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We introducematched-filter fMRI, which improves BOLD (bloodoxygen level dependent) sensitivity by variable-
density image acquisition tailored to subsequent image smoothing. Image smoothing is an established post-
processing technique used in the vast majority of fMRI studies. Here we show that the signal-to-noise ratio of
the resulting smoothed data can be substantially increased by acquisition weighting with a weighting function
that matches the k-space filter imposed by the smoothing operation. We derive the theoretical SNR advantage
of this strategy and propose a practical implementation of 2D echo-planar acquisition matched to common
Gaussian smoothing. To reliably perform the involved variable-speed trajectories, concurrent magnetic field
monitoring with NMR probes is used. Using this technique, phantom and in vivomeasurements confirm reliable
SNR improvement in the order of 30% in a “resting-state” condition and prove robust in different regimes of
physiological noise. Furthermore, a preliminary task-based visual fMRI experiment equally suggests a consistent
BOLD sensitivity increase in terms of statistical sensitivity (average t-value increase of about 35%). In summary,
our study suggests that matched-filter acquisition is an effective means of improving BOLD SNR in studies that
rely on image smoothing at the post-processing level.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Spatial smoothing of imaging volumes is ubiquitous in fMRI (Carp,
2012; Poldrack et al., 2008). Its routine use before statistical analysis
aims at improving the sensitivity and interpretability of blood oxygen
level dependent (BOLD) contrast in three ways, i.e., from the perspec-
tive of (1) signal processing, (2) statistical inference at the single-
subject level and (3) group level inference (Friston, 2007).

Firstly, with respect to the signal processing perspective, smoothing
the data with a filter that resembles the spatially extended hemody-
namic response is considered optimal to detect activation of this partic-
ular shape and scale, according to the matched-filter theorem (Worsley
et al., 1996a, b). Secondly, regarding single-subject inference, image
smoothing facilitates the application of multiple comparison correction
using random field theory (Worsley et al., 1996a, b) since it ensures
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tal least squares.
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spatial smoothness of the residual error distribution. Thirdly, at the
group level, spatial smoothing helps to absorb anatomical variability
between subjects.

Image smoothing is commonly performed with a filtering operation
in k-space that attenuates signal content at high spatial frequencies. In
doing so it alters the effective point spread function (PSF) such as to
broaden its main peak and suppress far-range contamination. However,
importantly, variable k-space attenuation not only affects the PSF but
also the propagation of noise from raw data into smoothed images.
The noise content of the raw data undergoes the same k-space
weighting such that the relative impact of noise increases towards the
center of k-space. As a consequence, to maximize the SNR of the
smoothed data, the raw data should be acquired with variable sensitiv-
ity by corresponding k-space weighting at the acquisition level. As will
be detailed in the theory part, optimal net SNR is achievedby acquisition
weighting that exactly matches the eventual smoothing filter. The un-
derlyingmathematics correspond closely to thematched-filter rationale
(North, 1963) of the smoothing operation. It is important, however, to
distinguish the different filter-matching rationales. Aiming to match
the hemodynamic response by smoothing is common practice today
and serves for the purposes summarized initially. The utility of also
matching data acquisition is a consequence of the smoothing strategy
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and serves exclusively for SNR optimization given a chosen smoothing
kernel. Importantly, through appropriate image reconstruction includ-
ing density correction, the matched-filter acquisition does not change
the PSF and thus allows for image post-processing that is identical to
standard acquisition.

Acquisition weighting has previously been used to improve the sen-
sitivity of MR spectroscopic imaging and non-proton MRI, summarized
under the theme of density-weighted phase encoding (Greiser and von
Kienlin, 2003; Greiser et al., 2005; Stobbe and Beaulieu, 2008). In
this work, we introduce matched-filter acquisition for fMRI with
single-shot echo-planar readouts, which is challenging in that it cannot
be accomplished merely by altered phase encoding, but requires 2D
trajectory design with complex modulation of k-space velocity. Such
trajectories are particularly susceptible to common imperfections of
gradient systems such as bandwidth limitations and eddy currents. To
gauge and address this issue, we incorporate concurrent magnetic
field monitoring (Barmet et al., 2008, 2009, 2010) with NMR probes
(Barmet et al., 2010; De Zanche et al., 2008), which permits accounting
for imperfections in magnetic field evolution at the image reconstruc-
tion stage.

The SNR benefit expected from filter matching relies on the incoher-
ence of noise. In particular, the exact form of thematched-filter acquisi-
tion rule proposed here refers to the assumption of independent and
identically distributed white noise. Thermal noise, which is prevalent
in MR, exhibits this property (Johnson, 1928; Nyquist, 1928). For this
noise regime, we show analytically that the distribution of acquisition
time should indeed exhibit the same weighting in k-space as the target
PSF, to achieve maximum SNR. However, BOLD fMRI is also subject to
noise related to physiological processes with non-white statistics
(Bianciardi et al., 2009; Krüger and Glover, 2001), including inherent
neurophysiological fluctuations as well as respiratory and cardiovascu-
lar dynamics (Birn et al., 2008; Chang et al., 2009; Dagli et al., 1999;
Glover et al., 2000; Shmueli et al., 2007). Therefore, the experimental
validation of matched-filter fMRI in this work comprises signal-to-
fluctuation-noise ratio (SFNR) measurements of phantom and in vivo
time series, inwhichwe vary the degree of signal-mediated fluctuations
and evaluate their influence on the observed SFNR gain. Finally, we
perform a proof-of-principle experiment showing the feasibility of
matched-filter acquisition also for task-based fMRI. Using a visual
paradigm in a preliminary group of four subjects, robust t-value
increases are reported over standard EPI acquisition.

