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A core goal of human connectomics is to characterise the neural pathways that underlie brain function. This
can be largely achieved noninvasively by inferring white matter connectivity using diffusion MRI data. How-
ever, there are challenges. First, diffusion tractography is blind to directed connections, or whether a connec-
tion is expressed functionally. Second, we need to be able to go beyond the characterization of anatomical
pathways, to understand distributed brain function that results from them. In particular, we need to charac-
terise effective connectivity using functional imaging modalities, such as FMRI and M/EEG, to understand its
context-sensitivity (e.g., modulation by task), and how it changes with synaptic plasticity. Here, we consider
the critical role that biophysical network models have to play in meeting these challenges, by providing a
principled way to conciliate information from anatomical and functional data. They also provide biophysically
meaningful parameters, through which we can better understand brain function. In a translational setting,
well-validated models may shed light on the mechanisms of individual disease processes.

© 2013 Elsevier Inc. All rights reserved.
Introduction

The Human Connectome Project (HCP) is collecting a wealth of
state-of-the-art data across a range of imaging modalities; in particular,
functional MRI, magnetoencephalography (MEG) and diffusion MRI
(Van Essen et al., 2012). Arguably, each of these modalities could be
used to obtain a different connectome (Behrens and Sporns, 2012;
Friston, 2011). For example, FMRI can provide us with a map of func-
tional/effective connectivity (Biswal et al., 1995; Friston, 2011), anddiffu-
sion MRI with a map of anatomical white matter connectivity (Basser et
al., 1994, 2000; Behrens et al., 2007). But it is not immediately clear how
these differentmodalities can be related. Or indeed,what governingprin-
ciples we should use to resolve differences among these connectomes.

A useful unifying principle is that the anatomical connectome under-
lies (is necessary for) the functional connectome. This idea has previous-
ly been expressed in terms of the concept of “connectional fingerprints”
(Passingham et al., 2002), which postulates that the functional profile of
any given cortical area depends on the structural pattern of its incoming
and outgoing connections. More recently, it has been demonstrated that
models of effective connectivity are improvedwhen formally integrating
an Brain Activity (OHBA),
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quantitative anatomical information (Stephan et al., 2009b). This is not to
say that structural connectivity is a sufficient or complete description of
connectivity, but rather that function depends on structural connectivity.
Armed with this perspective, we can start to consider how we might
characterise the architecture of a multi-modal human connectome.

Firstly, diffusion MRI data is not a panacea even for inferring vanilla
anatomical connectivity — it has blind spots. Comparison with invasive
studies in non-human primates reveal that current tractography ap-
proaches can suffer from both false positive and false negative results
(Behrens and Sporns, 2012). Functional connectomics can help inform
the anatomical connectome when structural information is missing, or
is inaccurate. Arguably, the best way to do this is through network
models; because these can embody both the structural and functional
architecture, and allow information from the different modalities to be
fused in a mathematically principled way.

We also want to go be able to go beyond the characterization of the
anatomical connectome, to understand the brain function that rests
upon it. Patterns of functional network connectivity emerge as the re-
sult of neuronal interactions taking place on this anatomical skeleton
(Deco et al., 2011; Honey et al., 2007). The best waywe can understand
these patterns is by using biophysical network models that combine
models of the anatomy with dynamic models of neuronal interactions.
In principle, if we had sufficient knowledge of the system, including
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information at the level of synapses, we could predict context sensitive
coupling or the dynamics one might expect to see, i.e. how functional
pathways are modulated depending on task or cognitive set. This re-
quires biophysical models that can be informed by experimentally con-
trolled context, and can represent connection strengths as a function of
activity (non-linear postsynaptic effects) or time (synaptic plasticity).

FMRI has a key role to play, and has already been successful in
mapping functional networks, for example, using resting state data
(Beckmann et al., 2005). However, evidence from MEG suggests
that these network interactions are likely underpinned by oscillatory
activity in particular frequency bands (Brookes et al., 2011a; Hipp et al.,
2012). Understanding these oscillations and the biophysical models
that underpin them will provide unique and important insights into
the function of the brain. For example, one possibility is that long-range
connectivity may be mediated by synchronisation of oscillatory activity
(Fries, 2005). To illuminate thesemodels, directmeasures of neural activ-
ity at high temporal resolution are needed, such as can provided by the
increasingly relevant modality of MEG.

Eventually, the understanding we can gain about the physiology of
network dynamics can be used to elucidate the mechanisms of aging
and disease in a clinical setting. Through approaches like generative
embedding (Brodersen et al., 2011), we can investigate disease mecha-
nisms; e.g. by looking at the population variability in certain biophysical
model parameters. By moving closer to the actual mechanisms of brain
function, this approach should ultimately be more sensitive and more
interpretable than descriptive or normative approaches.

This paper will focus primarily on systems-level biophysical net-
work models of non-invasive neuroimaging data at the macroscopic,
whole brain, system level. There is a particular focus on biophysical net-
work models of function. However, we will also consider models of an-
atomical connectivity, particularly with regards to informing models of
network dynamics using the anatomical connectome.

Functional biophysical network models

In recent years there has been a noticeablemove away from the spa-
tial mapping of task related activity towards inferring brain connectivi-
ty. This is motivated by the idea that connectivity brings us closer to the
distributed mechanisms of brain function.

