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Twenty years ago, the discovery of the blood oxygen level dependent (BOLD) contrast and invention of func-
tional magnetic resonance imaging (MRI) not only allowed for enhanced analyses of regional brain activity,
but also laid the foundation for novel approaches to studying effective connectivity, which is essential for
mechanistically interpretable accounts of neuronal systems. Dynamic causal modeling (DCM) and Granger
causality (G-causality) modeling have since become the most frequently used techniques for inferring effec-
tive connectivity from fMRI data. In this paper, we provide a short historical overview of these approaches,
describing milestones of their development from our subjective perspectives.

© 2012 Elsevier Inc. All rights reserved.
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
Dynamic causal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
G-causality modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
Controversies and points of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
Where do we go from here? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
Introduction

The advent of fMRI in the early 1990s revolutionized neuroimaging
of the human brain. Beyond enhanced analyses of functional specializa-
tion, it enabled novel analyses of effective connectivity, i.e. the causal in-
fluences that neural units exert over another, opening new avenues to
mechanistic accounts of neuronal systems. Prior to fMRI, such analyses
eural Systems Research, Dept.
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could only be performed at the group level (with positron emission to-
mography, PET, data) or were restricted to parts of the brain near the
scalp at limited spatial resolution (as in MEEG/EEG studies). The first
analysis of effective connectivity from fMRI data (which the authors
are aware of) relied on a regressionmodel describingmodulatory inter-
actions between human visual areas V1 and V2 (Friston et al., 1995).
This approach was subsequently extended and became known as “psy-
chophysiological interaction” analysis (Friston et al., 1997). At the same
time,many fMRI researchers started using structural equationmodeling
(SEM; Büchel and Friston, 1997; Bullmore et al., 2000; Horwitz et al.,
1999), whose utility for network analysis had previously been estab-
lished for 2-deoxyglucose and PET data by Randy McIntosh (McIntosh
and Gonzales-Lima, 1994; McIntosh and Gonzalez-Lima, 1991). While
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PPI and SEM have played an important role for establishing effective
connectivity analyses, they either assume no (SEM) or fixed (PPI) tem-
poral dependencies across data points (or their underlying causes) but
do not estimate them from the data. Consequently, over the years,
there was a growing sense that more powerful techniques were need-
ed to exploit temporally resolved information contained in fMRI sig-
nals. This widespread notion was expressed at a landmark meeting
that took place in May 2002: the first “Brain Connectivity Workshop”
(BCW), organized by Rolf Kötter and Karl Friston in Düsseldorf (Lee
et al., 2003; Stone and Kotter, 2002). At this meeting, a community
was born that has since been shaping research on brain connectivity
in neuroimaging and beyond (see www.brain-connectivity-
workshop.org). It was at this meeting that two emerging techniques,
dynamic causal modeling (DCM) and multivariate/vector autoregres-
sive models (MAR/VAR1), with and without reference to Granger cau-
sality (or G-causality), were first discussed in a wider forum, one year
prior to the first publications (Friston et al., 2003; Goebel et al., 2003;
Harrison et al., 2003). They have since become the most frequently
used techniques for inferring effective connectivity from fMRI data.

It was not a coincidence that the first encounter of the authors,
both of whomwere PhD students at the time, took place at this meet-
ing. One of us (KES) was a student of Rolf Kötter, developing a data-
base of anatomical connectivity in primates (CoCoMac; Stephan et
al., 2001) that Rolf would later turn into a freely accessible web repos-
itory (Kötter 2004). While the original goal of my CoCoMac work had
been to provide anatomical constraints for large-scale biophysical
models of brain function, I had become a little frustrated with the dif-
ficulties of verifying the goodness of such large-scale models and was
now keen to learn more about the alternative approach, where sim-
pler models are used to infer effective connectivity in circumscribed
systems from empirical measurements. The other one of us (AR)
had just gained his first experience with fMRI and diffusion-
weighted MRI data at a time when 3T machines started becoming a
new research standard and had started investigating G-causality for
fMRI.

