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eMethods. Supplementary Methods 

Probabilistic reversal learning task 
The task was similar to the task described in Hauser et al.(2014)1. On each trial, the subjects had to select the one of 
two stimuli. One of the two stimuli had a reward probability of 0.8 while the other stimulus had a reward probability 
of only 0.2. The subjects had to learn the reward probabilities on a trial-and-error basis. After six to 10 correct 
(minimally three consecutive correct responses) responses, the reward probabilities reversed, to which the subjects 
then had to adapt. The participants knew about the possibility of reversal, but they were not informed about any 
details of the reversals. Rewards were depicted by a framed 50 Swiss Centimes coin. As punishment, the participants 
lost 50 Swiss Centimes. The task consisted of two runs with 60 trials each. Participants were instructed to win as 
much money as possible. They knew that half of the money won was paid to them at the end of the study. On each 
trial, two objects were presented for 1500ms. One of the stimuli (the “correct” stimulus) had a reward probability of 
0.8 and a punishment probability of 0.2. The other, “incorrect” stimulus had a punishment probability of 0.8 and a 
win probability of 0.2. Late answers (>1500ms) were punished with one Swiss Franc. This was done to prevent late 
answers and these trials did not enter the learning analysis. The average total trial duration was 9000ms. In each run, 
we additionally presented 20 null trials of 9000ms length. 
 
 
Computational models 
To infer behavior, we tested two learning models and two decision models. We performed model comparison using 
Bayesian random effects analysis2. The best performing model combination over all participants was used for group 
comparison and further analyses. 
To ensure that participants did not respond randomly, performing at chance level, we additionally built a simple 
model without any free parameter which always resulted in a choice probability of 0.5 at every trial. This chance 
model was compared to the best performing of the other models. If the chance model performed equally well or 
better, we excluded this subject from analysis, given that no learning was detectable. 
 
Learning models 
We compared two different models which are explained in what follows. Note that, for clarity, we use δ for the RPE 

during outcome and choice value )(t
chosenV for RPE during cue presentation (because RPEcue is the difference between 

the expected value of the cue and not presenting a cue, which equals zero). For a more detailed explanation of this 
notational choice, see e.g., Niv et al. (2012)3. In the results and discussion sections, we use RPEcue for the expected 

value ( chosenV ) and RPEoutcome for δ. 

 
Anticorrelated Rescorla-Wagner model 

δ at each trial t was computed as the difference between the anticipated ( )(t
chosenV ) and the received (

)(tR ) outcome: 

 )()()( t
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tt VR   (1) 

The values of both options were then updated using δ4: 
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where α depicts the learning rate. The priors for the model fitting procedure were set to (0) .5V  , )10(5.  

(mean(variance in logit space)). 
 
Hierarchical Gaussian Filter model (HGF) 
The HGF is a generic hierarchical, approximately Bayes-optimal learning model. The HGF fully complies with the 
assumptions of predictive coding and the Bayesian brain hypothesis, which states that the brain always learns in a 
Bayes-optimal fashion, given individually different priors5,6. The exact formulation, the model inversion and the 
complete update equations are described in Mathys et al. (2011)7–9. The HGF, as used here, consists of a hierarchy of 

3 hidden states, where the states at levels 2 and 3 ( 2x , 3x , resp.) evolve as Gaussian random walks over time (Figure 

1B). 1x  ( }1,0{ ) indicates the environmental state that defines which stimulus is being rewarded. It is governed by 

the state 2x  ( }{ ), which is transformed to the probability that 1x  by a logistic sigmoid transformation 
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Since the variance of this random walk can be taken as a measure of the volatility of 
2x , the log-volatility  ( )

3
tx   

has two components, one phasic and the other tonic: 
3x  is a state-dependent (phasic) log-volatility, while   is a free 

parameter defining a subject-specific (tonic) log-volatility.   was fixed to 1 as in Vossel et al. (2013)8. The state )(

3

tx  

is normally distributed with mean )1(

3

tx  and variance  .   is a free parameter and can be regarded as a subject-

specific meta-volatility. 
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The variational inversion of the model yields subject-specific Gaussian belief trajectories about 

