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{Department of Psychiatry, Psychosomatics and Psychotherapy, Hospital of Psychiatry, University
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Abstract
Dopaminergic signals play a mathematically precise role in reward-related learning, and var-

iations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we

provide a detailed overview of the relationship between theoretical, mathematical, and exper-

imental accounts of phasic dopamine signaling, with implications for the role of learning-

related dopamine signaling in addiction and related disorders. We describe the theoretical

and behavioral characteristics of model-free learning based on errors in the prediction of re-

ward, including step-by-step explanations of the underlying equations. We then use recent in-

sights from an animal model that highlights individual variation in learning during a Pavlovian

conditioning paradigm to describe overlapping aspects of incentive salience attribution and

model-free learning. We argue that this provides a computationally coherent account of some

features of addiction.

Keywords
dopamine, reinforcement learning, incentive salience, addiction, model-free, prediction error,

sign-tracking

Progress in Brain Research, Volume 211, ISSN 0079-6123, http://dx.doi.org/10.1016/B978-0-444-63425-2.00003-9

© 2014 Elsevier B.V. All rights reserved.
31



1 BACKGROUND
Humans have used alcohol and various kinds of drugs of abuse for thousands of

years. The early Egyptians consumed wine and narcotics, and the first documented

use of marijuana in China dates back to 2737 B.C. However, the recognition of ad-

diction as a problem occurred relatively recently and developed gradually in the

eighteenth and nineteenth centuries (e.g., see Thomas de Quincey’s “Confessions

of an Opium Eater,” 1821). The emergence of more potent formulations, better

methods of delivery (Sulzer, 2011), and possibly expropriation of mechanisms aimed

at internal regulation by drugs of abuse (Müller and Schumann, 2011) likely contrib-

uted to this development.

In today’s societies, both legal and illicit drugs are readily available and most peo-

ple experiment with potentially addictive drugs at some point in their lifetime. How-

ever, only a relatively small subset is vulnerable to developing addiction. Among those

recently starting to use cocaine, for instance, about 5–6% are estimated to become co-

caine abusers (O’Brien and Anthony, 2005). This subset nevertheless is of enormous

impact, with addiction thought to affect at least 100 million individuals worldwide

(Grant et al., 2004). Once affected, the consequences are severe, and relapse looms

large. The most predictable outcome of a diagnosis of addiction is, unfortunately,

not cure but a 90% chance of relapse (DeJong, 1994). Indeed, addiction represents

a major public health concern with great consequences for physical and mental health,

work and crime rates, resulting in a significant social and economic burden to society.

Historically, research into addiction has been multifaceted in terms of disease

concepts andmethods. Early on, addiction was considered primarily a social problem

and was treated by legal measures and social institutions. The first criteria for a di-

agnosis of substance abuse and addiction were included in the third edition of the

Diagnostic and Statistical Manual for the Classification of Mental Disorders

(DSM-III) in 1980. Since then, the DSM has followed an “atheoretical” approach

to provide reliable diagnoses for clinical practice, basing their diagnostic criteria

for substance use disorders on clusters of clinical symptoms. Criteria include several

aspects. One cluster of features centers on impairment of control over drug taking,

which includes larger and longer drug use than originally intended, unsuccessful ef-

forts to discontinue use, a great deal of time spent in substance use despite its con-

sequences, and craving. Other clusters concentrate on the social impairments

resulting from substance use, the risks drug takers might expose themselves to as

a direct consequence of drug effects, and also pharmacological criteria such as tol-

erance and withdrawal symptoms. With the exception of the type of drug and some

pharmacological criteria, these symptom clusters have not been found to be directly

associated with specific causes or pathogenetic processes. The newest version of

DSM, DSM-5, states that an important characteristic of substance use disorders is

an underlying change in brain circuitry that may persist beyond detoxification, par-

ticularly in individuals with severe disorders, without identifying what the specific

underlying processes or “changes” might be. This chapter focuses on novel theoret-

ical approaches and computational models from machine learning and decision
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theory in the hope that they might lend new scientific rigor to addiction research

(Hasler, 2012; Huys et al., 2011). One of the beauties of addiction research is that

the reinforcing effects of drugs of abuse and the development of drug dependence

can be modeled in animals with high validity, and that theoretical frameworks are

at a rather advanced stage of development.

Clinical, preclinical, epidemiological, and theoretical findings suggest the impor-

tance of learning and neuroplasticity both in the pathogenesis of addiction disorders

and in their cure. Specifically, the intake of a substance in larger amounts or over a

longer period of time than originally intended and the persistent desire to cut down

and regulate substance use may be considered as an expression of a learned invol-

untary habit and result in reflexive thoughts and actions that contradict an individ-

ual’s declared goals (Dayan and Niv, 2008; Graybiel, 2008; Redish et al., 2008). The

understanding of learning processes has profited from computational modeling. This

has supported the study of how individual variation in various forms of learning

might underlie individual variation in the vulnerability to drug addiction. One insight

gained from this work is that multiple learning processes occur in parallel and can, at

least in part, be captured with so-called model-free and model-based learning theo-

ries. The model-based learning system builds an understanding of the world

(Balleine et al., 2009; Dayan and Niv, 2008) in terms of what actions lead to what

outcomes, akin to learning the rules of a game such as chess. In contrast, model-free

learning systems allow behavior in the absence of explanatory understanding. A shift

frommodel-based towardmodel-free learning may be involved in the transition from

occasional drug use to addiction. In the process, behavior may become insensitive to

changes in the subject’s goals (Dayan and Niv, 2008). Indeed, maladaptive behaviors

are characteristic of individuals with substance use disorders.

Dopamine is thought to play a pivotal role in these learning systems. Phasic do-

paminergic signals appear to serve as teaching signals (Montague et al., 1996;

Schultz et al., 1997) and be central to the attribution of incentive salience (Flagel

et al., 2011b). The development of substance abuse and addiction likely involves

the usurpation of such dopaminergic learning or incentive salience attribution signals

(Dayan, 2009; Flagel et al., 2011b; Volkow et al., 2009). It has also been postulated

that the attribution of incentive motivational value (i.e., incentive salience) to

reward-associated cues contributes to the psychopathology of addiction. In the pre-

sent chapter, we review the role of dopamine in learning with a particular focus on its

relevance to addiction. Emphasizing the important potential of theory-based and

translational research approaches, we hope to illustrate how technological, theoret-

ical, and experimental approaches are bringing us closer to integrating the psycho-

logical and neurobiological processes underlying addiction vulnerability and relapse.

1.1 OVERVIEW
Section 2 of this chapter reviews the standard reinforcement learning (RL) theory, fo-

cusing on so-called model-free and model-based decision-making (Daw et al., 2005;

Sutton and Barto, 1998). We provide the mathematical foundation of these theories
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as a basis for subsequent interpretation of behavioral and neurobiological findings.

Section 3 of this chapter presents an overview over the evidence linking phasic dopa-

minergic responses to model-free learning. In Section 4, we describe some important

characteristics of these types of learning systems. Model-free learning is suggested to

capture important aspects of both habits and incentive salience, while model-based

learning is argued to relate to goal-directed valuation, be it instrumentally or in Pavlov-

ian settings. Section 5 begins with a description of individual variability in a Pavlovian

conditioning paradigm, whereby animals naturally segregate into those showing

sign-trackingbehavior,orapproachtoaconditionedstimulus(CS);versusgoal-tracking

behavior or approach to the location of impending reward delivery. These findings are

interpreted in light of two dominant theories: the RL theory introduced in Sections 2–4,

and the incentive salience theory, presented in Section 5. Finally, in Section 6, we ex-

amine different paths to addiction arising from these data and models, focusing in par-

ticular on alterations to phasic signals reflecting terms from learning theory (reward

prediction errors, i.e., the difference between expected and experienced reward), and

a propensity toward model-free learning and incentive salience attribution.

2 MODEL-FREE AND MODEL-BASED LEARNING
FROM REWARDS
Choosing behaviors that maximize rewards and minimize losses in the longer term is

the central problem that RL theory addresses. A difficulty in doing so is the appropriate

balancing of short-term gains against long-term losses. Choices made now can have

many different consequences tomorrow. The choice to enjoy another drink now

may lead to social disinhibition and facilitate friendships or encounters, but it may also

impair the ability to fulfill duties at work the next day, with more long-term negative

impacts on the ability to maintain a social role. Patients with addiction have major dif-

ficulties striking this bargain (Kirby et al., 1999). RL theory provides one path to iden-

tifying adaptive decisions that take both long- and short-term consequences of choices

into account. In particular, it addresses the problem that there aremany possible futures

that need to be considered and appropriately weighted by the probability of material-

izing. RL theory thus attempts to formalize solutions to problems addicts saliently fail

to solve and hence forms a framework for thinking about these problems.

There are at present two fundamentally different classes of neurally plausible ap-

proaches to solve the RL problem: model-based and model-free learning. As we will

detail below, model-based learning solves the RL problem (i.e., how to maximize

rewards and minimize losses in the longer term) by explicitly considering all future

consequences of different actions. A typical example would be considering all pos-

sible sequences of moves in a game of chess. This is hampered by the huge compu-

tational costs it requires (Fig. 1). Model-free learning solves the RL problem in a

more affordable manner, but this benefit comes at a large experiential cost: it suffers

from the need for extensive, slow, sampling of the environment. Instead of consid-

ering all possible moves hypothetically, the consequences of the moves need to be

experienced empirically by the model-free system.
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FIGURE 1

Model-based decision-making can be depicted as a decision-tree in both instrumental and

Pavlovian settings. (A) In an instrumental setting,model-baseddecision-makingwould consider

all possibleactionsequencesbyevaluatingall branchesof the treeanddetermining thebestone.

The figure shows a specific instance, where the problem consists of first choosing between

actions a1 and a2, each of which has three possible outcomes, leading to three different states

(s1–s6). In each state, there is then a further choicebetween two actions, thoughdifferent states

have different available actions. Each of these actions in turn has three further possible

outcomes, where the probability of each outcome depends on the state in which the action was

taken. Actions are shown as solid circles, with green indicating that action a1 is available, and

red that action a2 is available. Empty circles are outcome nodes. In order to choose the optimal

sequence of actions, a goal-directed decision-making system has to consider all the options

corresponding toall thebranches in thisdecision-tree. In this simpleproblem,withasequenceof

two choices, each leading to three possible outcomes, the tree has width w¼6, depth d¼2,

andwd¼36branches. Thus, thedifficulty of theproblem isexponential in the lengthof theaction

sequence considered. (B and C) Example transition matrices T for actions a1 and a2,

respectively. Each column represents the probability distribution over next states when taking

that action in a particular state. The larger the gray squares, the greater the probability. These

transition matrices thus represent knowledge about action–outcome associations. There are

similarmatrices that describewhen rewards are obtained. (D) In anequivalentPavlovian setting,

model-based decisions would take into account only state transitions. (E) Themodel would now

contain one single transition matrix T describing the probability of going from one state to

another, given a particular policy (behavioral strategy).
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2.1 MODEL-BASED LEARNING
Model-based decision-making involves building a model of the outcomes of actions

and using this to infer the best sequence of actions. Consider a simple environment,

in which only a few actions are available, each with three different outcomes, and

each leading to another set of available actions. The task is to select the best sequence

of two actions (Fig. 1A). In its simplest incarnation, model-based decision-making

corresponds to sequentially evaluating all possible action sequences and choosing

the best. This demands a so-called model of the world, which in turn consists of

two parts. First, a transition matrix T a describes the possible consequences of each

action a. In Fig. 1B and C examples are given of how transition matrices describe

what actions lead to what outcomes with what probability. Second, it encompasses

a reward matrix R that describes the reinforcements for taking an action in a partic-

ular state. What is central to this representation is that the causal structure of the en-

vironment is captured in the set of all transition matrices T ¼ T af g for all actions,
while the affective values are captured in R and the two are represented separately.

For a game, learning T would consist of learning the rules, while learning R would

correspond to learning the aims of the game (in chess the capture of the opponent’s

king). Tree search would then require deriving the optimal play strategy from this

information alone, notably without actually needing to experience playing the game

(Huys et al., 2012; Shallice, 1982; Simon and Daw, 2011).

