobian J measures the local stability of the path: the local
motion of the perturbed path is determined by the matrix J, which
mixes and rescales the perturbation δx. Of particular importance is the
direction of the perturbation — if the perturbation is tangential to the
flow, it will not change the deterministic motion. Consider the projec-
tion of a perturbation onto a frame of reference that moves with the
path: δx*=Uδx, where U is the projection matrix and δx* is the pertur-
bation in the moving frame of reference (see Fig. 2). The resulting per-
turbation dynamics are:

d
dt

δx� ¼ J�δx�

J� ¼ UJU−1 þ dU
dt

U−1 ð7Þ

where J* is the local stability matrix in the moving frame of reference.
For two-dimensional systems, the local stability matrix J* can be de-
rived analytically and has the following form (see Equation 14 in Ali
and Menzinger, 1999):

J� ¼ 1ffiffiffiffiffiffiffi
f T f

q f 21J22 þ f 22J11 þ 2f 1f 2 J12 þ J21ð Þ
0

f 21−f 22
� �

J12 þ J21ð Þ þ 2f 1f 2 J11 þ J22ð Þ
f 21J22 þ f 22 J11−2f 1f 2 J12 þ J21ð Þ

" #

¼ λff
0

λ⊥f
λ⊥⊥

� �
ð8Þ

where λ⊥⊥ is the rate of exponential divergence (exponent) normal or
transverse to the flow f(x) and λff is the tangential exponent. Since
λf⊥=0, any perturbation that is initially aligned with the flow will
remain tangential, accelerating (λff>0) or decelerating (λffb0) the
unperturbed motion. Note that this holds for higher-dimensional sys-
tems (Ali andMenzinger, 1999); that is, the local stabilitymatrix always
has the form of Eq. (8). On the other hand, the transverse component of
the perturbation will be partially projected back onto the tangential
motion (with amplitude λ⊥ f≠0). This leads to phase resetting phe-
nomena (see Winfree, 1980) such as phase advance and retard when
λ⊥ f>0 and λ⊥ fb0 respectively. Finally, the perturbed path x(t) can di-
verge from x0(t) only if the system is locally unstable in the transverse
direction; in other words, if the transverse exponent is positive
(λ⊥⊥≥0). If, in addition, the deterministic variant of the system has
more than one equilibrium point, it may then deviate from its deter-
ministic variant and escape from the local basin of attraction. When
there are several stable attractors (as inmultistable systems) the system
can switch from one attractor to another (cf. Fig. 17 in Daunizeau et al.,
2009). Such transitions are the hallmark of (non quasi-deterministic)
stochastic dynamical systems and can dramatically extend the system's
dynamical repertoire, leading to non trivial phenomena such as stochas-
tic resonance or hysteresis (Berglund and Gentz, 2005; McDonnel and
Abbot, 2009).



Fig. 2. Non quasi-deterministic DCM example: state-space analysis. This figure summarizes the local stability structure of the network depicted in Fig. 1, which possesses a limit
cycle centred on the origin. Upper-left: this panel shows one cycle of the deterministic orbit of the two states of the network (blue: x1(t), green: x2(t)), as a function of time. One can dis-
tinguish four phases or quadrants: A: x1≤0∩x2≤0, B: x1≤0∩x2≥0, C: x1≥0∩x2≥0 and D: x1≥0∩x2≤0. Upper-right: schematic of the moving frame of reference. The reference solu-
tion (orbit x(t) on the limit cycle) is in red. At some arbitrary point on this orbit, v

→
f tð Þ indicates the direction tangential to the flow, and v

→
⊥ tð Þ indicates the transverse or normal direction.

Lower-left: dynamics of the three elements (exponents) of the stability matrix J* (see Eq. (10); λff(t): blue, λ⊥⊥(t): green, λ⊥ f(t): red). Quadrants A and B are such that λ⊥⊥≥0; i.e. the
system is locally unstable in the transverse direction, and quadrants C and D are such that λ⊥⊥≤0; i.e. the system is locally stable in the transverse direction. Lower-right: profile of the
transverse divergenceλ⊥⊥ over the state-space. Thewhite solid curves show the level setλ⊥⊥=0. The black solid curves show the nullclines of the system, respectively _x1 ¼ 0 and _x2 ¼ 0.
They intersect at two points E1, which is an unstable node, and E2, which is a saddle point. The solid red circle shows the limit cycle of the network, and pink traces are sample paths in the
presence of state noise. The red arrow shows the repelling direction of the saddle-point E2, along which some sample paths were expelled from the basin of attraction of the limit cycle.
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Consider these issues in the context of the evolution function f(n)

of neural states x(n) that is used in nonlinear DCM for fMRI (Stephan
et al., 2008):

f nð Þ x nð Þ
;u; θ

� �
¼ Ax nð Þ þ∑

i
uiB

ið Þx nð Þ þ Cu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
linear

þ∑
j
x nð Þ
j D jð Þx nð Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
gating

: ð9Þ

Here, each (neural) state xi(n)(t) can be regarded as the amplitude of
the slowest eigenmode of an (immensely high dimensional) neural
system in the ith region of interest (see Friston et al., 2011). In this
context, Eq. (9) is simply a second order Taylor expansion of the under-
lying unknown evolution function (Friston et al., 2003; Stephan et al.,
2007). First, we note that stochastic DCMs (for fMRI) that do not include
nonlinear interactions among the states are ergodic and quasi-
deterministic. Their ergodic property means that these systems will
eventually reach a stationary distribution (the so-called “sojourn
distribution”); in other words, all trajectories will exhibit fluctua-
tions around their fixed point.2 The frequency spectrum of these
fluctuations can be derived from the Laplace transform of the system,
which depends upon the connectivity matrix A and the neural noise
level Ψϖ

(n) (for example, see Moran et al., 2007 for an application of
2 This is strictly true because these systems are stable.
DCM to steady-state EEG/MEG data). Heuristically, the amplitude
of these oscillations is inversely proportional to their frequency.
This is because the states experience small deviations from zero
exponentially more often than large deviations. In linear DCMs, the
local stability matrix is constant over state-space (the Jacobian
does not depend upon the states). This means that the effect of neu-
ral noise is homogeneous over state-space.

However, stochastic DCMs that include nonlinear interactions (such
as those in Eq. (9)) are less trivial: the stationary distribution of these
systems is likely to be multimodal. This precludes a quasi-
deterministic system. Furthermore, the effect of noise is not constant
across state-space, since the Jacobian J(n)=A+∑ iuiB

(i)+2∑ jxj
(n)D(j)

is a function of the states. We will illustrate this with a simple two-
region (2D) DCM, whose connectivity structure is shown in Fig. 1.

This network exhibits almost full nonlinearities (i.e., almost all D
coefficients are non-zero) and has tonic input to region 1. Fig. 2 sum-
marizes the state-dependent effect of noise on the system.

It turns out that this system has a limit cycle that resembles the unit
circle, surrounding an unstable node E1. This means that the limit cycle
is approached by any trajectory starting inside it, which will spiral out,
being repelled by E1. In addition, the system has another equilibrium
point E2, which is a saddle-node outside the limit cycle. This means
that deviations of the trajectory sufficiently far from the attractor can
cause trajectories to diverge. However, this can only happen in some



Table 1
Hemodynamic parameters.