For both of us, the initial BCW meeting had an important influ-
ence on our scientific trajectories, setting up the stage for subse-
quent methodological and empirical work within the frameworks
of DCM and G-causality, respectively. In this paper, we provide a
short historical overview, written from our subjective perspectives,
describing the history of developments in DCM and G-causality. A
graphical summary of what we (subjectively) perceive as the most
important milestones over the past decade is provided by Fig. 1.
Due to the topic of this Special Issue of NeuroImage, this paper fo-
cuses on fMRI only, and we ask our colleagues to forgive us for
not discussing in depth the contributions that DCM and GCM
have made to the analyses of electrophysiological data. Similarly,
we regret not being able to cover other approaches to causal
modeling of fMRI data, such as graphical causal models (e.g.,
Ramsey et al. 2011) or extensions of SEM and its combinations
with VAR (e.g., Gates et al. 2010, 2011).
Dynamic causal modeling

DCM for fMRI data was introduced in a seminal paper by Karl
Friston, Lee Harrison and Will Penny in 2003 (Friston et al.,
2003). Combining concepts from control theory and probability
theory, DCM represents a Bayesian framework for specifying and
comparing generative models of measured brain responses. These
models provide estimates of neurophysiologically interpretable
quantities, including (but not limited to) the effective connectivity
1 Both notations are common and interchangeable; for simplicity, we will use VAR
throughout this paper.
among neuronal populations. While numerous types of DCMs have
been implemented, all share five key characteristics2 (cf. Stephan
et al., 2010): First, hidden (unobserved) neuronal dynamics are
described by (potentially nonlinear and stochastic) differential
equations. Second, DCMs are hierarchical models, where a forward
model links the neuronal state equations to measured data. Third,
DCM is based on the control theory concept of causality, describ-
ing how dynamics in one neuronal population causes dynamics
in other populations, and how these interactions are modulated
by experimentally controlled perturbations. Fourth, model inver-
sion (fitting) rests on Bayesian principles, providing both posterior
estimates of the parameters and an estimate of the model evi-
dence. Fifth, the central goal of DCM is not to decide whether an
experimental condition elicited an effect; rather it serves to com-
pare the relative plausibility of alternative neurophysiological
mechanisms that may have caused an established effect (i.e.,
model selection).

One of us (KES) joined Karl Friston's group as a post-doc shortly
before the initial DCM paper (Friston et al., 2003) was published.
While attending the 2003 Human Brain Mapping meeting at New
York, I read a preprint of the paper that Karl had given me. I was im-
mediately attracted to the approach, for three reasons. First, I noted
the close mathematical relation of DCM to General System Theory
(Von Bertalanffy, 1969), which had been a source of inspiration for
me since my undergraduate studies. Secondly, the paper introduced
me to Bayesian inference techniques for dynamic systems, a field
that I was unfamiliar with but found fascinating. I would spend the
next years familiarizingmyself with (variational) Bayesian techniques,
a learning process that was greatly aided not only by Karl's thoughtful
supervision, but also by the help frommy colleagues and friends in the
FIL Methods Group at London, most notably Lee Harrison, Will Penny
and Jean Daunizeau. And perhaps most importantly, I felt that the am-
bition of DCM to provide probabilistic estimates of “hidden” neuronal
processes could provide one key methodology for my long-term re-
search goal which started emerging at that time: developing model-
based approaches for inferring pathophysiological processes and pre-
dicting optimal treatment in individual patients (Stephan, 2004;
Stephan et al., 2006). Eight years later, I feel encouraged by proof-of-
concept studies (e.g., Brodersen et al., 2011b; Moran et al., 2011b)
that support the feasibility of establishing model-based diagnostics
of individual patients in the future.

