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The female brain contains a larger proportion of gray matter tissue, while the male brain comprises more white
matter. Findings like these have sparked increasing interest in studying dimorphism of the human brain: the
general effect of gender on aspects of brain architecture. To date, the vast majority of imaging studies is based
on unimodal MR images and typically limited to a small set of either gray or white matter regions-of-interest.
The morphological content of magnetic resonance (MR) images, however, strongly depends on the underlying
contrastmechanism. Consequently, in order to fully capture gender-specificmorphological differences in distinct
brain tissues, it might prove crucial to consider multiple imaging modalities simultaneously. This study intro-
duces a novel approach to perform such multimodal classification incorporating the relative strengths of each
modality-specific physical aperture to tissue properties. To illustrate our approach, we analyzed multimodal
MR images (T1-, T2-, and diffusion-weighted) from 121 subjects (67 females) using a linear support vector
machine with a mass-univariate feature selection procedure. We demonstrate that the combination of different
imaging modalities yields a significantly higher balanced classification accuracy (96%) than any onemodality by
itself (83%–88%). Our results do not only confirm previous morphometric findings; crucially, they also shed new
light on the most discriminative features in gray-matter volume and microstructure in cortical and subcortical
areas. Specifically, we find that gender disparities are primarily distributed along brain networks thought to be
involved in social cognition, reward-based learning, decision-making, and visual-spatial skills.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Sexual morphological differences in the human brain have attracted
increasing interest in structural imaging analyses. A huge body of litera-
ture reveals sex differences in brain architecture. Postmortem studies
(e.g. Witelson et al., 2006) as well as in vivo imaging studies (Filipek et
al., 1994;Goldstein et al., 2001;Good et al., 2001) support themost robust
finding of an approximately 10% larger total brain size inmen. The female
brain is known to contain a larger proportion of graymatter than themale
brain, which, conversely, exhibits more white matter (Gur et al., 1999;
Luders and Toga, 2010). It has been hypothesized that these differences
in tissue volume contribute to difference in behavior (Gur et al., 1999).
However, they cannot be the only determinant, since morphological
differences remain even when controlling for brain size and tissue ratios
(Luders et al., 2009). Findings like these hint at the critical effects of
gender on brain architecture. Further research effort is encouraged by
the difference in onset, prevalence and symptomatology of almost all
neuropsychiatric illnesses betweenwomen andmen (Giedd et al., 2012).
rights reserved.
Structural imaging data have been predominantly analyzed using
mass-univariate approaches, e.g., voxel-based morphometry (VBM;
Davatzikos, 2004; Good et al., 2001), focusing on individual regions-
of-interest. More recently, multivariate decoding approaches have
been increasingly used as a powerful complement to mass-univariate
approaches (Bendfeldt et al., 2012; Ecker et al., 2010; Klöppel et al.,
2008; Lao et al., 2004; Pereira and Botvinick, 2011). It is currently
unknown, however, whether multivariate approaches could be substan-
tially enhanced by not only adopting a whole-brain perspective but
by also simultaneously accounting for multiple modalities in a single
statistical model.

To investigate this, we propose a multimodal analysis approach for
structural classification that is characterized by three features. First, it is
designed for whole-brain analyses and thus overcomes the limitations
inherent in region-of-interest analyses. Second, we evaluate and visualize
the importance of individual data features in discriminating between clas-
ses. Third, and most importantly, our approach integrates T1-weighted,
T2-weighted and fractional anisotropy (FA) images.

Currently, the most widely used multivariate analysis is based on
classification algorithms such as the support vector machine (SVM;
Vapnik, 1998). An increasing number of studies have used SVMs to
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obtain predictions about an individual diagnostic status, e.g., for
Alzheimer's disease or mild cognitive impairment (Davatzikos et al.,
2008; Klöppel et al., 2008; Teipel et al., 2007; Zhang et al., 2011).
Other clinical examples include classification studies of schizophrenia
(Koutsouleris et al., 2011), Turner syndrome (Marzelli et al., 2011),
multiple sclerosis (Bendfeldt et al., 2012), or speech impairments in
stroke patients (Brodersen et al., 2011).

