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This paper considers psychotic symptoms in terms of false inferences or beliefs. It is based
on the notion that the brain is an inference machine that actively constructs hypotheses
to explain or predict its sensations. This perspective provides a normative (Bayes-optimal)
account of action and perception that emphasizes probabilistic representations; in partic-
ular, the confidence or precision of beliefs about the world. We will consider hallucinosis,
abnormal eye movements, sensory attenuation deficits, catatonia, and delusions as vari-
ous expressions of the same core pathology: namely, an aberrant encoding of precision.
From a cognitive perspective, this represents a pernicious failure of metacognition (beliefs
about beliefs) that can confound perceptual inference. In the embodied setting of active
(Bayesian) inference, it can lead to behaviors that are paradoxically more accurate than
Bayes-optimal behavior. Crucially, this normative account is accompanied by a neuronally
plausible process theory based upon hierarchical predictive coding. In predictive coding,
precision is thought to be encoded by the post-synaptic gain of neurons reporting prediction
error.This suggests that both pervasive trait abnormalities and florid failures of inference in
the psychotic state can be linked to factors controlling post-synaptic gain – such as NMDA
receptor function and (dopaminergic) neuromodulation. We illustrate these points using
biologically plausible simulations of perceptual synthesis, smooth pursuit eye movements
and attribution of agency – that all use the same predictive coding scheme and pathology:
namely, a reduction in the precision of prior beliefs, relative to sensory evidence.
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INTRODUCTION
This paper attempts to explain the positive and negative symp-
toms of schizophrenia in terms of false inference about states
of the world producing sensations – and to link this explana-
tion to neuromodulatory dysconnections at the synaptic level.
In brief, we take a normative approach to action and percep-
tion – namely, active inference and the Bayesian brain hypothesis.
We then consider neuronally plausible implementations of active
inference to see how particular failures of neuromodulation would
be expressed in terms of perceptual inference and behavior. The
main conclusion is that a wide range of psychotic symptoms can
be explained by a failure to represent the precision of beliefs about
the world – and that this failure corresponds to abnormal neu-
romodulation of the post-synaptic gain of superficial pyramidal
cells in cortical hierarchies. This may sound like a very specific
assertion; however, there are many converging lines of evidence
that point to this conclusion – lines that we try to draw together
in this paper.

The basic idea is that faulty inference leads to false concepts
(delusions) or percepts (hallucinations) and that this failure is due
to a misallocation of precision to hierarchical representations in
the brain. In what follows, we will refer to beliefs, inference, priors,
and precision in a Bayesian sense. In this setting, a belief is a proba-
bility distribution over some unknown state or attribute. Beliefs, in
this sense, may or may not be consciously accessible. A belief can be
held with great precision, such that the probability distribution is

concentrated over the most likely value – the mean or expectation.
This means the precision (inverse variance) corresponds to the
confidence or certainty associated with a belief. In Bayesian infer-
ence, beliefs prior to observing data are called prior beliefs, which
are updated to posterior beliefs after seeing the data. This updating
rests upon combining a prior belief with sensory evidence or the
likelihood of the data. In hierarchical Bayesian inference, the suf-
ficient statistics of a belief (like the expectation and precision) are
themselves treated as unknown quantities. This means that one
can have beliefs about beliefs; for example, one can have an expec-
tation about a precision (c.f., expected uncertainty). Heuristically,
this leads to the distinction between fixed and random effects in
classical statistics; or between risk (known uncertainty) and ambi-
guity (unknown uncertainty) in economics. Beliefs about beliefs
are inevitable in hierarchical inference and are sometimes referred
to as empirical priors, because they provide constraints on beliefs
at lower levels of the hierarchy. Behaviorally, precision and beliefs
about precision (including subjective confidence in beliefs) are to
some extent dissociable (Fleming et al., 2012). Beliefs about preci-
sion are particularly important in hierarchical Bayesian inference,
because they can have a profound effect on posterior expecta-
tions – and inappropriate beliefs about precision can easily lead to
false inference.

The nature of this failure can be understood intuitively by
considering classical statistical inference: imagine that we are using
a t -test to compare the mean of some data, against the null
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hypothesis that the mean is zero. The sample mean provides evi-
dence against the null hypothesis in the form of a prediction error :
namely, the sample mean minus the expectation under the null
hypothesis. The sample mean provides evidence against the null
but how much evidence? This can only be quantified in relation
to the precision of the prediction error. The t -statistic is sim-
ply the prediction error weighted by its precision (i.e., divided
by its standard error). If this precision-weighted prediction error
is sufficiently large, one rejects the null hypothesis. Clearly, if
we overestimate the precision of the data, the t -statistic will be
too large and we expose ourselves to false positives. Analogous
rules apply to Bayesian inference, in that the optimal combina-
tion of a prior belief with some evidence is a posterior belief
whose mean is a mixture of the prior and data means, weighted
according to their precision. If the precision of the data is over-
estimated, or if the precision of the prior is underestimated, the
posterior expectation will shift from the prior mean to the data
mean (Figure 1).

So how could this lead to false beliefs and delusions? The fol-
lowing scenario (Frith and Friston, 2012) illustrates this: imagine
the temperature warning light in your car is too sensitive (precise),
reporting the slightest fluctuations (prediction errors) above some
temperature. You naturally infer that there is something wrong
with your car and take it to the garage. However, they find no
fault – and yet the warning light continues to flash. Your first
instinct may be to suspect the garage has failed to identify the
fault – and even to start to question the Good Garage Guide that
recommended it. From your point of view, these are all plausi-
ble hypotheses that accommodate the evidence available to you.
However, from the perspective of somebody who has never seen
your warning light, your suspicions would have an irrational and
slightly paranoid flavor. This anecdote illustrates how delusional
systems may be elaborated as a consequence of imbuing sensory
evidence with too much precision. Note that the primary pathol-
ogy here is quintessentially metacognitive in nature: in the sense
that it rests on a belief (the warning light reports precise informa-
tion) about a belief (the engine is overheating). Crucially, there
is no necessary impairment in forming predictions or predic-
tion errors – the problem lies in the way they are used to inform
inference or hypotheses.

In what follows, we will consider the brain as performing infer-
ence using predictive coding, in which the evidence for hypothe-
ses is reported by precision-weighted prediction errors. In these
schemes, certain neurons compare bottom-up inputs with top-
down predictions to form a prediction error that is weighted
in proportion to its expected precision. Crucially, this weight-
ing corresponds to the gain or sensitivity of prediction error
units. This means that abnormalities in the modulation of post-
synaptic gain could, in principle, lead to false inferences of the
sort described above. We will illustrate this in a concrete fashion
using biologically plausible simulations of false inference, all of
which use exactly the same predictive coding scheme and inter-
vention; namely, a decrease in the precision (post-synaptic gain of
prediction error units) at higher levels of cortical hierarchies, rel-
ative to the precision at sensory levels. Some of these simulations
have been reported previously in different contexts (Friston and
Kiebel, 2009a; Adams et al., 2012; Brown et al., in press). Here, we

FIGURE 1 |This schematic illustrates the importance of precision when
forming posterior beliefs and expectations. The graphs show Gaussian
probability distributions that represent prior beliefs, posterior beliefs, and
the likelihood of some data or sensory evidence as functions of some
hidden (unknown) parameter. The dotted line corresponds to the posterior
expectation, while the width of the distributions corresponds to their
dispersion or variance. Precision is the inverse of this dispersion and can
have a profound effect on posterior beliefs. Put simply, the posterior belief
is biased toward the prior or sensory evidence in proportion to their relative
precision. This means that the posterior expectation can be biased toward
sensory evidence by either increasing sensory precision – or failing to
attenuate it – or by decreasing prior precision.

frame these simulations in terms of false inference and empha-
size their common mechanisms. There are several other examples
that we could have used; for example, the relationship between
state-dependent precision and attention or the role of dopamine
in encoding the precision of affordance and its effects on action
selection. However, the examples chosen are sufficient to illustrate
the diverse phenomenology that can be explained by one sim-
ple abnormality – a reduction in the precision of empirical prior
beliefs, relative to sensory precision.
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This paper focuses on false inference. However, the normative
principles we appeal to cover both inference and learning. Neuro-
biologically, this corresponds to the distinction between updating
neuronal representations in terms of synaptic activity and learning
causal structure through updating synaptic efficacy (i.e., synaptic
plasticity). The important thing here is that abnormal beliefs about
precision also lead to false learning, which produces – and is pro-
duced by – false inference. This circular causality follows inevitably
from the nature of inference, which induces posterior dependen-
cies among estimates of hidden quantities in the world (encoded
by synaptic activity and efficacy respectively). The point here is
that a simple failure of neuromodulation (and implicit encod-
ing of precision) can have far-reaching and knock-on effects that
can be manifest at many different levels of perceptual inference,
learning, and consequent behavior.

This paper comprises six sections. We start with a brief review
of the symptoms and signs of schizophrenia, with a special focus
on how trait and state abnormalities can be cast in terms of false
inference. The second section reviews the psychopharmacology of
psychosis with an emphasis on the synaptic (neuromodulatory)
mechanisms that we suppose underlie false inference. The third
establishes the normative theory (active inference) and its biolog-
ical instantiation in the brain (generalized Bayesian filtering or
predictive coding). The resulting scheme is used in the final three
sections to illustrate failures of perceptual inference in the context
of omission paradigms, abnormalities of active inference in the
context of smooth pursuit eye movements and misattribution of
agency in the context of deficits in sensory attenuation.

PSYCHOSIS AND FALSE INFERENCE
In this section, we briefly review the state and trait abnormalities
of schizophrenia to emphasize a common theme; namely, a fail-
ure of inference about the world that arises from an imbalance in
the precision or confidence attributed to beliefs. We distinguish
between state and trait abnormalities because the evidence sug-
gests that trait abnormalities may be associated with a relative
decrease in prior precision, while some state abnormalities can be
explained by a (possibly compensatory) increase in prior precision
(or reduction in sensory precision). In this setting, state abnor-
malities include the florid (Schneiderian or first rank) symptoms
of acute psychosis, while trait abnormalities are more pervasive
and subtle. The diagnostic criteria for schizophrenia are based
largely on state abnormalities, because they are easily and reliably
detected. These include:

• Delusions and hallucinations: c.f., positive symptoms (Crow,
1980) and the reality distortion of chronic schizophrenia (Liddle,
1987).

• Thought disorder and catatonia (World Health Organization,
1992; American Psychiatric Association, 2000), where formal
thought disorder is also characteristic of the disorganization
syndrome of chronic schizophrenia (Liddle, 1987). Other (as
yet non-diagnostic) state abnormalities include:

• Abnormalities of perceptual organization: in particular a
decreased influence of context, leading to a loss of global
(Gestalt) organization (Phillips and Silverstein, 2003). These
abnormalities have not been found in first-degree relatives or

before the first psychotic episode, and tend to covary with disor-
ganization symptoms (reviewed in Silverstein and Keane, 2011).
A decreased influence of context can sometimes lead to per-
ceptions that are more veridical than those of normal subjects.
Important examples here include a resistance to the hollow
mask illusion – which is also state-dependent (Keane et al., in
press) – and size-weight illusion (Williams et al., 2010).