Learning then corresponds to changing the model of the world, that is, changing

either T or R. Learning T can happen in the absence of any rewards (Gläscher et al.,

2010). That animals are able to do this was shown very elegantly in the classic work

of Tolman (1948): animals that were pre-exposed to a maze without food rewards

hidden in it were later faster at learning a route to a food reward than those not

pre-exposed to the maze (Bouton, 2006). However, the number of branches in a

decision-tree scales as wd where w is the width of one level and d the length of

the action sequence. For a game such as chess the width is around 30, and the length

of a game up to 40 moves long, rendering simple applications of this approach com-

putationally suicidal. Nevertheless, for small problems, such as determining the fast-

est way to the nearest coffee shop from your office, it is feasible. Thus, sequential

evaluation or tree search consists of acquiring a model of the world and searching

this to infer adaptive behaviors. It is resource intensive and limited to rather small

decision problems, but it rapidly and efficiently reflects new information as long

as the new information can efficiently be used to alter T or R.

2.2 MODEL-FREE PREDICTION-ERROR LEARNING
The second approach to maximizing reward relies on iterative updates via model-

free prediction errors. Prediction errors are the difference between what one expects

and what one gets. Casually put, imagine you order your favorite pizza at a restaurant

(say with gorgonzola and pears) and instead are served a different, less-preferred

pizza (say with ham and pineapples). This would constitute a negative prediction er-

ror where the eventuality is worse than the anticipation. If, however, the waiter then
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apologized, brought you a pizza you liked as much as your preferred pizza and threw

in two free beers you might experience a positive prediction error, with the outcome

being better than your expectation. There would be no prediction error if you got just

a pizza that you liked as much as the one you ordered (even if it is not the exact pizza

you ordered). These prediction errors, and slightly more complex temporal versions

of them, are used by the model-free system to acquire behavior that is provably op-

timal in certain situations.

Toproperlyunderstand the features of prediction-error learning, it isworthwhile to

consider it formallywith amathematical approach. To simplify the equations, wewill

consider using this approach to learn howmuch reward is associatedwith a stimulus or

state s under Pavlovian conditions, but very similar equations describe learning for

actions a or indeed state-action pairs (s, a) in instrumental conditioning. As explained

earlier, optimal choices consider total future outcomes, not just immediate outcomes.

This is formalized by considering the summed future outcomes rt+ rt+1+ � � �.
Generally, however, the future is uncertain, and future rewards cannot simply be

summed up. One must instead consider the average or expected total future reward

 rt + rt+ 1 + � � �½ �. This sumwill be denoted as the valueV. Different states or situations
are associated with different values, and hence we write the total expected future re-

ward when in state s at time t as

V stð Þ¼ rt + rt+ 1 + rt+ 2� � �jst½ � (1)

The right-hand side of Eq. (1) can now be rewritten slightly differently as a sum of

two terms. The first term is just the expected immediate reward  rtjst½ �, while the

second term contains the future rewards after the immediate reward, that is, one

and more time steps into the future:

V stð Þ¼ rtjst½ �+
X1
k¼1

rt+ kjst

" #
(2)

The key insight comes from equating the second term with the expected value of the

next state st+1:

V stð Þ¼ rtjst½ �+ V st+ 1ð Þjst½ � (3)

where the second expectation implies a weighting by (and sum over) the transition

probability P(st+1|st) of going from state st to another state st+1. This equation is key,
as it tells us how the total future expected reward from state st (we previously had to
evaluate a large tree to obtain this) is related to the total future reward from its suc-

cessor states st+1: the difference should be exactly the expected immediate reward in

state st. This equation, which is one form of the Bellman equation (Bellman, 1957;

Sutton and Barto, 1998), thus provides a set of consistency checks between values of

different states. It can be used to learn by bootstrapping. Assume we have an incor-

rect value V̂. That means that Eq. (3) does not hold:

V̂ stð Þ 6¼ rtjst½ �+ V̂ st+ 1ð Þjst
� �

(4)
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and that there is a difference D between the two sides:

D¼ rtjst½ �+ V̂ st+ 1ð Þjst
� �

�V̂ stð Þ (5)

These equations involve expectations[�]. The next insight, fundamental to RL tech-

niques, is that this difference can be estimated by iteratively, over trial and error,

averaging actual experiences in the environment. Rather than computing one differ-

ence D, this is replaced by samples of the difference, called “prediction errors”

d, where the d 6¼0 unless the values are correct (e.g., you receive the pizza you or-

dered or an equally good one). Learning occurs by slowly adding up these prediction

errors d over different visits to each state. Let t index time, with reward rt experienced
in state st followed by a transition to state st+1. Let V̂ t stð Þ be the estimate of the value

of that state s before the t’th visit. Then Eq. (5) can be approximated by:

dt¼ rt + V̂ t st+ 1ð Þ� V̂ t stð Þ (6)

V̂ t + 1 stð Þ V̂ t stð Þ+ adt (7)

If a is a small (<1), but positive constant, then on consecutive visits the value of state

s is always updated a little toward the value it should have, which is the true sum of

the immediate reward plus the value of future states. By doing this iteratively to a

small extent on each visit t, Eq. (7) implements a running average.

We emphasize again that the prediction error measures the inconsistency of the

current estimates V̂ st+ 1ð Þ and V̂ stð Þ with respect to the actually obtained reward rt.
Temporal difference (TD) prediction-error learning implies measuring the inconsis-

tency between how expectations change over time (the difference between the terms

V sð Þ and V s0ð Þ) and obtained rewards, and summing this up over many repeated ex-

periences. The computations needing to be performed (Eqs. 6 and 7) are now trivial.

The work of evaluating the tree of future possibilities (as in model-based decision-

making) has been shifted to experience rather than simulation based on rules. Hence,

model-free prediction-error learning trades computational cost for experiential cost.

A few further points about model-based and model-free learning deserve brief

mention:

Knowledge: Unlike the model-based tree search, the model-free Eq. (7) does not

require a model of the world in terms of knowledge about action–outcome contin-

gencies. Specifically, in order to learn, neither the transition matrix T , nor the reward
matrix R have to be known—there only has to be the possibility of experiencing

them. This corresponds merely to acting in the world and observing consequences

and rewards.

State versus state-action values: The model-free equations were written in terms

of state values V sð Þ, but could, with a few alterations, have been written in terms of

state-action values, which are traditionally denoted by Q s, að Þ. Unlike state values

V sð Þ, these directly estimate how valuable a particular action is in a particular state.

Just like model-free prediction-error based learning, model-based tree search can

also be used to yield both state or state-action values. Figure 1D and E shows

how the decision-tree in panel A can be formulated in terms of states only.
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That is, it is possible to use a model (T and R) to evaluate the expected reward of

performing an action in a state, or the expected reward of being in a state (i.e., col-

lapsing over possible actions).

Instrumental versus Pavlovian: The model-free/model-based distinction is inde-

pendent of the instrumental/Pavlovian distinction (Table 1). In instrumental learning,

subjects are reinforced for a stimulus–response combination, which is modeled using

state-action values Q s, að Þ. In Pavlovian conditioning experiments, stimuli are pre-

dictive of reward irrespective of the actions emitted by the subjects. These stimulus-

bound expectations are modeled using state values V sð Þ. Clearly, the latter begs the
question of how and why stimulus values elicit actions at all, and we will return to

this below. However, we emphasize both model-based and model-free approaches

can, in principle, be applied to either instrumental or Pavlovian scenarios. In other

words, there can be both cached, model-free Pavlovian values VMF sð Þ and instrumen-

tal values QMF s, að Þ and model-based Pavlovian values VMB sð Þ and instrumental

values QMB s, að Þ.

3 PHASIC DOPAMINE SIGNALS REPRESENT MODEL-FREE
PREDICTION ERRORS
The neural bases of model-based learning are not very clear, with only few direct

measurements of tree search available ( Johnson and Redish, 2007; Pfeiffer and

Foster, 2013; van der Meer and Redish, 2009). However, the neural representation

of prediction-error signals as required for model-free learning has been examined in

exacting detail (Montague et al., 1996; Schultz et al., 1997), and we turn to this

evidence next. It focuses on the dopamine neurons of the ventral tegmental area

(VTA) and, in a nutshell, suggests that dopamine neurons code some form of the

d term described earlier.

Dopaminergic involvement in reward learning has been studied with recordings

of the electrical activity of single neurons, voltammetry (Day et al., 2007) and neu-

roimaging in rodents, macaques, and humans. In now classical experiments (for re-

views, e.g., Daw and Tobler, 2013; Glimcher, 2011; Schultz, 1998, 2013),

dopamine neurons were found to respond with a burst of action potentials (duration

and latency of roughly 100 ms) to rewards such as small pieces of food hidden in a

box or to drops of cordial delivered through a spout. While rewards typically

Table 1 Types of values

Model-free Model-based

Pavlovian (state) values VMF sð Þ VMB sð Þ
Instrumental (state-action) values QMF s, að Þ QMB s, að Þ

There are both Pavlovian state and instrumental state-action values, and both of these can be either
model-free (cached) or model-based.
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activate dopamine neurons, punishments inhibit them (Fiorillo, 2013; Fiorillo et al.,

2013a,b; for review, e.g., Ilango et al., 2012, though see also Brischoux et al.,

2009). When a reward (an unconditioned stimulus US) is repeatedly and consis-

tently signaled by a sound or a visual stimulus (i.e., a conditioned stimulus, CS),

the phasic activation no longer occurs at the time when the reward is received,

but instead transfers to the onset time of the CS. This parallels how the prediction

errors d in the model-free account would behave: initially, the reward is unex-

pected, and hence leads to a positive prediction error. After learning occurs, the

presentation of the CS at unpredictable times leads to positive prediction errors,

but the reward itself (which is predicted by the CS and hence no longer surprising)

fails to elicit a dopamine response. The response transfer from CS to US parallels

the development of conditioned behavior (e.g., conditioned licking with liquid re-

ward) in response to presentation of the CS during learning.

Multiple features of dopamine firing align closely with model-free accounts. The

phasic activation in response to CSs is independent of the sensory modality of the con-

ditioned stimuli and increases with predicted reward magnitude (Bayer and Glimcher,

2005; Roesch et al., 2007; Tobler et al., 2005) and probability (Enomoto et al., 2011;

Fiorillo et al., 2003; Morris et al., 2006; Nakahara et al., 2004; Satoh et al., 2003). This

is again in line with the theoretical formulation as the expected value increases with the

size of the reward and its probability. Furthermore, the longer the delay between the CS

and the reward, the weaker the response (Fiorillo et al., 2008; Kobayashi and Schultz,

2008; Roesch et al., 2007), reflecting temporal discounting of future rewards. Finally,

if a reward-predicting stimulus is itself preceded by another, earlier, stimulus, then the

phasic activation of dopamine neurons transfers back to this earlier stimulus (Schultz

et al., 1993), which is again captured by the above theoretical account (Montague et al.,

1996) of model-free learning.

The relation to model-free learning is further illustrated by the finding that do-

pamine neurons not responding to reward predicted by conditioned stimuli neverthe-

less respond when reward occurs at unpredicted time points, for example, outside the

task or earlier than predicted (Hollerman and Schultz, 1998). Both of these situations

constitute positive prediction errors and would be captured by a d>0. Moreover,

when reward is predicted but fails to occur (e.g., because it is withheld by the exper-

imenter or because of an error of the animal), there is a negative error in the predic-

tion of reward (d<0). Dopamine neurons duly show a phasic depression in activity

(Schultz et al., 1997; Tobler et al., 2003) and the duration of depressions increases

with the size of the negative prediction error (Bayer et al., 2007; Mileykovskiy and

Morales, 2011). Taken together, dopamine neurons seem to emit a model-free

prediction-error signal d such that they are phasically more active than baseline when

things are better than predicted (positive prediction error), less active than baseline

when things are worse than predicted (negative prediction error), and show no

change in activity when things are as good as predicted (no prediction error). In other

words, the firing of dopamine neurons is well described by formal model-free ap-

proaches to RL (Eqs. 6 and 7), suggesting that the dopaminergic signal not only cor-

responds to an error in reward prediction, but that it can also be used as a signal
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indicating precisely how much and in what direction expectations need to be

changed—a teaching signal (Sutton and Barto, 1998).

The activation elicited by the earliest reward-predicting stimulus can also be

interpreted in terms of prediction-error coding because the sudden occurrence of a

reward-predicting stimulus constitutes a positive prediction error with respect to

the preceding intertrial interval, during which no reward was predicted. In most ex-

periments, the probability of reward at each moment in time is low due to relatively

long and variable intertrial intervals. Reward-predicting stimuli induce positive pre-

diction errors relative to that low background probability. Thus, dopamine neurons

appear to code errors in the prediction of reward at each moment in time as captured

by Eq. (6). For instance, when a stimulus predicting reward at 25% is followed by

either a stimulus predicting reward at 100% (positive prediction error) or another

stimulus predicting 0% (negative prediction error), the second stimulus activates

or depresses dopamine neurons, respectively (Takikawa et al., 2004). This finding

further reinforces the notion that stimulus-induced activation of dopamine neurons

strongly covaries with prediction errors.