2x  and 
3x , 

represented by their means 
2 , 

3  and variances (or, equivalently, precisions) 
2 , 

3  (
2 , 

3 ). This inversion 

revealed that the trial-by-trial update equations highly resemble the update equations from Rescorla-Wagner models 
(cf. equation 1):  
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where )(
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t  is the trial-by-trial variance at level 2. It can be expressed by a ratio of precision estimates ̂  
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For the update equations at level 3 and for the derivation of the equations, please refer to Mathys et al. (2011)7. 
Parameters were estimated in spaces where they were unbounded (e.g., the initial values 

0  of the variances were 

estimated in logarithmic space, where their possible values are unbounded, while in native space there is a lower 
bound at zero). This enabled the use of Gaussian priors, which (in the appropriate spaces) were set to μ0=[0,1](0,0), 
σ0=[0,0](1,1), κ=1(0), ω=-2(10), =.03(1). 
 
To sum up, the HGF has a similar update structure as the anticorrelated Rescorla-Wagner model (cf. equations 1 and 
2 with 7 and 8). But instead of a fixed learning rate across the whole experiment (i.e., α), the learning rate is 
determined by an estimate of the variance of the belief (eq. 9). Therefore, the impact of the RPEs (δ1) is modulated 
by the environmental volatility and the certainty of beliefs, resulting in a bigger impact of RPEs in more uncertain 
trials. 
 
For a better understanding of this model in the context of RPE-theories, we define )(

2ˆ t  of the chosen object as the 

choice value ( )(t
chosenV ) and δ1 as RPE. We decided not to investigate higher-order updates and beliefs because we had 

no specific hypotheses about these levels of the model.  
 
Decision models 
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We combined each of the learning models with two of the most commonly used decision models. As first model, we 
chose a softmax function,  
 

)(1

1
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  ,
 

(12) 

where )(Ap  denotes the probability of choosing object A and   is a free parameter. As a second decision model, we 

implemented a unit square sigmoid transformation 
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(13) 

where 
 
denotes the free parameter.  

The main difference between these two models is how they translate beliefs into action probabilities. The softmax 
model is more flexible, especially in decisions with beliefs of high certainty, where the unit square model is (almost) 
deterministic. So far, the softmax model has mainly been used to model reversal learning tasks1,4,10. Nevertheless, 
with this comparison, we wanted to ensure that this decision model is also well suited for our data. 
  
 
Model fitting procedure 
All models were implemented and estimated using the HGF toolbox framework (v2.1; 
http://www.translationalneuromodeling.org/tapas/). We used the (negative) variational free-energy F to compare the 
model fits. F is a lower bound on the log-model-evidence, and the maximization of F therefore minimizes the 
Kullback-Leibler divergence between the exact and the approximate posterior distribution11. For optimization, we 
used the Broyden, Fletcher, Goldfarb and Shanno (BFGS) quasi-Newton optimization algorithm. We compared each 
combination of a learning model with a decision model using Bayesian model selection (BMS)2. Because the two 
groups could have had a different winning model, we ran BMS for all subjects together as well as for each group 
independently. 
 
Data acquisition 
We recorded fMRI in a 3 T Philips Achieva Scanner (Philips Medical Systems, Best, the Netherlands), which was 
equipped with a receive-only 32-element head coil array. We used an echo planar imaging (EPI) sequence which was 
optimized for maximal orbitofrontal signal sensitivity (TR: 1850ms, TE: 20ms, 15° tilted downwards of AC-PC, 40 
slices, 2.5*2.5*2.5mm voxels, 0.7mm gap, FA: 85° FOV: 240*240*127mm). For normalization purposes we also 
acquired a T1-weighted structural image. For our simultaneous EEG acquisition, we used two MR-compatible 32-
channel DC amplifiers (BrainProducts GmbH, Gilching, Germany). We recorded the data with a sampling rate of 5 
kHz (recording reference: Fz, EEG recording filters: DC-250 Hz, ECG: DC-1000 Hz) from 63 scalp electrodes and 2 
ECG channels. The 63 scalp electrodes covered the international 10-20-system12 plus the following positions: FPz, 
AFz, AF2, FCz, CPz, POz, Oz, Iz, F5/6, FC1/2/3/4/5/6, FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/10, P5/6, 
PO1/2/9/10, OI1/2, left and right eye (laterally and below the eyes). For a more even coverage, O1’/2’ and FP1’/2’ 
were located 15% more laterally to Oz/FPz. 
 