The initial DCM paper (Friston et al., 2003) drew on a number of
important previous developments, including Bayesian techniques
for identification of dynamic systems (Friston, 2002) and the hemo-
dynamic “Balloon” model for BOLD signals (Buxton et al., 1998;
Friston et al., 2000). With this biophysically motivated forward
model, DCM was the first generative model of fMRI data which
allowed for inference on effective connectivity at a neuronal level,
not the BOLD level, and which could deal with potential confounds
due to inter-regional variations in BOLD responses. Several refine-
ments of this hemodynamic model have taken place since (e.g.,
Kiebel et al., 2007; Riera et al., 2004; Stephan et al., 2007b), and fur-
ther future improvements are expected concerning, for example, the
effects of different field strengths and acquisition techniques
(Uludag et al., 2009) or the relative contributions of glutamatergic
vs. GABAergic transmission.

The original DCM for fMRI used bilinear differential equations as a
low-order approximation to any nonlinear system, describing how
neuronal population dynamics arises from effective connectivity and
its context-dependent modulation. Three major extensions have
been suggested subsequently: (i) nonlinear DCMs which account for
synaptic interactions and activity-dependent gating of connections
2 We use the acronym DCM to refer both to the modeling approach and to a specific
dynamic causal model.
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Fig. 1. A graphical summary of what the authors subjectively perceive as the most important milestones in developing VAR models and DCM over the past decade. [1] Buxton et al.
1998; [2] Friston et al. 2000; [3] Riera et al. 2004; [4] Stephan et al. 2007b; [5] Kiebel et al. 2007; [6] Uludag et al. 2009; [7] Friston 2002; [8] Friston et al. 2007; [9] Friston et al. 2008;
[10] Daunizeau et al. 2009; [11] Friston et al. 2010; [12] Freiwald et al. 1999; [13] Bernasconi & Konig, 1999; [14] Friston et al. 2003; [15] Goebel et al. 2003; [16] Harrison et al. 2003;
[17] Roebroeck et al. 2005; [18] Stephan et al. 2008; [19] Friston et al. 2011; [20] Penny & Roberts 2002;.[21] Penny et al. 2004; [22] Stephan et al. 2009a; [23] Penny et al. 2010; [24]
Friston & Penny 2011; [25] Valdes-Sosa 2004; [26] Schippers et al. 2010; [27] Stephan et al. 2009b; [28] den Ouden et al. 2009; [29] den Ouden et al. 2010; [30] Valdes-Sosa et al.
2011; [31] Lee et al. 2006; [32] David et al. 2008; [33] Smith et al. 2010; [34] Brodersen et al. 2011b.

3 Formally, this corresponds to specifying a prior density on models such that those
models considered implausible are assigned a prior probability of zero.
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(Stephan et al., 2008), (ii) two-state DCMs which represent separate
excitatory and inhibitory populations within each region (Marreiros
et al., 2008), and (iii) stochastic DCMs which account for endogenous
fluctuations in fMRI signals and can also be applied in the absence of
experimental control, e.g., resting-state fMRI (Daunizeau et al., 2009;
Friston et al., 2011; Li et al., 2011). The latter DCMs were made possi-
ble by novel inversion techniques, such as Dynamic Expectation Max-
imization (DEM; (Friston et al., 2008)) or Generalised Filtering
(Friston et al., 2010), which address the triple estimation problem
of identifying states, parameters and hyperparameters in stochastic
hierarchical system models.

The first application paper of DCM followed the original report
(Friston et al., 2003) by just a fewmonths. This was a paper by Andrea
Mechelli et al. (2003), examining bottom-up and top-down mecha-
nisms of object category processing in visual cortex. DCM for fMRI
has since been used in approximately 150 empirical and methodolog-
ical studies, addressing a broad range of neurophysiological and cog-
nitive questions. Over the years, the application papers followed the
methodological developments closely. A good example is Bayesian
model selection (BMS), a generic procedure from probability theory
for assessing the fit/complexity trade-off (and thus generalizability)
when comparing models. While model comparison had been a cen-
tral theme to DCM from the beginning (Penny et al., 2004), early
DCM studies were typically more concerned with parameter esti-
mates (given a particular model) than model structure. Subsequently,
however, DCM studies have been focusing more and more on model
selection. This was driven by a series of methodological papers, start-
ing with Will Penny's initial work on order selection for VAR models
(Penny and Roberts, 2002) and AIC/BIC based comparison of DCMs
(Penny et al., 2004), followed by papers on the utility of the free en-
ergy approximation to the model evidence (Friston et al., 2007;
Penny, 2012; Stephan et al., 2007b), by novel methods for random ef-
fects group BMS and family-level inference (Penny et al., 2010;
Stephan et al., 2009a), and, most recently, rapid post-hoc scoring
schemes for models (Friston and Penny, 2011). Additionally, the ben-
efits of systematically structured model spaces for testing competing
hypotheses about neuronal mechanisms using fMRI data were dem-
onstrated by several empirical applications of BMS (e.g., Leff et al.,
2008; Rowe et al., 2010; Stephan et al., 2007a; van Leeuwen et al.,
2011).