Many studies have confirmed, quantified, and extended reward prediction error

coding by dopamine neurons, even in humans (Zaghloul et al., 2009). The dopa-

mine neurons of monkeys that have not learned to predict reward show continued

positive and negative prediction errors at the time of reward or reward omission,

respectively. By contrast, the dopamine neurons of monkeys that have learned to

predict reward well show CS responses indicative of learning in an asymmetrically

rewarded saccade task (Kawagoe et al., 2004). In behavioral situations with contin-

gencies changing about every 100 trials, dopamine neurons code the difference be-

tween current reward and reward history weighted by the last six to seven trials

(Bayer et al., 2007). The occurrence of reward or reward prediction (positive pre-

diction error) or their omission (negative prediction error) activates or depresses

dopamine neurons in an inverse monotonic function of probability, such that the

more unpredicted the event the stronger the response (de Lafuente and Romo,

2011; Enomoto et al., 2011; Fiorillo et al., 2003; Matsumoto and Hikosaka,

2009; Morris et al., 2006; Nakahara et al., 2004; Nomoto et al., 2010; Oyama

et al., 2010; Satoh et al., 2003).

Enomoto et al. (2011) attempted to directly address whether the phasic dopamine

response reflects the total future reward, as opposed to just the immediate reward.

Monkeys first had to identify the currently reinforced target out of three possible tar-

gets by trial and error. They then received two or three further rewards for returning

to that target. Equation (4) suggests that the predicted sum of future reward increases

and decreases again as the monkeys progress through these exploration and exploi-

tation trials. The suggestion is based on the expected value over the course of the

trials and on the notion that later rewards are less valuable than sooner rewards. Both

conditioned licking and phasic dopamine responses to the start cue of a trial closely

follow the pattern suggested by the notion that they reflect time-resolved prediction

errors not only about immediate rewards but, critically, the sum of immediate and

future rewards, just as suggested by Eq. (5). These data demonstrate that dopamine
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neurons compute the prediction-error term with respect to a quantitative and time-

resolved expected total future reward term  V st + 1jstð Þ½ �.
Enomoto et al. (2011) examined Pavlovian values in the setting of an instrumen-

tal task (cf. Guitart-Masip et al., 2012). It is also possible to examine whether the

phasic responses depend on what action was chosen, as should be the case in

model-free instrumental acquisition of state-action QMF s, að Þ values. Indeed, dopa-
mine neurons do show such a sensitivity (Morris et al., 2006; Roesch et al., 2007),

and thus appear to be able to emit model-free prediction errors both when learning

about stimulus values VMF sð Þ as in Pavlovian settings, and when learning about

stimulus-action values QMF s, að Þ as in instrumental settings.

Cyclic voltammetry has shown that dopamine release in the striatum, the main

target region of dopamine neurons, follows many of the same features as the

prediction-error signals of dopamine neurons themselves (Day et al., 2007). In

humans, functional MRI (fMRI) studies have reported correlates of prediction-error

signals in the striatum that resemble those of dopamine neurons recorded in animals,

including phasic (event-related) positive and negative prediction-error responses

(D’Ardenne et al., 2008; McClure et al., 2003a; O’Doherty et al., 2003) that reflect

probability (e.g., Abler et al., 2006; Burke et al., 2010; Spicer et al., 2007; Tobler

et al., 2007) and more specific predictions of formal learning theories (Daw et al.,

2011; Kahnt et al., 2012; Rutledge et al., 2010; Tobler et al., 2007). However, it

is worth keeping in mind that the hemodynamic response measured with neuroim-

aging is nonspecific rather than a one-to-one reflection of a particular neural event

such as dopamine release (see also Düzel et al., 2009), which could explain why

some fMRI studies have suggested positive coding of losses (Seymour et al.,

2004; although see also Tom et al., 2007) and a dominance of action over value

(Guitart-Masip et al., 2012).

3.1 CAUSAL ROLE OF (DOPAMINE-MEDIATED) PREDICTION ERRORS
IN LEARNING
So far, we have argued that prediction errors play a role in model-free learning and

that dopamine neurons emit a signal that closely resembles this formal prediction

error. However, this falls short of showing that these prediction errors are indeed nec-

essary for and causally involved in learning in vivo. One possibility of testing

whether prediction errors are important for learning is to set up a behavioral situation

in which two different stimuli are equally often paired with reward but only one of

them is followed by a prediction error. This is exactly what the so-called blocking

paradigm achieves (Kamin, 1969). In this paradigm, one new stimulus (denoted

by the letter “X” in the top row of Table 2) is added to a previously learned stimulus

(“A”) whereas another new stimulus (“Y”) is added to a neutral stimulus (“B”). Both

compounds are followed by reward. After the compound with the pretrained stimulus

(“AX”) the reward occurs just as predicted by the pretrained stimulus (no prediction

error) whereas after the compound with the neutral stimulus (“BY”) the reward

is unpredicted (positive prediction error). If prediction errors are important for

42 CHAPTER 3 Learning-related dopamine signals



learning, there should be no learning about the new stimulus “X” in the former case

but there should be learning about the new stimulus “Y” in the latter case. Figure 2A

shows that, in agreement with these predictions, monkeys show considerably less

conditioned licking to stimuli that were not followed by a prediction error than to

control stimuli that were followed by a reward prediction error (Waelti et al.,

2001). Dopamine neurons show the same pattern (Fig. 2A, bottom): they respond

to stimuli that were followed by a prediction error but not to those that were not

(Waelti et al., 2001). Thus, prediction errors are required for stimulus-induced phasic

activity of dopamine neurons.

What remains is the question whether prediction error-like phasic dopamine re-

sponses are causally involved in reward learning? Recent evidence suggests they are.

In an optogenetic variant of the blocking paradigm just described, dopamine neurons

of rats were artificially activated at the time of the reward already predicted by the

pretrained stimulus (Fig. 2B, bottom; i.e., stimulation occurred in AX trials, cf. sec-

ond row of Table 2). If the prediction-error hypothesis of dopamine firing is correct,

this should induce an artificial prediction error at a time when no prediction error

would have occurred naturally. As a result, this prediction error should lead to learn-

ing about the stimulus added to the pretrained stimulus. Indeed, rats in which this

kind of stimulation was active showed stronger conditioned responding to the added

Table 2 Blocking designs

Blocking 2–4 Stage 1 Stage 2 Test

A! reward AX! reward X?

B!no reward BY! reward Y?

Optogenetic unblocking 2–4 Stage 1 Stage 2 Test

A! reward AX! reward+DA stimulation X?

Transreinforcer blocking 2–4 Stage 1 Stage 2 Test

A!shock AX!shock X?

A! reward omission AX!shock X?

Identity unblocking 2–4 Stage 1 Stage 2 Test

A!3 units reward 1 AX!3 units reward 2 X?

Learning to a stimulus, for example, X is “blocked” by the presence of another stimulus A that already predicts
the outcome. Stimuli are denoted by letters. The original blocking experiment (Kamin, 1969) used an aversive
between-subjects design; by contrast, the experiment described in the text and depicted in abbreviated form
here (Waelti et al., 2001) used an appetitive within-subject design where the test consists of a comparison
between Y and X (see also Fig. 2A); The optogenetic unblocking experiment of Steinberg et al. (2013) used a
between-subject design. Here the test consisted of a comparison in the conditioned behavior in response to
presentation of X in three groups. In one group of rats the dopamine neurons were stimulated at the time of the
reward in AX trials, while in the other groups the stimulation occurred at other times or not at all. In transreinforcer
blocking (Dickinson and Dearing, 1979) and identity unblocking (McDannald et al., 2011), the reinforcer is
changed at the AX compound stage. The test here consists of a comparison of behavior in response to X after
this change versus when no change has occurred (i.e., standard blocking). A question mark ? indicates stimulus
to which the animals’ response is measured in the test.
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FIGURE 2

Dopamine neurons show blocking that parallels behavioral blocking. Learning is reinstated

and blocking prevented when dopamine neurons are stimulated at the time of a predicted

reward. (A) Schematic of blocking task used with single neuron recordings from dopaminergic

neurons in the substantia nigra and ventral tegmental area (VTA) (within-subject design). In a

first pretraining phase, a stimulus is paired with a drop of liquid reward (top left) whereas a

control stimulus is not (top right). Accordingly, the animal forms an association between the left

stimulus and reward but not between the right stimulus and reward. In a second pretraining

phase, additional stimuli are occasionally presented together with the stimuli previously

learned in the first pretraining phase. In this phase, both compounds are followed by reward.

The reward elicits a prediction error in the control compound on the right but not in the

experimental compound on the left. This is because the added stimulus is followed by

unpredicted reward in the control but not in the experimental case. Because there is no

prediction error, learning to the added stimulus on the left does not occur. In a third phase, the

added stimuli are occasionally tested on their own (interspersed with the four trial types used

during the pretraining phases in order to maintain learning). The blocked stimulus (left) and

itscontrol (right) areboth followedbynorewardand thebehavior (conditioned licking, top)aswell

as the responses of a single dopamine neuron at the time of the stimulus (bottom) is shown.

Control but not blocked stimuli elicit conditioned licking and phasic dopamine activations. Note

that hemodynamic responses in the striatum show a very similar response pattern (Tobler et al.,

2006). (B) Schematic of blocking task used with optogenetic stimulation (between-subject

design). Pretraining phases proceeded similarly to the recording study, except that the nature of

stimuli differed and in the second pretraining phase there were no reminders from the first

pretrainingphase.During the secondphase, twogroups receivedactive stimulation ofdopamine

neurons concurrently with reward (PairedCre+) or during the intertrial interval (UnpairedCre+).

A third group received inactive stimulation at the time of the reward (PairedCre�). The data are
shown in thebar plot at the bottomas time spent in the rewardport during stimulus presentation.

The group with active stimulation at the time of the reward showed more Pavlovian approach

behavior than the other two groups, presumably due to the additional prediction-error signal

elicited by optogenetically induced phasic dopamine activity.

Panel A: Adapted with permission fromWaelti et al. (2001); panel B: adapted with permission from Steinberg et al.

(2013).
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cue on the first test trial than rats in which active stimulation was delivered during the

intertrial interval or rats in which the appropriately timed stimulation was not active

(Steinberg et al., 2013). Moreover, stimulation of dopamine neurons at the usual time

of reward slowed behavioral extinction (Steinberg et al., 2013). Thus, the stimulation

counteracted the negative prediction error induced by the absence of expected reward

and thereby conditioned behavior was sustained. These findings clearly show that

dopamine is causally involved in reward learning. They also support and extend

previous optogenetic studies that implicated dopamine in learning by showing

that dopamine neurons code reward prediction errors (Cohen et al., 2012), and that

their activation is sufficient to reinforce intracranial self-stimulation (Kim et al.,

2012; Rossi et al., 2013; Witten et al., 2011) and leads to conditioned place preference

(Tsai et al., 2009)whereas inhibiting them causes avoidance learning (Tan et al., 2012).

3.2 PHASIC DOPAMINE SIGNALS IN MODEL-BASED LEARNING
The data discussed up to this point are in line with dopamine coding model-free, ex-

periential prediction errors. However, to some degree, dopamine responses incorpo-

rate information not available in current experiences into their prediction-error

responses. Consider a task in which the values of two stimuli are anticorrelated such

that when one reverses from being rewarded to being unrewarded, the other automat-

ically does the opposite (Bromberg-Martin et al., 2010). On the very first trial after

realizing that the value of one stimulus has changed, a monkey can infer that the

value of the other stimulus has also changed without having to experience the out-

come of that stimulus (though note that this depends on representing the two stimuli

separately). Both behavior and dopamine neurons process inferred outcome values,

although the impact of experienced value on both is more pronounced. In particular,

dopamine neurons respond more strongly to a stimulus that is inferred to be valuable

than to a stimulus that is inferred to be nonvaluable. In a different task (Nakahara

et al., 2004) as the number of unrewarded trials increases, the probability of reward

increases. Instead of showing extinction, monkeys learn the structure of such a task

and dopamine neurons track the probability of reward. These findings are consistent

with dopamine neurons also playing some role in forms of model-based learning. We

will return to this possibility below in the context of goal-tracking behavior.

4 BEHAVIORAL CHARACTERISTICS OF MODEL-FREE
AND MODEL-BASED CHOICES
Above we have seen that phasic dopamine signals covary with a TD prediction error.