Constant Physical meaning Value Physical unit

κs Vasodilatory signal decay rate 0.65 s−1

κf Vasodilatory signal feedback rate 0.41 s−1

τ0 Mean transit time 2 s
α Vessel stiffness 0.32 –

E0 Oxygen extraction fraction at rest 0.34 –

V0 Venous volume fraction at rest 4 –

ν0 Frequency offset 40.3 s−1

TE EPI echo time 0.04 s
r0 Intravascular relaxation rate 25 s−1

ε0 ratio of intra- and extra-vascular signals 1 –
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regions of the state-space. Typically, once the system has entered the
limit cycle, the system can only deviate from it when the limit cycle is
unstable in the transverse direction (c.f. Eqs. (7) and (8)). The trans-
verse exponent shows this very clearly: The dispersion around the
limit cycle is much higher in regions where λ⊥⊥≥0 (e.g., quadrants A
and B), because any transverse perturbation is amplified. The distorted
path is thus more likely to escape the limit cycle's basin of attraction.
This happens in quadrant B, whenever the distorted path gets close
enough to the saddle point E2 (along its attracting direction), which
then repels it (along its repelling direction). In contrast, the flow is
almost zero in quadrant C; here, the deterministic path is very slow,
because the elements of the stability matrix are small, except for the
non-diagonal divergence λ⊥ f>0. This causes the trajectories to wander
around the deterministic trajectory; note how the noise “wraps” itself
around the deterministic trajectory. Finally, the system accelerates in
quadrant D, which is locally stable since any transverse perturbation is
heavily damped (λ⊥⊥≪0 and λ⊥ f≫0: note the small dispersion
around the attractor). In brief, this system can be considered (locally)
quasi-deterministic in quadrants C and D, where the transverse expo-
nent is negative. But it is definitely not quasi-deterministic in quadrant
A or B, where small perturbations can lead the trajectories to diverge
exponentially from the deterministic path.

In brief, stochastic systems whose deterministic variant has more
than one fixed point will not be quasi-deterministic. In the context of
DCM for fMRI data, nonlinearities in the evolution function arise from
the interaction or gating effects (nonzero D(j) matrices in Eq. (9)) and
from the hemodynamic equations that model the coupling between
neuronal activity and the fMRI signal. However, this hemodynamic
model, which is described in the next section, has only one stable
fixed point. Its stochastic extension is thus quasi-deterministic. There-
fore, non quasi-deterministic behaviour in the system only occurs
when (neural) nonlinear gating effects are considered. We will look at
the implications of non quasi-deterministic dynamics for statistical
model identification in detail below.

A note on hemodynamics

In addition to the neural evolution function given in Eq. (9), DCM
for fMRI requires the specification of an additional set of hemody-
namic states that couple neural dynamics to observed BOLD signal
changes:

f hð Þ xð Þ ¼

x nð Þ−κsx
hð Þ
1 −κ f ex

hð Þ
2 −1

� �
x hð Þ
1 e−x hð Þ

2

1
τ0

ex
hð Þ
2 −ex

hð Þ
3 =α

� 	
e−x hð Þ

3

1
τ0

ex
hð Þ
2 −x hð Þ

4 1− 1−E0ð Þe
−x hð Þ

2

 !
E0

−e 1−αð Þx hð Þ
3 =α

0
BBBB@

1
CCCCA

2
666666666666664

3
777777777777775

ð10Þ

where x(n) is a regional neural activity, whose dynamics is given in
Eq. (9). Eq. (10) expresses changes in hemodynamic states x(h), as a
response to a neural perturbation x(n). Finally, one has to specify the
observation mapping (Eq. (2)) from hemodynamic states x(h) to ob-
served local BOLD changes y:

g xð Þ ¼ V0 4:3ν0E0TE 1−ex
hð Þ
4

� 	
þ ε0r0E0TE 1−ex

hð Þ
4 −x hð Þ

3

� 	
þ 1−ε0ð Þ 1−ex

hð Þ
3

� 	� 	
:

ð11Þ

We refer the reader to Stephan et al. (2007) for details about the
form of Eqs. (10) and (11).

Unless stated explicitly, the values of the hemodynamic parameters
(used for both simulations and model inversion) are given in Table 1.
In the hemodynamic model, blood flow (x2(h)), blood volume (x3(h))
and deoxyhemoglobin content (x4(h)) are log-transformed to enforce
positivity (c.f. Appendix in Stephan et al., 2008). The system in
Eq. (10) has only one (stable) equilibrium point at x(h)=[0,0,0,0]T,
which makes it weakly nonlinear. This implies that –when integrated
over time – Eqs. (10) and (11) behave much like a second-order
linear convolution (Friston et al., 2003), whose impulse response
function would be very similar in shape to the canonical hemodynamic
response function used for classical SPM data analysis (Friston et al.,
2000, 2007a). One may think that, since the stochastic variant of the
haemodynamic model is quasi-deterministic (since it has only one sta-
ble equilibrium point), one could accommodate its biophysical inaccu-
racies through the introduction of hemodynamic state noise ϖ(h).
However, practical experience shows thatmodel inversion is confounded
by hemodynamic state noise, because any BOLD signal change can be
explained by hemodynamic state noise, effectively ‘shunting’ an
explanation of the data in terms of neural changes. We therefore
have to ensure that this explaining away is a priori implausible. In
what follows, we partition the state noise prior into neural (Ψϖ

(n))
and hemodynamic (Ψϖ

(h)) components, with the constraint that:
Ψϖ

(n)=102Ψϖ
(h). This a priori constraint favours an explanation of mea-

sured BOLD signals in terms of neuronal processes, over a competing
explanation resting on hemodynamic noise. We will return to this in
the discussion.

Approximate probabilistic (Bayesian) inference

Inverting the generative model above means inferring the
system's parameters (e.g., matrices {A,B(i),C,D(j)}∈θ in Eq. (9))
from one trajectory of hidden physiological states, which we observe
through a (potentially nonlinear) transformation with discretely
sampled measurements. Priors on the state noise (Eq. (5)) specify our
assumptions about the magnitude of state noise. In many instances,
we will believe a priori that the state noise is small. In this case, the
Bayesian inversion of the generative model will try to explain as much
of observed signal variance as possible in terms of deterministic flow,
by minimizing state noise (but see below).

The measured data y are a nonlinear function of the unknown
model variables ϑ={x,θ,φ}. This implies that the high-dimensional
integrals required for parameter estimation and model comparison
cannot be evaluated analytically. Furthermore, it is computationally
costly to evaluate them using numerical brute force or Monte Carlo
sampling schemes. This is why several variational Bayesian schemes
have been derived for approximate probabilistic inversion of stochastic
DCM (for details, see Daunizeau et al., 2009a; Friston et al., 2008, 2010).
In brief, variational schemes optimize an approximation to the model
evidence p(y|m) and posterior density p(ϑ|y,m). This is done by noting
that the log model evidence can be decomposed as follows:

lnp y mj Þ ¼ F qð Þ þ DKL q ϑð Þ; p ϑ y;mj Þð Þ;ðð ð12Þ
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where q(ϑ) is an arbitrary density over themodel parameters,DKL is the
Kullback–Leibler divergence, and the free energy F(q) is defined as:

F qð Þ ¼ 〈 lnp ϑjmð Þ þ lnp yjϑ;mð Þ− lnq ϑð Þ〉q; ð13Þ

where the expectation 〈·〉q is taken under q. From Eq. (12), maximizing
the functional F(q) with respect to q minimizes the Kullback–Leibler
divergence between q(ϑ) and the exact posterior p(ϑ|y,m). This decom-
position is complete in the sense that if q(ϑ)=p(ϑ|y,m), then F(q)=
ln p(y|m). Typically, the iterative maximization of free energy
proceeds under the Laplace approximation, where the approximate
posterior q(ϑ)≈p(ϑ|y,m) is assumed to have a Gaussian form (see
Friston et al., 2007a, 2007b). The free energy thus becomes a simple
function of the first and second moments of the approximate
posterior (the conditional mean and covariance):

FLaplace qð Þ ¼ ln p μjmð Þ þ ln p yjμ;mð Þ þ 1
2
log Σj j þ 1

2
nϑ log 2π: ð14Þ

Here, nϑ is the number of unknown variables in the generative
model, and {μ,Σ}≜{Eq[ϑ],Vq[ϑ]} are the nϑ×1mean and nϑ×nϑ covari-
ance of the approximate posterior density q(ϑ). We will refer to this
Variational Bayesian scheme under the Laplace approximation as Vari-
ational Laplace or the VBL approach.