fMRI analysis  
For fMRI preprocessing and analysis, we used SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The raw data were 
realigned, resliced, and coregistered to the T1 image. For normalization, the deformation fields were used, which 
were obtained using new segmentation. This procedure resulted in a new standard voxel size of 1.5*1.5*1.5mm. 
Subsequently, the data were spatially smoothed (6mm FWHM kernel). 
For our fMRI analysis, we estimated the RPEs and choice values using the winning model across all participants. In 
the first-level GLM, we entered the model-derived RPEs (RPEoutcome, here δ1) at feedback onset and choice values 
(RPEcue, here 2̂ ) at cue presentation as parametric modulators. Additionally, we entered the following regressors of 

no interest to improve model validity. To control for movement-induced effects, we entered the realignment-derived 
movement parameters. Furthermore, we entered an additional regressor for each scan with a scan-to-scan motion > 
1mm (determined using a custom adaptation of the artRepair-toolbox, http://cibsr.stanford.edu/tools/human-brain-
project/artrepair-software.html). Because the heart rate is known to differ between ADHD and controls in 
reinforcement paradigms13 and because pulsations induce micro-movements and therefore add noise to the data, we 
additionally regressed out pulsatile effects using an adaptation of RETROICOR 
(http://www.translationalneuromodeling.org/tapas/)14,15. Missing answers were also entered into a regressor-of-no-
interest. For all task-related regressors, the spatial and temporal derivatives were enabled. Results of the random-
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effects fMRI analyses are reported using a p<.05 voxel-height FWE threshold for task main effects, and p<.05 
cluster-extent FWE correction (voxel-height threshold p<.001) for between group comparisons. 
 
RPE main effects and group differences 
To analyze the neural correlates of RPE processing during cue presentation and outcome (task main effects), we 
entered all subjects into one random effects analysis. To obtain the group differences, we compared both groups 
using independent t-tests (separately for RPEcue and RPEoutcome).  
 
Neural correlates of β 
We evaluated where in the brain the decision steepness (model parameter β) is processed. To do so, we ran a 
covariate analysis during cue presentation with β as covariate in all subjects. To eliminate between-group effects, we 
added the group as an additional covariate-of-no-interest. 
 
ROI-Analysis of sgACC/VS-cluster 
ADHD – in particular with respect to decision making – has often been associated with activation differences in the 
ventral striatum16. We therefore decided to investigate the activity in this area, which is well known for processing 
RPEs17–19. In our RPE main effects analysis (RPEcue and RPEoutcome combined), we found a significant cluster 
containing the subgenual ACC and ventral striatum (sgACC/VS) to be activated by RPEs (cf. eFigure 2, 3E, eTable 
3). We defined the ROI (8mm sphere) based on the peak voxel in the sgACC/VS cluster of our task main effects 
analysis (eFigure 2A, eTable 3). The effects of RPEs were computed using rfxplot20. We performed a split-half 
analysis of the RPE trials (hereafter: positive and negative RPEs) and used repeated measures ANOVAs and post hoc 
t-tests to compare the RPEs. The same analysis was also conducted based on a peak voxel from an independent 
group of healthy adults (n=25, 29.9y±7.4, 16m/9f) which played the same task. Their data were analyzed in the same 
way as described above. We also found a strongly significant main effects RPE activation in the sgACC/VS area 
(MNI: x=-5, y=17, z=-14; t(24)=6.53) and used this peak as the center of the ROI. 
 