Henceforth, we will consider these signals as model-free. Model-free learning eval-

uates the total future reward by summing up the prediction errors over time into

either VMF sð Þ or QMF s, að Þ values. We briefly review several domains in which this

has qualitative behavioral consequences that distinguish model-free from model-

based choices.
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4.1 OUTCOME IDENTITY
Model-free values VMF sð Þ and QMF s, að Þ are nothing but the sum of past prediction

errors. The error does not contain any information other than the discrepancy in

the amount of reward obtained. Thus, VMF sð Þ and QMF s, að Þ values arising from

model-free learning do not contain any other information, such as the identity of

the reward. Model-free learning should thus be sensitive only to the size or valence

of a reward, but not to its identity. This distinguishes it from the model-based system.

In an aversive version of the blocking experiment (Table 2, top row; Kamin, 1969), a

stimulus A is first trained to predict shock. When a second stimulus, X, is added and

the compound followed by shock, the ability of stimulus X to predict shock is re-

duced, even though it was paired with the shock, too. This provides behavioral

evidence for the importance of prediction errors in learning. In a variant of the orig-

inal blocking paradigm (transreinforcer blocking; Table 2, third row; Dickinson and

Dearing, 1979; Ganesan and Pearce, 1988), the identity of the reinforcer is changed

in the compound phase, for example, from reward omission to shock presence. Strik-

ingly, when A predicts the absence of reward, learning of the association between

X and shock is blocked. This strongly suggests that “reward” and “punishment”

are motivational opponents on a linear scale, and that in at least some types of learn-

ing the only aspect of the nature of the affective outcome (food reward or shock

punishment) that is relevant is its value on that linear scale, and that other features

are abstracted away.

However, animals are not entirely insensitive to the nature of Pavlovian outcomes

and this can be revealed in other blocking experiments. In identity unblocking

(Table 2, bottom row), the equivalence of two reward identities (e.g., pellets and

sucrose drops) is first assessed.A first CS is then conditioned to predict the first reward

identity. Then, an identity shift occurs: the compound predicts the new reward, which

was measured to be of equal value. Thus, there is no value prediction error (Eq. 7), yet

animals are sensitive to such shifts (Bouton, 2006; Jones et al., 2012;McDannald et al.,

2011; Seligman, 1970; Takahashi et al., 2011), showing that they do represent and

learn more features about the outcome than the scalar measure of how rewarding it

is. Thus, while transreinforcer blocking (and value blockingmore generally) supports

model-free processes, identity unblocking can be taken as evidence for model-based

processes in Pavlovian conditioning (McDannald et al., 2011).

4.2 PAVLOVIAN APPROACH AND CONSUMMATORY BEHAVIORS
Model-free Pavlovian state values VMF sð Þ do not contain explicit information about

particular actions. They can nevertheless drive some simple behaviors, particularly

when there is some distance between the organism and a positively valued stimulus.

Pavlovian approach behaviors primarily involve locomotion to bring the organism

closer to the appetitive stimulus, irrespective of what appetitive stimulus is

being approached. There is no need for this approach behavior to be informed by

anything other than the positive value of the to-be-approached stimulus, and thus
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a combination of a simple proximity reduction mechanism with VMF sð Þ is sufficient
to account for approach. Similar arguments can be made for at least some species-

specific aversive responses (Seligman, 1970).

However, the bare model-free value VMF sð Þ alone cannot account for what to do
with the appetitive stimulus, that is, for consummatory behaviors. A positive VMF sð Þ
indicates that reward is expected, but not whether it will require chewing (for a pel-

let), licking (for water), or copulation (for a sexually receptive conspecific). In order

to produce such consummatory behavior the model-free value must modulate, or

somehow be informed by, a system that has access to the relationship between re-

sponses and outcomes or stimuli (Rescorla and Solomon, 1967). Note that such

learned consummatory responses can be elicited in parallel with the simpler ap-

proach behavior. As action–outcome representations are central to the notion of

model-based systems, it is likely that consummatory responses, and indeed the trans-

fer of consummatory responses to stimuli (Davey and Cleland, 1982) arises from a

modulation of a (possibly evolutionarily restricted) model-based system by model-

free values akin to Pavlovian-instrumental transfer (PIT) (see below). There is in fact

evidence for a neural dissociation between approach and consummatory Pavlovian

responses, with a certain alignment with model-based and model-free circuits (Yin

et al., 2008), although the interaction between these is not clear. However, not all

putatively consummatory responses adaptively reflect actions that are adapted to

the US (Hearst and Jenkins, 1974).

4.3 INSTRUMENTAL BEHAVIOR
Despite not containing information about actions, model-free Pavlovian values

VMF sð Þ can drive the acquisition of instrumental behaviors via multiple paths.

The acquisition of VMF sð Þ is based on bootstrapping, iteratively updating estimates

of the value to fit with the sum of the current reward and the value of the next state.

In this process, the cached value VMF sð Þ comes to replace the summed future

rewards. More specifically, changes in state values VMF sð Þ imply changes in future

reward, and so a change in value induced by an action is a metric that can be

used to reinforce behaviors. This forms the core of the actor-critic model (Barto

et al., 1983; O’Doherty et al., 2004). Experimentally, it is perhaps most directly

demonstrated by conditioned reinforcement experiments (Everitt and Robbins,

2005; Meyer et al., 2012), where instrumental behaviors can be reinforced by

Pavlovian CSs.

Model-free values also can have other influences on model-based instrumental

behavior. Determination of model-based values QMB s, að Þ often require too much

computational power to be feasible, as we emphasized earlier. One powerful ap-

proach is to mix model-based and model-free evaluations, and this has been success-

fully used in building computers that beat world chess masters (Campbell et al.,

2002). Returning to Fig. 1A, such an approach would correspond to replacing the

subtree below a particular node with that node’s model-free value. This thus forms
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a second path by which model-free Pavlovian state values can drive instrumental be-

havior, and indeed by which model-free can drive model-based choices. Although

such a subtree substitution is yet to be demonstrated experimentally, it is likely that

drug-seeking involves such a process: here, highly complex, circumspect and flex-

ible behaviors facilitate approach to a drug (a tree search up to a particular node in the

tree); but the negative consequences of taking the drug are not respected (the tree

below the node is not evaluated).

4.4 PAVLOVIAN-INSTRUMENTAL TRANSFER (PIT)
Both model-free VMF sð Þ and model-based VMB sð Þ Pavlovian values can influence in-
strumental behavior. This is demonstrated in two types of PIT, general and outcome-

specific PIT. In both types of PIT, appetitive CSs enhance and aversive CSs suppress

instrumental behaviors for other outcomes (Cardinal et al., 2002; Estes and Skinner,

1941; Holmes et al., 2010; Huys et al., 2011; Lovibond, 1983; Niv et al., 2007;

Rescorla and Solomon, 1967; Talmi et al., 2008). In general PIT, a stimulus that

has been paired in a Pavlovian manner with one type of outcome (e.g., water) increases

instrumental lever pressing for another type of outcome (e.g., pellets). The specific na-

ture of the expected reward is not relevant, only its value. Hence, the information that is

present in VMF sð Þ values may be sufficient for this.

In contrast, in outcome-specific PIT, a CS associated with pellets promotes an

instrumental action reinforced by pellets over and above another instrumental action

that was reinforced by sucrose (Corbit and Balleine, 2005). This does require repre-

sentation of the actual outcome, not just the value. Thus, while general PIT requires

only the information carried by VMF sð Þ, outcome-specific PIT requires additional in-

formation and likely relies on VMB sð Þ from model-based processes (Corbit and

Balleine, 2005; Holmes et al., 2010; McDannald et al., 2011; Prévost et al., 2012,

2013; Schoenbaum et al., 2009).

4.5 MOTIVATIONAL SHIFTS
The temporal integration of prediction errors has one further important consequence:

it instantiates a slow, running average over experience. This means that model-free

systems will not immediately reflect changes in motivation. Model-based systems on

the other hand will. Motivational shifts have been used to highlight model-based

components in both Pavlovian and instrumental scenarios. We recall that

prediction-error signals have been found not only in Pavlovian, but also in instru-

mental scenarios (Morris et al., 2006; Roesch et al., 2007).

First, consider instrumental devaluation experiments. An animal is first trained to

perform a response, say press a lever, for a reward. The reward is then devalued, for

instance by giving the animal free access to it followed by administration of a nausea-

inducing drug. When given another opportunity to consume it, the animal will refuse

to do so. If the animal has had extensive experience with the behavior, then it will
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initially continue to press the lever despite refusing to consume the food. This habit-

ual behavior is said to be under stimulus–response control and not under the control

of a representation of the outcome (Dickinson and Balleine, 1994, 2002). In other

words, the information reflected in the habitual behavior is present in a stimulus-

action valueQMF s, að Þ, which captures how valuable an action is in a particular state,

but without providing any information about the actual outcomes. An insensitivity to

motivational changes is characteristic of cached values and habitual choices (Daw

et al., 2005, 2011; McClure et al., 2003b; Valentin et al., 2007; Wunderlich et al.,

2012a). Thus, instrumental learning derived from the accumulation of dopaminergic

prediction errors accounts for outcome-insensitive habits.

After less extensive instrumental training, animals are sensitive to devaluation,

and a reduction of behavior can be observed on the very first trial after devaluation

(Dickinson and Balleine, 1994, 2002), suggesting that a prospective representation of

the outcome of the action is used to guide action choice. Similar findings hold in

closely related paradigms in humans (Daw et al., 2011; de Wit et al., 2009;

Tricomi et al., 2009; Valentin et al., 2007). The shift from early devaluation sensi-

tivity to later devaluation insensitivity can be explained by the statistical properties

of model-based and model-free systems, respectively. The model-free system has

comparatively poor accuracy when little data is available, but this improves with ex-

perience (Daw et al., 2005; Keramati et al., 2011). Motivational shifts appear to have

less effects on actions proximal to the goal (Daw et al., 2005; Killcross and

Coutureau, 2003), where the burden on tree search is low. One complication to this

account is the requirement for incentive learning in certain situations. Animals

trained hungry may not change their behavior when tested thirsty unless they have

experienced the outcomes in those particular motivational states. This suggests a cer-

tain inaccessibility of internal states to the model-based system, at least in instrumen-

tal settings, or may relate to the need for learning the reward matrix R.
Motivational shifts can also be used to demonstrate model-based components

in Pavlovian conditioning (Dayan and Berridge, 2013; McDannald et al., 2011).

A striking example was recently provided by Robinson and Berridge (2013),

where animals were first trained to associate a CS with aversive Dead Sea salty

water, such that presentations of the CS readily induced aversive responses. Strik-

ingly, after rendering the animals hungry for salt, they immediately started

approaching the CS. Thus, a motivational shift succeeded in rendering a previously

aversive stimulus appetitive. Clearly, the rapid approach after the motivational

shift cannot be accounted for by a cached stimulus value—this would require

multiple iterations of sampling the salt water in the salt-hungry state before the

new positive prediction errors could update the stimulus value sufficiently to make

it attractive. Instead, this experiment suggests that the animals learned the identity

of the outcome associated with the stimulus, and in the novel salt-hungry state

were able to use this to infer the new value of the stimulus given the new value

of the outcome it predicted (Dayan and Berridge, 2013; Jones et al., 2012;

Schoenbaum et al., 2009).
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4.6 UNLEARNING
Finally, in the model-free Eq. (7) the entire past reward history is contained in

VMF sð Þ. No other aspect of the past history is maintained, and the past values are

forgotten as soon as a change occurs. Say, for instance, a CS has VMF sð Þ¼ 4, predict-

ing four pellets, but then is updated (via a prediction error) to VMF sð Þ¼ 5. The latter

is the only representation maintained; there is no memory of the fact that the CS used

to predict less pellets in the past. Hence, any learning to reflect new information

equivalently implies forgetting or unlearning past information (Bouton, 2004;

Rescorla and Wagner, 1972). Although slow changes can indeed lead to unlearning,

sudden shifts in the predictive validity of a stimulus (extinction learning) do not lead

to unlearning but rather to the learning of novel associations (Bouton, 2004). Such

novel associations correspond to the learning of new latent causes for observations

(Courville et al., 2004, 2005; Gershman et al., 2010). Unlike unlearning, these fit

more easily in a model-based than a model-free framework.