Unlike previous classifiers, our approach is designed to exploit
information jointly encoded by different acquisition modalities. It may
particularly harvest interactions between anatomical structures that
are differentially expressed in different image contrasts. Morphological
group differences may in some cases be clearly visible from unimodal
images alone; detecting large lesions of brain atrophy, for instance, is
straightforward and unambiguous to the trained eye. Most neurological
or psychiatric pathologies, by contrast, do not exhibit such clearly visi-
ble structural differences. Similarly, gender does not correlate with
easily detectable structural differences. It is these cases that we expect
to benefit most from amultivariate, multimodal approach. Thus, we an-
alyzed 121 healthy subjects and decode gender frommultimodal, struc-
tural MR images. In brief, our approach significantly outperformed all
unimodal methods and led to novel findings about the spatial deploy-
ment of sexually discriminative features in the human brain.

Materials and methods

Subjects

A group of 121 right-handed volunteers (67 female, 54male) with no
history of neurological or psychiatric illness participated in the study.
Handedness was determined by the Edinburgh handedness inventory
(Oldfield, 1971) and did not differ significantly between females and
males (p=0.69;Wilcoxon rank sum test). A trained radiologist evaluated
all T1-weighted scans and assessed whether a subject can be considered
as a normal healthy participant. Subjects were students ascertained
from Cologne University and were between 20 and 30 years of age
(mean: 25, SD: 2); there was no significant difference in age (p=0.41;
Wilcoxon rank sum test). All subjects gave informed consent, and the
study was approved by the local ethics committee.

MRI data acquisition

High-resolution T1- and T2-weighted images were acquired using a
Siemens 3 T Trio scanner (12-channel array head coil; maximum gradi-
ent strength 40 mT/m) with a whole-brain field of view (T1-weighted:
MDEFT3D; TR=1930 ms, TI=650 ms, TE=5.8 ms, 128 sagittal
slices, resolution=1×1×1.25 mm3, flip angle=18°; T2-weighted:
RARE; TR=3200 ms, TE=458 ms, 176 sagittal slices, resolution=
1×1×1 mm3). In addition, diffusion-weighted data (dMRI) were
collected using spin-echo echo-planar imaging (twice refocused
spin-EPI; TR=9000 ms, TE=87 ms, 72 axial slices, resolution=
1.7×1.7×1.7 mm3). Diffusion weighting was isotropically distribut-
ed along 60 directions (b-value 1000 s/mm2). Finally, seven images
without diffusion weighting were acquired at the beginning and after
each block of ten diffusion-weighted images, providing an anatomical
reference for motion correction. To increase the signal-to-noise ratio
of the diffusion-weighted images, the arithmetic mean across three
consecutive scanning sessions was computed. Altogether, these proce-
dures resulted in a total scanning time of approximately 45 minutes.

Image preprocessing

T1-weighted images were preprocessed using the VBM8 toolbox
(http://dbm.neuro.uni-jena.de/vbm/) as described previously (Luders
et al., 2009). Briefly, bias-field inhomogeneitywas corrected and images
were registered nonlinearly to a template derived from 550 healthy
volunteers of the IXI database (http://www.brain-development.org/).
Anatomical segmentation into the different tissue types, including
gray matter (GM) and white matter (WM) was carried out using a
maximum a posteriori (MAP) technique (Rajapakse et al., 1997), account-
ing for partial-volume effects (Tohka et al., 2004) and using a denoising
method based on a hidden Markov random field model (Cuadra et al.,
2005). In addition, deformation fields were computed during nonlinear
registration.