A popular approach to looking at connectivity in functional data has
been to look atmeasures of statistical dependency, otherwise known as
functional connectivity. This includes approaches such as partial or full
correlation (Smith et al., 2011). In FMRI, these correlations are typically
computed on the raw BOLD time series, whereas in MEG (due to the
non-zero lag correlations) correlations are typically computed over
band-limited power timeseries, particularly in the alpha and beta
bands (Brookes et al., 2011a; Hipp et al., 2012).

Full correlation simply corresponds to:

C ¼ yyT= N−1ð Þ ð1Þ

where y is theN × Tmatrix of functional neuroimaging data for N brain
regions and T time points, and y is normalised to have zero mean and
unit variance for each brain region.1 Notably, full correlation cannot dis-
tinguish betweendirect and indirect connections, whereas partial corre-
lation can — at least to some extent.

Partial correlation refers to the correlation between two timeseries,
after each has been adjusted by regressing out other variables (e.g., activ-
ity in other brain regions/network nodes). An efficient way to estimate
the full set of partial correlations is via the inverse of the covariance
matrix (Marrelec et al., 2006). Under the constraint that this matrix
is expected to be sparse, regularisation is often applied, for example,
using the Lasso method (Friedman et al., 2008). Partial correlation
1 Without normalizing to unit variance, C would correspond to the covariance
matrix.
has been advocated (Marrelec et al., 2006) as a good surrogate for
structural equation modelling (SEM) (see the Appendix A for a de-
scription of SEM, and for a mathematical perspective relating partial
correlation to SEM). While partial correlation does seem to improve
the distinction between direct and indirect connections (Smith et al.,
2011), it also introduces Berkson's paradox, where there can be arti-
factual negative correlations between brain regions.2

Functional connectivity measures such as full and partial correlation
are popularmeasures because they are easy to compute, and have been
shown to perform relatively well in FMRI network discovery (Smith
et al., 2011). The most straightforward functional human connectomes
are likely to be based on the partial or full correlationmatrix from FMRI
(or MEG) data using an appropriate parcellation.
The problem with functional connectivity

However, there are fundamental problemswith the use of functional
connectivity. For example, we have already commented on how existing
methods for distinguishing direct from indirect connections can only be
achieved at the expense of artifactual negative correlations (Berkson's
paradox). Another important issue is the increasingly popular approach
of using functional connectivity (often in the form of correlation) as a
feature to predict or classify the group from which a particular subject
was sampled (Craddock et al., 2009). The problem is that changes in
functional connectivity; e.g., between conditions or between two popu-
lation groups, can occur simply due to changes in signal-to-noise ratio, or
due to changes in other parts of a wider network; even when there is no
change in the effective connectivity between the two nodes. This issue
has been demonstrated and documented elsewhere (Friston, 2011).

False positive connectivity can also be inferred if correlations caused
by the measurement process itself are not accounted for. This in-
cludes erroneously inferring neuronal causality in FMRI data when
the hemodynamic blurring is ignored, or inferring artifactual con-
nectivity due to volume conductance (zero-lag spatial correlations)
in source reconstructed M/EEG data (Schoffelen and Gross, 2009).

Functional connectivity also provides limited insight into the mech-
anisms of the dynamics that underlie brain activity, and does not direct-
ly provide biologically relevant information. The best way to overcome
these limitations is to turn to effective connectivity.

Essentially, effective connectivity is an estimate of directed influ-
ence, inferred using a generative model, which, to at least to some
extent, is grounded in bio-physiology. In other words, we need a
biophysical model of the network.
Biophysical functional network models

Here, we consider a biophysical functional network model as a
mathematical description of how we can generate measurements
of brain activity (e.g. using MRI). This modelling assumes that we
know the underlying dynamic interactions between, and within, dif-
ferent brain areas; and the stochastic or deterministic properties of
the exogenous or endogenous fluctuations that drive the network.
As such “biophysics” includes the neurophysiology of the brain, and
the physics of the measurement device.

We can consider the complete biophysical network model of
functional neuroimaging data as being decomposed into twomain com-
ponents. First, there is the neurophysiological model of the network's
neuronal interactions (neuronal dynamics or state equations), which
predicts the neuronal activity. Second, there is the forward model of
the imaging measurement, which predicts the imaging data given the
neuronal activity.
2 Consider 3 nodes, where B depends on A and C, and where A and C are
uncorrelated (A → B ← C). By regressing B out of A and C (as in partial correlation),
we induce an artifactual negative correlation between A and C.
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Neuronal interaction models

For a plausible biophysical model of neuronal interaction, we con-
sider that an entry-level requirement is that the model should be cyclic
and connections should be able to be reciprocal (bi-directional). This is
based on evidence from the analyses of large scale anatomical data-
bases, where the majority of brain regions appear to be connected re-
ciprocally (Markov et al., 2011). Sadly, this makes inference on these
models much trickier, as it precludes the use of Directed Acyclic Graphs
(DAGs), as they do not allow for reciprocal (bi-directional) connections.