In essence, VBL approaches to the identification of stochastic and
deterministic systems are identical. However, including state noise in
Eq. (1) induces a number of challenges and advantages for statistical
inference, which we detail below. Briefly, these include:

• A considerable increase in the number of unknown (hidden) vari-
ables. One consequence of this is that the inference becomes increas-
ingly sensitive to priors, because there is less information in the data
per unknown variable.

• Activity in any node of the network can nowbe explained in twoways:
either it is due to the experimental input u, or it is due to random fluc-
tuationϖ. This can induce a potential indeterminacy between connec-
tivity parameters (that propagate u through the network) and inferred
state noise.

• When considering nonlinear gating effects, the small noise limit of the
generative model m is not the corresponding deterministic DCM
(c.f. non quasi-deterministic systems; see above). Since the trajecto-
ries of such systems cannot be predicted from their deterministic
variant, the identification of nonlinear systems may improve if noise
is modelled properly.

In the next section, we compare deterministic and stochastic DCMs
in terms of parameter estimation and model comparison, using numer-
ical Monte-Carlo simulations. We pay particular attention to the identi-
fication of mediated versus direct connections, because most of the
above comments apply to this case. In the subsequent section, we
provide an example of the sort of inference that can be made when
the system is not experimentally controlled— using fMRI data required
from a patient during absence (“petit mal”) seizures.

Comparing deterministic and stochastic dynamic causal
modelling: results

The technical details of variational Bayesian treatments of stochastic
systems have been published elsewhere (Daunizeau et al., 2009a;
Friston et al., 2008, 2010). In brief, these methods appear to be accurate
when estimating parameters (using the approximate posterior densi-
ties) and comparing models (using the free energy bound on log
model evidence). This has been established using Monte-Carlo proce-
dures based on benchmark stochastic dynamical systems. In this
section, we apply the VBL described in Daunizeau et al. (2009) to assess
the added value of stochastic dynamic causal modelling, with respect to
its deterministic variant, within the context of DCM for fMRI data.

For simplicity, we did not model generalised state noise; i.e. ~ϖ ¼ ϖ.
The impact of modelling generalised motion will be assessed in forth-
coming publications (see also Li et al., 2011). To accommodate hemody-
namic delays, we extended the forward pass of the variational Bayesian
Kalman filter presented in Daunizeau et al. (2009). This extension is de-
scribed in the Appendix A: in brief, this extension ensured that the state
estimate at time t is conditioned upon fMRI data up to time t+Δt. We
found that Δt=16 s gave both efficient and robust results. In what fol-
lows, we compare deterministic and stochastic DCMwith respect to pa-
rameter estimation and model comparison, using Monte-Carlo
simulations.

Monte-Carlo simulations: assessing estimation accuracy

First, we asked whether one can improve the estimation of un-
known DCM variables by including state noise in the generative
model. To do so, we compare the deterministic and stochastic variants
of the sameDCM, in terms of their ability to recover (i) network connec-
tivity parameters, (ii) region-dependent inputs and (iii) neural state
dynamics. We assume that the relative estimation accuracy of dDCM
and sDCM will depend upon system or data properties, such as SNR,
the presence of nonlinearities in the neural evolution function and the
presence of neural fluctuations or state noise.

First, note that one can extend a deterministic DCM to accommodate
unknown fluctuations by projecting state noiseϖ(n) onto some known
(temporal) basis functions ⌢uk:

ϖ nð Þ
i tð Þ≈

XK
k¼1

⌢uk tð Þ⌢cik ð15Þ

where⌢cik are unknownprojection coefficients,which define the tempo-
ral profile of fluctuating noiseϖi

(n)(t). This gives the augmented evolu-
tion function (cf., Eq. (9))

f nð Þ x nð Þ
;u; θ

� �
¼ Ax nð Þ þ∑

i
uiB

ið Þx nð Þ þ C
⌢
C


 � u
⌢u

� �
þ∑

j
x nð Þ
j D jð Þx nð Þ

ð16Þ

where ⌢u tð Þ ¼ ⌢u1 tð Þ ⌢u2 tð Þ ⋯ ⌢uK tð Þ
 �T comprise the temporal basis
functions. Eqs. (15) and (16) mean that the problem of recovering
unknown neural fluctuations ϖ(n)(t) can be transformed into a stan-
dard (deterministic) DCM parameter estimation problem. The question
we address here is: if the goal is to account for unknown (unspecific)
neural state noise, should we use a stochastic DCM, or a deterministic
DCM extended as above?

The answer to this question depends upon the goal of model inver-
sion. In this section, we focus on the statistical efficiency of variable es-
timation. The estimation error can bemeasured using themean squared
error (MSE):

MSEϑ ¼ 1
nϑ

Xnϑ
i¼1

ϑi−ϑ̂ i

� �2 ð17Þ

whereϑ and ϑ̂ are the relevant vectors of simulated and estimated vari-
ables, respectively. The MSE is a standard estimation error measure,
whose a posteriori expectation is minimized by the posterior mean. In
Bayesian decision theoretic terms, thismeans that choosing the posteri-
or mean as the estimator (i.e. ϑ̂≜μ) is optimal with respect to squared
error loss. The observed MSE thus gives us a measure of estimation
accuracy.

In addition, we want to assess the quality of the posterior credible
intervals; that is we want to quantify the under or over confidence of



Fig. 3. Two-region networks: linear and non-linear interactions. This figure summarizes
the respective structure of networks used to simulate fMRI BOLD signal. Upper half: two
regions with (linear) inhibitory–inhibitory interactions. Note that node 1 is always driven
by a known input u (see main text). In addition, independent random fluctuations Δu the
hidden states in both nodes. The simulated connection strengths are indicated near the
appropriate arrow of the graph. Lower half: two regions in (nonlinear) competition. The
connections strengths are chosen such that the ensuing system possesses a limit cycle.
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the inference. This can be done simply by noting that the posterior
variance Σ is actually the expected estimation error:

E MSEϑjy;m½ � ¼ 1
nϑ

Xnϑ
i¼1

E ϑi−μð Þ2jy;m
h i

¼ 1
nϑ

trace Σ½ �
ð18Þ

Eq. (18) means that on average, the estimation error should be
consistentwith the second-ordermoment of the approximate posterior
q(ϑ). In other terms, if the MSE is systematically bigger (respectively,
smaller) than the posterior variance, the method is over- (respectively,
under) confident (Daunizeau et al., 2009a). We thus define the mean
confidence bias (MCB) as follows:

MCBϑ ¼ 1
nϑ

Xnϑ
i¼1

ϑi−μ ið Þ2−Σii: ð19Þ

Themean confidence biasmeasures the departure from the expected
estimation error in Eq. (18), such that when MCB>0 (resp. MCBb0),
inference is over confident (resp. under confident).