In our interactions with colleagues and students over the years,
however, we have learned that not everyone finds the statistical prin-
ciples of DCM and BMS easy to understand. This reflects the diversity
of the neuroimaging community and the fact that Bayesian inference
and dynamic systems theory are not part of the curriculum in most
disciplines. Therefore, “good practice” rules have been derived that
provide guidance for the application of DCM and BMS (Stephan et al.,
2010). The first step generally is to define themodel space, motivating
a set of competing hypotheses (alternative models) whose relative
plausibility is tested against themeasured data.3 One can then proceed
in one of three ways. Most studies to date have searched for a single
best model (among those considered) in order to examine its struc-
ture and/or parameter estimates. An alternative approach of increas-
ing popularity is to address more broadly defined questions by
partitioning model space and comparing families of models (Penny
et al., 2010; Stephan et al., 2009a), e.g., models with and without par-
ticular types of connections. This approach is particularly useful for
large model spaces to prevent overfitting (at the level of model infer-
ence) and dilution. A third option is to use Bayesian model averaging
(BMA) where parameter estimates are averaged across all models
considered, weighted by the posterior model probabilities (Penny et
al. 2010). Random effects BMS and BMA provide a principled way to
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deal with situations where the optimal model may differ across sub-
jects and groups, as in clinical studies (e.g., Banyai et al., 2011).

Personally, I find that one of the most important aspects of DCM is
that it forces one to formalize and make explicit one's set of hypoth-
eses (i.e., the model space) and how exactly they are compared. Neu-
roimaging analyses have often been conducted in an exploratory way,
and this tendency has been further reinforced with the popularity of
“resting-state” studies. While exploratory analyses of fMRI data are
certainly useful (and indeed mandatory) as long as systems are not
well understood, the richness and complexity of their results can in-
vite unconstrained interpretations and post-hoc injection of meaning.
Instead, exploration should be used to generate initial hypotheses;
these hypotheses then need to be represented as models whose rela-
tive plausibility is tested by subsequent studies. This is precisely the
typical sequence of a DCM study, where the results of initial mass-
univariate analyses motivate a set of hypotheses which are tran-
scribed into competing DCMs that are then compared using one of
the BMS variants described above.

G-causality modeling

The application of G-causality to fMRI data was introduced in 2003
in a paper by Rainer Goebel et al. (2003) and then further extended
and validated in a following publication (Roebroeck et al., 2005).
Thus, one of us (AR) was heavily involved in its development. Already
before we me met, Rainer and I were both influenced by the same an-
imal studies that introduced the use of autoregressive modeling for
spectral analysis (Ding et al., 2000) and G-causality modeling
(Bernasconi and Konig, 1999; Freiwald et al., 1999) of electrophysio-
logical recordings. When subsequently starting my PhD studies on
the analysis of structural and functional brain connectivity using MRI
techniques with Rainer, we asked whether G-causality could be ap-
plied to fMRI data despite the sluggishness of the BOLD response. We
were further inspired by the application of Volterra kernel expansions
to fMRI connectivity analysis (Friston et al., 2000) and decided to eval-
uate the usefulness of G-causality in fMRI effective connectivity
modeling. The fundamental motivation for exploring this was the
principle, also expressed above, that complex data modeling efforts
must be a symbiosis between exploration of the model space and
prior assumption constrained hypothesis testing. A delicate balance
must be struck between the two: too much exploration might lead
to meaning injected into small parts of a large body of results; too
many constraints on a model space without rigid justification might
lead to bias at the level of model inference. Therefore our aim was to
add exploration oriented techniques for connectivity to complement
the hypothesis driven ones that were already available (or becoming
available) at the time, such as SEM and DCM. In parallel to our efforts,
Pedro Valdes-Sosa also explored the use of whole brain autoregressive
modeling, aided by sparse regression methods, interpreted in the
framework of G-causality (Valdes-Sosa, 2004; Valdes-Sosa et al.,
2005), and Lee Harrison explored bilinear extensions of VAR models
for fMRI effective connectivity (Harrison et al., 2003; albeit outside
the context of G-causality).