We also know that the effect of one brain area on another cannot
occur instantaneously, due to conduction delays. In other words, any
biophysical networkmodel needs to be causal. This leads us to the gen-
eral framework of Dynamic Causal Models (DCM) pioneered by Friston
and colleagues (Friston et al., 2003). These models express the interac-
tions between brain regions using differential equations. These equa-
tions also allow for known external inputs (experimentally controlled
perturbations) and can therefore model both “resting” brain activity
and task- or stimulus-related responses:

_x ¼ f x; θ;uð Þ þ ex ð2Þ

where x is P × Txmatrix of Phidden neuronal states, _x is its temporal de-
rivative, at Tx time points, θ are the biophysical neuronal model param-
eters, u, are the known external inputs, and ex is a stochastic neuronal
noise or fluctuation. Note that the presence of ex makes this equation
a stochastic differential equation; a special case is when ex = 0, which
would correspond to a deterministic (ordinary) differential equation.

The inclusion of stochastic noise is necessary if these DCMs are to be
usedwith “resting state” data. This is becausemodels of resting data are
not equipped with external inputs, u, and so neuronal activity can only
be explained in terms of spontaneous (endogenous) neuronal fluctua-
tions that can be modelled by the stochastic term (Daunizeau et al.,
2009; Li et al., 2011).

Dynamic causal models can be thought of as comprising individual
brain areas (or network nodes), whose directed connections are de-
scribed by a connectivity matrix (normally designated as A). The dy-
namics within a brain region, or network node, often appeal to the
notion of a cortical micro-circuit (CMC). CMCs have been described
as “functional modules that act as elementary processing units bridg-
ing single cells and systems levels” (Grillner and Graybiel, 2006). Each
CMC can consist of one or more interacting sub-populations that also
interact with the sub-populations in CMCs of other brain areas; see
Fig. 1 for an illustrative example.

Examples

There is a continuum of models that could be considered at varying
temporal and spatial scales, and with different amounts of biophysical
realism and complexity. Thesemodels take us from abstract representa-
tions of (lumped) neuronal activity, through to full blown biophysical
models of individual neuron dynamics and inter-neuron interactions.
Some typical examples will now be described.

“Classic” fMRI DCM
Here, we consider the special case of the form of f(x,θ) used for

modelling “resting” state fMRI data using DCM. This can easily be ex-
tended to include external inputs, u, (Friston et al. 2011). In this
case, f(x,θ,u) corresponds to a linear state model:

_x ¼ Axþ ex ð3Þ

where A is the P × Pmatrix that encodes directed connectivity between
P brain regions. In these sorts of models, neuronal dynamics within a
node are described by a single neuronal state with self-inhibition (by
having negative values on the diagonal of A). It is worth noting an
observation from (Penny et al. 2004) that if we assume _x ¼ 0, then
this equation corresponds to a structural equation model x ¼ Axþ ex,
where A ¼ A−I.

FMRI DCM has also been extended to a nonlinear model, which al-
lows second order or multiplicative interactions between states to pro-
duce changes in target activity. This can be thought of in terms of the
modulation of coupling between two regions by a third (Stephan et al.
2008).

Mean-field and neural mass models
Electrophysiological data (e.g.M/EEG) is amore direct neuronalmea-

sure, with high temporal resolution. In this case, the linear statemodel in
Eq. (3) is far too simple; instead models at the timescale of neuronal dy-
namic interactions need to be considered. However, non-invasive elec-
tromagnetic data are not sufficiently resolved for models of individual
neurons and so approximations to population dynamics are used. Thank-
fully, MEG and EEG measure the combined effect of populations of large
numbers of neurons. These neuronal populations can be modelled using
mean-field or neural mass approximations, in which the population be-
haviour is captured using probability distributions over the neuronal
state variables (Deco et al., 2008).

The “neuronal populations”weare referring to typically correspond to
sub-populations of similar neurons within a brain area, source or node.
For example, aWilson-Cowan node contains two populations, one inhib-
itory and one excitatory (Deco et al., 2009; Wilson and Cowan, 1972).
These within-brain source populations, or sub-populations, interact
with each other, and are coupled to sub-populations in other sources;
see Fig. 1 for an illustrative example. Another example is M/EEG DCM,
in which there are three sub-populations within each source, corre-
sponding to excitatory pyramidal neurons, excitatory spiny stellate neu-
rons, and inhibitory inter neurons (David et al., 2006).

But how do we model the population distribution of neuronal dy-
namics? Typically the population is represented using a single neural
mass at the mean of this distribution, so-called neural mass models.
However, one can also consider a mean-field model, which accounts
for higher order statistics via stationary solutions of the Fokker–Planck
equation (Deco et al., 2008). For example, (Marreiros et al., 2010) used
this approach to model dynamics of covariances by using a Laplace
approximate around the mean in DCM. These full mean field models
only become relevant when the local dynamics are nonlinear— and the
dispersion or [co]variances affect the mean and vice versa (Marreiros
et al., 2010).