These symptoms can occur episodically and – with the possible
exception of catatonia-respond well to anti-dopaminergic drugs
in the majority of patients. We use the term “trait” abnormali-
ties to refer to more constant features of the disorder, which are
less responsive to dopamine blockade (although these responses
have not been explored as thoroughly as those of state symptoms).
Some are found in first-degree relatives and high-risk groups, and
may qualify as endophenotypes of schizophrenia. Despite their
prevalence, they are less diagnostic because they are found in
other diagnostic categories (and to some extent in the normal
population). They include (among others):

• Soft neurological signs: probably best exemplified by abnormal-
ities of smooth pursuit eye movements (SPEM) as reviewed by
O’Driscoll and Callahan (2008). These abnormalities are present
in first-degree relatives (Calkins et al., 2008) and in drug naive
first episode schizophrenics (Campion et al., 1992; Sweeney et al.,
1994; Hutton et al., 1998), and may even be exacerbated by
dopamine blockade (Hutton et al., 2001).

• Abnormal event-related potentials: such as a larger P50 response
to a repeated stimulus, and reduced P300 and mismatch negativ-
ity (MMN) responses to violations or oddball stimuli. Abnormal
P50, P300, and MMN responses have also been demonstrated
in first-degree relatives, and do not normalize with treatment
(reviewed in Winterer and McCarley, 2011).

• Anhedonia, cognitive impairments, and negative symptoms:
such as loss of normal affect, experience of pleasure, motiva-
tion, and sociability are all found (subclinically) in first-degree
relatives (Fanous et al., 2001; Jabben et al., 2010) to a greater or
lesser degree (Johnstone et al., 1987; Mockler et al., 1997) and
are notoriously resistant to anti-dopaminergic treatment.

Many trait abnormalities have been considered as the result of a
failure to adequately predict sensory input, rendering all percepts
surprising (e.g., the P50) and reducing differential responses to
oddball stimuli (e.g., the MMN and P300). Predictive coding in
particular has been used in recent formulations of these deficits
in schizophrenia (Fletcher and Frith, 2009). Specifically, it is sug-
gested that the main problem in schizophrenia lies not with the
prediction of sensory input per se, but in the delicate balance of
precision ascribed to prior beliefs and sensory evidence (Friston,
2005; Corlett et al., 2011). Later, we will use simulations to demon-
strate how a relative increase in – or failure to attenuate – sensory
precision can explain abnormal responses to surprising events.

In terms of cognitive paradigms, the “beads task” has been used
to characterize formal beliefs and probabilistic reasoning in schiz-
ophrenic subjects. In this paradigm, subjects are told that red and
green beads are drawn at random from an urn that contains (for
example) 85% of one color and 15% of the other. The subject
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must decide which color predominates. In reality, all subjects are
shown the same sequence of beads. In the draws to decision version
of the task, the subject has to answer as soon as they are certain.
In the probability estimates version, the subject can continue to
draw and change their answer. Interestingly, delusional patients
“jump to conclusions” in the first version, while they are more
willing to revise their decision in light of contradictory evidence
in the second (Garety and Freeman, 1999). Bayesian modeling
suggests that jumping to conclusions may reflect greater “cogni-
tive noise” in delusional patients (Moutoussis et al., 2011), which
may speak to reduced precision of higher level (cognitive) rep-
resentations and consequently a greater influence of new sensory
evidence (Speechley et al., 2010).

Can state abnormalities also be explained by imbalances in the
precisions of prior beliefs and sensations? The short answer is yes.
For example, delusional mood describes a state in which patients
feel the world is strange and has changed in some way – where their
attention is drawn to apparently irrelevant stimuli and odd coin-
cidences. A loss of precise prior beliefs is consistent with a sense of
unpredictability and greater attention to sensory events. Indeed,
this line of thinking has been used to explain the loss of Gestalt or
central coherence in autism (Pellicano and Burr, 2012). In terms
of formal models, the top-down control of sensory precision has
been shown to explain several psychophysical and physiological
aspects of attention (Feldman and Friston, 2010); thereby provid-
ing a formal link between precision and attention. The key insight
from these models is that posterior beliefs about states of the world
can direct attention to sensory features by top-down modula-
tion of sensory precision. A failure of top-down attenuation of
sensory precision (sensory attenuation) therefore fits comfortably
with abnormalities of sensory attention in this context.

State abnormalities include the cardinal psychotic symptoms,
such as hallucinations and delusions. Hallucinations could be
understood as the result of an increase in the relative precision
of prior beliefs, such that the posterior beliefs are impervious
to contradictory – but imprecise – sensory evidence. This has
been discussed as an explanation for visual hallucinosis in organic
psychosyndromes (Friston, 2005). However, the hallucinations
associated with psychosis may be better understood as a failure
to attenuate the sensory consequences (corollary discharge) of
self-made acts; for example, a failure to attenuate the auditory
consequences of sub-vocal or inner speech (Frith et al., 1998;
Allen et al., 2007). Delusions are probably more complex and
their emergence may be better understood as secondary phe-
nomena: several authors have proposed that they could arise as
rational (Bayes-optimal) posterior beliefs that explain away pre-
cise sensory prediction errors: e.g.,Fletcher and Frith (2009). These
explanations relate to earlier “empiricist” accounts such as Maher
(1974), Gray et al. (1991), and Kapur (2003), who emphasizes
aberrant salience (c.f., sensory precision). Implicit in these sec-
ondary accounts is a compensatory increase in the precision of
explanations for sensory cues that are imbued with too much pre-
cision or salience. This is consistent with their peculiar resistance
to rational argument. In the final section, we will consider an
example of a compensatory increase in the precision of high-level
beliefs that is necessary to compensate for a failure of sensory
attenuation.

SUMMARY
In summary, the symptoms and signs of schizophrenia are not
inconsistent with a reduction of high-level precision or a fail-
ure of sensory attenuation (the top-down attenuation of sensory
precision), with compensatory (secondary) changes in the pre-
cision of (empirical) prior beliefs. In particular, some psychotic
states may reflect a compensatory response to trait abnormali-
ties that bias inference toward sensory evidence that is imbued
with too much precision or salience. A further mechanistic dis-
sociation between state and trait abnormalities is suggested by
the fact that the former generally respond to antipsychotic (anti-
dopaminergic) treatment, while trait abnormalities do not. Before
considering the computational anatomy of hierarchical inference
in the brain, we will briefly review the psychopharmacology and
neuropathology of schizophrenia.

THE PSYCHOPHARMACOLOGY OF PRECISION
This section considers the neuromodulatory processes implicated
in schizophrenia, with a special focus on the laminar specificity
of cortical neuromodulation. Our premise here is that psychotic
abnormalities are manifestations of false inference, caused by the
aberrant encoding of precision. This precision is thought to be
encoded by post-synaptic gain of neuronal populations reporting
prediction errors – the principal or pyramidal cells of superfi-
cial cortical layers (Mumford, 1992; Feldman and Friston, 2010).
Synaptic gain modulation is a change in the response amplitude
of a neuron that is independent of its selectivity or receptive
field characteristics (Salinas and Thier, 2000). In other words,
post-synaptic gain is a factor that quantifies the effect of a presy-
naptic input on post-synaptic output (e.g., depolarization at the
soma). Changes in synaptic gain are generally thought to be medi-
ated by non-linear (e.g., multiplicative) synaptic mechanisms; for
example, NMDA receptor activation.

Of all the receptors that determine synaptic gain, the most ubiq-
uitous is the glutamatergic NMDA receptor (NMDA-R). NMDA-
Rs have several important functions that are expressed over dif-
ferent timescales. First, they can drive (i.e., induce an excitatory
post-synaptic potential) post-synaptic cells like other ionotropic
glutamatergic (AMPA and Kainate) receptors. However, the dri-
ving effect of NMDA-Rs is only possible if the cell is already
depolarized; otherwise, the NMDA-R is blocked by a magnesium
ion. This non-linear property makes them synaptic coincidence
detectors or “AND gates.” Second, NMDA-Rs have time constants
that are much longer than that of AMPA-Rs and Kainate-Rs. This
enables integration of synaptic inputs over tens to hundreds of
milliseconds – increasing the gain of synaptic inputs to distal den-
drites. Finally, NMDA-Rs are famous for their role in plasticity:
at longer timescales, the influx of calcium ions through NMDA-R
channels causes a cascade of intracellular events that result in long-
term synaptic depression or potentiation (LTD or LTP). However,
NMDA-Rs also have a major impact on the short-term plasticity
of glutamatergic synapses. This is because they regulate the func-
tional state and number of AMPA-Rs – by phosphorylation or
by changing the trafficking of AMPA-R subunits to and from the
cell membrane (Passafaro et al., 2001; Montgomery and Madison,
2004; Bagal et al., 2005). Together, these properties make a signif-
icant contribution to the dynamics of neural networks, especially
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to oscillatory behavior and sustained firing patterns (Durstewitz,
2009).

Other key determinants of synaptic gain are the classical neu-
romodulator receptors; e.g., dopamine (DA-Rs), acetylcholine (in
particular muscarinic AChRs), and serotonin (5-HTRs). With the
exception of nicotinic AChRs (which are ionotropic) these are all
metabotropic receptors – they do not activate ion channels but
are coupled to signal transduction mechanisms (via G proteins)
that affect intracellular second messengers, such as cyclic adeno-
sine monophosphate (cAMP) or cyclic guanosine monophosphate
(cGMP). Fluctuations in cAMP/cGMP concentration affect the
activity of protein kinases, which – through phosphorylation –
alters neuronal excitability via changes in the production, surface
expression or activity of voltage or ligand-gated ion channels,
including the NMDA-R itself. This mechanism is also used by
another glutamatergic receptor – with pronounced modulatory
effects on synaptic gain – the metabotropic glutamate recep-
tor (mGluR; De Pasquale and Sherman, 2012). It is important
to note that DA-R subtypes have opposite effects on synaptic
gain: D1R activation stimulates cAMP production and increases
the excitability of depolarized neurons, whereas D2R activation
inhibits cAMP production and reduces gain (reviewed in Frank,
2005).

Synaptic gain is not just determined by receptor activity but also
by network dynamics, like the synchronization of fast oscillations,
especially in the 40–100 Hz or gamma frequencies (c.f., synchro-
nous gain: Chawla et al., 1999). The fast acting inhibitory γ-amino
butyric acid receptor (GABAA-R) is instrumental in this syn-
chronization process. In the cortex, a GABAergic (parvalbumin-
positive basket cell or PVBC) interneuron contacts many pyra-
midal cells, which it transiently hyperpolarizes. When this hyper-
polarization wears off, all the cortical pyramidal cells can then
fire together, leading to synchronous firing across the network and
oscillations as the cycle recurs (Gonzalez-Burgos and Lewis, 2012).