To estimate the accuracy and confidence bias we conducted the
following series of Monte-Carlo simulations. We generated data
y from a DCM with two regions (see below). We analyzed the simu-
lated data using both deterministic and stochastic variants of DCM.
We then compared their respective MSE and MCB on (i) the connec-
tivity parameters, (ii) the region-dependent input and (iii) the neural
states.

Crucially, we manipulated three factors that may influence the rel-
ative estimation accuracy of deterministic versus stochastic DCM,
namely:

• SNR: The signal-to-noise ratio was either set to 1 or to 10 dB,
according to the standard definition of SNR in decibels, i.e.: SNR=
10 log 10(〈g2〉/〈ε2〉), where g are the system observables and ε is mea-
surement noise (see Eq. (2)).

• Δu: The presence of neural fluctuations or neural noise: the simulated
system was either driven by an exogenous input u with a boxcar
structure of one minute duration — or by the same input plus some
neural fluctuationsΔu. Here, the fluctuationsΔuwere a randommix-
ture of sinusoidal fluctuations and white noise, with an effective
(state) SNR of 10 log 10(〈u2〉/〈Δu2〉)≈10dB.

• NL: Thepresence of nonlinearities in the neural evolution function: the
simulated network was either a linear inhibitory–inhibitory system or
a competitive Lotka–Volterra system (see e.g., Hofbauer and So, 1994),
whose network structure includes nonlinear gating that induces a
limit cycle. The two DCM network structures are shown on Fig. 3.

For each cell of this 2×2×2 factorial simulation design, we ran 24
simulations of 10 min each (with a TR of one second), leading to 192
simulated sessions in total. Each session was then analyzed given a
2×3 factorial model comparison with the following two factors:

• DCM type: Stochastic or deterministic DCM; i.e. the generative
model assumed or not the presence of state noise ϖ. For stochastic
DCM, we used loosely informative Gamma priors on the precision of
state noise, i.e. Ψϖ

(n)−1=λϖ
(n)I with p(λϖ

(n)|m)=Ga(1,10−1). This
means that its variance is, a priori, expected to be greater than 1/
30 with prior probability 0.95.

• ⌢u Basis functions: The use of temporal basis function sets ⌢u in the
neural evolution function. This factor had three levels: (1) no
input basis function set, (2) Fourier basis function set and (3) radial
basis function (RBF) set. We used thirty two basis functions for both
Fourier and RBF per region, which meant 64 additional evolution
parameters ⌢cij (c.f. Eq. (15)).
All models used i.i.d. shrinkage priors for the neural evolution pa-
rameters (Ψθ=10−1I), and an uninformative (Jeffrey's) prior on the
precision of observation noise; i.e. Ψε

−1=λεI with p(λε|m)∝λε
−1.

Hemodynamic parameters were fixed to their prior mean, as given
in Table 1.

The estimation accuracy (MSE) and confidence bias (MCB) for each
of the three sets of model variables (input, parameters and neural
states) were analysed using a 2×2×2×3×2 ANOVA (within Monte-
Carlo repetitions; N=24).

Fig. 4 shows exemplar results of one simulation of the nonlinear
DCM, with SNR=1 dB and perturbed input. The left column shows
the simulated input (top), the dynamics of the neural states (middle)
and the evolution parameters (bottom). One can see that when the
experimental input u on region 2 (green) is ‘on’, reciprocal competi-
tion of both regions expresses itself through sustained activation
(resp. deactivation) in region 2 (resp. region 1). Later, the network
enters a limit cycle such that both regions are approximately π/2
out of phase. These transient dynamics are due to the interaction be-
tween neural noise (Δu) and the local stability of the limit cycle (see
section “What does neural noise add to DCM?”). The middle (resp.
right) column shows the posterior density on these responses for the
stochastic (resp. deterministic) DCM inversion,without input basis func-
tions ⌢u. It can be seen that both the estimation error and the confidence
bias depend uponwhether one uses a stochastic or a deterministic DCM.
This is most evident for the neural evolution parameters, which show a
higher estimation error and over confidence for the deterministic DCM.

Figs. 5–7 (resp. Figs. 8–10) summarize the results of the ANOVA, in
terms of the estimated effects of simulation factors on the MSE (resp.
MCB) for the three sets of variables (adjusted for the main effects of
Monte-Carlo repetitions). We now summarize the key results of this
ANOVA, which generalises the intuitions provided by the simulation
depicted in Fig. 4.

We tested for the significance of main effects and multiway interac-
tions on estimation accuracy (MSE) and confidence bias (MCB) on all
three sets of variables (input, states and evolution parameters). The
details of this analysis are reported in the Supplementary materials.
Here, we summarize the results, focusing on interesting interactions.

The Monte-Carlo simulations suggest that modelling neural noise
(using either sDCMor dDCMaugmentedwith temporal basis functions)
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seems to improve overall estimation accuracy. Note that using basis
functions with stochastic DCM reduces estimation accuracy (because
random fluctuations are effectively modelled twice). However, the ad-
vantage of modelling noise depends on the properties of the fMRI data
and the underlying neural dynamics; e.g., SNR and the presence of
nonlinearities in the neural evolution function:

– Neural state estimation improves overall, when neural noise is
modelled (sDCM or augmented dDCM), particularly in the presence
of nonlinearities.

– Temporal basis functions provide poorer estimates of random
fluctuations for both sDCM and dDCM. However, sDCM is found
to be more conservative (less over confident) than dDCM, partic-
ularly at low SNR.

– Temporal basis functions do not improve the estimation of
evolution parameters for dDCM, which performs worse than
sDCM in the presence of neural noise. However, sDCM is more ca-
pricious (more over confident) than dDCM in the absence of
nonlinearities.

Note that, on average, the presence of nonlinearities in the neural
evolution function aggravates the over confidence of dDCM but not of
sDCM — this aspect of dDCM is particularly apparent in the (realistic)
low SNR case and in the presence of neural noise.

Monte-Carlo simulations: assessing model comparison

Above, we established that estimation accuracy can, in some in-
stances, be improved by including state noise in the generative model.
However, this is not entirely predictive of the accuracy of Bayesian
model comparison, which reduces all the information in the data to a
qualitative decision problem. Here, we asses Bayesian model compari-
son directly: that is we ask whether modelling state noise can help to
discriminate between models that differ in terms of their connectivity
structure. More precisely, we examine the problem of identifying
mediated influences in the network, a notoriously difficult problem
(see Valdés-Sosa et al., 2011).

Here, we focus on the ‘canonical’problemof identifyingmediation in
the presence of reciprocal connections, as is typical for neuronal circuits
(Kötter & Stephan 2003). Our canonical scenario is summarised by
Fig. 11:

• In scenario A, the causal effect of node 1 on node 3 is mediated by
node 2.
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Fig. 5. Estimation accuracy results: MSE on neural states. This figure summarizes the results of the Monte-Carlo simulations, in terms of the estimated MSE on hidden neural states
as a function of the five factors of the simulation design. Upper-left: the best fit of the ANOVA (y-axis) is plotted against the actual observed MSE (x-axis) for each individual sim-
ulation. Upper right: the empirical histogram of the ANOVA residuals. Lower half: the Monte-Carlo estimate of the mean effect on MSE for each of the 48 cells of the factorial design:
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highlighted using the green shaded areas), DCM type=2: dDCM; u basis=1:no input basis set, u basis=2: Fourier basis set, u basis=3: RBF basis set.
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• In scenario B, all nodes are (reciprocally) connected to each other;
that is, there is a direct effect of node 1 onto node 3 in addition to
the mediated effect.
MSE:
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Both scenarios induce statistical dependencies between nodes 1 and 3.
However, effective connectivity analyses should, ideally, identify direct re-
ciprocal influences between nodes 1 and 3 in case A only. We therefore
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Fig. 7. Estimation accuracy results: MSE on evolution parameters. This figure summarizes the results of the Monte-Carlo simulations, in terms of the estimated MSE on the evolution
parameters as a function of the five factors of the simulation design. The figure uses the same format as Fig. 5.
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asked whether modelling state noise increases the discriminability of
these two models, using the log-Bayes factor LBFAB (Daunizeau et al.,
2011):

LBFAB ¼ log
p yjA;mð Þ
p yjB;mð Þ : ð20Þ
MCB: neu
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Fig. 9. Estimation accuracy results: MCB on input. This figure summarizes the results of theMonte-Carlo simulations, in terms of the estimatedMCB on the system's input as a function of
the five factors of the simulation design. The figure uses the same format as Fig. 5.
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discrimination power of stochastic and deterministic DCM, with the
following two factors:

• Network: fMRI data were simulated either under model A (mediat-
ed influence) or under model B (direct and mediated influence).