Functional connectivity analysis 
To better understand how the impairments in the mPFC can be related to the sgACC/VS-impairment, we performed 
an exploratory connectivity analysis. We entered the SPM-derived first-level GLMs into the CONN-fMRI functional 
connectivity toolbox (v13p, http://www.nitrc.org/projects/conn/). Additionally, we entered the segmented structural 
images (gray matter, white matter, cerebro-spinal fluid) into the analysis for additional motion correction. The data 
were filtered using .008-.09Hz bandpass filter and we performed a ROI-to-ROI functional connectivity analysis 
(bivariate regression) using the mPFC clusters which were found to be impaired in the main RPE analysis. 
Additionally, the sgACC/VS-ROI was entered. 
 
EEG preprocessing, analysis, and source localization 
We used BrainVision Analyzer 2.0.2 (BrainProducts GmbH, Gilching, Germany) for EEG preprocessing. MR 
artifact correction was conducted using sliding average subtraction21. Cardioballistic artifacts were removed using 
the implemented CBC correction algorithms. The data was resampled (256 Hz) and filtered (.1 Hz-30 Hz, 50 Hz 
notch). Ocular and remaining cardioballistic artifacts were excluded using independent component analysis (ICA). 
The continuous data was re-referenced to average reference22 and then exported for further analysis to Matlab using 
the eeglab-toolbox23.  
We used a peak-to-peak analysis to define the FRN. We segmented (-100-700ms relative to feedback onset) and 
baseline-corrected (-100-0ms) the continuous data in reward and punishment trials separately. Epochs with 
amplitudes greater than ±80μV were excluded from subsequent analyses (number of trials excluded: ADHD: 21±26, 
controls: 15±17, t(36)=.81, p=.426). We restricted our analysis to the electrodes Cz, FCz, and Fz, which are most 
often used in FRN analyses. For each subject, we determined the most negative peak between 200-425ms 
(punishment: ADHD: 316ms±43, controls: 323ms±46, t(36)=.43, p=.670; reward: ADHD 339ms±34, controls: 
331ms±38, t(36)=-.71, p=.485) and the most positive preceding peak between 150-300ms (punishment: ADHD: 
203ms±34, controls: 206ms±34, t(36)=.28, p=.780; reward: ADHD: 213ms±30, controls: 208ms±32, t(36)=-.55, 
p=.589), similar to the study by Zottoli and Grose-Fifer (2012)24. To determine the electrode with the maximal 
feedback-related response, we selected the electrode with the biggest difference between the two peaks. For both 
groups, electrode Fz elicited the biggest feedback-related response (Cz: controlsreward: -5.15μV±2.47, 
controlspunishment: -4.82μV±2.51, ADHDreward: -5.63μV±3.23, ADHDpunishment: -5.15μV±2.65; FCz: controlsreward: -
6.46μV±2.68, controlspunishment: -6.66μV±3.27, ADHDreward: -7.53μV±3.67, ADHDpunishment: -6.54μV±3.60; Fz: 
controlsreward: -8.06μV±3.04, controlspunishment: -9.74μV±3.90, ADHDreward: -8.81μV±4.08, ADHDpunishment: -
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8.21μV±4.55, eFigure 2). We calculated the FRN by subtracting rewards from punishments and compared the FRN 
between the groups using independent t-tests. 

To localize the FRN, we took the single-trial amplitudes and used them as a parametric modulator at the time of 
feedback in the first-level fMRI-GLM. We additionally entered all the regressors mentioned above (with exception 
of RPEoutcome) to improve model fit. We set the significance level to p<.001 cluster-extent FWE correction (voxel-
height threshold p<.005) and localized the FRN in both groups independently. 
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eResults. Supplementary Results 

Neural correlates of RPE processing: main effects 
When analyzing the main effect of RPEs (cue and outcome combined), we found a network which showed 
increasing activation with increasing RPEs containing the ventromedial prefrontal cortex (vmPFC), posterior 
cingulate cortex (PCC), amygdala, lateral prefrontal cortex (latPFC), and a cluster containing the subgenual anterior 
cingulate cortex and the ventral striatum (sgACC/VS; eFigure 2A, eTable 3). A network containing the anterior 
insula, mPFC, latPFC, dorsolateral prefrontal cortex (dlPFC), inferior parietal lobe (IPL), precuneus, caudate, 
midbrain, and thalamus showed increasing activation with decreasing RPEs (eFigure 2B, eTable 3). For the RPE 
effects separated for cue and outcome, please refer to Figure 2. 
 