Conductance-based models
A particularly useful class of model is the conductance-based model

(Morris and Lecar, 1981). This sort of model corresponds to a system of
coupled nonlinear first order differential equations with state variables
for the transmembrane potentials and for different channel conduc-
tances (Marreiros et al., 2010). Note that these conductance-based
models are particularly attractive biophysical models to work with, be-
cause they are directly related to specific synaptic processes, and can be
used to investigate experimental effects of altering specific neurotrans-
mitters (Moran et al., 2011). These models are inherently non-linear
(second-order) because they consider the interaction between voltage
differences and conductances. While conductance-based models de-
scribe the behaviour of individual neurons, the Fokker–Planck approach
can be used to translate them into equivalent neural mass, or mean
field, models at the population level, as discussed in the last section
(Marreiros et al., 2010).

Kuramoto oscillators
Coupled mean-field models of neurons tend to produce dynamics

that are oscillatory. So an alternative strategy has been to circumvent
the complexity of the neuronalmodel (albeit at the expense of biophys-
ical interpretability of the parameters), and to model each brain area's
population dynamics as a Kuramoto oscillator (Breakspear et al., 2010;



Fig. 1. Example of a biophysical network model. The model comprises individual brain areas or sources (or network nodes), whose connections are described by a connectivity
matrix that encodes directed connectivity (black lines) between brain regions (blue patches). The local model that describes dynamics within a brain region – sometimes referred
to as a cortical micro-circuit – can consist of one or more sub-populations. Here the local model is a Wilson–Cowan model, which contains two sub-populations: one inhibitory pool
and one excitatory pool of neurons. These pools interact with each other (red, green arrows). The networks are driven by inputs into each of the nodes (blue arrow), which can be a
combination of external stimuli and endogenous fluctuations.
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Cabral et al., 2011; Shanahan, 2010). As in the full biophysical models,
these phenomenological models can incorporate endogenous noise,
and biophysical parameters such as conduction delays; and have been
shown to simulate emergent dynamics, e.g. multistability, similar to
those found in “resting” state neuroimaging data (Cabral et al., 2011).

The observation model

The observationmodel captures the biophysics of the imaging mo-
dality. This predicts the imaging data given the neuronal activity, x:

y ¼ g x;αð Þ þ ey ð4Þ

where g(x,α) describes the mapping between the neuronal activity
and predicted imaging measurement (or modality) in question. This
is a function of the hidden neuronal states, x, and some observation
model parameters, α. Here, ey is the observation noise. In the case
of FMRI, g(x,α) could correspond to a model from MRI physics of how
hidden physiological states (e.g. blood flow, volume) producemeasure-
ment signals (e.g. T2* effects). For example, in DCM for fMRI, this obser-
vation model is based upon the hidden states entailed by the so-called
“Balloon model” (Buxton et al., 2004). This consists of coupled differen-
tial equations describing changes in vasodilatory signals, blood flow,
blood volume and deoxyhemoglobin content (Friston, 2000; Stephan
et al., 2007b). This part of themodel for fMRI model is crucial for dealing
with hemodynamic confounds (David et al., 2008) when inferring hid-
den neuronal states and parameters. In MEG, g(x,α) would typically cor-
respond to the classical electromagnetic forward model— incorporating
solutions to Maxwell's equation given the head and sensor array geom-
etry (i.e. the lead field matrix) (Mosher et al., 1999).

Which model to use?

It is all very well emphasising the need for biophysical network
models, but the benefits over functional connectivity will only be prop-
erly obtained with an appropriate choice of model — both in terms of
the form of the model (e.g., neural mass versus Kuramoto oscillator)
and its graphical structure (e.g., fully connected versus sparse). For ex-
ample, a model that has missing nodesmay be susceptible to exhibiting
apparent changes due to changes in the wider network (full graph).

The “best” model to use in any given context will be an inevitable
balancing act between inter-related considerations:
• Ease of inference (e.g. simpler models have less parameters and are
generally easier to invert, in terms of numerics and convergence).

• Model evidence: a model with higher evidence (the probability of
observing the measured data given the model) has a better trade-off
between accuracy (fit) and complexity and is thus less prone to
overfitting (Penny et al., 2004). A complementary notion is that
of model generalisability as assessed by cross-validation (Strother
et al., 2002).

• What are the data modalities being considered? (e.g., FMRI models
do not necessarily require modelling of populations of neurons at
fine temporal scales).

• What will the results be used for? What are the requirements on the
output with regards to:

o Level of biophysical interpretability (e.g., conductance-based neu-
ralmassmodels allowmodelling of neurotransmitter specific chan-
nels).

o Temporal and spatial scale.
o Diagnostic utility.

Modelling data transforms

There is also a choice as to the formof the data that aremodelled. It is
not necessary to always have a full generative biophysical model of the
data as it comes off the imaging device. In other words, the data features
one tries tomodel can sometimes be as important as themodel itself. For
example, should one be modelling the entire timeseries or the covari-
ance matrix based on timeseries? One example, from electrophysiology
is to separate the source reconstruction model of M/EEG data from the
neuronal modelling. However, while this can allow for the use of source
reconstruction approaches that cannot be readily expressed as a gener-
ative model (e.g. beamforming (Vrba and Robinson, 2000; Woolrich
et al., 2011)), this can introduce problems such as volume conduction
and spatial leakage (i.e. the existence of zero-lag correlations between
brain areas as an artifact of the source reconstruction) that need to be
accounted for in other ways.