• Δu: The simulated system was either driven by an exogenous input
u or by the same input plus some neural fluctuations Δu.
MCB: evolu
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Fig. 10. Estimation accuracy results: MCB on evolution parameters. This figure summarizes th
parameters as a function of the five factors of the simulation design. The figure uses the same
For each combination of these factors, we ran 24 simulations, pro-
ducing 96 simulated sessions in total. Each of these sessions was then
subject to model inversion, using a 2×2 factorial model set with the
following factors:

• Network: the generative model assumed a network structure of type
A or type B.
tion parameters
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A B
Fig. 11. Discriminating between direct and mediated effects: canonical scenarios. This
figure summarizes the two canonical models considered when discriminating between
direct and mediated influences (A — mediated influence, B — mediated and direct influ-
ence). Note that node 1 is always driven by a known experimental stimulation u, but
that all nodes can be perturbed by independent input fluctuations Δu (see main text).
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• DCM type: the generative model assumed the presence or absence
of state noise ϖ (i.e., stochastic or deterministic DCM).

Note that, following the results of the previous section, we did not
use temporal basis functions (because they decreased accuracy perfor-
mance on average) and we fixed the signal-to-noise ratio to 1 dB (low
SNR level). All other simulation parameters were identical to the previ-
ous simulation series. We used the network factor to compute, for each
data set and DCM type, the log-Bayes factor LBFAB. Discriminability
(LBFAB) was analysed using a 2×2×2 ANOVA (within Monte-Carlo
repetitions; N=24).

Fig. 12 summarizes the results of this ANOVA, in terms of the esti-
mated effects of each of the 8 conditions on LBFAB (adjusted for the
main effects of Monte-Carlo repetitions). Again, we refer the interested
reader to the Supplementary materials for details of the statistical
Model comparison: evid
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Fig. 12. Model comparison results: LBFAB. This figure summarizes the results of the Monte-C
simulation design. Upper-left: the best fit of the ANOVA (y-axis) is plotted against the actua
togram of the ANOVA residuals. Lower half: the Monte-Carlo estimate of the mean effect on
model A, network=2: data simulated under model B (see Fig. 11); du=1: no input fluctua
the green shaded areas), DCM type=2: dDCM.
analysis. Below, we summarize the results, focusing on non-trivial
interactions.

Overall, the Monte-Carlo simulations show that, on average, dDCM
cannot discriminate betweennetworksA andB, irrespective of the pres-
ence of neural noise. In contradistinction, sDCM appears to exploit
neural noise to distil discriminative evidence from the fMRI data. This
is because, on average, neural noise de-correlates the trajectories of
hidden neural states. In the final section, we turn to an application of
stochastic DCM, in which fluctuations in neuronal states are not under
experimental control.

Application to an fMRI study of an epileptic crisis

In this section, we compare stochastic and deterministic DCM in the
context of paradigm-free fMRI experiments. We conducted an sDCM
analysis of data from an epileptic patient, who experienced an absence
seizure in the fMRI scanner. These data were part of a previous neuro-
imaging study of idiopathic generalized epilepsy (Hamandi et al.,
2006; Vaudano et al., 2009), whose acquisition protocol and data pre-
processing are briefly summarized here.

Ten-channel EEG (10–20 system) was recorded using MR-
compatible equipment, along with bipolar electrocardiogram. After
filtering and artifact correction (Krakow et al., 2000), the onsets and
offsets of generalized spike and wave (GSW) activity were identified
by two experts (see Vaudano et al., 2009 for details). Four hundred
and four T2*-weighted single-shot gradient echo echo-planar images
(TE=40 ms, TR=3 s, 21 interleaved axial slices of 5 mm thickness,
FOV=24×24 cm2, 64×64 matrix) were acquired over a twenty mi-
nute session on a 1.5 Tesla MRI scanner (Horizon EchoSpeed, General
Electric). The patient was asked to rest with his eyes closed and to
keep still. FMRI data were pre-processed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/). EPI time series were realigned and spatially
smoothed with an 8 mm FWHM isotropic Gaussian kernel and nor-
malized. A general linear model (GLM) was constructed to assess
the presence of regional GSW-related BOLD changes. GSW activity
was modelled as two blocks, beginning at GSW onset and terminating
ence against the full model
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Table 2
Empirical data DCM analysis: ROIs centres (MNI coordinate system) and number of
suprathreshold voxels.

ROI x y z # of voxels

Precuneus −6 −58 50 100
Thalamus −2 −18 4 218
PFC −18 46 46 167

476 J. Daunizeau et al. / NeuroImage 62 (2012) 464–481
at their offset. The GSW block regressor was then convolved with
the canonical hemodynamic response function (plus temporal and
dispersion derivatives) before inclusion in the GLM. Both motion-
related effects (both head and eye movements) and cardiac confounds
(see Liston et al., 2006) were included as regressors. In addition to the
above confounding factors, scan-nulling regressors (modeling inter-
scan motion events larger than 2 mm) were included in the GLM
(Lemieux et al., 2007). In total, the GLM designmatrix contained ninety
three regressors, three of which were of interest.

Fig. 13 shows the significant positive and negative GSW-related
BOLD responses that were identified by means of an F-contrast on the
GSW regressors. The resulting SPM was thresholded at pb0.05 (FWE
whole-brain corrected) to define three regions of interest (ROIs),
which were involved in the initiation and termination of GSW dis-
charges: thalamus, prefrontal cortex (PFC) and precuneus. A summary
time series was derived for each ROI by computing the first eigenvariate
of all suprathreshold voxel time series within a 10 mm of the ROI
centres, which are given in Table 2 below. The time series were
corrected for all confounding effects included in the GLM analysis.

We specified a series of DCMs for this 3-regionnetwork based on the
following considerations: first, we wanted to address the qualitative
nature of GSW activity in this patient. More precisely, we wanted to
know whether GSW activity is best described by a sudden increase
in the external input to the network, or by an abrupt change in connec-
tivity strength. This distinction directly maps to modelling the GSW
input either as a driving (C matrix of Eq. (9)) or modulatory (B matrix
of Eq. (9)) input. For each of these two explanations, we considered
four models, which differ in (i) C-family: where GSW input enters the
network (c.f. Vaudano et al., 2009) and (ii) B-family: which connections
are specifically modulated within the cortico-thalamic loop. We also
included a “null” scenario, in which GSW input had no effect. Note
that all DCMs have full reciprocal connectivity (A matrix in Eq. (9)).