For dMRI data, motion-correction parameters were estimated using
all images with and without diffusion weighting from the three corre-
sponding dMRI acquisitions. Fractional anisotropy (FA) values were
estimated by fitting a diffusion tensor to the data within each voxel.
FA images and T2-weighted images were co-registered to T1-weighted
images. Subsequently, deformation fields were applied using the
VBM8 toolbox in order to nonlinearly align the T2-weighted and FA
images to the template. GM and WM segments of T1-weighted images
were used to extract the analogs in T2-weighted and FA images. Finally,
tissue segments of T1- and T2-weighted images were smoothed using a
Gaussian kernel (FWHM 3 mm; Jones and Cercignani, 2010).

Classification

In order to discriminate between female and male brains on the
basis of multimodal images, we trained and tested a support vector
machine (SVM, as implemented by Chang and Lin, 2011) with a linear
kernel.

SVMs have proven to be simple and powerful tools in many previ-
ous studies, but they may overfit the data and make interpretation
difficult when the number of features greatly exceeds the number of
observations. This is because SVMs seek solutions that are sparse in
examples but not sparse in features, and unlike Bayesian approaches
they optimize the parameters rather than integrating out posterior
uncertainty about them. We therefore included a feature-selection
procedure to reduce the dimensionality of the feature space and dis-
card non-informative dimensions in the data. In this way, we aimed
to retain the simplicity and predictive power of a linear SVM while
enforcing a small set of discriminative features, thus striking a bal-
ance between predictive power and interpretability of discriminative
data features. Specifically, we used Fisher's criterion for feature selec-
tion (Furey et al., 2000), as described below.

Fisher's score considers the squared distance between class-
conditional sample means μ̂ ⋅ð Þ in relation to the respective intra-
class sample standard deviations σ̂ ⋅ð Þ,

f v Xð Þ ¼ μ̂ Xþ� �
−μ̂ X−ð Þ� �2

σ̂ Xþð Þ þ σ̂ X−ð Þ ;

where the data X=(X+, X−) are given by the signal intensities in a
particular voxel v across all female (positive) and male (negative) sub-
jects, respectively.We used this score to rank all features in terms of indi-
vidual discriminative power (Müller et al., 2001). Voxels whose features
were part of the upper 5th quantile of the resulting distribution of scores
entered subsequent classification.

The utility of a classification model is typically assessed in terms
of its substantive generalization performance on unseen data. Here,
we estimated generalizability using a leave-one-subject-out cross-
validation scheme.Within each fold, we optimized themisclassification
hyperparameter C of the SVM using nested cross-validation on the
current training set (Müller et al., 2004). In other words, we used an
inner cross-validation loop formodel selection and anouter loop for un-
biased model evaluation. We repeated this analysis four times, using
GM segments of either (i) T1-weighted images, (ii) T2-weighted images,
(iii) FA images, or (iv) of all three images in combination (multimodal
approach).

Classification performance was assessed using the balanced accuracy.
In contrast to the conventional accuracy (i.e., the number of correctly clas-
sified subject labels divided by the number of subjects), the balanced
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accuracy is defined as the arithmeticmean of the two accuracies obtained
on positive and negative classes, respectively. The balanced accuracy
provides an estimate of the probability of a correct prediction on future
data where the unknown label has equal prior probability of coming
from either class. This removes the bias that may arise in conventional
sample accuracies when a classifier is trained and tested on an imbal-
anced dataset (Brodersen et al., 2010, 2012).