5 INDIVIDUAL VARIABILITY
We have now reviewed model-based and model-free learning, the role of dopamine

in model-free learning, and behavioral and neurobiological characteristics of both

systems. Recent findings have highlighted substantial individual variability in

how and what subjects learn in standard Pavlovian conditioning paradigms. This

has consequences for learning accounts of addiction as some learning tendencies ap-

pear to confer vulnerability toward developing addiction. In this part, we first present

the data on individual differences in Pavlovian responding in some detail (mainly

reiterating the findings of Flagel et al., 2011b), then discuss its interpretation in terms

of incentive salience (Berridge, 2004, 2007; Berridge and Robinson, 1998; Saunders

and Robinson, 2012), and finally put forth a hypothesis that proposes a connection

between the propensity to assign incentive salience and the propensity to employ

model-free learning (Dayan and Berridge, 2013; Huys et al., 2013b; Lesaint et al.,

2014; McClure et al., 2003a).

5.1 SIGN-TRACKING AND GOAL-TRACKING
5.1.1 Behavior
When rats are exposed to a CS, such as a lever, that is repeatedly paired in a Pav-

lovian fashion with an US, such as food reward, there is substantial individual var-

iability in the conditioned response that emerges (see Fig. 3). Some animals, referred

to as “sign-trackers” (STs) will approach and oftentimes interact with the CS upon its

presentation (Fig. 3A; Hearst and Jenkins, 1974). Others, termed “goal-trackers”

(GTs) approach the location of reward delivery upon CS presentation (Fig. 3D;

Boakes, 1977). Remarkably, these conditioned responses develop even though re-

ward delivery is not contingent on any response, that is, in a classical Pavlovian con-

ditioning paradigm. Furthermore, all rats learn the CS–US association, the resulting
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conditioned responses emerge at similar speeds, and both STs and GTs retrieve all of

the food pellets that are delivered. Hence, the topography of the emitted response

differs, but both sets of animals learn the CS–US association equally well and at sim-

ilar speed.

5.1.2 Dopamine Signals During Acquisition
These individual differences in conditioned responding have shed light on the role of

dopamine in stimulus-reward learning. Flagel et al. (2011b) used fast-scan cyclic

voltammetry in the core of the nucleus accumbens to characterize cue-induced pha-

sic dopamine signaling during Pavlovian training in selectively bred rats predisposed

toward sign- or goal-tracking behavior. Similar to outbred rats, these selectively bred
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FIGURE 3

Sign-tracking and goal-tracking by animals exposed to classical conditioning, whereby a

CS (in the figure a lever on the right) predicts delivery of a food US at a different location

(in the food box on the left). Note that this is a Pavlovian conditioning procedure, and thus

the rat obtains the food irrespective of its behavior, and does not need to press the lever.

(A) Sign-tracking rats come to approach the lever-CS during CS presentation, while

(D) goal-tracking rats approach the location where the food US will be delivered. (B and E)

Phasic dopamine signals in the nucleus accumbens core. In sign-trackers, the phasic

response to the CS increases, while that to the US decreases, as is predicted by the temporal

prediction-error hypothesis. In goal-trackers, phasic dopamine responses to CS and US

do not change over time. (C and F) show how the peak dopamine responses change over

trials. These differences suggest that sign-trackers acquire a cached value VMF sð Þ in
accordance with the temporal prediction hypothesis, but that goal-trackers do not.

Data in B, C, E, and F adapted from Flagel et al. (2011b).
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phenotypes both learned a conditioned response and did so at the same rate. Further,

the lever-CS was more attractive and more desirable for the selectively bred STs, as

indicated by approach behavior and the ability of the lever-CS to serve as a condi-

tioned reinforcer. Remarkably, only for STs did the lever-CS evoke an increase in

dopamine release. That is, only for STs did the phasic dopamine response shift from

the presentation of the food reward-US to the lever-CS across training. The CS did

evoke dopamine release in GTs, but this did not change over trials. The same pattern

of results was also found in outbred rats characterized as STs or GTs, suggesting that

these neurochemical signatures are specific to the conditioned responses and not an

artifact of the selective breeding.

Next, Flagel et al. (2011b) asked whether the development of either goal- or

sign-tracking responses was dependent on dopamine. They administered the non-

specific dopamine antagonist flupenthixol systemically prior to the first of several

Pavlovian training sessions. The selectively bred animals were ideal for this exper-

iment, as the predictability of the phenotypes allowed the authors to assess the

effects of the drug on the acquisition of the conditioned responses. Interestingly,

administration of the dopamine antagonist attenuated the performance of both

sign- and goal-tracking behavior. However, when taken off of the drug, the GTs

exhibited a fully developed conditioned response, similar to control animals,

whereas the STs remained deficient in their responding even during the drug-free

test session. Thus, dopamine was necessary for learning the CS–US association in

STs, but not in GTs. Similarly, Parker et al. (2010) reported that mice with dis-

rupted dopamine signaling were fully capable of learning a goal-tracking condi-

tioned response, despite the fact that there was no transfer in dopamine

signaling from the US to the CS. Thus, phasic dopamine signals are critical for

learning the CS–US relationship that leads to a sign-tracking conditioned response,

but not for those that lead to a goal-tracking conditioned response.

5.1.3 Dopamine Signals After Acquisition
Flagel et al. (2011b) also examined the effects of flupenthixol on the expression

of sign- and goal-tracking behavior after the conditioned responses were acquired.

They found that systemic dopamine antagonism attenuated the expression of both.

To more directly assess the role of dopamine in the performance of these conditioned

behaviors, and to minimize nonspecific effects of the drug on behavior, Saunders

and Robinson (2012) administered flupenthixol directly into the core of the nucleus

accumbens after outbred rats had acquired stable sign- or goal-tracking behavior.

This dose-dependently attenuated sign-tracking behavior, with little to no effect

on goal-tracking behavior (see also Di Ciano et al., 2001; Parkinson et al., 2002).

Importantly, sign-tracking behavior was fully impaired upon the first CS–US presen-

tation following administration of flupenthixol into the accumbens. Thus, the

drug effects were evident before new learning could occur, and changes in dopamine

levels were able to alter the motivational value of reward cues, without the need

to re-experience the CS–US association (Berridge, 2012; Dayan and Berridge,

2013; Richard et al., 2013; Robinson and Berridge, 2013). Furthermore, the

effects of dopamine antagonism were specific to the Pavlovian conditioned
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approach behavior and did not affect the conditioned orienting response in the

STs (Saunders and Robinson, 2012).

5.2 INCENTIVE SALIENCE ACCOUNTS OF THE
SIGN-TRACKING/GOAL-TRACKING VARIABILITY
Attribution of incentive salience is the process by which neutral stimuli are trans-

formed into attractive and “wanted” incentive stimuli via Pavlovian learning mech-

anisms (Berridge, 1996; Berridge and Robinson, 2003). Extensive research has

shown that Pavlovian stimuli that have been attributed incentive salience have three

fundamental properties (Berridge, 2012): (1) they are attractive and elicit approach

toward them, (2) they are themselves desirable and can reinforce the learning of

new actions (i.e., act as conditional reinforcers), and (3) they can elicit a conditioned

motivational state that energizes ongoing instrumental actions (i.e., general PIT;

Cardinal et al. (2002); Everitt et al. (2001); Milton and Everitt (2010)). These three

features are dissociable, but rely on partially overlapping neural mechanisms

(Cardinal et al., 2002). Note that incentive salience in this context is distinct from

incentive motivational properties or “incentive value” in instrumental settings as de-

fined by Dickinson and colleagues (Dickinson and Balleine, 1994; Dickinson et al.,

2000).

5.2.1 Behavior
The incentive salience account of sign-tracking/goal-trackingdescribes the difference

between the two groups, arguing that CSs are imbued with incentive salience by STs,

but not by GTs. Both STs and GTs learn that the lever-CS precedes and predicts the

delivery of the US in that the lever-CS comes to elicit a response in both phenotypes,

and respective responses emerge at a comparable rate. As they emit their response

similarly, and this response has the same relationship to the predicted US (i.e., it is

noncontingent), both phenotypes are equally able to assign “predictive” value the

CS. However, only for STs does the lever-CS attain the additional incentive motiva-

tional properties mentioned earlier. Hence, the assignment of incentive salience is

seen as the central component that distinguishes STs and GTs. The ability of the

CS to predict the occurrence of the US is considered to be common to both groups.

For STs, the CS attains at least two of the fundamental properties of an incentive

stimulus (i.e., of a stimulus that has acquired incentive salience) (Robinson and

Flagel, 2009). First, STs (unlike GTs) approach the CS upon its presentation, and

the cue is attractive to them. Second, STs exert more instrumental effort than GTs

for presentation of the CS in the absence of food reward. Thus, the cue acts as a more

powerful conditioned reinforcer for STs than for GTs (Lomanowska et al., 2011;

Meyer et al., 2012; Robinson and Flagel, 2009). Evidence demonstrating individual

variation in the third fundamental property of an incentive stimulus, i.e., general PIT,

is lacking, perhaps due to the complex nature of the paradigm. Taken together, these

findings support the notion that for STs, but not GTs, the lever-CS is attributed with

incentive salience. Salience attribution theories hence consider the assignment of

incentive value to be the central component that distinguishes STs from GTs.
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5.2.2 Dopamine
In the incentive salience framework, dopamine is specifically involved in assigning

Pavlovian incentive value in STs. This relies on a tight link between the three key

features of incentive salience reviewed earlier, and dopamine. First, the shift in pha-

sic responses from the US to the CS is present in STs but not in GTs (Flagel et al.,

2011b). As both groups learn the association between CS and US, but differ in

terms of the gradual attribution of incentive salience, this suggests that phasic do-

pamine is relevant not to learning to predict the US from the CS per se, but to
assigning incentive salience to the CS. Second, nonselective dopamine antagonism

affects learning of a sign-tracking response, but it does not affect learning of a goal-

tracking conditioned response (Flagel et al., 2011b). This complements the findings

demonstrating a selective shift in phasic responding in STs, but not GTs, and argues

that (1) dopamine is necessary for the assignment of incentive salience and (2) do-

pamine is not involved in the assignment of the predictive properties that are also

seen in GTs. Third are the results from injections of dopamine antagonists into the

nucleus accumbens core after completion of learning. These have immediate

effects, before any new learning can occur. This suggests a role for dopamine in

incentive salience that goes beyond that of learning. Furthermore, the fact that

orienting responses were unaffected (in both STs and GTs) suggests that even

in STs, dopamine was not abolishing all of the qualities of the CS but only its in-

centive salience properties (i.e., its ability to elicit approach). Finally, dopamine

antagonism abolished the conditioned response in STs only (Saunders and

Robinson, 2011), which again argues for a role that is selectively associated with

incentive salience processes. Hence, it appears clear that dopamine has an involve-

ment in incentive salience that is independent of and goes beyond its involvement

in learning, and that some aspects of learning the CS–US associations remain intact

in the absence of dopamine, not only in GTs, but in STs, too.

5.3 REINFORCEMENT LEARNING ACCOUNTS OF THE SIGN-TRACKING/
GOAL-TRACKING VARIABILITY
We now consider the hypothesis that model-free and model-based learning may at

least partially map onto sign- and goal-tracking behavior, respectively (Huys et al.,

2013b; Lesaint et al., 2014). In Pavlovian conditioning experiments, reward delivery

is independent of the animals’ behavior. Hence, only stimulus, but not stimulus-

action values, are constrained. RL accounts match incentive salience accounts in

terms of arguing that dopamine is relevant for STs but not GTs, but differ in a number

of important details.

5.3.1 Behavior
Section 4 detailed the characteristics of behavior that model-free values can and can-

not support. The suggestion that incentive salience, and hence sign-tracking, is

driven by VMF sð Þ values hinges on arguing that model-free values VMF sð Þ are
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sufficient to account for the three fundamental properties of incentive salience (see

Section 4), and that the behavior shown by STs does not require access to information

that cannot be contained in VMF sð Þ. This is because VMF sð Þ values are devoid of any-
thing but the size of the expected reward. On their own, they can only influence be-

havior as a “pure” reward would because they represent no other information.

Specifically, we make reference to the three key components of incentive salience

mentioned in Section 5.2. First, model-free values can drive Pavlovian approach

responses (Section 4.2). As such, they capture the key feature that differentiates

STs from GTs. Second, VMF sð Þ values can reinforce actions in the way that condi-

tioned reinforcers are formalized in the actor-critic models (Section 4.3). This cap-

tures the notion that stimuli assigned incentive salience can become conditioned

reinforcers. Third, they can influence ongoing behavior arising in other systems

by altering the opportunity costs (Section 5.3.3). This captures the ability of stimuli

with incentive salience to influence other behavior in general PIT experiments. How-

ever, these different features of incentive salience are known to have only partially

overlapping neurobiological substrates. Similarly, for model-free values to lead to

these features, they would have to interact with other systems (e.g., with instrumental

systems both for conditioned reinforcement and PIT), and hence again only have par-

tially overlapping neurobiological substrates. Nevertheless, VMF sð Þ values appear

sufficient to account for the main features of sign-tracking behavior and incentive

salience (see also Dayan and Berridge, 2013; McClure et al., 2003b).