This model space was motivated by the standing debate regarding
the putative role of the thalamus and the cortex as GSW generators
(see, for example, Steriade and Contreras, 1998). In addition, the litera-
ture on absence epilepsy also highlights GABAergic influences from the
reticular thalamic nucleus on other (dorsal) thalamic nuclei; these
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Fig. 13. Absence seizure analysis: regions of interest. This figure summarizes the stan-
dard SPM activation results of a single case study of an epileptic (petit mal) absence
seizure. Significant (whole brain FWE-corrected) positive and negative GSW-related
BOLD responses were identified using an F-contrast on the GSW regressors. The colour
bar indicates the range of displayed F values.
determine the excitability of thalamic cells and thus the influence of de-
scending corticothalamic inputs on thalamic cells (Steriade, 2005;
Huguenard and McCormick, 2007; Schofield et al., 2009). We therefore
added a second factor to our model space; namely, whether or not the
thalamus regulates its own sensitivity to cortical inputs. Each of the 9
models above thus had two variants—with and without nonlinear tha-
lamic gating (Dmatrix in Eq. (9)). The ensuingmodel comparison set is
summarized in Fig. 14.

Finally, we considered both the deterministic and the stochastic
variants of each of these 18 DCMs, which constitute the last factor
in our 9×2×2 factorial model comparison. In total, 36 models were
considered in this study. Note that only models belonging to the C-
family can elicit non-zero activity in the network under a determinis-
tic DCM framework. This means that all dDCM models belonging to
the B-family are effectively null models. All models were equipped
with priors that were identical to those used in the simulations
above, except that we relaxed the prior variance on hemodynamic
parameters (Ψ=10−2). This is because it has been shown that he-
modynamic responses in epilepsy can deviate from their canonical
form (Grouillet et al., 2010).

The results of Bayesian model comparison are summarized in
Fig. 15, in terms of (the free energy bound on) log model evidence
(Eq. (14)). The model comparison results show that the most plausible
model depends on whether the stochastic or the deterministic variant
of DCM is used. Overall, however, the stochastic DCM with nonlinear
gating and transient modulation of thalamic afferent connections
(model 26: sDCM, B: fb, D: fb) is the most likely explanation for GSW-
related activity. Note that this model is the only model that is more
probable than the null stochastic DCM, which assumes that there is no
transient change in the network during the GSW crisis.

In addition, we inspected the moments of the posterior distribu-
tion q(θ) of the evolution parameters. Note that close-to-zero non-
diagonal elements in the posterior correlation matrix indicate that
the corresponding parameters are uniquely identifiable. In brief:

– The average level of connectivity within the network “at rest” (A
matrix of Eq. (9)) seems to be rather low, when compared to the
self-inhibitory time constant. However, these parameters are only
partly identifiable due to correlations with hemodynamic parame-
ters (compare the posterior correlation matrix in Fig. 15).

– The nonlinear gating and transientmodulation of thalamic feedback
connections are almost perfectly identifiable and not affected by
hemodynamic parameters (see the red rectangles in the posterior
correlation matrix of Fig. 15). Their sign shows that (i) in normal
conditions, the thalamus acts as a self-stabilizing de-amplifying
device and (ii) a GSW crisis is associated with a transient thalamic
disinhibition through the cortico-thalamic loop.

In conclusion, we have shown that GSW activity is better explained
by a transient change in network connectivity, rather than by a sudden
increase in exogenous input to the system. This distinction is important
because the former scenario explains the occurrence of a GSW seizure
in terms of network properties, rather than a local change in excitatory
activity. The key point here is that – in our analyses – the transient
change in the network activity (as measured using BOLD fMRI) could
be explained without changing the statistical properties of the input
to the system; this would have been impossible without including
neural noise in the generative model.
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Discussion

In this work, we have assessed stochastic DCM in relation to deter-
ministic variants. First, we reviewed the theoretical properties of sto-
chastic dynamical systems, in terms of the impact that state noise can
have on brain network dynamics. In brief, stochastic effects can be
profound when there are nonlinear interactions among hidden states
that render systems non-quasi deterministic. We then reported a
comprehensive evaluation of the respective system identification
ability of stochastic and (suitably extended) deterministic DCMs. In
summary, our Monte-Carlo simulations showed that both variants
of DCM can, in principle, account for (unknown) neural fluctuations
or noise. However, their relative performance in terms of network
identification depends upon signal-to-noise ratios and nonlinearities
in the neural evolution function. For example, in contradistinction
to stochastic DCM, the over confidence of deterministic DCM is (on
average) aggravated by nonlinearities in the neural evolution function.
This is consistent with the theoretical analysis of the first section — in
the sense that the increase in the dynamical repertoire of such non
quasi-deterministic systems (induced by the presence of neural noise)
seems to confound deterministic DCM identification schemes. This is
important, because overconfidence can impact on both parameter esti-
mation and model selection (c.f. Eq. (14): the free energy is an explicit
function of the approximate posterior covariance). In addition, we
have shown that stochastic DCM can exploit the presence of neural
noise to discriminate between mediated and direct influences within
networks. This is important, because this means that neural noise may
actually improve the identification of network structure. Finally, our
empirical application demonstrated the sorts of inference that can be
drawn using stochastic DCM of data, whose variance is not (or poorly)
controlled by experimental manipulations.
Generally speaking, model identification in the context of stochastic
DCM for fMRI data involves (i) selecting a model, (ii) estimating the
associated parameters and (iii) recovering hidden neuronal states. Our
results demonstrate that the accuracy of model identification depends
upon the nature of the model implicit in its priors. Wewill now discuss
the non trivial issue of choosingpriors p(ϖ|m) on state noise. Recall that
we considered deterministic and stochastic DCM, both with and with-
out temporal basis functions. This factorial model space is defined in
terms of priors over temporal correlations among neural fluctuations.
This is summarized in Table 3.

Although stochastic and deterministic DCMs also differ in terms of
model inversion (see the comment on hemodynamics below), we be-
lieve that the main determinant of their relative performance is prior
assumptions about state noise. This is because we found that the use
of temporal basis functions had a significant impact on estimation accu-
racy, irrespective of whether themodels were stochastic or determinis-
tic. Having said this, we have shown that using basis functions is almost
always detrimental to stochastic DCM. This is probably due to a redun-
dant modelling of state noise, which compromises system identifiability.
In short, the relative performance of deterministic and stochastic DCM
can be understood as a (non-trivial) consequence of prior assumptions
about state noise. This is because these priors control the relative
identifiability of the two components of network dynamics, namely ac-
tivity propagation (through network connectivity) and driving forces
that act locally on the system. This is the reasonwhy onemaywant to es-
timate the auto-correlation or smoothness of state noise by including it
as a parameter of the generative model. This can be done through
inversion schemes such as dynamic expectation maximization (DEM)
(Friston et al., 2008) or generalised filtering (Friston et al., 2010),
which rely upon generalized coordinates (Eqs. (3) and (4)) to relax the
restrictive (Markovian) assumptions of classical state space models
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Fig. 15. Absence seizure analysis: model comparison results. This figure summarizes the results of the DCM analysis of fMRI data. Upper-left: free energy (relative to model 20) of
each model included in the comparison set (c.f. Fig. 14). The first half of the models are deterministic, whereas the second half are stochastic. For both DCM variants, the null model
without thalamic gating is indicated by an orange arrow. Lower-left: induced model posterior probabilities. Upper-right: This graph summarizes the estimated structure of the win-
ning model; i.e. model 26 (sDCM, B: fb, D: fb), which assumes a transient change in the thalamic afferent connections during the seizure, as well as nonlinear thalamic gating. Lower-
left: posterior correlation matrix of the evolution parameters under model 26. The matrix is partitioned into sections that correspond to the A, B and D matrices of the neural evo-
lution function (c.f. Eq. (9)), as well hemodynamic parameters (c.f. Eq. (10)).
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(Valdés-Sosa et al., 2011). Recall that a Taylor expansion in time provides
a linear mapping from instantaneous generalized motion to entire time
series:

ϖ t þ Δtð Þ ¼ ϖ tð Þ þ Δt _ϖ tð Þ þ 1
2
Δt2 €ϖ tð Þ þ…

¼ 1 Δt
1
2!