Sincewe used an SVMwith a linear kernel, there is a direct correspon-
dence between voxels and features. Thismakes it possible to interpret the
distribution of weights in the original anatomical space and visualize the
spatial deployment of informative voxels. In T1-weighted GM maps, for
example, voxel intensities reflect the amount of tissue within a particular
region, while in FAmaps voxel intensities represent the degree of anisot-
ropy in each location. Since the classification problem addressed in this
study is binary, a positive weight in the discrimination map indicates
that, in this particular location, female subjects typically have higher
voxel intensity than male subjects. Conversely, a negative weight means
that voxel intensities tend to be higher in male than in female subjects.
Thus, information from the estimated SVMmodel canbeused to interpret
classification results above and beyond predictive performance itself.
Results

Classification accuracy

In evaluating howwell our approachwas able to distinguish between
female and male brains, we compared the classification performance on
individual MR images with the performance on the combination of
multiple modalities. We found that a multimodal approach provided
both higher specificity and higher sensitivity (Fig. 1a) and thus enabled
Fig. 1. Classification results. (a) Receiver operating characteristic (ROC) curves of the four cla
unimodal (T1-weighted) with the multimodal classifier. (c) Balanced classification accuracie
the multimodal classifier utilizing T1-weighted, T2-weighted and FA gray matter segments
a significantly lower classification error than all unimodal ap-
proaches (Fig. 1b). While the most commonly used unimodal classifier
(T1-weighted GM) had a mean generalization error of 4.4%, our multi-
modal approach yielded an error of only 2.5% (pb0.001, α=0.01;
Mann–Whitney U test). For a numerical summary of these results, see
Table 1.

The weakest classification performance (83% with a 95% credible
interval of 75% to 88%) was achieved when using the FA GM segment
only (Fig. 1c). Using T2-weighted GM images led to a similar balanced
accuracy (85% with a 95% credible interval of 77% to 90%). The highest
performance within unimodal classifiers was achieved on the basis of
T1-weighted GM images (88% with a 95% credible interval of 80% to
92%). Notably, however, all of the above results were outperformed
by the multimodal classifier (pb0.01, paired Wald test), which
yielded a balanced accuracy of 96% (with a 95% credible interval of
89% to 98%).

Visualization of the decision boundary

To visualize the separability of subjects afforded by a multimodal
classifier, we projected data features onto the weight vector of the
SVM (Fig. 1d). This procedure highlights those male (4) and female
(1) subjects that were misclassified. In absolute terms, 66 out of 67
women and 50 out of 54 men were assigned to the correct group.

Discrimination maps

In order to understand the spatial deployment of informative data
features, we considered discrimination maps that are based on the
weights attributed to each voxel by the SVM (Figs. 2–4). Regions
ssifiers evaluated in this study. (b) Boxplots of generalization error comparing the best
s with 95% central credible intervals. (d) Best classification accuracy (96%) provided by
in combination. (**=significant, p≤0.01; ***=highly significant, pb0.001).



Table 1
Summary statistics of the four classifiers evaluated in this study.

Statistics Multimodal T1 T2 FA

Sensitivity 99% 93% 88% 93%
Specificity 93% 83% 82% 74%
Positive predictive value 94% 87% 86% 82%
Positive likelihood ratio 13.3 5.6 4.8 3.6
Area under the ROC curve 0.97 0.95 0.92 0.93

253D.-L. Feis et al. / NeuroImage 70 (2013) 250–257
showing disparities between women and men were found in all four
lobes, though primarily in the frontal lobe, with almost no differences
occurring in the occipital lobe (Fig. 5). In cortical regions, some of
these disparities appear lateralized to one hemisphere, while all sub-
cortical differences are bilaterally distributed (Figs. 2, 4).