Abnormalities in at least three of these synaptic gain mecha-
nisms have been proposed to be a primary pathology in schiz-
ophrenia – those of NMDA, GABA, and dopamine receptors.
NMDA-Rs play a central role in theories of schizophrenia (Olney
and Farber, 1995; Abi-Saab et al., 1998; Goff and Coyle, 2001;
Stephan et al., 2006; Corlett et al., 2011). Studies of genetic risk
in schizophrenia have highlighted the role of genes related to
glutamatergic transmission, with GABA and dopamine related
genes implicated to a lesser extent (Harrison and Weinberger,
2005; Stephan et al., 2006; Hall et al., 2009; Greenwood et al.,
2012). Neuropathological evidence indicates abnormalities of
the glutamate and GABA systems: both pre- and post-synaptic
markers, morphometric, and biochemical measures of gluta-
matergic transmission are reduced, as is the expression of the
GABA synthesizing enzyme glutamic acid decarboxylase (GAD),
parvalbumin-immunoreactive GABAergic interneurons and their
synaptic markers (reviewed in Harrison et al., 2011). These neu-
ropathological changes are particularly apparent in hippocampus
and frontal cortex, both at high levels in the cortical hierarchy
(Felleman and Van Essen, 1991).

Conversely, the evidence for dopaminergic abnormalities in
schizophrenia is neither neuropathological nor structural, but
functional. The most widely replicated abnormality is that of

elevated striatal dopamine availability – in acute psychoses of both
schizophrenia (Laruelle et al., 1996; Breier et al., 1997) and epilepsy
(Reith et al., 1994). A recent review concluded that dopamine dys-
regulation is more closely linked to the state of psychosis than
the trait of schizophrenia (Howes and Kapur, 2009), although
there are some important caveats: presynaptic dopamine is also
raised to a lesser degree in those who are prone to psychosis
but not floridly psychotic, and patients with symptoms resistant
to dopamine blockade do not have elevated striatal dopamine
synthesis (Demjaha et al., 2012).

Is aberrant glutamatergic and GABAergic transmission linked
to the trait abnormalities of the previous section? The psy-
chotomimetic effects of ketamine suggest a strong association.
Ketamine blocks NMDA-Rs and also potentiates AMPA-R signal-
ing, leading to decreased burst firing of pyramidal neurons, with
subsequent impairment of activation of GABAergic interneurons
(Shi and Zhang, 2003). Ketamine administration can reproduce a
whole spectrum of trait phenomena: such as SPEM abnormalities
(Radant et al., 1998; Weiler et al., 2000); impaired P50 suppres-
sion (Oranje et al., 2002); diminished P300 (Gunduz-Bruce et al.,
2012); reduced MMN (Umbricht et al., 2000; Schmidt et al., 2012);
cognitive impairments (Kantrowitz and Javitt, 2010); and negative
symptoms (Krystal et al., 1994). In fact, the only trait phenome-
non that ketamine does not reproduce is a reduced susceptibility to
the hollow mask illusion (Passie et al., 2003). This is in contrast to
dopaminergic agonists, which do not reproduce perceptual, SPEM
(Reilly et al., 2008), P50 (Oranje et al., 2004) or MMN (Leung et al.,
2007) abnormalities – and have only small effects on the P300
(Luthringer et al., 1999). Indeed, prefrontal D1R hypoactivity has
been associated with cognitive deficits and negative symptoms in
animal models (Goldman-Rakic et al., 2004).

Ketamine’s reproduction of state symptoms is less consistent:
its effects include loss of perceptual organization (Uhlhaas et al.,
2007) and induction of a delusional mood (Corlett et al., 2011), but
it does not cause a loss of attenuation of self-induced sensations
(PC Fletcher, personal communication) or lead to auditory ver-
bal hallucinations. It is interesting to note that while the negative
symptoms induced by ketamine are correlated with its NMDA-
R binding, the positive symptoms are not (Stone et al., 2008).
Conversely, D2R levels in cortical and striatal areas correlate with
positive but not negative symptom scores (Kessler et al., 2009).
Nevertheless, some trait-like phenomena can be reproduced by
both ketamine and dopaminergic agonists, such as reduced latent
inhibition (Young et al., 2005; Razoux et al., 2007), blocking
(O’Tuathaigh et al., 2003; Freeman et al., 2013), and the body
ownership illusion (Albrecht et al., 2011; Morgan et al., 2011).
This is not surprising, as there are complex interactions between
glutamatergic, GABAergic, and dopaminergic neurotransmission,
within and between the brain stem, striatum, and prefrontal
cortex (see Figure 2). For example, hypofunction of NMDA-
Rs in cortical projections to the ventral tegmental area (which
are themselves regulated by D2 autoreceptors, nACh-Rs, and 5-
HT-Rs) are in a position to reduce the activity of mesofrontal
D1R-projecting dopaminergic neurons (that potentiate prefrontal
NMDA-Rs) and increase activity (via decreased GABAergic inhi-
bition) of mesostriatal D2R-projecting neurons (Stephan et al.,
2009). NMDA-Rs and D1Rs within the same cell potentiate each
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Adams et al. The computational anatomy of psychosis

FIGURE 2 | A schematic illustration of putative pathological processes in
schizophrenia – emphasizing the interactions among neuromodulatory
mechanisms. These mechanisms include: (i) decreased prefrontal NMDA-R
function that may reduce the stimulation of VTA-DA neurons that project back
to prefrontal D1Rs (decreasing cortical precision), and disinhibition of VTA-DA
neurons that project to the striatum; (ii) increased dopamine release from
SNc-DA neurons disinhibits the indirect pathway (by direct inhibition of striatal
GABA neurons, inhibition of striatal cholinergic interneurons, and reduction of
glutamate release in corticostriatal neurons); (iii) reduced NMDA-R stimulation
of cortical PVBC’s reduces activity of these GABAergic interneurons,
impairing coordination of cortical oscillatory activity; and (iv) increased
hippocampal drive to the VTA, leading to hyperdopaminergia in the VStr.

Significant omissions (for clarity) include: the GP, SNr, STN, and Thal, most
connections of the VStr including its direct and indirect pathways and
excitatory connections from the VTA (via D1Rs), and circuitry within the VStr,
two more inhibitory connections in the indirect pathway and both somatic and
axonal dopamine neuron D2 autoreceptors in SNc. As in other figures,
descending projections are in black and ascending projections in red.
Abbreviations: PPT, pedunculopontine tegmental nucleus; VTA, ventral
tegmental area; VStr, ventral striatum; DStr, dorsal striatum; SNc/r, substantia
nigra pars compacta/reticulata; GP, globus pallidus; Thal, thalamus; STN,
subthalamic nucleus; PVBC, parvalbumin-positive basket cell. Stephan et al.
(2009), Morrison (2012), Carlsson et al. (1999), Lisman et al. (2008), Simpson
et al. (2010).

other in numerous ways (Cepeda and Levine, 2006). In the pre-
frontal cortex,NMDA-R impairments may lead to hypofunction of
GABAergic PVBC’s, disinhibition of pyramidal cells, and reduced
prefrontal gamma activity (Gonzalez-Burgos and Lewis, 2012).
Alternatively, NMDA-R hypofunction could impact directly on
the excitability of prefrontal pyramidal cells.

The neuropathology of schizophrenia is usually associated with
higher cortical systems; e.g., prefrontal cortex and the medial
temporal lobe. For example, perceptual deficits in schizophrenics
(and normal subjects) have been shown to correlate with frontal
and temporal volume loss (Dazzan et al., 2006). The hierarchical
level of a cortical area is defined in terms of extrinsic (ascend-
ing and descending) connections that have a laminar specificity:
ascending (extrinsic) projections target the granular layer 4, which

sends forward (intrinsic) connections to (supragranular) layers 2
and 3. These then either send further forward (extrinsic) projec-
tions up to the next hierarchical level, or pass signals down via
(infragranular) layers 5 and 6 to the level below. See Bastos et al.
(2012) for a review of this canonical circuitry from the point of
view of predictive coding. In prefrontal cortex – as in the rest of
the cerebrum – NMDA-Rs are distributed throughout the corti-
cal layers but are most concentrated in superficial layers 2 and 3
(Jansen et al., 1989), as are D1Rs (Lidow et al., 1991). By con-
trast, D2Rs are much less prevalent than D1Rs in the cortex (by
an order of magnitude) and their peak concentration is in layer 5
(Lidow et al., 1991). Nevertheless, Opris et al. (2012) have recently
shown in primates that cocaine (which increases dopaminergic
transmission) reduces the activity of superficial pyramidal cells
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Adams et al. The computational anatomy of psychosis

(perhaps via D2Rs) and thereby their synchronization with layer 5
pyramidal cells in the same minicolumn – impairing performance
in a working memory task.

Many of the neuropathological changes in schizophrenia are
found in supragranular layers 2 and 3, with additional abnormal-
ities in layer 5: see Harrison et al. (2011) for a fuller treatment of
this complex and sometimes inconsistent literature. In brief, the
somal volume of layer 3 DLPFC pyramidal cells has been found
to be reduced (Rajkowska et al., 1998; Pierri et al., 2001), and
these neurons have smaller basal dendrites (Glantz and Lewis,
2000; Kalus et al., 2000) and lower dendritic spine density (Kol-
luri et al., 2005). These changes may be caused by the neurotrophic
effects of reduced NMDA-R inputs (Rajan and Cline,1998; Monfils
and Teskey, 2004) and a loss of synaptic connectivity (Perrone-
Bizzozero et al., 1996; Glantz and Lewis, 1997) – perhaps with the
thalamus (Lewis et al., 2001) or association cortex (Sweet et al.,
2007). Others have found losses of interneurons in layer 2 in both
prefrontal and cingulate cortex (Benes et al., 1991) and smaller
dendritic fields of prefrontal layer 5 pyramidal cells (Black et al.,
2004). In the medial temporal lobe, most abnormalities are again
found in the superficial layers; such as atypical clustering of neu-
rons in layer 2 of entorhinal cortex (Jakob and Beckmann, 1986;
Arnold et al., 1991; Falkai et al., 2000).

SUMMARY
In summary, the main neuropathological abnormalities appear to
be expressed in high hierarchical levels (prefrontal cortex and the
medial temporal lobe), particularly in supragranular layers that
contain superficial pyramidal cells. The main neuromodulatory
(trait) abnormalities include the hypofunction of cortical NMDA-
Rs and GABAergic neurons (and possibly D1Rs) – in contrast to
the elevation of striatal D2R activity in (the state of) psychosis. In
short, the neuropharmacological and neuropathological evidence
points to abnormal neuromodulation of superficial pyramidal
cells. This is important because – in predictive coding schemes –
the post-synaptic gain of these cells encodes the precision of
prediction error. The next section explains why this is the case,
starting from basic principles.

NEUROBIOLOGICAL IMPLEMENTATION OF ACTIVE
INFERENCE
This section introduces the theory behind inference in the brain.
This normative account provides key constraints on the func-
tional (computational) anatomy of action and perception. This
allows one to understand (and simulate) inference in a principled
way – that is also grounded in neuroanatomy and neurophysi-
ology. We will use the formalism below to simulate some of the
schizophrenic abnormalities reviewed above. These simulations
rest on descriptions of the neuronal processes (differential equa-
tions) that underwrite inference in the brain. These equations are
based on three assumptions:

• The brain minimizes the free energy of sensory inputs defined
by a generative model.

• The generative model used by the brain is hierarchical, non-
linear, and dynamic.

• Neuronal firing rates encode the expected state of the world,
under this model.