5.3.2 Dopamine Signals During Acquisition
The parallel between model-free systems and sign-tracking is strengthened by the role

of dopamine. Both STs and GTs show phasic DA responses in the NAcc core to both

CS andUS onsets (Fig. 3B and E, red traces). In the STs this signal changes slowly over

time, increasing in response to the CS and decreasing in response to the US (Fig. 3B,

blue trace and C). As extensively reviewed in Section 3, this is what would be expected

if the prediction error was based on the slow, iterative, accumulation of a cached value

VMF sð Þ. In STs, interfering with these dopamine signals by injecting a nonselective

dopamine antagonist during training prevents any learning (Flagel et al., 2011b;

Parker et al., 2010), which is in keeping with results on other Pavlovian behaviors such

as autoshaping (Di Ciano et al., 2001; Parkinson et al., 2002) and mirrors the findings

that phasic dopamine signals can have a causal role in Pavlovian learning (Steinberg

et al., 2013). It suggests, thus, that STs need a phasic dopaminergic prediction-error

signal in order to learn because their learning is heavily biased toward learning through

incremental acquisition of model-free values VMF sð Þ. The fact that the signals are ob-
served in the NAcc core also maps onto the notion that these signals might be model-

free because, as discussed earlier, model-free mechanisms suffice for general PIT,

which is dependent on the core, but not for specific PIT, which is more dependent

on the shell (Section 4.4; Corbit and Balleine, 2011; though see Shiflett and

Balleine, 2010; Robinson and Berridge, 2013). Finally, the reliance on model-free

learning can, at least in part, explain the core incentive salience features.
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5.3.3 Dopamine Signals After Acquisition
The results by Saunders and Robinson (2012) clearly suggest that the role of dopa-

mine is not limited to representing phasic error signals for learning, but extends to the

expression of behavior once learning has stabilized (see also Shiner et al., 2012). One

likely and important issue is that Saunders and Robinson (2012) manipulated not

only phasic but also tonic dopamine signals. Indeed, the most prominent effects

of manipulations of dopamine are not alterations in learning, but profound changes

in the rate and vigor at which behavior is emitted (Salamone et al., 2009). The RL

framework reviewed earlier does not account for this, but semi-Markov, average RL

formulations do (Niv et al., 2007). These consider not only which action to emit, but

also when and how vigorously. They achieve this via an extra term, the average re-

inforcement, which functions as an opportunity cost (i.e., as a measure of reward for-

feited on average by inaction). Examinations of the impact of this term on behavior

suggested a close link with tonic dopamine (Niv et al., 2007). This could potentially

explain the impact of dopamine antagonists on the expression of both sign- and goal-

tracking behavior during learning (Flagel et al., 2011b; see also Beierholm et al.,

2013; Mazzoni et al., 2007).

The results of Saunders and Robinson (2012) however show that after learning

the impact of dopamine antagonists is confined to STs. Interpreted in the RL frame-

work, this suggests that the opportunity cost might be preferentially mediated via

tonic dopamine in those animals that rely on model-free learning whereas the timing

and vigor of model-based choices might be more directly linked to the anticipated

outcome, and hence less sensitive to such tonic dopaminergic mechanisms. Indeed,

interference with DA by pharmacological means or byVTA inactivation both abolish

the ability of Pavlovian CSs to motivate approach and produce PIT (Lex and Hauber,

2008; Murschall and Hauber, 2006; Wassum et al., 2011), and DA stimulation pro-

motes it (Wyvell and Berridge, 2000). By contrast, model-based behavior is often

rather more resilient to DA manipulations (e.g., Wassum et al., 2011; though see

Guitart-Masip et al., 2013;Wunderlich et al., 2012b). Thus, the admittedly very spec-

ulative suggestion is that tonic levels of dopamine in the NAcc core differentially

modulate the expression of model-free values, and thereby selectively affect STs.

5.3.4 Goal-Trackers
The RL account of goal-tracking behavior is less crisp, both theoretically and in

terms of its mapping onto neurobiological substrates. As pointed out earlier, GTs

clearly make predictions about the occurrence of rewards as they are perfectly able

to approach the goal-box upon presentation of the CS. As explained in the previous

section, predictions of reward associated with stimuli can be derived not only from

model-free (VMF sð Þ), but also from model-based (VMB sð Þ) learning. Indeed, that is
the very raison d’être for both, and so the fact that both sets of animals make pre-

dictions is not informative about which mechanism they learn by. More to the point,

VMF sð Þ values are sufficient to produce both the “predictive” and “incentive” learn-

ing. However, the fact that the CS is itself less attractive and supports less condi-

tioned reinforcement in GTs suggests that it has not acquired features of a reward
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itself (as model-free values do), but rather helps the rat explicitly predict that a par-

ticular event (a reward, in this case) will happen in the future. Model-based learning

of T might consist in learning to predict that the event “CS” is followed by the event

“pellet delivery” (i.e., the statistical rules of the environment), while the structureR
would separately be used to represent the desirability of that event. There is evidence

that signals involved in acquiring T are differentiable from reward prediction-error

signals (Gläscher et al., 2010). Thus, when seeing the CS, a model-based learner in

the autoshaping experiment might be reminded specifically of the food pellet, and

base its action choice on its current desires; and the learning of this type of prediction

appears not to depend on dopaminergic prediction errors. The CS would be a purely

“informational” stimulus, not attractive in its own right (Flagel et al., 2011a). This

account makes a very straightforward and easily tested prediction, namely, that food

devaluation should abolish goal-tracking, but leave sign-tracking unchanged. This is

at least partially consistent with reports whereby highly deprived animals (at 75% of

optimal body weight) show stronger goal-directed behavior than animals that are less

deprived (at 90% body weight; Boakes, 1977). However, this is certainly also con-

sistent with effects motivation could have via goal-directed mechanisms, and indeed

may be complicated by issues related to incentive learning.

The argument that GTs are more goal-directed implies the involvement of goal-

directed neural structures (Killcross and Coutureau, 2003; O’Doherty et al., 2004;

Yin et al., 2004, 2005). In agreement, GTs do seem to recruit cortical “top-down” reg-

ulation of their response to reward cues (Flagel et al., 2011a). This, however, then raises

thequestionabout thenatureof thephasicdopaminesignals in theGTs.Thereclearlyare

phasic DA responses to both CS and US in the GTs, but these stay constant without

showing any signs of adaptation (Fig. 3F). Areas thought to be involved inmodel-based

Pavlovian estimation of values are known to influence phasic dopamine signals

(Takahashi et al., 2011). However, as the size of the signals does not change, it suggests

that theprediction termused in their computationmust remain at zero, andhence that the

prediction errors are not iteratively collated into amodel-freevalue.Whywould this be?

There are several potential answers. It might be that the model-free system learns only

“online,” that is, onlywhen it is in charge itself (Sutton andBarto, 1998).That thismight

be neurobiologically plausible is suggested by the fact that habitual control of

behavior is itself under constant control of the prefrontal cortex, specifically the infra-

limbic cortex (Smith and Graybiel, 2013; Smith et al., 2012). It might also be that

the dopamine transient signals the need to change one’s beliefs (i.e., that learning is nec-

essary), but is not a teaching signal itself (i.e., does not indicate what should be learned;

see also Section 3.2). However, it is unclear why this signal would then continue to per-

sist in animals after behavior has reached a stable asymptote. A somewhat different ex-

planation focuses on the detailed temporal structure of events, which differs between

GTs and STs. GTs focus on the goal as soon as the sign appears, but they also focus

on the goal during the ITI (a timewhen the sign is not present)whenno food is presented

there. This may lead to keeping the model-free values of both the goal and the CS near

zero (though ITI head-entries into the food-cup do not differ between GTs and STs; see

Lesaint et al., 2014 for a detailed discussion).
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In summary, RL accounts might suggest that the “predictive” learning seen in

GTs is not dopamine dependent and relies on building a model of the structure of

the environment. Conversely, it would suggest that the assignment of “salience”

is evidence for relying on model-free learning via dopaminergic mechanisms.

6 ADDICTION
Addiction is a disorder with profound deficits in decision-making. Most addictive

drugs have rapid effects and impact the dopaminergic system either directly or

indirectly (Koob, 1992; Olds, 1956; Tsai et al., 2009). Several features of addiction

are at least partially amenable to explanations within the overall framework out-

lined earlier. We will briefly consider partial accounts of addiction based on (a)

drug-induced alterations to phasic dopaminergic signals and (b) individual (and

drug-induced) variation in the tendency to rely on model-free learning and assign

incentive salience (Dayan, 2009; Flagel et al., 2011b; Huys et al., 2013b; Redish,

2004; Redish et al., 2008).

6.1 PHASIC DOPAMINERGIC SIGNALS IN ADDICTION
If drugs of abuse alter or directly elicit phasic dopamine release (Boileau et al., 2003,

2007; Cox et al., 2009), they could elicit artificial prediction errors which in turn would

lead to enhanced learning of stimuli that predict their occurrence (Dayan, 2009; Redish,

2004). Indeed, L-Dopa enhances striatal prediction errors and learningwhereas haloper-

idol reduces them (Pessiglione et al., 2006 though see alsoKnutson andGibbs, 2007). If

drugsofabusemimicdopamineprediction-errorsignals, resulting inanirreducible, con-

stant prediction error even in the absence of reward, then this would lead to a never-

ending increase of the associated state VMF sð Þ or state-actionQMF s, að Þ values, which
would lead to strongly determined behavior that would be hard to overcome. Blocking

paradigms (Kamin, 1969; Steinberg et al., 2013;Waelti et al., 2001) provide one formal

test of this prediction: new stimuli added to pretrained stimuli should be learnedmore if

the reward used is a drug of abuse than if it is a natural reward (Redish, 2004). Admin-

istration of D-amphetamine into the nucleus accumbens enhances blocking in an aver-

sive paradigm, whereas administration of dopamine antagonists reduces blocking

(Iordanova et al., 2006). The prediction has also been tested explicitly for nicotine

(though the results are, to our knowledge, only present in abstract form; Jaffe et al.,

2010) and for cocaine (Panlilio et al., 2007). While in the former case they have been

at least partially confirmed, by way of individual variation (highly nicotine responsive

animals show no blocking for nicotine whereas animals more responsive to water do

show blocking for water), the latter case failed to confirm this prediction. As pointed

out byDayan (2009), alternative formsofRL that relyonactor-critic learningmayallow

for correct values (andhenceblocking)despite a constant increment topredictionerrors,

and an effect directly on the advantage of actions could lead tomore rapid development

of deeply embedded actions, again with correct values.
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Addiction is characterized by a profound and long-lasting downregulation of do-

pamine D2 receptors in the striatum (Heinz et al., 1996, 2009; Huys et al., 2013b;

Volkow et al., 2009), which is also characteristic of animal models of obesity

( Johnson and Kenny, 2010). This downregulation may be a consequence of drug tak-

ing, but it may also predispose to the development of addiction and to relapse

(Buckholtz et al., 2010; Heinz et al., 2005; Morgan et al., 2002; Thanos et al.,

2001; Volkow et al., 2002, 2009). Dopamine D2 receptors are both pre- and postsyn-

aptically located. It is not clear whether the reduction seen in addiction is mainly pre-

or postsynaptic, but both could potentially promote drug taking. Postsynaptically, they

have been shown to mediate the effect of losses on “go/no-go” learning (Dreyer et al.,

2010; Frank, 2005; Frank et al., 2004; Kravitz et al., 2012) and could thereby contrib-

ute to the insensitivity toward adverse consequences in addiction (Deroche-Gamonet

et al., 2004; Kravitz et al., 2012; Maia and Frank, 2011; Vanderschuren and Everitt,

2004). Presynaptically, they are involved in an autoinhibitory negative feedback loop

which could particularly affect go-learning as it could reduce the positive phasic tran-

sients (Bello et al., 2011) and thereby lead to the sort of increased prediction error men-

tioned earlier (Bello et al., 2011; see also Sulzer, 2011). Furthermore, drug craving is

correlated with the reduction in D2 receptors (Heinz et al., 2004). It is conceivable that

reductions in presynaptic D2 receptors might also affect tonic dopamine signals

(Martinez et al., 2005, 2009) and that this relates to the effects of dopamine and cached

values on PIT (Murschall and Hauber, 2006; Wyvell and Berridge, 2000) and sign-

tracking (Saunders and Robinson, 2012). There is also evidence that the link between

dopamine synthesis and phasic prediction errors is altered by addiction, and this might

be mediated by a failure of the presynaptic D2 control (Deserno et al., 2013;

Schlagenhauf et al., 2013). Moreover, Flagel et al. (2010, 2014) have shown that se-

lectively bred rats with a predisposition toward sign-tracking behavior and addiction

have lower levels of D2 mRNA in the nucleus accumbens and dorsal striatum, but not

in the VTA. However, these addiction-prone rats also exhibit a greater proportion of

striatal “D2-high” receptors, the functionally active state of the dopamine D2 receptor.