Neural correlates of the decision steepness 
Because we found differences in our model parameter β which indicates the steepness of the decision function (i.e. 
how exploratorily a subject behaves), we wanted to determine its neural correlates. Our covariate analysis revealed a 
network which contains mPFC, latPFC, dlPFC, STG and precentral area (eFigure 2C-D, eTable 3). These regions are 
well known regions of the decision making network: especially the mPFC has been associated with value 
comparison and response selection25–27. 
 
Analysis of sgACC/VS-ROI  
The analysis of our sgACC/VS-ROI revealed a significant RPE (negative, positive) * time (cue, outcome) * group 
(ADHD, controls) interaction (F(1,36)=6.16, p=.018). Post hoc t-tests revealed that there was no difference for 
RPEcue (negative RPE: t(36)=.17, p=.865; positive RPE t(36)=-.15, p=.883, eFigure 3A). For RPEoutcome, there was a 
significant difference for negative (t(36)=-2.83, p=.007, eFigure 3B) and positive RPEs (t(36)=2.84, p=.007). Also 
for the analysis which was based on an independent adult sample (s. above), we found a significant RPE (negative, 
positive) * time (cue, outcome) * group (ADHD, controls) interaction (F(1,36)=5.17, p=.029). Post hoc t-tests 
revealed that there was no difference for RPEcue (negative RPE: t(36)=.070, p=.945; positive RPE t(36)=-.065, 
p=.949, eFigure 3C). For RPEoutcome, there was a significant difference for negative (t(36)=-2.55, p=.015, eFigure 3D) 
and positive RPEs (t(36)=2.54, p=.015). Thus, both groups showed similar RPE activation patterns during cue 
presentation, but controls show stronger RPE activation than subjects with ADHD in the sgACC/VS during outcome. 
 
Functional connectivity analysis 
To understand whether the differences between the mPFC were related to the sgACC/VS-cluster, we performed a 
ROI-to-ROI connectivity analysis. We found a significant connectivity in both groups between mPFCoutcome and the 
sgACC/VS (controls: .326±.147, t(19)=9.91, p<.001; ADHD: .192±.137, t(17)=5.95, p<.001; eFigure 3E) and 
between the  mPFCoutcome and mPFCcue (controls: .395±.399, t(19)=4.43, p<.001; ADHD: .311±.377, t(17)=3.50, 
p=.003). No significant connectivity was found between mPFCcue and sgACC/VS (controls: .134±.467, t(19)=1.28, 
p=.214; ADHD: .126±.357, t(17)=1.49, p=.154). A comparison between the groups revealed a significantly reduced 
connectivity in ADHD between the mPFCoutcome and the sgACC/VS (t(36)=2.89, p=.006), but not in the other two 
comparisons (mPFCoutcome-mPFCcue: t(36)=.67, p=.510; mPFCcue-sgACC/VS: t(36)=.06, p=.950). 
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eFigure 1. Analysis of the FRN.  
The FRN was computed as the difference of the amplitude difference between N2 and P2 peak between punishments and rewards. 
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eFigure 2. Neural correlates of RPEs and decision function.  
A, Increasing RPEs are associated with increased activation in a network containing the vmPFC and the sgACC/VS (p<.05 voxel-
height FWE). B, Decreasing RPEs are associated with a network containing the anterior insula, mPFC and the dlPFC. The model 
parameter β, which indicates the steepness of the decision function, elicits a network containing the mPFC (C) and the latPFC (D) 
during the decision phase (p<.05 cluster-extent FWE). 
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eFigure 3. Analysis of sgACC/VS-ROI and functional connectivity.  
The analysis of a cluster in the subgenual ACC and ventral striatum (sgACC/VS) displayed no activation differences between the 
groups during cue-phase (A). However, during outcome phase (B), subjects with ADHD (red) showed no activation, while the healthy 
controls (black) showed normal modulation. The same held true when the ROI was based on the activation from an independent 
group of adults to analyze the RPE effects during cue (C) and outcome (D). (E) A functional connectivity analysis revealed a 
significant functional connectivity between the sgACC/VS-cluster and the mPFC (cluster derived from RPEoutcome contrast between 
groups) in both groups. However, the functional connectivity was significantly decreased in ADHD compared to controls. * p < .05;   
** p < .01; *** p < .001. 
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eTable 1. Behavioral differences between groups.  