Δt2 …
1
d!
Δtd

� �
~ϖ tð Þ

ð23Þ

where the time lagΔt is arbitrary and d is the embedding dimension (the
order of generalized motion). From Eq. (23), it is easy to see how any
non-zero lagged-covariance (between, e.g., ϖ(t) and ϖ(t+Δt)) can be
rewritten in the form of non-zero extra-diagonal terms in the instanta-
neous covariance matrix of generalized coordinates (see Equation 52 in
Friston et al., 2008). Thus, expressing the generative model in general-
ized coordinates of motion (Eqs. (3) and (4)) allows us to model any
lagged dependencies on state noise and thus estimate the unknown
smoothness during model inversion. We will evaluate the utility of
Table 3
Prior covariance over state noise.

Without input basis set With input basis set

dDCM No fluctuations Serially correlated
sDCM Markovian (uncorrelated) Mixture of uncorrelated and

serially correlated
generalized hidden states and hierarchical priors on state noise in future
work.

It is worth highlighting that, in addition to signal-to-noise ratio, the
presence of nonlinearities and the presence of neural noise, there are
other factors that determine the relative performance of DCM variants.
For example, both the fMRI sampling rate and overall session duration
are likely to influence estimation accuracy. The impact of, for example,
session duration on dDCM should be similar to SNR, since it effectively
determines how much measurement noise can be averaged out across
repetitions of experimental inputs. However, its effect on sDCM, or its
interaction with other factors (such as the presence of nonlinearities)
is less trivial. This is because the number of sDCM unknown variables
scaleswith the session duration (cf. hidden states). Furthermore, exper-
imental design (e.g., the number of controlled inputs to the network)
can have a strong impact. In the limit, a design that is maximally pow-
erful for addressing a particular inference problem (e.g., comparing
two network structures), will eliminate differences in the relative per-
formance of DCM variants (cf. Daunizeau et al., 2011). Last but not
least, the complexity and dimension of the network can have a strong
influence on the overall performance of network identification (Smith
et al., 2011). We discuss issues related to the computational cost
below, but we expect this last factor to be critical. This is because the
identification of high-dimensional networks is likely to be very de-
manding in terms of experimental design and data quality. This
means there probably is an upper limit to the dimension of identifiable
networks.
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One of the main (and unexpected) difficulties of stochastic DCM is
inherent in haemodynamic modelling, which turned out to be more
problematic than for dDCM. In brief, the dynamical structure of
the hemodynamic model (Eqs. (10) and (11)) means that the causal
impact of neural states on observed BOLD signals is delayed: a partic-
ular fMRI time sample y(t) contains information about past neural
states x(t−Δt), where the delay Δt is about 5 s. Equivalently, current
neural states x(t) only impact on the third-order motion ⋯y tð Þ of BOLD
signals. Under high levels of hemodynamic state noise, such an indi-
rect mapping might cause instability during the inversion, i.e. limit
the ability of sDCM to recover the neural state dynamics and the
network structure. This problem is partly finessed by using very pre-
cise priors on the fluctuations of haemodynamic states, which re-
solves conditional dependencies between (mediated) neuronal and
(direct) haemodynamic contribution to the observed BOLD signal. In
the absence of generalised states, one has to ensure that the posterior
density on hidden states at time t is conditioned on data up to time
t+Δt (see the Appendix A for details). We found that a lagΔt=6 swas
sufficient to obtain efficient and robust estimates of neural states, but
we had to increase it up toΔt=16 s in order to achieve accurate estima-
tion of the precision of state noise λϖ (results not shown). As with the
embedding dimension for generalized coordinates (Eq. (23)), increas-
ing the lag has a computational cost: overall, sDCM is about thirty
times slower than dDCM. However, this is not specific to stochastic
DCM: including neural noise in the generative model (using either
sDCM or augmented dDCM) will inevitably inflate the computational
cost ofmodel inversion.More precisely, in either case, if n is the number
of regions, the computational cost is O(n3) We refer to Daunizeau et al.
(2009) for a more exhaustive analysis of the scalability of stochastic
DCM.

Wewill now discuss the analysis of the empirical data, and consider
the results in terms of validation of stochastic DCM and their neurobio-
logical implications. In terms of model comparison, one of the more
complex models was selected (sDCM; B: fb, D: fb). One might wonder
whether this reflects some form of over-fitting. However, a careful in-
spection of the model evidences (Fig. 15) makes this explanation un-
likely. For example, the next to best sDCM is the (simple) null model.
This illustrates the ability of the free energy approximation to the log-
evidence (see Eq. (15)) to measure how much added accuracy is
needed to compensate for the extra complexity of a model.

Finally, the reader might realize (and find unfortunate) that the
nonlinear thalamic gating (model D: fb) can be interpreted in at
least two qualitatively different ways (see Fig. 16). However, it
seems reasonable to speculate about thalamic gating in the genera-
tion of GSW absence seizures. Even though this case study does not
capture the complexity of GSW transition mechanisms, the presence
of nonlinear gating effects has important dynamical implications:
for example, thalamic gating acts as a de-amplifier of cortical activity
pC  PF  

Th  

pC  PF  

Th  

Fig. 16. Ambiguity of nonlinear thalamic gating. This figure shows two possible connectiv-
ity structures for nonlinear thalamic gating effects (green arrows). Left: the interpretation
that was implicitly used throughout the manuscript. Right: a qualitatively different inter-
pretation of the nonlinear gating effects (but statistically equivalent in that this graphical
representation rests upon the same state equations).
(Db0, see Fig. 15), and the system is multistable. These dynamical
properties are consistent with the recent literature concerning the
relation of both the precuneus and the PFC to reduced vigilance and
altered states of consciousness (see, e.g., Laureys et al., 2004;
Faymonville et al., 2006). Furthermore, these properties are also
consistent with a phasic thalamic gating of cortical projections from
the midbrain during attentional shifts (that effectively suppress corti-
cally driven action selection: Floresco and Grace, 2003; Ding et al.,
2010). We will report a generalization of these results, at the group
level, in forthcoming publications.
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Appendix A

This section deals with the derivation of the lagged states' posterior
density p(xt−k|y1 : t), where k is the lag. This effectively means hidden
states estimates xt is conditioned on data up to time t+k. This is useful
when the contribution of some states to the data only appears away in
future time, as is the case in DCM for fMRI. We are concerned with
Markovian state-space models, which are defined in terms of a transi-
tion density p(xt|xt−1) and a likelihood function p(yt|xt). Note that
the following scheme generalizes to hierarchical models with parame-
terized likelihood and transition densities. This is because, under the
usual mean-field assumption of variational Bayesian approaches, itera-
tive approximate marginalization follows (Daunizeau et al., 2009):

p yt jxtð Þ←VB exp 〈 log p yt jxt ;φð Þ〉
p xtþ1jxt
� 


←VB exp 〈 log p yt xt ; θj Þ〉
� A0

where θ (resp. φ) are observation parameters (including, e.g., second-
order precision hyperparameters), and the expectation is taken under
their current approximate posterior density.