The first assumption is the free energy principle, which leads
to active inference in the embodied setting of action (Friston
et al., 2010a). This provides a normative (Bayes-optimal) account
of action and perception, in which both minimize a free energy
bound on the (negative log) evidence for the brain’s model of
the world. Free energy is a quantity from statistics that measures
the quality of a model in terms of the probability that it could
have generated observed outcomes. This means that minimizing
free energy maximizes the Bayesian evidence for the generative
model (Ballard et al., 1983; Hinton and van Camp, 1993; Dayan
et al., 1995). The second assumption is motivated by noting that
the world is both dynamic and non-linear and that hierarchical
causal structure emerges inevitably from a separation of temporal
scales (Ginzburg, 1955; Haken, 1983). The final assumption is the
Laplace assumption that, in terms of neural codes, leads to the
Laplace code that is arguably the simplest and most flexible of all
neural codes (Friston, 2009).

Given these assumptions, one can simulate a whole variety of
neuronal processes by specifying the particular equations that con-
stitute the brain’s generative model. Action and perception are
then specified completely by the above assumptions and can be
implemented in a biologically plausible fashion. In brief, these sim-
ulations use differential equations that minimize the free energy of
sensory input using a generalized gradient descent (Friston et al.,
2010b).

˙̃µ (t ) = Dµ̃ (t )− ∂µ̃F (s̃, µ̃)

ȧ (t ) = −∂aF (s̃, µ̃) (1)

These coupled differential equations describe perception and
action respectively. They say that neuronal activity encoding pos-
terior expectations about (generalized) hidden states of the world
µ̃ =

(
µ, µ′, µ′′, . . .

)
and action a reduce free energy – where

free energy F (s̃, µ̃) is a function of (generalized) sensory inputs
s̃ =

(
s, s ′, s ′′, . . .

)
and neuronal activity. The first differential

equation is known as generalized predictive coding or Bayesian
filtering: see also Rao and Ballard (1999). The first term is a pre-
diction based upon a differential matrix operator D that returns
the generalized motion of expected hidden states. The second
(correction) term is usually expressed as a mixture of prediction
errors that ensures the changes in posterior expectations are Bayes-
optimal predictions about hidden states of the world. The second
differential equation says that action also minimizes free energy.
The differential equations above are coupled because sensory input
depends upon action, which depends upon perception through
the posterior expectations. This circular dependency leads to a
sampling of sensory input that is both predicted and predictable,
thereby minimizing free energy and, implicitly, prediction errors.

To perform neuronal simulations under this scheme, it is
only necessary to integrate or solve Eq. 1 to simulate the neu-
ronal dynamics that encode posterior expectations and associated
action. Posterior expectations depend upon the brain’s genera-
tive model of the world, which we assume has the following
hierarchical form:
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s = g (1)
(

x(1), v(1)
)
+ ω(1)

v

ẋ(1)
= f (1)

(
x(1), v(1)

)
+ ω(1)

x

...

v(i−1)
= g (i)

(
x(i), v(i)

)
+ ω(i)

v

ẋ(i)
= f (i)

(
x(i), v(i)

)
+ ω(i)

x

...

ω(i)
x ∼ N

(
0, Π(i)−1

x

)
ω(i)

v ∼ N
(

0, Π(i)−1
x

)
Π(i)

x = exp
(
π(i)

x

(
x(i), v(i)

))
Π(i)

v = exp
(
π(i)

v

(
x(i), v(i)

))

(2)

This equation describes a probability density over the sensory
and hidden states that generate sensory input. Here, the hidden
states have been divided into hidden states and causes (x(i), v(i)),
with (i) denoting their level within the hierarchical model. Hid-
den states and causes are abstract variables that the brain uses to
explain or predict sensations – like the motion of an object in
the field of view. In these models, hidden causes link hierarchi-
cal levels, whereas hidden states link dynamics over time. Here
(g (i), f (i)) are non-linear functions of hidden states and causes
that generate hidden causes for the level below and – at the low-
est level – sensory inputs. Random fluctuations in the motion of

hidden states and causes
(
ω

(i)
x , ω

(i)
v

)
enter each level of the hierar-

chy. Gaussian assumptions about these random fluctuations make
the model probabilistic. They play the role of sensory noise at the
first level and induce uncertainty at higher levels. The amplitudes
of these random fluctuations are quantified by their precisions(
Π

(i)
x , Π

(i)
v

)
that may depend upon the hidden states or causes

through their log precisions
(
π

(i)
x , π

(i)
v

)
PERCEPTION AND PREDICTIVE CODING
Given the form of the generative model Eq. 2 we can now write
down the differential Eq. 1 describing neuronal dynamics in terms
of (precision weighted) prediction errors on the hidden causes
and states. These errors represent the difference between posterior
expectations and predicted values, under the generative model
(using A×B:=ATB and omitting higher-order terms):

˙̃µ(i)
x = Dµ̃(i)

x +

(
∂ g̃ (i)

∂µ̃
(i)
x

−
1
2 ε̃(i)

v
∂π̃

(i)
v

∂µ̃
(i)
x

)
· ξ(i)

v

+

(
∂ f̃ (i)

∂µ̃
(i)
x

−
1
2 ε̃(i)

x
∂π̃

(i)
x

∂µ̃
(i)
x

)
· ξ(i)

x

+

∂tr
(
π̃

(i)
v + π̃

(i)
x

)
∂µ̃

(i)
x

−DT ξ(i)
x

˙̃µ(i)
v = Dµ̃(i)

v +

(
∂ g̃ (i)

∂µ̃
(i)
v

−
1
2 ε̃(i)

v
∂π̃

(i)
v

∂µ̃
(i)
v

)
· ξ(i)

v (3)

+

(
∂ f̃ (i)

∂µ̃
(i)
x

−
1
2 ε̃(i)

x
∂π̃

(i)
x

∂µ̃
(i)
v

)
· ξ(i)

x

+

∂tr
(
π̃

(i)
v + π̃

(i)
x

)
∂µ̃

(i)
v

− ξ(i+1)
v

ξ(i)
x = Π̃(i)

x ε̃(i)
x = Π̃(i)

x

(
Dµ̃(i)

x − f̃ (i)
(
µ̃(i)

x , µ̃(i)
v

))
ξ(i)

v = Π̃(i)
v ε̃(i)

v = Π̃(i)
v

(
µ̃(i−1)

v − g̃ (i)
(
µ̃(i)

x , µ̃(i)
v

))

Equation 3 can be derived by computing the free energy for
the hierarchical model in Eq. 2 and inserting its gradients into
Eq. 1. This produces a relatively simple update scheme, in which
posterior expectations are driven by a mixture of prediction
errors, where prediction errors are defined by the equations of
the generative model.

It is difficult to overstate the generality of Eq. 3: its solutions
grandfather nearly every known statistical estimation scheme,
under parametric assumptions about additive or multiplicative
noise (Friston, 2008). These range from ordinary least squares
to advanced variational deconvolution schemes. The scheme is
called generalized Bayesian filtering or predictive coding (Friston
et al., 2010b). In neural network terms, Eq. 3 says that error units(
ξ
(i)
v

)
compute the difference between expectations at one level(

µ̃
(i−1)
v

)
and predictions from the level above

(
g̃ (i)

(
µ̃

(i)
x , µ̃

(i)
v

))
.

Conversely, posterior expectations (encoded by the activity of state
units) are driven by prediction errors from the same level and
the level below. These constitute bottom-up and lateral messages
that drive posterior expectations toward a better prediction to
reduce the prediction error in the level below. This is the essence
of recurrent message passing between hierarchical levels to opti-
mize free energy or suppress prediction error: see Friston and
Kiebel (2009b) and Feldman and Friston (2010) for a more detailed
discussion. Crucially, in neurobiological implementations of this
scheme, the sources of bottom-up prediction errors have to be
superficial pyramidal cells, because it is these – and only these –
cells that send forward (ascending) connections to higher cortical
areas. Conversely, predictions are conveyed from deep pyramidal
cells, by backward (descending) connections, to target the super-
ficial pyramidal cells encoding prediction error (Mumford, 1992;
Bastos et al., 2012): see Figure 3.

Note that the precisions depend on the expected hidden causes
and states. We have proposed that this dependency mediates atten-
tion and action selection in hierarchical processing (Feldman and
Friston, 2010; Friston et al., 2012). Equation 3 tells us that the

(state-dependent) precisions
(
Π

(i)
x , Π

(i)
v

)
modulate the responses

of prediction error units to their presynaptic inputs. This modu-
lation depends on the posterior expectations about the states and
suggests something intuitive – attention is mediated by activity-
dependent modulation of the synaptic gain of principal cells that
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Adams et al. The computational anatomy of psychosis

FIGURE 3 | Hierarchical message passing in the visual-oculomotor
system: the schematic illustrates a neuronal message-passing scheme
(generalized Bayesian filtering or predictive coding) that optimizes
posterior expectations about hidden states of the world, given sensory
(visual) data, and the active (oculomotor) sampling of those data. It
shows the speculative cells of origin of forward driving connections (in red)
that convey prediction errors from a lower area to a higher area and the
backward connections (in black) that construct predictions. These
predictions try to explain away prediction error in lower levels. In this
scheme, the sources of forward and backward connections are superficial
(red) and deep (black) pyramidal cells respectively. The cyan connection
denotes a neuromodulatory connection from the ventral tegmental area
(VTA) which mediates estimates of precision. The equations on the right
represent a generalized descent on free energy under the hierarchical model
described in the main text – this can be regarded as a generalization of
predictive coding or Bayesian (e.g., Kalman–Bucy) filtering. These equations

are simplified versions of Eq. 3, in which state-dependent precision has
been suppressed. State units are in black and error units are in red. The cyan
circle highlights where precisions enter these equations – to modulate
prediction error units (superficial pyramidal cells) such that they report
precision-weighted prediction errors. In this schematic, we have placed
different levels of a hierarchical model within the visual-oculomotor system.
Visual input arrives in an intrinsic (retinal) frame of reference that depends
on the direction of gaze. Exteroceptive input is then passed to the lateral
geniculate nuclei (LGN) and to higher visual and prefrontal (e.g., frontal eye
fields) areas in the form of prediction errors. Crucially, proprioceptive
sensations are also predicted, creating prediction errors at the level of the
cranial nerve nuclei (pons). The special aspect of these proprioceptive
prediction errors is that they can be resolved in one of two ways: top-down
predictions can change or the errors can be resolved through classical reflex
arcs – in other words, they can elicit action to change the direction of gaze
and close the visual–oculomotor loop.

convey sensory information (prediction error) from one corti-
cal level to the next. This translates into a top-down control of
synaptic gain in principal (superficial pyramidal) cells elaborating
prediction errors and fits comfortably with the modulatory effects
of top-down connections in cortical hierarchies that have been
associated with attention and action selection.

ACTION
In active inference, posterior expectations elicit behavior by send-
ing top-down predictions down the hierarchy that are unpacked
into proprioceptive predictions at the level of the cranial nerve

nuclei and spinal cord. These engage classical reflex arcs to suppress
proprioceptive prediction errors and produce the predicted motor
trajectory

ȧ = −
∂

∂a
F = −

∂ s̃

∂a
× ξ(1)

v (4)

The reduction of action to classical reflexes follows because the
only way that action can minimize free energy is to change sensory
(proprioceptive) prediction errors by changing sensory signals;
cf., the equilibrium point formulation of motor control (Feld-
man and Levin, 1995). In short, active inference can be regarded
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Adams et al. The computational anatomy of psychosis

as equipping a generalized predictive coding scheme with classi-
cal reflex arcs: see Friston et al. (2009) and Adams et al. (2013)
for details. The actual movements produced clearly depend upon
top-down predictions that can have a deep and complex structure,
as we will see later.