Analysis of reaction times and number of misses revealed no difference between the groups. This ensures that group differences 
found in modeling and earnings are not caused by reaction time differences between the groups (mean±std). 

 controls ADHD  

reaction time: mean 687ms±75 741ms±75 t(38)=1.43, p=.160 

reaction time: standard deviation 178ms±37 197ms±44 t(38)=1.54, p=.132 

misses 2.05±2.21 3.85±7.34 t(38)=1.05, p=.300 
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eTable 2. Results of the Bayesian model comparison.  

The combination of the HGF learning model and the softmax decision model outperformed the other models for the whole group and 
for the healthy controls. For the ADHD patients, the anticorrelated Rescorla-Wagner model performed best. Please note that pp and 
px sum up to 1 over the model space. Bold indicates the winning model. pp: expected posterior probability; px: exceedance 
probability; RW: Rescorla-Wagner, sm: softmax decision model, usq: unit square decision model. 

models 

all subjects ADHD controls 

pp px pp px pp px 

anticorrelated RW - sm .44 .30 .59 .92 .26 .02 

anticorrelated RW - usq .03 .00 .05 .00 .04 .00 

HGF - sm .51 .70 .32 .08 .66 .98 

HGF - usq .03 .00 .05 .00 .05 .00 
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eTable 3. Results of additional fMRI analyses: main task effect of RPE (cue + 
outcome) and decision steepness (model parameter β).  

The RPEs elicit the typical activation found for RPE processing (regions reported at p < .05 voxel-height FWE, k > 10). Subjects with 
higher β show increased activations in these areas (regions reported at p < .05 cluster-extent FWE). Cluster size is given in number 
of voxels. Coordinates are reported in MNI space. 

Contrast Region Hemisphere Cluster size x y z 
z 

Score 
        

RPEcue+outcome vmPFC bilateral 435 -8 44 -12 6.38 

 PCC bilateral 373 -5 -55 19 6.37 

 hippocampus/amygdala right 21 15 -6 -20 5.85 

   19 26 -16 -17 5.58 

  left 18 -29 -19 -17 5.70 

   12 -30 -34 -18 5.65 

   12 -24 -24 -20 5.52 

 latPFC left 15 -51 32 7 5.74 

 sgACC/VS bilateral 20 0 14 -9 5.67 

        

-RPEcue+outcome anterior insula left 1035 -32 21 -8 >8 

  right 1624 39 17 -6 >8 

 mPFC bilateral 3993 -6 27 39 >8 

 latPFC right 3451 26 53 -2 7.53 

  left 773 -32 51 16 6.65 

 IPL right 1335 48 -45 40 7.14 

   227 -39 -45 37 6.51 

 precuneus bilateral 420 8 -64 49 6.76 

 caudate left 118 -11 9 1 6.36 

  right 238 15 18 1 6.33 

 midbrain  202 -3 -24 -5 6.35 

 thalamus left 16 -11 -15 12 6.02 

 dlPFC left 39 -44 30 37 5.72 

        

β latPFC right 197 63 15 9 4.75 

  left 251 -48 35 12 4.44 

 mPFC bilateral 301 -8 48 37 4.56 

 precentral right 153 11 -25 73 4.48 

Downloaded From: http://archpsyc.jamanetwork.com/ by a ETH ZUERICH User  on 04/22/2016



© 2014 American Medical Association. All rights reserved.   15 
 

   177 39 -15 33 4.13 

 STG right 125 59 -24 7 4.32 

 dlPFC left 92 -23 23 49 3.68 
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