Relatively larger GM volumes in women as comparedwithmenwere
foundbilaterally in the anterior part of the superior frontal gyrus (BA8/9),
in the dorsolateral prefrontal cortex (BA 46), in the midcingulate cortex
(BA 24), as well as subcortically in the ventromedial claustrum, in the
ventral and medial parts of the caudate nucleus, in both hippocampi,
and in themedial thalamus nuclei. Lateralized disparities between female
and male subjects occurred predominantly in the orbitofrontal cortex
Fig. 2. Discrimination maps derived from gray matter segments of T1-weighted images inclu
an individual study brain. To facilitate interpretation, a cluster-forming threshold of 27 vox
larger GM volume (positive weight vector; red color scale) or relatively smaller GM volume
Labels: (i) anterior part of superior frontal gyrus, (ii) dorsolateral prefrontal cortex, (iii) later
(v) orbitofrontal cortex, (vi) anterior midcingulate cortex, (vii) medial caudate nucleus, (viii
(x) hippocampus, (xi) posterior division of superior temporal sulcus, and (xii) temporopar
(OFC), in the entorhinal cortex, in the anterior insular cortex, in the pos-
terior part of superior temporal sulcus (pSTS), and in the temporoparietal
junction area (TPJ). In these regions, women tended to show relatively
larger GM volumes in the left lateral OFC (BA 47/12), left entorhinal
cortex (BA 28), left anterior insular, left pSTS (BA 39), and left TPJ (BA
40), but also in right medial (BA 14) and basal (BA 13) OFC areas.
Conversely, men exhibited relatively larger GM areas in the right lateral
OFC (BA 47/12) and in the left OFC (BA 13), aswell as in the right anterior
insular cortex and in the right pSTS (Table 2).
Discussion

This paper presents a framework for whole-brain multivariate
classification based on multiple MRI modalities, thus benefitting from
distinct modality-specific physical apertures to different tissue proper-
ties. The main goal of this initial study was to determine whether this
approach might substantially improve classification performance. As a
proof of concept, we applied our method to analyze the sexual dimor-
phism of the human brain. Specifically, we employed a supervised
machine-learning technique on MR images. To our knowledge, this is
the first study investigating multimodal MR images using a multivariate
pattern analysis approach for automated, whole-brain sex classification.
ded in the multimodal classifier. Results are superimposed onto a T1-weighted image of
els was used. The resulting regions comprise spatially contiguous patterns of relatively
(negative weight vector; blue color scale) in women as compared to men, respectively.
al orbitofrontal cortex, (iv) medial orbitofrontal cortex/ventromedial prefrontal cortex,
) anterior insular cortex/claustrum, (ix) medial and posterior segment of the thalamus,
ietal junction. L and R indicate the left and right hemispheres, respectively.

image of Fig.�2


Fig. 3. Discrimination maps derived from gray matter segments of FA images included
in the multimodal classifier, using the same procedure as in Fig. 2. The map shows one
region with lower FA in male than female subjects (negative weight vector; blue color
scale), representing a decreased diffusion anisotropy. Here, the major finding is a rela-
tively higher FA of the left (L) entorhinal cortex in men (illustrated in blue).
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Classification algorithm

Our approach combines multimodal images using a linear SVM
which assigns a decision value to each subject, reflecting the distance
between a given test subject's images and the hyperplane separating
the two groups (Fig. 1d). The more ambiguous one sample is, the clos-
er it is located at the hyperplane. Instead, a more prototypical test
sample would lie further apart. Naturally, this also provides the
Fig. 4. Surface rendering of the discrimination maps shown in Fig. 2. First row: right and le
ventral aspect. Relatively larger gray matter volumes in female than male subjects are show
possibility to construct a contingency table. Thus, we can directly de-
rive numerical indicators such as sensitivity and specificity. Since we
used a linear kernel, the components of the normal vector specifying
the hyperplane can be interpreted in the space of the underlying neu-
roanatomical feature space.

Feature selection

Support vector machines have proven to be simple and powerful
classification algorithms in many previous neuroimaging studies.
However, they may overfit the data when, as is the case in multimod-
al MR images, the number of features exceeds the number of subjects
by orders of magnitude. To overcome this limitation, we included a
simple feature selection procedure in our approach. Specifically, we
ranked all voxels according to their discriminative capacity using
Fisher's criterion and admitted only a small fraction of top-ranking voxels
to the classifier. Similar to Ecker et al. (2010) we found that keeping only
5% of all voxels resulted in the best classification performance. Notably,
Ecker et al. (2010) used a recursive feature elimination algorithm,
which iteratively came to the same conclusion as our one-step procedure.
Thus, this approach is easy to implement and was found to enhance
predictive performance substantially. Feature selection was embedded
into a nested leave-one-subject-out cross-validation scheme to obtain
an estimate of the generalization performance of the entire model that
was not biased by the effects of feature selection.We used a Bayesian ap-
proach to performance evaluation by computing the posterior balanced
accuracy for each classification result (Brodersen et al., 2010).