SUMMARY
In summary, starting with the assumption that the brain is try-
ing to maximize the evidence for its model of the world, one
can derive plausible equations describing neuronal dynamics in
terms of message passing among different levels of a (cortical)
hierarchical model. These messages comprise precision-weighted
prediction errors that are passed forward from one level to the
next and top-down predictions that are reciprocated to minimize
prediction error. In this scheme, precision is encoded by the gain
of superficial pyramidal cells reporting prediction error, which is
implicated in the synaptic pathology of schizophrenia. This is a
straightforward consequence of the mathematical form of pre-
dictive coding and the fact that superficial pyramidal cells are the
source of ascending connections in the brain. At the proprioceptive
level, prediction errors can be reduced either by changing predic-
tions (perception) or by changing sensations (action). In the last
three sections, we use Eqs 3 and 4 to simulate active inference under
a number of generative models, while manipulating the precision
at different hierarchical levels. These models are described com-
pletely by the Eq. 2, which are provided in figures that summarize
the generative model used in each example.

PERCEPTUAL INFERENCE AND HALLUCINATIONS
This section focuses on perceptual inference to show how reducing
the precision at high levels of a generative model can confound
perception and distort perceptual synthesis. We will examine a
non-trivial problem; namely, recognizing structure and syntax in
communication, using a well studied model – birdsong. This is
an interesting problem because it calls upon both the dynam-
ics modeled by hidden states and a hierarchical structure that
entails a separation of temporal scales (Kiebel et al., 2009). We
first describe our generative model of birdsong and then examine
the sorts of inference that arise when prior precision is reduced.
We then model a compensatory reduction in sensory precision.
In brief, we will see a loss of responses to violations – of the sort
that characterize psychotic traits (e.g., reduced MMN) – and the
emergence of hallucinosis with compensatory changes in sensory
precision.

ATTRACTORS IN THE BRAIN
The basic idea behind the generative model in this section is that
the environment unfolds as an ordered sequence of dynamics,
whose equations of motion have an attractor manifold that con-
tains sensory trajectories. Crucially, the shape of this manifold is
itself changed by other dynamical systems that have their own
attracting sets. If the brain has a generative model of these hierar-
chically coupled dynamics, then we would expect to see cascades
of neuronal attractors (c.f., central pattern generators) that are
trying to predict sensory input. In this hierarchical setting, one
would expect higher attractors to predict the changing shape of
lower attractors, thereby modeling a separation of temporal scales

of the sort seen in language (e.g., from formants to phonemes,
from phonemes to words, from words to phrases, from phrases to
sentences, and so on).

The example used here deals with the generation and recog-
nition of birdsongs (Laje and Mindlin, 2002). We imagine that
birdsongs are produced by two time-varying control parame-
ters that control the frequency and amplitude of vibrations of
a songbird’s syrinx (see Figure 4). There has been an extensive
effort using attractor models at the biomechanical level to under-
stand the generation of birdsong; e.g., Laje et al. (2002). Here,
we use attractors at higher levels to provide time-varying control
over the resulting sonograms. To produce synthetic stimuli, we
drove the syrinx with two states of a Lorenz attractor, one control-
ling the frequency (between 2 and 5 kHz) and the other controlling
the amplitude or volume. The parameters of the Lorenz attractor
were chosen to generate a short sequence of chirps every second or
so. To endow the generative model with a hierarchical structure,
we placed a second Lorenz attractor – whose dynamics were an
order of magnitude slower – over the first. The states of the slower
attractor entered as control parameters (the Rayleigh and Prandtl
number) to control the shape of the lower attractor.

We generated a single song, corresponding roughly to a cycle of
the higher attractor and then filtered the ensuing sonogram (sum-
marized as peak amplitude and volume) using the message-passing
scheme described in the previous section Eq. 3. The results are
shown in Figure 4 (lower panels), in terms of the predicted sono-
gram and prediction error at the sensory level. These results show
that – after several hundred milliseconds – the veridical hidden
states and causes can be recovered and provide accurate predic-
tions of auditory sensations. Note that the percept or predictions
are not an exact copy of the stimulus – the mismatch is reflected in
the prediction errors on the lower right. These prediction errors
provide contextual guidance for posterior expectations about hid-
den causes and states. Note that prediction errors coincide with
the onset of each chirp, where the prediction errors for the third
chirp are more protracted – suggesting that this chirp was less easy
to predict than the others.

OMISSION-RELATED RESPONSES
To examine responses to surprising stimuli or violations – and
how they depend upon precision – we repeated the simulation
but omitted the last three chirps. The corresponding percepts are
shown with their prediction errors in Figure 5 (top row). These
results illustrate two important phenomena. First, there is a vigor-
ous expression of prediction error with the first missing chirp. This
reflects the dynamical nature of perception: at this point, there is
no sensory input to predict and the prediction error is generated
entirely by top-down predictions. Second, it can be seen that there
is a transient (illusory) percept, when the missing chirp should
have occurred. Its frequency is too low, but its timing is preserved
in relation to the expected chirp. This is an interesting stimula-
tion from the point of view of ERP studies of omission-related
responses that provide clear evidence for the predictive capacity
of the brain (e.g., Nordby et al., 1994; Yabe et al., 1997).

This simulation models neuronal responses to unpredicted or
surprising stimuli of the sort used in oddball paradigms to elicit the
MMN or P300. These electrophysiological markers are particularly
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Adams et al. The computational anatomy of psychosis

FIGURE 4 | Schematic showing the construction of the generative model
for birdsongs. This comprises two Lorenz attractors where the higher
attractor delivers two control parameters (gray circles in the corresponding
equations of motion) to a lower level attractor, which, in turn, delivers two
control parameters to a synthetic syrinx to produce amplitude and frequency
modulated stimuli. These control parameters correspond to hidden causes
that have to be inferred, given the stimulus. This stimulus is represented as a

sonogram (lower left panel). The upper equations represent the hierarchical
dynamic model in the form of Eq. 2; while the lower equations summarize the
recognition or Bayesian filtering scheme in the form of (a simplified version of)
Eq. 3. The lower right panels show the sensory predictions of this Bayesian
filtering scheme in terms of the predicted sonogram based upon posterior
expectations (left) and the precision-weighted prediction errors driving these
expectations (right).

pertinent here, because the same cells reporting prediction error
(superficial pyramidal cells) are thought to be the primary source
of electrophysiological measurements. In these simulations, the
sensory log precision was two, the log precision of (first level)
hidden states was eight and the log precision of second level pre-
diction errors was high (16). These precisions correspond to the
true uncertainty or amplitude of random fluctuations used to gen-
erate the song. So what would happen if we reduced the precision
of prediction errors at the second level that provides top-down
predictions about the syntax and timing of the chirps?

PRECISION AND ODDBALL RESPONSES
The middle row of Figure 5 shows the results of repeating the sim-
ulation when the log precision at the second level was reduced to
two. This has two remarkable effects: first, there is a failure to detect
the third chirp (that previously elicited the greatest prediction

error – white arrow) and, second, there is a marked attenuation of
the omission–related response. The explanation for these phenom-
ena is straightforward: because we have reduced the precision at
higher levels, there is less confidence in top-down predictions and
therefore every stimulus is relatively surprising. In fact, the third
stimulus is so unpredictable it is not perceived, eliciting a large
prediction error (black arrow in the middle right panel). Simi-
larly, a high amplitude prediction error is seen shortly afterward
in response to the surprising omission. However, it is attenuated
in comparison to responses under precise top-down predictions.
This allows sensory evidence to resolve prediction errors more
quickly, thereby reducing their amplitude. This may speak to the
attenuation of oddball responses as a psychotic trait. In particular,
the attenuation of the MMN can be seen in terms of the difference
between the prediction errors to the omitted chirp, relative to the
third (standard) chirp (red arrows). These simulations highlight
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Adams et al. The computational anatomy of psychosis

FIGURE 5 | Omission-related responses. Here, we omitted the last three
chirps from the stimulus. The left-hand panels show the predicted sonograms
based upon posterior expectations, while the right-hand panels show the
associated (precision weighted) prediction error at the sensory level. The top
panels show a normal omission-related response using log precisions of 16 at
the second (higher) level. This response is due to precise top-down
predictions that are violated when the first missing chirp is not heard. This
response is attenuated, when the log precision of the second level is reduced
to two (middle row). This renders top-down predictions more sensitive to

bottom-up sensory evidence and sensory prediction errors are resolved under
reduced top-down constraints. At the same time, the third chirp – that would
have been predicted on the basis of top-down (empirical) prior beliefs – is
missed, leading to sensory prediction errors that nearly match the amplitude
of the prediction errors elicited by the omission. The lower row shows
predictions and prediction errors when there is a compensatory decrease in
sensory log precision from two to minus two. Here, there is a failure of
sensory prediction errors to entrain high-level expectations and subsequent
false inference that persists in the absence of any stimuli.

an important but intuitive point: attenuated mismatch or viola-
tion responses in chronic schizophrenia may not reflect a failure
to detect surprising events but reflect a failure to detect unsur-
prising (predictable) events. In other words, they may reflect the
fact that every event is surprising. In summary, a reduced precision
of (confidence in) top-down predictions means that everything is
mildly surprising and may provide an explanation for the failure
to confidently infer regularities in the sensorium (and for larger
P50 responses to repeated stimuli). As noted above, abnormal P50,
P300, and MMN responses have also been demonstrated in first-
degree relatives, and do not normalize with anti-dopaminergic
treatment (Winterer and McCarley, 2011) – consistent with their
status as trait phenomena. So what would happen if we tried
to compensate for reduced prior precision by reducing sensory
precision?

PRECISION AND HALLUCINATIONS
The lower row of Figure 5 shows the results of the simulation with
a compensatory reduction in sensory log precision from two to

minus two. Here, the omission–related response is abolished; how-
ever there is a complete failure of perceptual inference, during the
song and after its termination. Although the tempo of the percept is
roughly the same as the stimulus, there is loss of frequency tracking
and syntax. This false percept emerges because sensory informa-
tion is not afforded the precision needed to constrain or entrain
top-down predictions. The structured and autonomous nature
of these predictions is an inevitable consequence of a generative
model with deep structure – that is required to explain the dynamic
and non-linear way in which our sensations are caused. The ensu-
ing false inference can be associated with hallucinosis in the sense
that there is a perceptual inference in the absence of sensory evi-
dence. Clearly, the computational anatomy of hallucinations in
the psychotic state is probably much more complicated – and
specific to the domain of self-made acts (such as speech and
movement). We will turn to the misattribution of agency in the
final section. Here, it is sufficient to note that a compensatory
reduction of sensory precision could produce hallucinosis of the
sort seen in organic psychosyndromes. Note that the prediction
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Adams et al. The computational anatomy of psychosis

error persists throughout the stimulus train and has, paradoxi-
cally, lower amplitude than in the previous simulations. This is
because the prediction error is precision weighted – and we have
reduced its precision.