The implementation of connectivity exploration in these initial pa-
pers was led by two guiding ideas. First and foremost, effective con-
nectivity models can be constructed that consider many or all
regions in the brain as potential network nodes. This exploration of
the structural model (the set of assumptions that determine what—
which set of regions—can interact) can avoid the missing region prob-
lem: spurious inference on connectivity due to regions left out of the
model, for instance a source of common input (Roebroeck et al.,
2011a). Thus the initial publications focused on mapping G-
causality over the entire brain (Granger Causality Mapping, GCM;
Goebel et al., 2003; Roebroeck et al., 2005) and whole brain G-
causality analysis aided by high-dimensional regression approaches
(Valdes-Sosa, 2004; Valdes-Sosa et al., 2005; see also the recent
work by Garg et al. 2011). Second, for the structural model to be per-
missive enough to allow for this exploration, the dynamical model
(the signal equations that determine how regions interact) must con-
tain rather strongly directive assumptions. Here, the concept of G-
causality dictates that past information of a causing time series
must predict present or future values of a caused time series, given
that other relevant information is taken into account.

In the initial phases of development of fMRI G-causality mapping a
lot of thought went into what is clearly its greatest challenge: the
presence and variability over the brain of the hemodynamics that in-
tervene between neuronal population activity and measured BOLD
signals. In our thinking we separated this into two sequential valida-
tion steps, the results of which were eventually reported in
Roebroeck et al. (2005). In the first, we asked whether the combined
aggregating effect of the sluggish hemodynamics and the relatively
sparse temporal sampling of the BOLD signal (even if assumed to be
the same in all regions) makes application of G-causality to fMRI pos-
sible at all. Extensive ground-truth software simulations led to some
hesitation in the case of fully multivariate models but, encouragingly,
bi-variate G-causality results could be used with high sensitivity and
specificity. Given this result, in the second step, we asked ourselves
whether the variability of the hemodynamics within the brain could
lead to loss of sensitivity or bias in estimates of the strength and di-
rection of causality if that variability was simply ignored. To us, the
obvious but uninformative answer was: yes. When the variability of
hemodynamic delays in two regions around an equal average delay
approaches the size of neuronal delays, sensitivity is lost. When a sys-
tematic difference in mean delay between two regions exceeds neu-
ronal delays, bias in careless directionality estimates will ensue. To
our minds, the limited informativeness of this answer lay in the un-
certainty, spanning orders of magnitude, about the relevant neuronal
delays and hemodynamic variability. In the human brain, neuronal
conduction delays are 10 or 20 ms at most, but event related poten-
tials (ERP) related to perceptual or cognitive processes are measured
in hundreds of milliseconds and a few challenging tasks (such as the
so-called clock-task; Formisano et al., 2002), have measureable fMRI
responses seconds apart. Hemodynamic variability between brain
areas has been reported to be on the order of hundreds of millisec-
onds extending to over a second, although this variability has some-
times included task-related neuronal delays (which are thus tacitly
assumed to be negligible). Our internal consensus was that ignorance
of the intervening role of hemodynamics in this context is careless,
but a downright dismissal of all relative temporal structure of fMRI
signals could be equally wasteful of potentially useful information.
Rather than pursuing either of these extreme strategies we felt—and
still do—that a careful interrogation of temporal order structure in
fMRI data should start (but not end) with looking for experimentally
induced changes in the detected G-causality. Much of these thoughts
and discussion were expressed in writing in Roebroeck et al. (2005).
The initial publications led to an increasing wave of studies investi-
gating directed interactions in the brain by fMRI G-Causality analysis.
Although (with very few exceptions) these studies have all shown
awareness of the hemodynamic variability confound, the ways and
means by which it is accounted for are almost as diverse as the appli-
cations they investigate, which is perhaps why it has been a source of
some discussion in more recent years (see below).