Classification results

Using the above framework, we analyzed the predictive capacity
of four different feature spaces, including GM segments of either
(i) T1-weighted images, (ii) T2-weighted images, (iii) FA images, or
of (iv) all three images in combination (multimodal approach). We
found that multimodal MR images outperformed all other feature
spaces, yielding a significant reduction in classification error
(pb0.0001; Mann–Whitney U test; Fig. 1b). Although all four
ft lateral as well as the dorsal aspect. Second row: left and right mid-sagittal as well as
n in red, relatively smaller volumes in blue.

image of Fig�3
image of Fig.�4


Fig. 5. Weighting distribution in cortical as well as subcortical regions found in T1-weighted gray matter segments included in the multimodal classifier. Left (LH) and right (RH)
hemispheres were distinguished and are represented in darker or brighter coloring, respectively.
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classifiers performed well above chance (0.5), even the best
unimodal classifier's balanced accuracy did not exceed 88% (Fig. 1c).
By contrast, our multimodal approach enabled a balanced accuracy of
96% (with a 95% credible interval from89% to 98%) and proved to be sta-
tistically significant (p≤0.01; paired Wald test). Thus, it clearly
outperformed the other unimodal classifiers. Consistentwith this result,
Table 2
Overview of gray matter regions discriminating between women and men. Cluster labels co
cluster, the location of its weight maximum. Abbreviations: SFG=superior frontal gyrus; DLP
orbitofrontal cortex; MCC=midcingulate cortex; pSTS=posterior division of superior tem
BA=Brodmann area.

Cluster Region Hemisphere BA M

x

i SFG Left −
8/9

Right
ii DLPFC Left −

46
Right

iii lOFC Left −
47/12

Right
iv mOFC Right 14
v OFC Left −

13
Right

vi MCC Left 24
vii Caudate Ncl Left −

Right
viii Insular cortex Left −

Right
ix Thalamus Left −
x Hippocampus Left −

Right
xi pSTS Left −

39
Right

xii TPJ Left 40 −
PIR Left 28 −
we found that the ROC curve of ourmultimodal classifier showed higher
sensitivity and higher specificity at nearly all classification thresholds
(Fig. 1a). While the highest sensitivity and specificity in unimodal clas-
sification were 93% and 83%, respectively, our method performed its
prediction with 99% sensitivity and 93% specificity. In terms of absolute
numbers, our multimodal approach correctly classified 66 out of 67
rrespond to indices in Fig. 2. Coordinates are given in MNI space and indicate, for each
FC=dorsolateral prefrontal cortex; lOFC=lateral orbitofrontal cortex; mOFC=medial
poral sulcus; TPJ=temporoparietal junction; PIR=piriform lobe (entorhinal cortex);

NI Volume Weight

(mm) y(mm) z(mm) mm3

8 38 50 1937 11.54

8 29 60 1725 12.87
33 54 24 3429 13.66

35 56 15 3632 11.77
53 41 0 3392 11.95

45 45 −17 1664 −6.85
5 62 −9 4968 9.61

27 41 −17 1029 −7.08

12 26 −29 3378 14.96
0 −5 27 368 9.87
6 11 3 1617 7.70
8 9 2 2228 7.09

39 8 −14 2494 9.71
39 6 −5 111 −2.93
18 −32 −2 5198 8.42
29 −38 −8 1769 11.57
32 −23 −20 493 7.60
50 −48 12 1225 10.69

51 −53 3 105 −13.00
32 −77 29 1185 11.31
29 2 −24 273 15.62

image of Fig.�5
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women and 50 out of 54 men (Fig. 1d). Initially, we wanted to include
FA WM segments to get an insight into WM disparities, but we found
that the inclusion of FA GM segments contributed most to the predic-
tion of men.