SUMMARY
In summary, we have used a fairly sophisticated generative model
with dynamical and hierarchical structure to recognize sequences
of simulated chirps in birdsong. This is a difficult Bayesian filter-
ing problem that the brain seems to solve with ease. The key thing
to take from these simulations is that some of the trait abnormal-
ities associated with psychosis (schizophrenia) can be explained
by a loss of precise top-down predictions – rendering everything
relatively surprising (c.f., delusional mood), and reducing the dif-
ference between responses to standard and oddball stimuli. The
loss of precise top-down (empirical) priors can also be invoked to
explain a resistance to illusions (Silverstein and Keane, 2011) that
depend upon prior beliefs. We will revisit this in the context of the
force-matching illusion in the last section. One can compensate
for relatively precise sensory prediction errors by reducing sensory
precision – but at the expense of dissociating from the sensorium
and false (hallucinatory) inference. This compensated state could
be a metaphor for some psychotic states. Having said this, the fact
that the hallucinations of schizophrenia respond to antipsychotics
suggests that they are associated with a hyper-dopaminergic state
and may involve a failure of sensory attenuation of corollary dis-
charge (see last section). In the next section, we ask what would
happen if perceptual deficits of this sort occurred during active
inference and affected motor behavior.

ABNORMALITIES OF SMOOTH PURSUIT UNDER VISUAL
OCCLUSION
This section uses a generative model for smooth oculomotor
pursuit to illustrate the soft neurological signs that result from
changing the precision of prediction errors in active inference.
This example is particularly pertinent to schizophrenia where,
arguably, some of the most reproducible signs are found in terms
of eye movements. To simulate anticipatory smooth pursuit eye
movements, we require a hierarchical model that generates hidden
motion. One such model is summarized in Figure 6 (see figure leg-
end for details). In brief, this model produces smooth pursuit eye

movements because it embodies prior beliefs that gaze x(1)
o and

the target x(1)
t are attracted by the same invisible point v(1) in the

visual field. Target motion then provides evidence that the attract-
ing (invisible) point is moving, which induces posterior beliefs
that the eye will be attracted to that moving point. These posterior
beliefs create proprioceptive predictions that descend to the oculo-
motor system, where they are fulfilled by oculomotor reflexes (see
Figure 6). Crucially, we also equipped the subject with (veridical)
prior beliefs that the invisible point moves with sinusoidal motion
(equations at the second level in Figure 6) – so that, during periods
of visual occlusion, the subject can anticipate where the target will
reappear. This part of the model constitutes the highest hierar-
chical level and allowed us to simulate smooth pursuit of a target
with sinusoidal motion that passes temporarily behind a visual
occluder.

SIMULATING PSYCHOPATHOLOGY
We modeled a putative deficit in schizophrenia by reducing the
precision on the prediction errors of hidden states at the second

level. Lowering this precision (the precision of ω
(2)
x in Figure 6)

reduces the contribution of prediction errors to the posterior
expectations modeling (hidden) periodic motion of the target.
This results in a slowing of the (prior beliefs about the) target
trajectory, as confidence in the prediction errors about its motion
falls. This would normally place more emphasis on bottom-up pre-
diction errors to guide inference; however, during occlusion these
prediction errors are not available and we should see a behavioral
effect of reducing precision.

To test for these behavioral effects, we reduced the log preci-
sion on the second level from −1 to −1.25. Neurobiologically,
this corresponds to a reduction in the post-synaptic gain of super-
ficial pyramidal cells encoding prediction error in cortical areas
responsible for representing regularities in target motion. Figure 7
shows the resulting active inference (upper panels) and trajecto-
ries of the target (solid black line) and eye (broken red lines) in
the middle and bottom panels respectively. Comparison with the
equivalent results under normal precision (broken black lines)
reveals some characteristic properties of schizophrenic pursuit.
First, with reduced precision, pursuit is disproportionately affected
by target occlusion: at the end of occlusion, the lag behind the
target is increases. This is despite the fact that when the target
is visible and pursuit is stabilized, the tracking is normal (1200–
1400 and 2000–2200 ms). This reproduces empirical findings in
schizophrenia at modest speeds (see Thaker et al., 1999). Sec-
ond, pursuit under reduced precision is less accurate on the third
cycle than the first, consistent with a deficit in inferring the tar-
get trajectory. Indeed, it lags so much just prior to 2700 ms that
it has to make a catch-up saccade when the target re-emerges
(saccades exceed 30 °/s). Overall, these results are consistent with
findings in schizophrenia that suggest an impaired ability to main-
tain veridical pursuit eye movements in the absence of visual
information. Furthermore, they suggest that the computational
mechanism that underlies this failure rests on a failure to assign
precision or certainty to (empirical) prior beliefs about hidden
trajectories.

The relative loss of certainty about top-down predictions may
also explain the ability of schizophrenics to respond to unpre-
dicted changes in direction of the target. To demonstrate this,
we removed the occluder, decreased the target period to around
500 ms, and introduced an unexpected reversal in the motion
of the target – at the beginning of the second cycle of motion
(at around 780 ms). The results of these simulations are shown
in Figure 8. The traces in black correspond to normal pur-
suit and the traces in red show the performance under reduced
precision. Although the effect is small (as it is in real sub-
jects – Hong et al., 2005), the schizophrenic simulation (red
lines) shows more accurate pursuit performance, both in terms
of the displacement between the target and center of gaze, and
in terms of a slight reduction in the peak velocity during the
compensatory eye movement – a movement that is nearly fast
enough to be a saccade. These differences are highlighted by red
circles.
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Adams et al. The computational anatomy of psychosis

FIGURE 6 | Upper panel : this schematic summarizes the generative
model for smooth pursuit eye movements. The model is based upon the
prior belief that the center of gaze and target are attracted to a common
(fictive) attracting point in visual space. The process generating sensory
inputs is much simpler and is summarized by the equations specifying the
generative process (lower left). The real-world provides sensory input in two
modalities: proprioceptive input from cranial nerve nuclei reports the
(horizontal) angular displacement of the eye so and corresponds to the
center of gaze in extrinsic coordinates xo. Exteroceptive (retinal) input
reports the angular position of a target in a retinal (intrinsic) frame of
reference st. This input models the response of 17 visual channels, each
equipped with a Gaussian receptive field deployed at intervals of one
angular unit – about 2° of visual angle. This input can be occluded by a
function of target location O(xt), which returns values between zero and
one, such that whenever the target location xt is behind the occluder retinal
input is zero. The response of each visual channel depends upon the
distance of the target from the center of gaze. This is just the difference
between the oculomotor angle and target location. The hidden states of this
model comprise the oculomotor states – oculomotor angle and velocity(
xo , x′o

)
and the target location. Oculomotor velocity is driven by action and

decays to zero with a time constant of eight time bins or 8×16=128 ms.
This means the action applies forces to the oculomotor plant, which
responds with a degree of viscosity. The target location is perturbed by the
hidden cause v that describes the location to which the target is drawn (a
sinusoid), with a time constant of one time bin or 16 ms. The random
fluctuations on sensory input and the motion of hidden states had a log
precision of 16. The generative model (lower right) has a similar form to the
generative process but with two important exceptions: there is no action
and the motion of the hidden oculomotor states is driven by the same
hidden cause that moves the target. In other words, the agent believes that
its gaze is attracted to the same fictive point in visual space that is attracting
the target. Second, the generative model is equipped with a deeper
(hierarchical) structure that can represent periodic trajectories in the hidden
cause of target motion: hidden causes are informed by the dynamics of
hidden states at a second level ẋ (2). These model sinusoidal fluctuations of
any amplitude and a frequency – that is determined by a second level hidden
cause v (2) with a prior expectation of η. This prior expectation corresponds to
beliefs about the frequency of periodic motion. The log precisions on the
random fluctuations in the generative model were three at the first
(sensory) level and minus one at the higher level, unless stated otherwise.

SUMMARY
In summary, a reduction in the precision of high-level prediction
errors can account for both impaired smooth pursuit eye
movements during occlusion and the paradoxical improvement
of responses to unpredictable changes in target direction. This

dissociation makes perfect sense from the point of view of the
computational anatomy we have modeled here – reducing synap-
tic gain (precision) at high levels of a hierarchical predictive coding
scheme reduces confidence in predictions that impairs perfor-
mance when these predictions are needed (during occlusion) and
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Adams et al. The computational anatomy of psychosis

FIGURE 7 | Smooth pursuit of a partially occluded target with and
without high-level precision. These simulations show the results of
applying Bayesian filtering Eq. 3 using the generative process and model of
the previous figure. Notice, that in these simulations of active inference, there
is no need to specify any stimuli explicitly – active sampling of the visual field
means that the subject creates their own sensory inputs. The upper panels
shows the responses of each of the (17) photoreceptors in image format as a
function of peristimulus time. They illustrate the small fluctuations in signal
that are due to imperfect pursuit and consequent retinal slip at the onset of
target motion. Later, during periods of occlusion, the sensory input
disappears. The lower panels show the angular displacement (top) and
velocity (bottom) of the target (solid lines) and eye (broken lines) as a function

of peristimulus time. They illustrate the remarkably accurate tracking behavior
that is produced by prior beliefs that the center of gaze and target are drawn
to the same fictive point – beliefs that action fulfils. The gray area corresponds
to the period of visual occlusion. The upper right panel shows sensory input
when the precision of prediction errors on the motion of hidden states at the
second level was reduced from a log precision of −1 to −1.25. The associated
behavior is shown with red broken lines in the lower panels. The dashed
horizontal line in the lower panel corresponds to an angular velocity (30°); at
which the eye movement would be considered saccadic. This simulation
illustrates the loss of Bayes-optimal tracking when the motion of the target
corresponds to high-level posterior beliefs but the precision of these beliefs is
attenuated.

that improves performance when they are not (during unpre-
dicted motion). In the final simulations, we retain a focus on
active inference but instead of attenuating high-level precision
we examine the effects of failing to attenuate low-level sensory
precision.

SENSORY ATTENUATION, ATTRIBUTION OF AGENCY, AND
DELUSIONS
This section uses a generative model of (somatosensory) sen-
sations that could be generated internally or externally. This
model is used to illustrate the perceptual consequences of sensory
attenuation, in terms of estimating the magnitude of externally

and internally generated events. In brief, we reproduce the
force-matching illusion (Shergill et al., 2003, 2005) by yoking
externally applied forces to the perceived level of self-generated
forces. Finally, we demonstrate the disappearance of the illusion
and the emergence of false inferences about (antagonistic) exter-
nal forces, when there is a failure to attenuate sensory precision
and a compensatory increase in the precision of empirical prior
beliefs.