Another example is that we do not necessarily need to model the
full time-series in the time-domain. Instead, we can look to model the
frequency (spectral) characteristics. This is done in DCM for steady
state responses (Moran et al., 2009), where the temporally stationary
frequency response of M/EEG or LFP data is modelled directly. Similarly
in (Cabral et al., submitted for publication), the frequency profile of
functional connectivity is matched between real MEG data, and a bio-
physical model of resting state networks using Kuramoto oscillators.
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Models of “resting” state brain activity based on anatomical skeletons

Functional neuroimaging studies have found that the brain's “rest-
ing” state activity patterns can be decomposed into networks of brain
areas with known task-related rules, such as the default mode, atten-
tion, and sensorimotor networks. These have not only been identified
in FMRI data (Beckmann et al., 2005), but also now independently in
MEG data (Brookes et al., 2011b).

There has been increasing interest in models of “resting state” data
that make use of the information about white matter anatomical con-
nectivity from diffusion MRI data {Cabral, 2011 #91;Deco, 2012 #252;
Honey, 2009 #418;Ghosh, 2008 #435}. These so-called “bottom-up”
models have used data from the Macaque connectivity database
CoCoMac (Stephan et al., 2001), or tractography on human diffusion
MRI data, to calculate an anatomical network matrix between all pairs
of nodes. This provides information about the existence of an anatomical
connection, and sometimes about the length of the connections (by vir-
tue of the length of the tracts estimated from diffusion tractography). A
dynamic model of the neuronal interactions among nodes is then
added, which is constrained to interactions allowed by the anatomical
skeleton.

Activity patterns simulated from these models have been shown to
reproduce the spatiotemporal characteristics of real functional neuro-
imaging data. For example, they can simulate anti-correlated functional
networksmodels using neuralmassmodels at each node ({Ghosh, 2008
#435}, Deco et al., 2009, Honey et al., 2007). They can also simulate slow
oscillatory spontaneous activity using, for example, dynamic models of
Wilson–Cowan units (Deco et al., 2009), Kuramoto oscillators (Cabral
et al., 2011), neuralmassmodels (Honey et al., 2007), or spiking neuron
models (Deco and Jirsa, 2012). Kuramoto oscillator models, which only
oscillate locally in the gamma band, have also been shown to produce
functional connectivity specifically in the alpha and beta bands (Cabral
et al., submitted for publication), matching the observations made in
real MEG data (Brookes et al., 2011b; de Pasquale et al., 2010; Hipp
et al., 2012).

In general, these network dynamics arise as emergent properties that
result from the nature of the anatomical connectivity, which underpins
the different models. In this context, evidence is emerging about the rel-
ative importance of biophysical assumptions about the node dynamics,
endogenous noise, or indeed conduction delays (Deco et al., 2011).

The HCP offers an exciting new resource for approaches that inves-
tigate emergent dynamics from structure. The state-of-the art diffusion
MRI data (enhanced by new developments in tractography methods)
will allow for more accurate anatomical skeletons to be used. Further-
more, the HCP will provide an extensive database of resting state and
task data, both FMRI and MEG, along with the corresponding anatomi-
cal skeletons for the same individuals.

While providing an interesting frontier, these approaches are not
without their potential problems. For example, one has to assume that
the anatomical connectivity is known precisely; however, this cannot
be known with great certainty for all node-pairs from diffusion MRI
data. Missing anatomical links could cause the model to make spurious
predictions. Arguably, the broad characteristics being investigated so far
should be robust to moderate variations in the anatomical skeleton
(and this robustness can be demonstrated numerically). However, this
problemmay becomemore acute asmore detailed predictions are pur-
sued. As discussed elsewhere in this paper, the ultimate solution is to
have a generativemodel of both the functional and anatomical imaging
data that can capture the inherent uncertainties.

Models of anatomical imaging data

As discussed earlier, onemight hope to infer the underlying anatom-
ical connectome, and then characterise the functional interactions that
arise from these anatomical constraints. However, for this to be a com-
plete framework, we need to augment the functional models discussed
so far, withmodels of the anatomical imaging. Through probabilistic in-
ference, this should then allow information to be appropriately gar-
nered and integrated from all modalities.

While important progress has beenmade in local biophysical models
of diffusion data, relatively little progress has been made in modelling
biophysical tracts at the global, systems level. One exception to this is
the approach of global tractography (Jbabdi et al., 2007; Yendiki et al.,
2011), which models tracts using splines — and ties these (using a hier-
archicalmodel) to the local biophysicalmodels of diffusion data (Behrens
et al., 2007). This allows for top-down regularisation, which provides
more robust tracking through low SNR, or regions of the white matter
with crossing fibres. Furthermore, this model also provides parameters
for the existence of tracts, for the end location of the tracts, and for the
length of tracts. These global tract parameters are important, in as they
are the kind of parameters that also appear in generativemodels of func-
tional imaging data and functional networks. As illustrated in Fig. 2 this
could provide a unified generativemodel, linked by common biophysical
characteristics, which can predict both functional and anatomical imag-
ing data.

Choosing the parcellation

A core goal of the HCP – to describe the connections between differ-
ent brain areas – requires the specification of a set of brain areas be-
tween which to characterise the connectivity. This raises the question
as to what makes for an appropriate parcellation for a given model
and modality (or modalities). While this is a topic for other articles in
this special issue, we consider here some of the key issues in the context
of generative network modelling.