Let us first consider the derivation of the joint density p(xt− k,
xt− k+1,…,xt|y1 : t):

p xt−k;…; xt jy1:tð Þ ¼ p yt jxt−k;…; xtð Þp xt−k;…; xt jy1:t−1ð Þ
¼ p yt jxtð Þp xt−k;…; xt jy1:t−1ð Þ
¼ p yt jxtð Þ∫p xt−k−1;…; xt jy1:t−1ð Þdxt−k−1

¼ p yt jxtð Þ∫p xt jxt−k−1;…; xt−1ð Þp xt−k−1;…; xt−1jy1:t−1ð Þdxt−k−1

¼ p yt jxtð Þ∫p xt jxt−1ð Þp xt−k−1;…; xt−1jy1:t−1ð Þdxt−k−1

¼ p yt jxtð Þp xt jxt−1ð Þ∫p xt−k−1;…; xt−1jy1:t−1ð Þdxt−k−1
A1

where the fourth and the fifth lines result from conditional indepen-
dence assumptions induced by the Markovian structure of the genera-
tive model.

Eq. (A1) tells us how to transform the ‘previous’ joint density p
(xt−k−1,…,xt−1|y1 : t−1) into the ‘current’ joint p(xt−k,…,xt|y1 : t). This
is the basis for the lagged forward pass we are looking for, becausemar-
ginalizing this joint density over the states xt−k+1,…,xt yields the
lagged posterior density p(xt−k|y1 : t):

p xt−kjy1:tð Þ ¼ ∫p xt−k;…; xt jy1:tð Þdxt−kþ1⋯dxt
¼ ∫p yt jxtð Þp xt jxt−1ð Þ

× ∫p xt−k−1;…; xt−1jy1:t−1ð Þdxt−k−1

h i
dxt−kþ1⋯dxt

A2
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Let us now focus on the nonlinear Gaussian case, whereby the tran-
sition density and the likelihood are given by (c.f. Eqs. (1) and (2) in the
main text):

p xt jxt−1ð Þ ¼ N f xt−1ð Þ;Qxð Þ
p yt jxtð Þ ¼ N g xtð Þ;Qy

� �(
A3

where f (resp. g) is the evolution (resp. observation) function, and Qx

(resp. Qy) is the second-order moment of the transition density (resp.
likelihood function).

Furthermore, let us note Xt ¼ xt−k
T ⋯ xtT


 �T and define the fol-
lowing four operators:

C ¼ 0n�n k−1ð Þ In

 �

⇒CXt ¼ xt
D ¼ 0n�n k−2ð Þ In 0n�n


 �
⇒DXt ¼ xt−1

E ¼ In k−1ð Þ 0n k−1ð Þ�n

 �

⇒EXt ¼ xt−k
T ⋯ xt−1

T

 �T

⌣E ¼ 0n k−1ð Þ�n In k−1ð Þ

 �

⇒⌣EXt−1 ¼ EXt

A4

where n is the dimension of the state space.
We are now in a position to derive the lagged update rule.
Let us assume that we have found a Gaussian approximation to the

previous joint posterior density p(Xt−1|y1 : t−1)≈N(mt−1,Σt−1).
Using Eq. (A4), this implies that:

∫p xt−k−1;…; xt−1jy1:t−1ð Þdxt−k−1 ¼ p
⌣
EXt−1jy1:t−1

� �
¼ N ⌣Emt−1;

⌣EΣt−1
⌣ET

� �
¼ p EXt jy1:t−1ð Þ

A5

where the first and last lines come from the definition of the linear op-
erators⌣E and E (see Eq. (A4)). Inserting Eqs. (A3) and (A5) into Eq. (A1)
gives the current joint density p(Xt|y1 : t):

log p Xt jy1:tð Þ ¼ c0 þ log p yt jxtð Þ þ log p xt jxt−1ð Þ þ log p ⌣
EXt−1jy1:t−1

� �
¼ c0−

1
2

yt−g xtð Þð ÞTQy
−1 yt−g xtð Þð Þ

−1
2

xt−f xt−1ð Þð ÞTQx
−1 xt−f xt−1ð Þð Þ

−1
2

⌣
Emt−1−EXt

� �T ⌣
EΣt−1

⌣
ET

h i−1 ⌣
Emt−1−EXt

� �
A6

where c0 is a normalization constant and the last line follows directly
from Eq. (A5). Eq. (A6) can now be turned into a quadratic form in Xt
through a Taylor expansion of both evolution and observation map-
pings around a given point Γt:

g xtð Þ ¼ g CXtð Þ≈ g CΓtð Þ þ GC Xt−Γtð Þ
f xt−1ð Þ ¼ f DXtð Þ≈ f DΓ tð Þ þ FD Xt−Γ tð Þ

�
A7

where the gradients G≜∂g/∂x (resp. F≜∂ f/∂x) are evaluated at the ex-
pansion points CΓt (resp. DΓt). Inserting Eq. (A7) into Eq. (A6) yields:

log p Xt jy1:tð Þ≈ c0 þ−1
2

yt þ εt−GCXtð ÞTQy
−1 yt þ εt−GCXtð Þ

−1
2

ηt− FD−Cð ÞXt

� 
TQx
−1 ηt− FD−Cð ÞXt

� 

−1

2
⌣Emt−1−EXt

� �T ⌣EΣt−1
⌣ET

h i−1 ⌣Emt−1−EXt

� �

εt ≜ GCΓt−g CΓtð Þ
ηt ≜ FDΓt−f DΓtð Þ

A8

where εt and ηtplay the role of (Taylor) expansion error signals (they are
identically zero if the evolution and observation functions are linear).
Eq. (A8) can be rewritten as an explicit quadratic function of the lagged

states Xt of the form − 1
2 mt−Xtð ÞTΣt

−1 mt−Xtð Þ, where, by definition:

mt :
∂
∂Xt

log p Xt jy1:tð Þ
���
mt

¼ 0

⇒mt ¼ Σt CTGTQy
−1 yt þ εtð Þ þ FD−Cð ÞTQx

−1ηt þ ET
⌣
EΣt−1

⌣
ET

h i−1⌣
Emt−1

� 	

Σt≜−
∂2

∂Xt
2 log p Xt jy1:tð Þ

" #−1

¼ CTGTQy
−1GC þ FD−Cð ÞTQx

−1 FD−Cð Þ þ ET
⌣
EΣt−1

⌣
ET

h i−1
E

� �−1

A9

Eq. (A9) gives the update rule for the two first-order moments of
the current joint posterior density p(Xt|y1 : t)≈N(mt,Σt). The lagged
forward pass is then obtained from the application of a linear margin-
alization operator M, as follows:

p xt−kjy1:tð Þ≈N μ t−k; St−kð Þ
μt−k ¼ Mmt

St−k ¼ MΣtM
T

M≜ In 0n�n k−1ð Þ

 � A10

Eq. (A10) can be appliedwith any arbitrary lag k. Thismeans that the
entire time series can in principle be inverted in one step. However,
there will be an optimal lag to consider for any state-space model, in
terms of the balance between computational demand and precision of
the estimators.

Note also that the Taylor expansion point can be chosen arbitrarily. If
used in a recursive way, i.e.: Γt← μt−k

T ⋯ μt
T


 �T , then iterating the
above lagged forward pass performs a Gauss–Newton ascent on the
states' posterior probability, with the usual convergence properties.
This is necessary in the context of theVBL update of the states' posterior.
We refer to Daunizeau et al. (2009) for additional technical details.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.04.061.
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