Thus, there is substantial theoretical and biological plausibility supporting the

notion that drugs of abuse interfere directly with phasic dopaminergic signals, and that

this contributes to the establishment and possibly to the maintenance of addicted be-

havior. It has to be noted that it is unclear, as yet, whether changes in dopamine sig-

naling are a cause or consequence of drug abuse; although some of the animal literature

suggests it may be a predisposing factor (e.g., Dalley and Everitt, 2009; Flagel et al.,

2010, 2014). Direct tests of this hypothesis have at present provided only equivocal

evidence but these findings may be in part confounded by variability in the innate ten-

dency of individuals to rely on model-free learning and assign incentive salience.

6.2 INDIVIDUAL VARIABILITY IN ADDICTION VULNERABILITY
As discussed earlier, there is growing evidence that the natural tendency to sign-track

is both highly variable (Meyer et al., 2012) and a risk factor predisposing to addiction

(Saunders and Robinson, 2010; Saunders et al., 2013a,b). That is, individual
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variation in cue reactivity is associated with individual differences in vulnerability to

addiction. Rats that sign-track to cues associated with food reward also sign-track to

drug-associated cues (Flagel et al., 2010), and drug cues maintain drug self-

administration and reinstate drug-seeking behavior to a greater extent in STs than

GTs, even in the face of adverse consequences (Saunders and Robinson, 2011,

2012; Saunders et al., 2013a). Furthermore, STs also express other traits related

to addiction liability. They are, for instance, more impulsive than GTs (Flagel

et al., 2010; Lovic et al., 2011; Tomie et al., 1998) and more likely to seek novel

environments (Beckmann et al., 2011). Finally, differences in the dopamine system

have been associated with individual variation on all of these traits (Dalley and

Roiser, 2012; Flagel et al., 2009). As we have argued that sign-tracking reflects in-

centive salience and model-free processes, this further motivates the suggestion that

variations in the extent to which individuals rely on model-free learning processes

form a risk factor for addiction.

Likewise, there is considerable individual variation in the ability of drug cues to

bias attention, elicit craving, and instigate relapse in humans (Carter and Tiffany,

1999; deWit et al., 1986). Emerging evidence suggests that some humansmay bemore

“cue reactive” than others. For example, Mahler and de Wit (2010) reported that in-

dividuals with the highest craving in response to food cues, when hungry, were the

same individuals that showed the highest craving in response to smoking cues during

abstinence. These findings are reminiscent of the sign-tracking rats that attribute ex-

cessive incentive motivational value to both food- and drug-paired cues (Flagel et al.,

2011b; Saunders and Robinson, 2011, 2012) and lend credence to the notion that var-

iation in this trait may underlie susceptibility to addiction in humans.

Just as in animals, this variation may be related to the dopaminergic system

(Buckholtz et al., 2010; Dalley and Roiser, 2012). Leyton et al. (2002) showed that

even in healthy subjects the variability in dopamine response to amphetamine relates

to subjective ratings of “wanting.” Franken et al. (2004) showed that the dopamine

receptor antagonist haloperidol can reduce attentional bias to drug cues among ad-

dicts, and Ersche et al. (2010) showed that the effect of such dopaminergic manip-

ulations (both agonistic and antagonistic) varies with compulsivity. The effect of

haloperidol in the former and amisulpiride in the latter, both rather selective D2 an-

tagonists, is surprising given the drug-induced reductions in D2 receptors (see

above). However, the directionality of the effect is consistent with the pro-

compulsive and pro-addictive effects of D2 agonists in Parkinson’s disease and

may relate to specific effects in the ventral compared to the dorsal striatum

(Dagher and Robbins, 2009; Evans et al., 2006).

Although we have focused on evidence from Pavlovian learning (particularly

sign-tracking), the reliance on and shift toward model-free learning is also apparent

in instrumental learning, with addictive drugs shifting responding from model-

based toward model-free responding, speeding up habitization and likely pre-

disposing toward addiction. When rats acquire instrumental responses for alcohol

they become insensitive to devaluation earlier than when the outcome is pellets

(Dickinson et al., 2002). Along the same lines, amphetamine pretreatment speeds
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up the rate at which the outcome insensitivity develops (Nelson and Killcross, 2006),

and this depends particularly on D1 rather than D2 receptors (Nelson and Killcross,

2013). In humans, there is evidence for enhanced habitization in obsessive-

compulsive disorder (Everitt and Robbins, 2005; Gillan et al., 2011, 2014;

Robbins et al., 2012) and forthcoming evidence in cocaine addiction (N. Daw and

V. Voon, personal communication), but not yet in alcohol addiction (Sebold

et al., in press).

Both innate variability in attributing incentive salience and relying on model-free

learning, and more direct effects on dopaminergic signals predict that drug-

associated cues should have increased model-free value in addicts. This in turn

means that sudden, unexpected presentation of such cues should elicit greater dopa-

minergic transients. PET studies measuring released dopamine with raclopride dis-

placement (Boileau et al., 2007; Kalivas and Volkow, 2005; Volkow et al., 2006) and

fMRI studies measuring responses to drug-associated cues (Beck et al., 2009;

Grüsser et al., 2004; Wrase et al., 2007) both clearly support this prediction (though

see Wilson et al., 2004 for a discussion of how these relate to craving).

Finally, it is worth emphasizing the impact of past experience on present learning

(Huys et al., submitted for publication). A stimulus that elicits approach will be more

attended to, and hence may be more easily learned about and associated with rein-

forcements at the expense of other stimuli present in the environment. More gener-

ally, online iterative RL in which behavior (and hence sampling of the environment)

changes after every experience often does not have the kind of optimality guarantees

that offline learning has (Bertsekas and Tsitsiklis, 1996), and may lead to self-

reinforcing loops of choice and reward (Hogarth et al., 2007). One such effect

was shown directly by Freeman et al. (2012), who have found that abstinent smokers

were more likely to associate a drug cue with reward than a nondrug cue. Indeed,

attentional mechanisms are clearly important in learning (Dayan et al., 2000;

Pearce, 1997) and possibly in the maintenance of addiction (Hogarth and Chase,

2011; Hogarth et al., 2013; Wiers et al., 2011).

6.3 SHIFTS TOWARD MODEL-FREE LEARNING IN ADDICTION
We have so far mainly focused on contributions by the model-free system. However,

alterations to the model-based systems are likely to be equally important and open al-

ternative paths to addiction.As reviewed earlier, extinction does not lead to unlearning,

but rather to the re-engagement of prefrontal cortices and novel learning (Bouton,

2004; Gershman et al., 2010). The underlying associations continue to be present

and can re-emerge, either spontaneously or in response to a cue. Interestingly,

context-induced reinstatement is more prominent in GTs than in STs (Saunders and

Robinson, 2013). Moreover, a context paired with ethanol injections can immediately

and profoundly impair the ability to exert goal-directed control (Ostlund et al., 2010),

and optogenetic suppression or activation of the prelimbic cortex, which is thought to

involve goal-directed computations, can abolish or re-establish sensitivity to punish-

ments (Chen et al., 2013). There is also preliminary evidence for this in humans
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(Sebold et al., in press). Addiction, therefore, might impair the normal re-engagement

of model-based decision-making in the face of aversive events or events associated

with drugs (Ostlund and Balleine, 2008). The formermay account for the perseverance

of behavioral response patterns in the face of adverse consequences, a hallmark of ad-

diction (Deroche-Gamonet et al., 2004; Gelder et al., 2006; Vanderschuren and Everitt,

2004).

In a landmark study, Killcross and Coutureau (2003) showed that lesions of the

pre- and infralimbic rodent cortices abolished goal-directed and habitual behavior,

respectively. This showed that model-free and model-based systems co-exist in

the brain, but that behavioral expression tends to be dominated by one or the other.

Behavioral and imaging evidence for this also exists in humans (Daw et al., 2011).

This immediately raises the question of arbitration: how is dominance determined?

There are two prominent explanations. Daw et al. (2005) argued from a Bayesian

perspective that it would be optimal to use all knowledge when making choices,

but that various types of knowledge should be weighted by their certainty. Using de-

tailed analyses of the noise characteristics of model-based and model-free systems,

they argued that model-based systems are more data efficient, and hence make more

accurate predictions, when little evidence exists and uncertainty is high, that is, early

on in training. The opposite is true after extensive evidence later in training. An al-

ternative account (Keramati et al., 2011; Pezzulo et al., 2013) is based on the value of

information (VOI; Russell and Wefald, 1991). Unlike the Bayesian account, this ex-

plicitly takes the cost of computation into account. Briefly, if the expected improve-

ment in performance outweighs the cost of computation, then it is worth engaging in

model-based reasoning. Because of a similar argument about the increasing accuracy

of model-free values with experience as used by Daw et al. (2005), this improvement

is worthwhile early on in training, but not later on. However, the VOI account is fun-

damentally different, in that it suggests that expression of habits is under continuous

evaluation and control by the prefrontal cortex, which is consistent with some recent

evidence (Cavanagh et al., 2013; Smith and Graybiel, 2013; Smith et al., 2012).

Both of these models provide multiple avenues for a shift from goal-directed to

habitual behavior. Both the VOI and the uncertainty-based account would increase

the prominence of the model-free systems as a consequence of increased noise in the

model-based system. In the former case, the increase in information that would occur

from engaging the model-based system would be reduced. This could occur due to a

general cognitive impairment (D. Schad, M. Rapp, and Q. Huys, unpublished obser-

vations), perhaps due to deficits in prefrontal function, especially as a result of ex-

posure to neurotoxic substances such as alcohol or cocaine (Briand et al., 2008;

Goldstein et al., 2004; Lucantonio et al., 2012); but may also be characteristic of

other populations (e.g., Darke et al., 2000), and involves the prefrontal cortex

(Goldstein et al., 2004; see also Volkow et al., 2009). In support, Takahashi et al.

(2011) have recently shown that cocaine interferes with the ability of the orbitofron-

tal cortex to establish a detailed state space (Walton et al., 2010), which would lead

to less accurate models and hence less accurate predictions. In the VOI account, in-

creased cost of computation would have very similar effects, and cognitive
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impairments could be involved in the effect of stress (Schwabe and Wolf, 2009) and

certainly the effect of dual tasks (Otto et al., 2013).

It is important, though, to bear in mind that although habits share features with

compulsions (Gillan et al., 2011, 2014), they are not one and the same (Dayan, 2009;

Robbins et al., 2012; and many others). It has been suggested that after extended

training, habits become deeply engrained by shifting further dorsally in the corticos-

triatal loops (Belin and Everitt, 2008; Willuhn et al., 2012). Using cyclic voltamme-

try and a behavioral paradigm similar to sign-tracking paradigm, Clark et al. (2013)

examined changes in dopamine release in the nucleus accumbens core during the

acquisition and maintenance of a Pavlovian conditioned approach response (i.e.,

sign-tracking). In agreement with the results of Flagel et al. (2011b), it was shown

that both contact with the lever-CS and CS-evoked dopamine release increased over

time for rats that sign-tracked. However, after prolonged training (i.e., around 150

CS–US trials), these two measures were no longer correlated. That is, sign-tracking

behavior continued at asymptotic levels, but CS-evoked dopamine release dimin-

ished with extended training. Moreover, the effects of a dopamine D1 receptor an-

tagonist on sign-tracking behavior were less prominent following postasymptotic

training. However, the data on punishment sensitivity (Deroche-Gamonet et al.,

2004; Vanderschuren and Everitt, 2004) and the importance of prefrontal mecha-

nisms in the reassertion of control (Chen et al., 2013; Ostlund and Balleine, 2008;

Sebold et al., in press) may also speak to the difference between habits and

compulsions.