It is important to stress that the concept of G-causality is histori-
cally not at all bound to discrete-time autoregressive modeling (cf.
Granger, 1980), although it is often (wrongly) equated with it. Con-
versely, VAR models of effective connectivity do not necessarily
refer to the concept of G-causality, e.g., (Harrison et al., 2003; Ryali
et al., 2011). Early on in the neuroscience context, G-causality was in-
stantiated in nonlinear models (Freiwald et al., 1999) and time-
varying models for non-stationary data (Havlicek et al., 2010; Hesse
et al., 2003), and it has been framed in terms of non-parametric spec-
tral factorization (Dhamala et al., 2008). In fact, Valdes-Sosa et al.
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(2011) have coined the term “Wiener–Akaike–Granger–Schweder
(WAGS) influence” to acknowledge the contribution of all these sci-
entists to generalizing predictability-based causality in time series
to a wealth of data types—continuous time as well as discrete time
and real valued as well as spiking processes—and to a multitude of
prediction models. In addition, this general concept helps in unifying
time series approaches to causality in a discrete-time tradition and
dynamic systems and control theory approaches in a continuous
time tradition (Roebroeck et al., 2011c).

A particularly powerful use of fMRI G-Causality has recently been
reported in Schippers et al. (2010), where between-brain (rather
than within-brain) influence is investigated in the context of human
social communication by gestures in the game of charades. Results
show that a guesser's brain activity in the human mirror system re-
gions influences the gesturer's brain activity. This illustrates the use
of the G-causality concept to answer interesting neuroscience ques-
tions that (i) are not easily formulated by a generative model, for in-
stance incorporating the entire interpersonal communication chain
and (ii) are concerned with the identification of the unknown areas
that interact to perform a perceptual, cognitive or motor task. These
types of questions have characterized many of the applications of
fMRI G-causality, such as top-down control of visual spatial attention
(Bressler et al., 2008), switching between executive control and
default-mode networks (Sridharan et al., 2008), fatigue (Deshpande
et al., 2009) and the resting state (Uddin et al., 2009).

Model validation

Model selection is not about finding the “true” model. Generally,
models are never “true” or “false” in an absolute sense (with the ex-
ception of synthetic data where the underlying generative model
was constructed and is thus known). Instead, models are deliberately
simplistic caricatures of the real world, aiming to unmask a particular
mechanism that is not visible from the high-dimensional data. As the
famous saying by Box and Draper (1987) puts it: “Essentially, all
models are wrong, but some are useful” (p. 424). Determining wheth-
er or not a model is “useful” for a particular application domain re-
quires systematic studies of the model's reliability and its face,
construct and predictive validity. Simply put, we need to know
what can and what cannot be safely inferred from our models. For ex-
ample, even when a model is well motivated by theory and prior
knowledge, it is possible that it allows for inference on certain (neu-
ronal) mechanisms, but not on others, due to conditional dependen-
cies among parameters that are typical for biological systems
(Gutenkunst et al., 2007; Stephan et al., 2007b). In technical terms
this is the question of identifiability of parameters and state trajecto-
ries. For these aspects of face validity, numerical analyses and simula-
tion studies with known “ground truth” play an important role.