Anatomical atlases

A common approach is the use of atlases. For example, in (Deco
et al., 2009; Honey et al., 2009) the authors use a pre-defined AAL
atlas. However, this can be problematic. In (Smith et al., 2011), net-
work simulations based on DCM for FMRI were used to demonstrate
how node leakage can cause substantial errors in network discovery.
This work illustrates the need for data-driven parcellations.

Data-driven parcellations

The most straightforward approach to data-driven parcellations is
to use functional localisers from traditional brain mapping methods;
e.g., general linear modelling of task FMRI data (Friston et al., 2003).
However, this approach tailors the parcels (or regions of interest,
ROIs) to those relevant in brain mapping, and it may not always be
obvious which to choose for network modelling. Furthermore, when
considering network modelling of resting state data, it is non-trivial
to ensure that you have available the relevant task-FMRI data to pro-
vide sufficient brain coverage.

Emerging data-driven approaches use unsupervised learning ap-
proaches based on clustering. In particular, independent component
analysis (ICA) has been shown at low dimensions (~25 components)
to reliably identify the spatial maps of classic resting state networks,
such as the default mode, attention, and sensory-motor networks.
These have not only been identified using ICA with fMRI data, but
also now independently with MEG data (Brookes et al., 2011b; Luckhoo
et al., 2012) and in task data (Luckhoo et al., 2012). However, each of
these components contains multiple brain areas. What we really need
are nodes that correspond to individual brain areas (or sources), and
then subsequently allow the network modelling to characterise the in-
teractions among those nodes. For this, we will need to turn to higher
dimensional parcellations (>50 components); at this scale the compo-
nents will tend to include only single brain areas. This was used, for ex-
ample, in (Smith et al., 2012) to find individual brain nodes from spatial
(~150 dimensional) ICA.



Fig. 2. Schematic of a combined biophysical model that predicts both anatomical and
functional imaging data. This generative model can regarded as separate generative
models for anatomical and functional modalities, linked probabilistically by common
parameters (green arrows).

335M.W. Woolrich, K.E. Stephan / NeuroImage 80 (2013) 330–338
Modelling of node parcellations

The parcellation approaches discussed thus far pre-calculate
nodes (ROIs) and then impose them as ‘knowns’ in the subsequent
network analysis. However, an attractive alternative is to parameterise
the position and shape of the ROIs as part of the generative model.
For example, in (Woolrich et al., 2009) multivariate normal distri-
butions were used to model the nodes in fMRI DCM. The network
model and the data itself will then drive the inferred position and
shape of the ROIs.

Crucially, the position and shape of the ROIs for each brain region in
the network can then be inferred, alongside connectivity parameters in
the network model. Eventually, these position and shape parameters
can be tied to the end points of global diffusion tractographymodels de-
veloped in (Jbabdi et al., 2007), in a symmetric analysis of fMRI and dif-
fusion data, see Fig. 2.

Estimation/inference on biophysical models

Biophysical models are typically used in one of two modes:

1) To predict emergent spatiotemporal characteristics observed in
neuroimaging data.

2) As generative models that are inverted using (fitted to) neuroim-
aging data.

Although the boundaries between these two options can often get
blurred, we will discuss them in turn.

Predicting emergent spatiotemporal characteristics

As discussed in the “Resting state activity” section this approach
has been particularly prevalent in predicting the emergent spatio-
temporal characteristics of spontaneous brain activity, through the
use of underlying anatomical skeletons (Cabral et al., 2011; Deco and
Jirsa, 2012; Honey et al., 2009). These approaches typically control
broad network behaviour with a limited number of parameters. Using
this approach, we can see qualitatively if the predictions made by the
biophysical models match empirical phenomena. This comparison can
be made more quantitative; e.g., by using correlation in time and/or
space between the model predictions of, data-derived estimates of, the
spatiotemporal characteristics.

However, there is often the nagging concern that any sufficiently
complex model can be tweaked to match any empirical observation.
While the use of biophysical modelling helps to restrict the tweaking
to that which remains biophysically plausible, this can still remain an
issue. Explicit consideration should be given to limiting the parameter
space where possible. For example, in (Cabral et al., 2011), only two
parameters were varied (a global scaling of the connectivity strength
and of the time delays), and yet good prediction of real imaging phenom-
ena was still obtained. These approaches are not restricted to “resting
state” data. For example, in (Hunt et al., 2012) the temporal dynamics
of neural activity was predicted in a decision making task, and shown
to match real MEG data (albeit in a single brain area).

Full inference: Using Bayes

Biophysical generativemodels are a natural way for us to incorporate
our understanding of the brain and of the neuroimaging measures to
make predictions aboutwhat the datawill look like. However, in practice
wewant to do the opposite.Wewant to be able to take acquired data and
extract pertinent information about the brain (i.e., “infer” the model pa-
rameters). Bayesian statistics offers a complete framework to solve this
problem, and also provides a framework in which we can do much
more besides (Woolrich, 2012).