ACTIVE INFERENCE AND SENSORY ATTENUATION
Sensory attenuation refers to a decrease in the intensity of a per-
ceived stimulus when it is self generated (Blakemore et al., 1998).
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Adams et al. The computational anatomy of psychosis

FIGURE 8 | Smooth pursuit with an unexpected trajectory
change – with and without high-level precision: this figure reports the
simulations of occluded periodic motion with a reversal in the
direction of the trajectory at the beginning of the second cycle (plain
black line). The broken traces in black correspond to normal pursuit and the
broken traces in red show the performance under reduced precision.
Although the effect is small, reducing the precision about prior beliefs
produces more accurate pursuit performance, both in terms of the
displacement between the target and center of gaze and in terms of a slight
reduction in the peak velocity during the compensatory eye movement (red
circles). This illustrates the paradoxical improvement of performance that
rest upon precise sensory information that cannot be predicted a priori (and
is characteristic of syndromes like schizophrenia and autism).

We have suggested that sensory attenuation is necessary to allow
reflex arcs to operate (Brown et al., in press). The argument is
simple: proprioceptive prediction errors can only be resolved by
moving – via motor reflexes – or by changing predictions. This
means the effects of ascending prediction errors on posterior
expectations must be attenuated to allow movement: if propri-
oceptive sensations are conveyed by ascending primary (Ia and Ib)
sensory afferents with too much precision, then they would subvert
descending predictions that create prediction errors and therefore
prevent movement. It is therefore necessary to temporarily sus-
pend the precision of sensory reafference to permit movement. If
we associate the perceived intensity or detectability of the sensory

consequences of action with a lower bound on their posterior con-
fidence interval, attenuation of sensory precision provides a simple
explanation for the attenuation of the perceived intensity of self-
generated sensations. In what follows, we present simulations of
sensory attenuation by simulating the force-match illusion and
then demonstrate how overly precise prior beliefs can compensate
for a failure of sensory attenuation but expose the actor to somatic
delusions.

THE GENERATIVE PROCESS AND MODEL
Figure 9 summarizes the generative process and model (using
the form of Eq. 2). This model is as simple as we could make it,
while retaining the key ingredients that are required to demon-
strate inference about or attribution of agency. The equations on
the left describe the real world, while the equations on the right
constitute the subject’s generative model. In the real world, there is
one hidden state xi modeling self-generated force that is registered
by both proprioceptive sp and somatosensory ss inputs. Externally
generated forces ve are added to internally generated forces to
provide somatosensory input. The key thing about this model is
that somatosensory sensations are caused ambiguously, by either
internally or externally generated forces: ss= xi+ ve. The only way
that the underlying cause of the sensations can be inferred is by
reference to proprioceptive input – that is only generated inter-
nally. This is a very simple model, where the somatosensory input
is used metaphorically to represent the sensory consequences of
events that could be caused by self or others, while proprioceptive
input represents signals that can only be caused by self-made acts.
Active inference now compels the subject to infer the causes of its
sensations.

The generative model used for this inference is shown on the
right. In this model, internally and externally generated forces
(xi, xe) are modeled symmetrically, where changes in both are
attributed to internal and external hidden causes (vi, ve). The
hidden causes trigger the dynamics associated with the hid-
den states, much like the push that sets a swing in motion.
This means that proprioceptive and somatosensory inputs are
explained in terms of hidden causes, where proprioceptive sensa-
tions are caused by internally generated forces and somatosensory
consequences report a mixture of internal and external forces.
Crucially, the precision afforded sensory prediction errors depends
upon the internally generated force (and its hidden cause). This
dependency is controlled by a parameter γ that mediates the
attenuation of sensory precision: as internally generated forces
rise, sensory precision falls, thereby attenuating the amplitude of
(precision weighted) sensory prediction errors. These context or
state-dependent changes in precision enable the agent to attend
to sensory input, or not – depending upon the relative preci-
sion of prediction errors at the sensory and higher levels. This
context sensitive sensory precision is shown in Figure 10 as π

(cyan circles).

FUNCTIONAL ANATOMY
Figure 10 illustrates how this generative model could be tran-
scribed into a plausible neuronal architecture. In this example,
we have assigned sensory expectations and prediction errors to
the thalamus, while corresponding expectations and prediction
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Adams et al. The computational anatomy of psychosis

FIGURE 9 |This figure shows the generative process and model
used in the simulations of sensory attenuation. The generative
process (on the left) models real-world states and causes, while the
model on the right is the generative model used by the subject. In the
real world, the hidden state xi corresponds to self-generated pressures
that are sensed by both somatosensory ss and proprioceptive sp input
channels. External forces are modeled with the hidden cause ve and are
sensed only by the somatosensory channel. Action causes the
self-generated force xi to increase and is modified by a sigmoid
squashing function σ. The hidden state decays slowly over four time bins.

In the generative model, causes of sensory data are divided into internal
vi and external causes ve. The hidden cause excites dynamics in hidden
states xi and xe, which decay slowly. Internal force is perceived by both
proprioceptive and somatosensory receptors, as before, while external
force is perceived only by somatosensory receptors. Crucially, the
precision of the sensory input ωs is influenced by the level of internal
force, again modulated by a squashing function, and controlled by a
parameter γ that governs the level of attenuation of precision. The
generalized predictive coding scheme associated with this generative
model is shown schematically in the next figure.

errors about hidden states (forces) are associated with the senso-
rimotor cortex. The expectations and prediction errors about the
hidden causes of forces have been placed – somewhat agnostically –
in the prefrontal cortex. Notice how proprioceptive predictions
descend to the spinal cord to elicit output from alpha motor neu-
rons (playing the role of proprioceptive prediction error units)
that cause movements through a classical reflex arc. Red con-
nections denote ascending prediction errors, black connections
descending predictions (posterior expectations), and the cyan con-
nection denotes descending neuromodulatory effects that mediate
sensory attenuation. The ensuing hierarchy conforms to the func-
tional form of the predictive coding scheme in Eq. 3. In this
architecture, predictions based on expected states of the world
can either be fulfilled by reflex arcs or they can be corrected by
ascending sensory prediction errors. Which of these alternatives
occurs depends on the relative precisions along each pathway –
that are set by the descending modulatory connection to sensory
prediction errors. We now use this model to demonstrate some
key points.

SENSORY ATTENUATION AND THE FORCE-MATCHING ILLUSION
To produce internally generated movements, we simply supplied
the subject with prior beliefs that the internal hidden cause
increased transiently to a value of one, with high sensory attenu-
ation γ= 6. We then followed this self-generated movement with

an exogenously generated force that matched the self-generated
force. The left-hand panels in Figure 11 show the results of
this simulation. The lower left panel shows the internal hidden
cause (blue line) with relatively tight 90% confidence intervals
(gray areas). Prior beliefs about this hidden cause excite poste-
rior beliefs about internally generated forces, while at the same
time attenuating the precision of sensory prediction errors. This
is reflected by the rise in the posterior expectation of the inter-
nal force (blue line in the upper right panel) and the transient
increase in the confidence interval about this expectation. The
resulting proprioceptive predictions are fulfilled by action (bot-
tom right panel) to produce the predicted sensations (upper left
panel). Note that proprioceptive prediction (blue line) corre-
sponds to somatosensory prediction (green line) and that both
are close to the real values (broken black line). This simulation
shows normal self-generated movement under permissive sensory
attenuation.

The right-hand panels of Figure 11 show exactly the same
results as in the left-hand panels; however here, we have yoked the
exogenous force xe to the self-generated force xi perceived at 90%
confidence (dotted line in the top right graph) – as opposed to the
true force exerted by the subject. In other words, the external force
corresponds to the force that would be reported by the subject
to match the perceived force at 90% confidence. The 90% confi-
dence interval was chosen as a proxy for the percept to reconcile
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Adams et al. The computational anatomy of psychosis

FIGURE 10 | Speculative mapping of Eq. 3 – for the generative model in
the previous figure – onto neuroanatomy. Somatosensory and
proprioceptive prediction errors are generated by the thalamus, while the
expectations and prediction errors about hidden states (the forces) are
placed in sensorimotor cortex. The expectations and prediction errors about
the hidden causes of forces have been placed in the prefrontal cortex.
Under active inference, proprioceptive predictions descend to the spinal
cord and elicit output from alpha motor neurons (playing the role of
proprioceptive prediction error units) via a classical reflex arc. Red
connections originate from prediction error units – ξ cells – and can be
regarded as intrinsic connections or ascending (forward) extrinsic
connections (from superficial pyramidal cells). Conversely, the black
connections represent intrinsic connections and descending (backward)
efferents (from deep pyramidal cells) encoding posterior expectations – µ̃

cells. The cyan connection denotes descending neuromodulatory effects
that mediate sensory attenuation. The crucial point to take from this
schematic is that conditional expectations of sensory states (encoded in
the pyramidal cell µ̃x ) can either be fulfilled by descending proprioceptive
predictions (that recruit classical reflex arcs) or they can be corrected by
ascending sensory prediction errors. In order for descending motor
efferents to prevail, the precision of the sensory prediction errors must be
attenuated.

the perceived intensity literature with results from signal detection
paradigms (Cardoso-Leite et al., 2010). Experimental work in the
auditory domain has demonstrated that perceived intensity can
be attenuated by increasing sensory noise (decreasing precision)
(Lochner and Burger, 1961; Richards, 1968). When coupled to
the 90% confidence interval, the internally generated force is now
much greater than the matched external force (shown on the upper
left graph). This is the key finding in the force-matching illusion
and is entirely consistent with sensory attenuation. In this setting,
the loss of confidence in posterior estimates of hidden states that

are self-generated translates into an illusory increase in the force
applied, relative to the equivalent force in the absence of sensory
attenuation.

We repeated these simulations under different levels of self-
generated forces by modulating the prior beliefs about the internal
hidden cause (from a half to twice the normal amplitude). The
results are shown as the blue circles in the left panel of Figure 12,
which plots the self-generated force against the yoked or matched
external force with a corresponding 90% confidence interval.
These results are remarkably similar to those obtained empirically
(right panel – reproduced from Shergill et al., 2005) and reveal sen-
sory attenuation through an illusory increase in the self-generated
force, relative to matched forces over a wide range of forces. The
red line in the left panel comes from the final simulations, in which
we asked what would happen if subjects compensated for a failure
in sensory attenuation by increasing the precision of their prior
beliefs?

FALSE INFERENCE AND FAILURES OF SENSORY ATTENUATION
We now demonstrate two pathologies of sensory attenuation: first,
a loss of sensory attenuation resulting in a catatonic state and sec-
ond, how compensation for such a loss could allow movement
but result in a somatic delusion. The consequences of reducing
sensory attenuation (from six to two) are illustrated in the left
panels of Figure 13. Here, the loss of sensory attenuation main-
tains the precision of the hidden states above the precision of prior
beliefs about hidden causes (lower left panel). This means that
bottom-up sensory prediction errors predominate over top-down
predictions and expectations about internally generated forces are
profoundly suppressed. Because there are no predictions about
proprioceptive changes, there is a consequent akinesia. This state
is reminiscent of the catatonic symptoms of schizophrenia such as
immobility, mutism, catalepsy and waxy flexibility, in which the
patient may maintain a fixed posture for a long time, even though
(in the case of waxy flexibility) their limbs can be moved easily by
someone else.

We shall now examine how a loss of sensory attenuation
might be compensated for by increasing the precision of predic-
tion errors at higher levels in the hierarchy (by increasing the
log precision of prediction errors on hidden states and causes
by four log units). This compensatory increase is necessary for
movement and ensures the precision of top-down predictions is
greater than bottom-up sensory prediction errors. These manip-
ulations permit movement but abolish the force-matching illu-
sion, as indicated by the line of red circles in the left panel
of Figure 12. One might ask – why don’t subjects adopt this
strategy and use precise prior beliefs about hidden causes all
the time?