These in silico approaches have played a major role during the his-
tory of both DCM (e.g., Friston et al., 2003; Lee et al., 2006; Stephan et
al., 2008; Stephan et al., 2009a) and G-causality models (e.g.,
Roebroeck et al., 2005; Ryali et al., 2011; Schippers et al., 2011;
Smith et al., 2011a; Smith et al., 2011b). While the merits and plausi-
bility of each simulation study need to be examined carefully case-by-
case, it is clear that they have greatly contributed (and continue to do
so) to our understanding under what conditions certain aspects of
model-based inference may fail, and which other aspects may remain
robust.

The most difficult challenge, however, is to establish the pre-
dictive validity of models. This requires one to test how a model
performs in relation to external criteria that are independent of
the data to which the model is fitted. In the history of DCM and
G-causality models, such tests of predictive validity follow three
major strategies. One way is to assess how well “unseen” (test)
data can be predicted based on model parameter estimates
obtained from known (training) data (for example applications,
see Smith et al., 2010, and Brodersen et al., 2011a). This ‘train-
ing-set/test-set’ logic has the additional advantage that can be
used for structural model selection for fMRI (cf. Roebroeck et al.,
2011b). A second approach is to validate models against external
(independent) labels or facts, for example, known diagnostic states
of individual patients or their individual treatment response (e.g.,
generative embedding; Brodersen et al., 2011b). The third and
most widely used approach to date for addressing the predictive
validity of DCMs and G-causality models tests whether a given
model can infer known or measurable consequences of a con-
trolled experimental intervention. This approach requires carefully
planned invasive studies in animals (e.g., neurochemistry, electri-
cal stimulation, genetic manipulations or lesions) or humans
(e.g., neuropharmacology). While an increasing number of such
studies have been performed in recent years, they have mainly
addressed the validity of DCMs for electrophysiological data (e.g.,
Moran et al., 2008; Moran et al., 2011a; Moran et al., 2011b); in con-
trast they have been relatively rare for models of fMRI data. One im-
portant exception is the study by David et al. (2008) who obtained
simultaneous fMRI and invasive electrophysiological measurements
from ratswith a genetically defined type of epilepsy. Using the electro-
physiological data for establishing a “ground truth”, they asked
whether models were capable of inferring, from fMRI data alone, in
which region the seizure originated. They found that DCMwas capable
of doing this, despite profound regional variations in the shape and la-
tency of the BOLD signal; these confounding effects, however, were
accounted for by the hemodynamic forward model in DCM. A VAR
model of G-causality was also capable of identifying the seizure origin,
but only once thismodel was augmentedwith a hemodynamic decon-
volution procedure (which, however, did not operate on the BOLD
data alone but was informed by the simultaneous electrophysiological
recordings, in the same way as the DCM analysis, using it as driving
input to the model). Overall, this study demonstrated empirically
that a hemodynamic forward model can be critical for unconfounded
inference on effective connectivity from fMRI data, a notion that has
been discussed extensively during the history of effective connectivity
models for fMRI data (Friston et al., 2003; Gitelman et al., 2003;
Roebroeck et al., 2011a; Stephan et al., 2004).

Controversies and points of convergence

The paper by David et al. (2008) and an associated commen-
tary (Friston, 2009) sparked a lively debate on the pros and cons
of DCM and G-causality models for inferring effective connectivity
from fMRI data. This led to a series of articles in NeuroImage (e.g.,
Daunizeau et al., 2011; David, 2011; Friston, 2011a; Roebroeck et
al., 2011a, b; Valdes-Sosa et al., 2011) and other journals
(Friston, 2011b; Roebroeck et al., 2011c) that discussed differences
between the approaches and potential problems, such as neuro-
physiological interpretability and unknown uncertainty of model
parameters in GCM, or robustness of variational Bayesian proce-
dures and issues of structural model selection in DCM. However,
there are also points of convergence that were discussed in
these papers. For instance, hemodynamic forward models, once
the unique hallmark of DCM, have recently been integrated into
state space models of an extended VAR type (Ryali et al., 2011;
Smith et al., 2010). In turn, DCM has been augmented to include
random innovations, albeit assuming temporally smooth as op-
posed to Markovian noise in VAR models (Friston et al., 2010; Li
et al., 2011). A final summary paper written by authors represent-
ing both approaches (Valdes-Sosa et al., 2011) reviewed these
constructive discussions and future possibilities of integration, con-
cluding that “We are not saying that DCM and GCM are equiva-
lent, but rather that an integration is possible within a Bayesian
state space modeling framework and the use of model comparison
methods.”
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Where do we go from here?