Within the Bayesian setting, the biophysical network model pro-
vides the data likelihood; i.e., the probability of the data given the
model parameter values. Biophysical constraints (or regularisation)
can be encoded using probabilistic priors, which keep parameters
within biologically plausible ranges. Bayes rule can then be used to
calculate the posterior distribution over the model parameters, given
the neuroimaging data. What is more, Bayes provides a measure of
the extent to which different biophysical models are supported by the
evidence in the data, namely the Bayesian model evidence — this is the
probability of the data given the model (averaging over uncertainty
about the model parameters).

Bayesian inference in DCM

The best example of Bayesian inference on biophysical network
models is DCM (Friston et al., 2003). DCM uses approximate Bayesian
inference approaches to invert and compare DCMs. Approximate Bayes-
ian inference usually uses the variational free energy as an approxima-
tion to the model evidence to provide a measure for model comparison
(Penny et al., 2004; Stephan et al., 2007b).When combinedwith the La-
place assumption this is known as Variational Laplace. The combined
use of Bayesian model comparison and DCM provides a framework for
evaluating competing hypotheses about the architecture of networks.
Recent developments also allow for random effects inference in hetero-
geneous groups of subjects (Stephan et al., 2009a) and for model com-
parisons across families of models to overcome problems with “model
dilution” — when there are a large number of models to compare
(Penny et al., 2010).

DCM has been used successfully in a wide variety of settings, includ-
ing task and rest, fMRI andM/EEG data (Stephan et al., 2007a). However,
we should be cautious about offering up Bayesian inference as a solution
to all problems: We will now look at some of the outstanding problems
in more detail.

Inaccuracy of inference

Themost immediate problem is that the solution to Bayes rule to get
posterior probability distributions is not analytically tractable for all
practical biophysical network models. Either time-consuming numeri-
calmethods (e.g. Markov ChainMonte Carlo (MCMC) sampling) or pos-
terior approximate approaches (e.g. Variational Bayes or Variational
Laplace) are needed. These approaches are only as good as any of the in-
herent approximations allow, and do not guarantee that they explore
the most probable areas of parameter space.

image of Fig.�2
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Network discovery

A particular challenge facing the community is the problem of
network discovery. Network discovery is needed when we do not
have a strong a priori hypothesis about the configuration of effective
connections in the network, and instead want to “discover”, or infer,
the existence of connections from the data. This is a particular problem
(although not exclusively) in “resting state” data, due to the large num-
ber of nodes that are likely to be engaged in the resting state. Each pos-
sible configuration of connections between these nodes can be thought
of a candidate model, and so a huge set of models must be considered.

A pragmatic approach is the recent idea of post hoc Bayesian
model comparison, in which the Bayesian model evidence for nested
sub-models can be approximated from the inference on the full
model — with all parameters being non-zero (Friston and Penny, 2011;
Friston et al., 2011).While fast, this solutionwill not allow for exhaustive
exploration of networks with large numbers of nodes, and heuristic
search strategies will be required (e.g., greedy search Friston and
Penny, 2011). See (Seghier and Friston, 2012) for recent develop-
ments along these lines that use the prior constraint that nodes (or
modes) with independent dynamics (no functional connectivity) are
unlikely to share effective connections.

What can we do with biophysical network models?

Since they are generative models (see above), a general trait of bio-
physical networkmodels is their ability to allow for inference on hidden
variables. So far, we havemainly referred to inference on the hidden pa-
rameters describing the effective connectivity between brain areas.
However, this idea extends to other hidden variables; for example,
those relating to network nodes forwhichwe have little, or no, sensitiv-
ity in our measurements. In other words, even when we are not able to
measure the activity in a network node directly, the inversion of a bio-
physical network model may enable us to infer it from activity changes
in the rest of the network. Important examples include inferring the ac-
tivity of deep structures from scalp electrophysiology, or the activity in
brain areas not directly measured using intracranial electrodes (Moran
et al., 2011; Marreiros et al., 2010; Garrido et al., 2012).

The potential of biophysicalmodelling to provide compact,mechanis-
tically interpretable andquantitative summaries of neuronal systems is of
great interest for clinical applications. This is particularly relevant for psy-
chiatry, where we presently lack any objective diagnostic procedures —
andwhere diagnostic classifications purely rest on symptoms, as opposed
to pathophysiological mechanisms. If biophysically plausible models of
non-invasive single-subject data can be established and validated, this
would provide exciting opportunities for redefining psychiatric disease
classifications; enable diagnostic procedures that rest on pathophysiolo-
gy not symptoms, and perhaps even allow for precise treatment recom-
mendations. While the idea of model-based inference on individual
disease mechanisms is not new (Stephan et al., 2004), it is only over
the last few years that advances in biophysical modelling (in particular
with DCM) and machine learning have begun to explore the practical
utility of this idea.

There are two main challenges that need to be addressed in order
to unlock the potential of model-based diagnostics.