The answer is evident in the right panels of Figure 13, which
show the results of a simulation with low sensory attenuation
and compensatory increases in precision at higher levels. Here,
there is an almost perfect and precise inference about internally
and externally generated sensations. However, there is a failure
of inference about their hidden causes. This can be seen on
the lower left, where the subject has falsely inferred an antag-
onistic external hidden cause that mirrors the internal hidden
causes. Note that this false inference does not occur during

Frontiers in Psychiatry | Schizophrenia May 2013 | Volume 4 | Article 47 | 18

http://www.frontiersin.org/Schizophrenia
http://www.frontiersin.org/Schizophrenia/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adams et al. The computational anatomy of psychosis

FIGURE 11 | Simulation of the force-matching task. The x axes denote
time in 100 ms time bins; the y axes force in Newtons. Left panels: in the first
part of this simulation an internal force is generated from a prior belief about
the cause vi, followed by the presentation of an external force. Posterior
beliefs about the hidden states (upper right panel) are similar, but the
confidence interval around the force for the internally generated state is much
broader. This is because sensory level precision must be attenuated in order
to allow proprioceptive predictions to be fulfilled by reflex arcs instead of
being corrected by sensory input: i.e., the confidence intervals around vi must
be narrower than those around xi to allow movement to proceed. If perceived

intensity of the sensation is associated with the lower 90% confidence bound
of the estimate of hidden state (highlighted by the dotted line), it will be lower
when the force is self generated than when the force is exogenous (the
difference is highlighted by the arrow). Right panels: the simulation was
repeated but the external force was matched to the lower bound of the 90%
confidence interval of the internal force. This means that internally generated
force is now greater than the externally applied force (double-headed arrow,
upper left panel). This reproduces the normal psychophysics of the
force-matching illusion that can be regarded as entirely Bayes-optimal, under
appropriate levels of precision.

normal sensory attenuation (see Figure 11), where the true exter-
nal hidden cause always lies within the 90% confidence inter-
vals. The reason for this false inference or delusion is simple:
action is driven by proprioceptive prediction errors that always
report less force than that predicted. However, when these pre-
diction errors are very precise they need to be explained – and
can only be explained by falsely inferring an opposing exoge-
nous force. This only occurs when both the predictions and
their consequences are deemed to be very precise. This false
inference could be interpreted as a delusion in the same sense
that the sensory attenuation is an illusion. Having said this, it
should be noted that – from the point of view of the sub-
ject – its inferences are Bayes-optimal. It is only our attribution
of the inference as false that gives it an illusory or delusionary
aspect.

This simulation has some face validity in relation to empirical
studies of the force-matching illusion. The illusion is attenuated in
normal subjects that score highly on ratings of delusional beliefs
(Teufel et al., 2010). Furthermore, subjects with schizophrenia –
who are prone to positive symptoms like delusions – do not show
the force-matching illusion (Shergill et al., 2005). In other words,
there may be a trade-off between illusions at a perceptual level and
delusions at a conceptual level that is mediated by a (failure of)
sensory attenuation.

SUMMARY
The ideas reviewed in this section suggest that attribution of
agency – in an ambiguous situation – can be resolved by
attenuating the precision of sensory evidence during movement: in
other words, attending away from the consequences of self-made
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FIGURE 12 | Left panel: the force-matching simulation was repeated
under different levels of self-generated force. For normal levels of
sensory attenuation (blue circles), internally produced force is higher than
externally generated force at all levels. Data from patients with
schizophrenia was simulated by attenuating sensory precision and

increasing the precision of prediction errors at higher levels of the hierarchy.
This resulted in a more veridical perception of internally generated force (red
circles). Right panel: the empirical data from the force-matching task, with
normal subjects’ forces in blue, and schizophrenics’ forces in red
reproduced from Shergill et al. (2005).

acts. When implemented in the context of active inference, this
provides a Bayes-optimal explanation for sensory attenuation
and attending illusions. The simulations show how exacerbations
of a trait loss of sensory attenuation could subvert movement
and even cause catatonia. This can be ameliorated by compen-
satory increases in high-level precision, which in turn necessarily
induce false (delusional) inferences about agency. This is impor-
tant, given the negative correlation between sensory attenuation
and predisposition to delusional beliefs in normal subjects and the
reduced force-matching illusion in schizophrenia. On a physiolog-
ical level, increased dopaminergic transmission in the striatum
could reflect a putative increase in high-level precision, com-
pensating for hypofunction of cortical NMDA-Rs. In summary,
we have shown how active inference can explain the funda-
mental role of sensory attenuation, and how its failure could
lead to not only catatonic states but also compensatory changes
that induce delusions. This is one illustration of how psychotic
state abnormalities might be secondary compensations for trait
abnormalities.

CONCLUSION
Bayesian computations enable inference and learning under
uncertainty. Furthermore, they prescribe the optimal integration
of prior expectations (amassed over a lifetime or indeed evolution)
with the sensory evidence of a moment; this integration is optimal
because it embodies the relative uncertainty (precision) of each
source of information. For this reason, the accurate representa-
tion of precision in a hierarchical Bayesian scheme is crucial for
inference. The aberrant encoding of precision can therefore lead to

false inference by overweighting prior expectations or sensory evi-
dence. This paper has described how various trait abnormalities
in schizophrenia could result from a decrease in prior precision
(or a failure to attenuate sensory precision); and how some psy-
chotic states could result from compensatory increases in prior
precision (or decreases in sensory precision). We have outlined
several physiological mechanisms for encoding precision (such as
neuromodulation and neuronal oscillations) that are abnormal
in schizophrenia. Genetic and neuropathological evidence suggest
that NMDA-R (and GABA to some extent) may play a role in trait
abnormalities, whereas the physiological evidence points toward
dopaminergic pathology in the psychotic state. Clearly, a strict
dichotomy is unlikely, since these neurotransmitter systems have
complex interactions.

Using a biologically plausible predictive coding scheme, we have
shown how a reduction of high-level (prior) precision can account
for two trait phenomena: abnormal ERP responses to predictable
and unpredictable stimuli and SPEM abnormalities. We have also
shown how a failure to attenuate sensory precision might explain
a resistance to (force-matching) illusions and (in severe cases)
catatonia. Using these model systems, we were able to explain the
delusional and hallucinatory inference characteristic of the psy-
chotic state by compensatory increases (resp. decreases) in prior
(resp. sensory) precision.

One might ask how specific these “trait” and “state” simulations
are to schizophrenia, as opposed to psychotic symptoms per se. An
important point to take from the formal arguments in this paper is
that the common factor underlying psychotic phenomena is com-
putational, not physiological: i.e., the key to understanding these
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FIGURE 13 | Pathology of sensory attenuation. Left panel: here sensory
attenuation is much lower (γ=2). In this case, bottom-up prediction errors
have a higher precision than top-down predictions: the confidence intervals
around vi (bottom left panel) are now broader than those around xi (upper right
panel). The expected hidden state is thus profoundly suppressed (upper right
panel), meaning proprioceptive prediction errors are not produced (upper left
panel) and action is suppressed (lower right panel) resulting in akinesia. Right
panels: to simulate the force-matching results seen in schizophrenia,
precision at the second level of the hierarchy was increased to allow

movement. The underlying failure of sensory attenuation still enables a
precise and accurate perception of internally and externally generated
sensations (upper left panel). However, the causes of sensory data are not
accurately inferred: a false (delusional) cause (lower left panel) is perceived
during internally generated movement that is antagonistic to the movement.
This is because the proprioceptive prediction errors driving action are
rendered overly precise, meaning higher levels of the hierarchy must be
harnessed to explain them, resulting in a delusion that exogenous forces are
opposing the expected outcome (encircled in red).

symptoms is as disorders of precision encoding, and not – for
example – necessarily of a particular neuromodulator. Another
important message is that these simulations undermine a clear
division between “normal” and “psychotic” brains, as even bizarre
phenomena such as somatic delusions can occur in a normal infer-
ential architecture in which precision encoding is awry. To what
extent the physiological (or pharmacological) causes of transient
psychotic symptoms in healthy people overlap with similar symp-
toms in schizophrenia is an interesting question, which physiologi-
cally informed models may help us to address (Moran et al., 2011).

Simulations of the sort used above clearly require empirical val-
idation: this should be possible as the models make quantitative
predictions about the dynamics of cortical populations that can be
tested with dynamic causal modeling (Friston et al., 2003). Indeed,
dynamic causal modeling studies of schizophrenic subjects have
already demonstrated changes in effective connectivity consistent
with decreased high level – and increased low-level – precision in

the hollow mask paradigm (Dima et al., 2009, 2010). We conclude
with some of the many interesting and outstanding questions in
the computational modeling of schizophrenia:

• If NMDA-R and GABA transmitter systems are distributed
evenly throughout the cortex, why does their pathology in schiz-
ophrenia seem to be restricted to high-level cortical areas such
as the prefrontal cortex and temporal lobe? Pathology could
be localized in high-level areas for genetic or developmental
reasons. Alternatively, regional specificity could reflect interac-
tions with ascending neuromodulatory projections – for exam-
ple the mesocortical dopaminergic projections from the ventral
tegmental area.

• Second, could the elevated presynaptic striatal dopamine in the
psychotic state (Howes and Kapur, 2009) reflect (or compensate
for) a primary decrease in prefrontal precision due to NMDA-
R hypofunction? Or could there be another factor that reflects
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the contribution of developmental and environmental stressors
(Giovanoli et al., 2013) or a combination of the above.

• Third, given that post-synaptic D2Rs reduce neuronal
excitability, one might suppose that they decrease the preci-
sion of striatal prediction errors. The opposite may be true,
however, as D2Rs are preferentially expressed in the indi-
rect pathway (Figure 2), where their activation may increase
cortical excitation by reducing activity in this inhibitory circuit
(Fusar-Poli et al., 2011).

• Fourth, as reductionist efforts to find the best explanatory level
for schizophrenia have shifted from gene-based theories to brain
circuit-based accounts, a better computational understanding of
trait abnormalities might enable the rational design and testing
of neuromodulatory therapies; particularly those which can alle-
viate the debilitating antipsychotic-resistant cognitive and nega-
tive symptoms. Likewise, model-based techniques might finesse
diagnostic and treatment decisions for individual patients (as
has been demonstrated in aphasic patients by Brodersen et al.,
2011), if the actions of different neuromodulators (for example)

are formalized with appropriate models (as in Moran et al.,
2011).

• Finally, schizophrenia is unlikely to be the only pathology
of precision – it is notable that most current treatments for
psychiatric disorders target neuromodulatory systems. Aberrant
precision estimation may also prove to be a simple but powerful
explanation for other psychiatric disorders; e.g., the loss of cen-
tral coherence in autism (Pellicano and Burr, 2012). In future,
many psychiatric disorders may be distinguished by their sites
of – and causes of – variation in their encoding of precision;
e.g., the precision of distributions over future action outcomes
modeling helplessness in depression (Huys and Dayan, 2009).
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