Neuroanatomical findings

One of the key features of our approach is its potential for neuro-
anatomical interpretation that goes beyond the conclusions that can
bederived fromunimodal classifiers. Specifically, we found several neu-
roanatomical differences in spatially distributed cortical and subcortical
patterns that differed between women and men (Figs. 3–5). Crucially,
because our approach is multivariate, it does not rely on individual
voxels being discriminative by themselves. Rather, our approach en-
ables us to detect combinations of voxels that are jointly informative
about gender. Put more simply, the resulting discriminative regions
may be predictive of gender either because of their large between-
group differences in volume or because their inter-regional correlations
differ between classes. Regarding the former, two kinds of patterns can
be distinguished: regionswith relatively larger volume in female subjects
as compared with males (red color scale, Figs. 2–4) and areas with rela-
tively larger volume in male subjects as compared to females (blue
color scale).

The graymatter segments of the T1-weighted images included in the
multimodal approach revealed a marked anterior–posterior gradient in
classifier weights (Fig. 4) in conjunction with a remarkable lateraliza-
tion in cortical regions (Fig. 5). In contrast, subcortical disparities were
distributed rather bilaterally. Strikingly, the anterior–posterior gradient
is dominated by differences in the frontal lobe. There were virtually no
disparities in postcentral parts of the brain with the exception of TPJ
and pSTS. Interestingly, Allen et al. (2003) already described the
occipital lobe as the least sexually dimorphic region since they found
no significant difference in gray matter volumes in females and males.
They argue that most of this brain region has relatively low levels of sex
steroid receptors (Goldstein et al., 2001). By contrast, disparities in the
frontal lobewere found in all aspects of prefrontal areas, i.e., in themedial,
lateral as well as orbital parts. Based on sex steroid receptor density,
Goldstein et al. (2001) predicted that the prefrontal regions as well as
the parietal cortices should exhibit a high degree of sexual dimorphism.
Our findings with respect to contributing brain networks might be
suggestive of sex differences in terms of social cognition, reward-based
learning, decision-making, and visual-spatial skills. The effects observed
within the right and left nuclei caudate also corroborate previous obser-
vations (Giedd et al., 1996; Good et al., 2001; Luders et al., 2009).

Interestingly though, while previous studies have primarily
reported proportionately more gray matter in women rather than in
men (reviewed in Luders and Toga, 2010), our approach also allowed
us to identify regions that seem indicative of the opposite effect. More
specifically, although receiving lower weights on average (Fig. 5), we
detected several regions that showed relatively more gray matter in
male than in female brains. These regions included the right anterior
insular cortex, the right lateral as well as the left OFC (Figs. 2 and 4),
and the right pSTS (Fig. 2). Relatively higher FA values in men as com-
pared to women were found in the left entorhinal cortex (Fig. 3), in-
dicating differences in cortical microstructure. It has long been known
that efferent fibers exiting the piriform lobe primarily target the
mOFC, the lOFC as well as the hippocampus. We found all of these re-
gions to differ between women and men.

Conclusions

In summary, using sex differences as an illustrative example, the
multimodal classification approach presented in this paper allowed
us to substantially improve the prediction performance of previously
described unimodal schemes. In addition, our results did not only
confirm well-known sex differences previously reported in the
literature; but they also proved to be sufficiently sensitive in separat-
ing women andmenwhile identifying biologically plausible networks
with maximal discriminative power. Overall, our study confirms that
supervised machine-learning techniques possess the capacity
of detecting even subtle and spatially distributed morphological dif-
ferences. We envisage that such approaches may aid the clinical diag-
nosis of neurological as well as psychiatric pathologies that express
differential neuroanatomical features.
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