1) Systematic validation
Systematic validation studies are needed that can evaluate amodel's
capacity to recover “ground truth” processes (face validity). This re-
quires experimental studies, in which a characterised physiological
process is induced (e.g., by drugs or stimulation techniques) and
then we ask whether model inversion can recognise the known
states or parameters of the system, from measured fMRI or elec-
trophysiological data. Several studies of this sort have already
been undertaken; mainly in the context of DCM. These include
the demonstration that DCM can recover known changes in
synaptic transmission following neurochemical modulation in
rodents (Moran et al., 2008) or humans (Moran et al., 2011)
and that it can track dose-dependent changes in excitation and
inhibition, under varying levels of anaesthesia in rodents
(Moran et al., 2011). However, we also require validation studies
in patients. This is needed because even if we have a model that
can capture known physiological processes, it still remains to
be established whether quantitative measures of this process
are useful (have predictive validity) for clinical decision-making.
In other words, we need longitudinal patient studies, which examine
whether model-based estimates can predict clinical trajectories and
treatment responses.

2) Clinical prediction on individuals
The second challenge is that we needmethods for generating clinical
predictions frommodel parameter estimates or structure for the indi-
vidual. There are two ways of accomplishing this: the first is to use
Bayesian model selection (BMS). This is possible whenever we can
represent a particular disease state or mechanism by a particular
model structure. In this case, we can simply fit all of these models
to the individual patient's data and compute their relative model
evidence. A nice example was provided by (Rowe et al., 2010) who
showed that BMS, applied to fMRI data during amotor task, could dis-
tinguish between the presence and absence of dopaminergicmedica-
tion in patients with Parkinson's disease. However, this approach is
not always feasible becausewe often lack knowledge about themap-
ping between a particular clinical state and a specificmodel structure.
In this case, a useful alternative is “generative embedding”.

Generative embedding

Generative embedding uses estimates ofmodel parameters, obtained
from inverting a generativemodel, to inform the kernel of a discriminant
classifier, such as a support vector machine. In neuroimaging, generative
embedding has been pioneered by (Brodersen et al., 2011). Using groups
of aphasic patients (due to stroke) and healthy controls, both measured
with fMRI while listening to passive speech, they extracted fMRI signals
from the early auditory system, which was not lesioned. They then tried
to predict, subject by subject, whether or not there was a remote lesion
(beyond the field of view). Using generative embedding (based on a
six-area DCM of the early auditory system), almost perfect predictive ac-
curacy (98%) was achieved. By comparison, conventional classification
approaches operating on the BOLD signals themselves (or on functional
connectivity estimates) were significantly less sensitive — with the best
accuracies around 80%.

In addition to superior predictive accuracy, generative embedding
also allows for mechanistic insights. This is because one can go back to
model parameter space and examine which parameter combination
drove the discrimination. In the case of (Brodersen et al., 2011),
the predictive power of the model mainly rested on parameters
representing transfer from the right to the left hemisphere. One
can intuit that if generative embedding is based on models with more
physiological interpretability than DCM for fMRI (e.g., conductance-
based DCMs for electrophysiological data as described above), much
more fine-grained insights into disease mechanisms may be in reach.

Finally, generative embedding can also be employed in an un-
supervised way; e.g., by combining generative models of biophysical
processes with clustering methods. This is particularly useful when
dealing with spectrum disorders, such as schizophrenia or depression,
where disease mechanisms are likely to vary considerably across
patients and an unknown number of subgroups may exist. In on-
going work, Brodersen et al. (2011) have used this approach to
examine a group of 40 schizophrenic subjects with DCM for fMRI
(during a visual working memory task) and found evidence of three
distinct subgroups, characterised by different prefrontal–parietal–visual
network architectures. Crucially, the subgroups identified by these
physiological differences also displayed significant differences in
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clinical symptom profiles, information that was not available to the
clustering procedure.

Summary

Wehave considered the key role that biophysical functional network
modelling has to play in characterising the human connectome using
multi-modal non-invasive neuroimaging data. Furthermore, network
models provide themeans bywhichwe can understand the relationship
between structural and functional connections; and can provide us with
more sensitive and interpretable parameters — through which we can
better understand normal and diseased brain function. The suggestion
here is that there is great potential for future clinical applications, al-
though there is much work to be done with regard to validation studies
in animals, human pharmacological and patient studies. Given successful
validation, techniques such as generative embedding could provide ex-
citing future opportunities for predicting individual clinical outcomes
and for detecting hitherto unknown subgroups in spectrum diseases.
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Appendix A

The use of the partial correlation matrix is normally motivated by
noting that full correlations pick up indirect connections aswell as direct
connections, whereas the partial correlation for a pair of brain areas par-
tials out all other brain areas, other than the pair in question. Here we
offer an alternative perspective by relating it to a structural equation
model (SEM). Like DCM, SEM's comprise a set of regions and a set of di-
rected connections. However, there are limitations on structural model
complexity and only instantaneous effects are modelled {Penny, 2004}:

yt ¼ Ayt þ et

where A is the N × N matrix of connections (or path coefficients) be-
tween N brain regions, and et is Gaussian noise at time t, et ~ N(0,σ2).
Then:

yt ¼ I−A
� �−1

et

and so the N × N full covariance matrix of y, Cy, is given by

Cy∝ I−A
� �−1

I−A
� �−T

:

If we rearrange this and assume that A is symmetric, then we can
see that the partial correlation matrix, (Cy)−1, is related to A by:

A ¼ I−√ C−1
y

� �

where we are using the matrix square root. This means that the off-
diagonal elements of the (matrix square root of the) partial correlation
matrix correspond to the negative values in the matrix of connections,
A, when that matrix is symmetric.
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