6.4 CONCLUSIONS
In this chapter, we have suggested that the combination of a theoretical framework

with findings of individual differences in the dopaminergic system during Pavlovian

conditioning may explain why some individuals become addicted whereas others do

not. RL models (Montague et al., 1996) give a powerful and deep account of the be-

havioral correlates of prediction-error learning. Following McClure et al. (2003b),

we have explained that this type of learning leads to representations in terms of

model-free values, and that these capture key features of individual processing of

motivational value, incentive salience assignment, and sign-tracking. As such, it pro-

vides a framework within which neurobiology and behavior relevant to addiction can

be related in a computationally coherent manner (Dayan, 2009; Huys et al., 2013a;

Redish et al., 2008), and forms one example of the application of computational neu-

roscience to psychiatric problems (Maia and Frank, 2011; Huys et al., 2011; Huys

et al., submitted for publication; Hasler, 2012; Montague et al., 2012).

However, much remains to be done. While the description of model-free learn-

ing and the neurobiological details of the circuits computing prediction errors ad-

vance rapidly, our understanding of the representations and computations

underlying model-based reasoning remains poorly defined. However, it is clear that

addictions, and indeed many other affective psychiatric disorders, involve similar

mechanisms.
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Düzel, E., Bunzeck, N., Guitart-Masip, M., Wittmann, B., Schott, B.H., Tobler, P.N., 2009.

Functional imaging of the human dopaminergic midbrain. Trends Neurosci. 32 (6),

321–328.

Enomoto, K., Matsumoto, N., Nakai, S., Satoh, T., Sato, T.K., Ueda, Y., Inokawa, H.,

Haruno, M., Kimura, M., 2011. Dopamine neurons learn to encode the long-term value

of multiple future rewards. Proc. Natl. Acad. Sci. U.S.A 108 (37), 15462–15467.

Ersche, K.D., Bullmore, E.T., Craig, K.J., Shabbir, S.S., Abbott, S., Müller, U., Ooi, C.,

Suckling, J., Barnes, A., Sahakian, B.J., Merlo-Pich, E.V., Robbins, T.W., 2010. Influence

of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant

dependence. Arch. Gen. Psychiatry 67 (6), 632–644.

Estes, W., Skinner, B., 1941. Some quantitative aspects of anxiety. J. Exp. Psychol.

29, 390–400.

Evans, A.H., Pavese, N., Lawrence, A.D., Tai, Y.F., Appel, S., Doder, M., Brooks, D.J.,

Lees, A.J., Piccini, P., 2006. Compulsive drug use linked to sensitized ventral striatal

dopamine transmission. Ann. Neurol. 59 (5), 852–858.

67References



Everitt, B.J., Robbins, T.W., 2005. Neural systems of reinforcement for drug addiction: from

actions to habits to compulsion. Nat. Neurosci. 8 (11), 1481–1489.

Everitt, B.J., Dickinson, A., Robbins, T.W., 2001. The neuropsychological basis of addictive

behaviour. Brain Res. Brain Res. Rev. 36 (2–3), 129–138.

Fiorillo, C.D., 2013. Two dimensions of value: dopamine neurons represent reward but not

aversiveness. Science 341 (6145), 546–549.

Fiorillo, C.D., Tobler, P.N., Schultz, W., 2003. Discrete coding of reward probability and un-

certainty by dopamine neurons. Science 299 (5614), 1898–1902.

Fiorillo, C.D., Newsome, W.T., Schultz, W., 2008. The temporal precision of reward predic-

tion in dopamine neurons. Nat. Neurosci. 11, 966–973.

Fiorillo, C.D., Song, M.R., Yun, S.R., 2013a. Multiphasic temporal dynamics in responses of

midbrain dopamine neurons to appetitive and aversive stimuli. J. Neurosci. 33 (11),

4710–4725.

Fiorillo, C.D., Yun, S.R., Song, M.R., 2013b. Diversity and homogeneity in responses of mid-

brain dopamine neurons. J. Neurosci. 33 (11), 4693–4709.

Flagel, S.B., Akil, H., Robinson, T.E., 2009. Individual differences in the attribution of incen-

tive salience to reward-related cues: implications for addiction. Neuropharmacology

56 (Suppl. 1), 139–148.

Flagel, S.B.,Robinson,T.E., Clark, J.J., Clinton, S.M.,Watson, S.J., Seeman, P., Phillips, P.E.M.,

Akil, H., 2010. An animal model of genetic vulnerability to behavioral disinhibition and re-

sponsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology

35 (2), 388–400.

Flagel, S.B., Cameron, C.M., Pickup, K.N., Watson, S.J., Akil, H., Robinson, T.E., 2011a.

A food predictive cue must be attributed with incentive salience for it to induce c-fos mrna

expression in cortico-striatal-thalamic brain regions. Neuroscience 196, 80–96.

Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., Akers, C.A.,

Clinton, S.M., Phillips, P.E.M., Akil, H., 2011b. A selective role for dopamine in

stimulus-reward learning. Nature 469 (7328), 53–57.

Flagel, S.B., Waselus, M., Clinton, S.M., Watson, S.J., Akil, H., 2014. Antecedents and con-

sequences of drug abuse in rats selectively bred for high and low response to novelty.

Neuropharmacology 76, 425–436.

Frank, M.J., 2005. Dynamic dopamine modulation in the basal ganglia: a neurocomputational

account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn.

Neurosci. 17 (1), 51–72.

Frank, M.J., Seeberger, L.C., O’Reilly, R.C., 2004. By carrot or by stick: cognitive reinforce-

ment learning in Parkinsonism. Science 306 (5703), 1940–1943.

Franken, I.H.A., Hendriks, V.M., Stam, C.J., Van den Brink, W., 2004. A role for dopamine in

the processing of drug cues in heroin dependent patients. Eur. Neuropsychopharmacol.

14 (6), 503–508.

Freeman, T.P., Morgan, C.J.A., Beesley, T., Curran, H.V., 2012. Drug cue induced oversha-

dowing: selective disruption of natural reward processing by cigarette cues amongst

abstinent but not satiated smokers. Psychol. Med. 42 (1), 161–171.

Ganesan, R., Pearce, J.M., 1988. Effect of changing the unconditioned stimulus on appetitive

blocking. J. Exp. Psychol. Anim. Behav. Process. 14 (3), 280–291.

Gelder, M., Harrison, P., Cowen, P., 2006. Shorter Oxford Textbook of Psychiatry. Oxford

University Press, Oxford, UK.

68 CHAPTER 3 Learning-related dopamine signals



Gershman, S.J., Blei, D.M., Niv, Y., 2010. Context, learning, and extinction. Psychol. Rev.

117 (1), 197–209.

Gillan, C.M., Papmeyer,M.,Morein-Zamir, S., Sahakian, B.J., Fineberg, N.A., Robbins, T.W.,

deWit, S., 2011. Disruption in the balance between goal-directed behavior and habit learn-

ing in obsessive-compulsive disorder. Am. J. Psychiatry 168 (7), 718–726.

Gillan, C.M., Morein-Zamir, S., Urcelay, G.P., Sule, A., Voon, V., Apergis-Schoute, A.M.,

Fineberg, N.A., Sahakian, B.J., Robbins, T.W., 2014. Enhanced avoidance habits in

obsessive-compulsive disorder. Biol. Psychiatry 75 (8), 631–638.
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Tye, K.M., Lüscher, C., 2012. Gaba neurons of the vta drive conditioned place aversion.

Neuron 73 (6), 1173–1183.

Thanos, P.K., Volkow, N.D., Freimuth, P., Umegaki, H., Ikari, H., Roth, G., Ingram, D.K.,

Hitzemann, R., 2001. Overexpression of dopamine d2 receptors reduces alcohol self-

administration. J. Neurochem. 78 (5), 1094–1103.

Tobler, P.N., Dickinson, A., Schultz, W., 2003. Coding of predicted reward omission by do-

pamine neurons in a conditioned inhibition paradigm. J. Neurosci. 23 (32), 10402–10410.

Tobler, P.N., Fiorillo, C.D., Schultz, W., 2005. Adaptive coding of reward value by dopamine

neurons. Science 307 (5715), 1642–1645.

Tobler, P.N., O’doherty, J.P., Dolan, R.J., Schultz, W., 2006. Human neural learning depends

on reward prediction errors in the blocking paradigm. J. Neurophysiol. 95 (1), 301–310.

Tobler, P.N., O’Doherty, J.P., Dolan, R.J., Schultz,W., 2007. Reward value coding distinct from

risk attitude-related uncertainty coding in human reward systems. J. Neurophysiol. 97 (2),

1621–1632.

Tolman, E.C., 1948. Cognitive maps in rats and men. Psychol. Rev. 55 (4), 189.

Tom, S.M., Fox, C.R., Trepel, C., Poldrack, R.A., 2007. The neural basis of loss aversion in

decision-making under risk. Science 315 (5811), 515–518.

Tomie, A., Aguado, A.S., Pohorecky, L.A., Benjamin, D., 1998. Ethanol induces impulsive-

like responding in a delay-of-reward operant choice procedure: impulsivity predicts auto-

shaping. Psychopharmacology (Berl) 139 (4), 376–382.

Tricomi, E., Balleine, B.W., O’Doherty, J.P., 2009. A specific role for posterior dorsolateral

striatum in human habit learning. Eur. J. Neurosci. 29 (11), 2225–2232.

Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea, L., Deisseroth, K.,

2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.

Science 324 (5930), 1080–1084.

Valentin, V.V., Dickinson, A., O’Doherty, J.P., 2007. Determining the neural substrates of

goal-directed learning in the human brain. J. Neurosci. 27 (15), 4019–4026.

van der Meer, M.A.A., Redish, A.D., 2009. Covert expectation-of-reward in rat ventral stri-

atum at decision points. Front. Integr. Neurosci. 3, 1.

Vanderschuren, L.J.M.J., Everitt, B.J., 2004. Drug seeking becomes compulsive after pro-

longed cocaine self-administration. Science 305 (5686), 1017–1019.

76 CHAPTER 3 Learning-related dopamine signals



Volkow, N.D., Fowler, J.S., Wang, G.-J., Goldstein, R.Z., 2002. Role of dopamine, the frontal

cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol.

Learn. Mem. 78 (3), 610–624.

Volkow, N.D., Wang, G.-J., Telang, F., Fowler, J.S., Logan, J., Childress, A.-R., Jayne, M.,

Ma, Y., Wong, C., 2006. Cocaine cues and dopamine in dorsal striatum: mechanism of

craving in cocaine addiction. J. Neurosci. 26 (24), 6583–6588.

Volkow, N.D., Fowler, J.S., Wang, G.J., Baler, R., Telang, F., 2009. Imaging dopamine’s role

in drug abuse and addiction. Neuropharmacology 56 (Suppl. 1), 3–8.

Waelti, P., Dickinson, A., Schultz, W., 2001. Dopamine responses comply with basic assump-

tions of formal learning theory. Nature 412 (6842), 43–48.

Walton, M.E., Behrens, T.E.J., Buckley, M.J., Rudebeck, P.H., Rushworth, M.F.S., 2010. Sep-

arable learning systems in the macaque brain and the role of orbitofrontal cortex in con-

tingent learning. Neuron 65 (6), 927–939.

Wassum, K.M., Ostlund, S.B., Balleine, B.W., Maidment, N.T., 2011. Differential depen-

dence of pavlovian incentive motivation and instrumental incentive learning processes

on dopamine signaling. Learn. Mem. 18 (7), 475–483.

Wiers, R.W., Eberl, C., Rinck, M., Becker, E.S., Lindenmeyer, J., 2011. Retraining automatic

action tendencies changes alcoholic patients’ approach bias for alcohol and improves treat-

ment outcome. Psychol. Sci. 22 (4), 490–497.

Willuhn, I., Burgeno, L.M., Everitt, B.J., Phillips, P.E.M., 2012. Hierarchical recruitment of

phasic dopamine signaling in the striatum during the progression of cocaine use. Proc.

Natl. Acad. Sci. U.S.A 109 (50), 20703–20708.

Wilson, S.J., Sayette, M.A., Fiez, J.A., 2004. Prefrontal responses to drug cues: a neurocog-

nitive analysis. Nat. Neurosci. 7 (3), 211–214.

Witten, I.B., Steinberg, E.E., Lee, S.Y., Davidson, T.J., Zalocusky, K.A., Brodsky, M.,

Yizhar, O., Cho, S.L., Gong, S., Ramakrishnan, C., Stuber, G.D., Tye, K.M., Janak, P.H.,

Deisseroth, K., 2011. Recombinase-driver rat lines: tools, techniques, and optogenetic ap-

plication to dopamine-mediated reinforcement. Neuron 72 (5), 721–733.
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