It is probably fair to say that G-causality models and DCM for fMRI
have considerably expanded the tool-kit for fMRI data analysis and
have already provided potentially important results for various do-
mains of cognitive neuroscience. However, it is also fair to say that
much methodological work remains to be done. As discussed above,
this concerns model validation in particular. For this, we believe
that close collaborations between modelers and neurophysiologists
are crucial and should be sought more actively in the computational
neuroimaging community.

Another challenge for the future concerns novel application con-
cepts that go beyond “classical” effective connectivity analyses.
Here, several innovative approaches have surfaced over the past few
years are likely to play a major role in future. For example, one popu-
lar theme has been the analysis of structure–function relationships in
neuronal systems by juxtaposing estimates of functional or effective
connectivity to estimates of anatomical connectivity obtained by dif-
fusion-weighted imaging (e.g., Koch et al., 2002; Upadhyay et al.,
2008). Although useful, this approach has remained largely descrip-
tive, and a more formal way is to incorporate the anatomical informa-
tion directly in the definition of the prior densities that specify a
model of effective connectivity. For example, such “anatomically in-
formed priors” can be used to tune the prior variance of coupling pa-
rameters in a DCM and establish a mathematical relationship of how
anatomical connectivity constrains effective connectivity (Stephan et
al., 2009b). Future extensions of this approach will have to take ac-
count of the bias and variance that can exist in tractography results
(probabilistic or deterministic; e.g., due to low spatial resolution;
Roebroeck et al., 2008).

A second domain of innovation concerns models for “multimodal
fusion”, e.g., formally integrating models of fMRI and EEG data. The
ultimate goal would be to specify a generative model accounting for
all simultaneously acquired data; this would consists of a single neu-
ronal model that is linked by separate forward models to the different
measurement types (Daunizeau et al., 2010; Deneux and Faugeras,
2010; Riera et al., 2007; Rosa et al., 2010; Valdes-Sosa et al., 2009).

A third important recent development is the integration of com-
putational models of learning into DCMs, thus enabling one to test
for the expression of prediction error dependent plasticity in specific
neuronal circuits (den Ouden et al., 2009; den Ouden et al., 2010).
Such neurocomputational models have considerable potential as
non-invasive assays of synaptic function and neuromodulatory regu-
lation, for example in model-based classification of psychiatric spec-
trum diseases (Stephan et al., 2006). Clearly, careful and systematic
validation studies will be required to test the robustness of model-
based inference for clinical applications. Ideally, validation of such
models in pharmacological and animal studies will go hand-in-hand
with their application to real-world problems, such as predicting
treatment responses or inferring pathophysiological states (e.g.,
Brodersen et al., 2011b).

Finally, the advent of ultra-high field fMRI has greatly increased
the level of spatial detail that is accessible with this technique. For
instance, fMRI at 7T provides sufficient spatial resolution to re-
solve orientation column maps in human primary visual cortex
(Yacoub et al., 2008) and axis-of-motion maps in the human mid-
dle temporal motion area MT (Zimmermann et al., 2011). Poten-
tially, this ongoing development can shift the level of causal and
computational modeling for cognitive and translational neurosci-
ence down to cortical columns and layers, arguably the fundamen-
tal mesoscale at which computational units of the brain operate.
Importantly, having more fine-grained data will not obviate the
need for careful modeling. On the contrary, as our methods for
data acquisition become progressively refined, models of the neu-
ronal causes underlying our measurements become ever more
necessary to avoid drowning in complexity. Hopefully, by the
time NeuroImage publishes its next anniversary issue of fMRI in
10 years or so, we will see some models that have passed rigorous
validation studies and have entered the practical application do-
main, solving important real-world problems, e.g., in clinical
diagnostics.
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