Theory and methods

Theory: Matched-density acquisition for image post-processing filters

In the following section, we establish the relationship between
variable acquisition speed in k-space, the point-spread function (PSF)
and signal-to-noise ratio (SNR) within an MR image. This is contrasted
to shaping the PSF by retrospective smoothing only.

To estimate SNR,we consider the different propagation of signal and
noise in both stages, focusing on the total thermal noise contribution
similar to Pipe and Duerk (1995) and Stobbe and Beaulieu (2008), but
treating all quantities in a continuous fashion, which then leads to a
variational optimization of SNR.

Accrual of signal and noise in a given k-space region depends on how
much acquisition time is spent in that region. If local acquisition time is
distributed non-uniformly, it becomes dependent on the k-space posi-
tion vector k = (kx,kykz). Hence, we denote the resulting distribution
of acquisition time as acquisition density dacq(k) Upon gridding
reconstruction, dacq becomes effectively smooth on the scale of the
Nyquist sampling interval and represents the local density of trajectory
segments and their velocity.

Signal accrues coherently over time and thus linearly with dacq(k).
Thermal noise, on the other hand, accrues incoherently because it is un-
correlated due to being identically, independently normally distributed
(Johnson, 1928; Nyquist, 1928). Hence, the variance of the thermal
noise increases linearly with local acquisition density:

σ 2
acq kð Þ∝ dacq kð Þ: ð1Þ

Let us now consider smoothing during post-processingwhich is per-
formed to achieve a target PSF. As the combined action of smoothing
and acquisition weighting in k-space should yield the target density,
we obtain a defining equation for the smoothing filter:

dsmooth kð Þ :¼ dtarget kð Þ
dacq kð Þ ð2Þ

with dtarget and dsmooth being the Fourier transform of the PSF and
smoothing kernel, respectively.

We now investigate the action of this post-processing filter on the
acquired k-space data, which is already a superposition of signal and
noise. The application of dsmooth(k) is a mere re-weighting of these
data. Thus, the signal scales linearly with this density as in the case of
acquisition weighting. The noise amplitude, however, is now also pro-
portionally scaled with this density, inducing a quadratic dependency
of the noise variance on dsmooth in the final, post-processed data,

σ 2
final kð Þ ¼ d2

smooth kð Þ � σ 2
acq kð Þ∝d2

smooth kð Þ � dacq kð Þ ¼ d2target kð Þ
dacq kð Þ ; ð3Þ

where equality and proportionality arise from Eqs. (1) and (2),
respectively.

This equation illustrates that the acquisition density is an additional
degree of freedom for an MR experiment with a given target PSF,
because the target PSF can always be achieved retrospectively by
smoothing with an appropriate image filter Ksmooth. The choice of the
acquisition density, on the other hand, then determines the noise land-
scape in k-space, σ2

final for the final, reconstructed image, as described
in Eq. (3).

Given a specific target PSF, an immediate application of Eq. (3) is to
find the acquisition density thatmaximizes SNR in the image. As long as
Nyquist sampling is ensured, the signal level is independent of dacq,
because it is determined by the target PSF (which is the same for all
acquisition densities). Thus, to maximize SNR, it suffices to minimize
the noise variance in each image voxel. As we reconstruct an image
from the acquired k-space data of an individual coil through Fourier
transformation and the thermal noise accrued in k-space is uncorrelat-
ed, the noise landscape in the conjugate image space will be flat accord-
ing to the Wiener-Khinchin theorem (Weisstein, 2006b), rendering all
voxel noise variances in the image equal. Minimizing the noise variance
per voxel is therefore equivalent to minimizing the total noise power in
the imagewhich, in turn, is equivalent to the noise power in k-space due
to Parseval’s theorem (Weisstein, 2006a).

Hence, maximizing the SNR per voxel amounts to a constrained
minimization of the noise power in the covered k-space volume Vk

which we define as

σ finalj j22 :¼
Z
VK

σ 2
final kð Þ dk: ð4Þ

The optimization constraint is given by a constant total acquisition
time Tacq, such that the full optimization problem incorporating relation
(3) reads

σ finalj j22 ¼
Z
Vk

d2target kð Þ
dacq kð Þ dk→minwith

Z
Vk

dacq kð Þ dk ¼ Tacq: ð5Þ
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The solution to this optimization uses a Lagrange multiplier λ and
fulfills

∂ σ finalj j22
� �
∂ dacq kð Þ
� � ¼ λ

∂
Z

dacq kð Þ dk

∂ dacq kð Þ
� � ⇒−

d2target kð Þ
d2acq kð Þ ¼ λ � const:

⇒dacq kð Þ∝dtarget kð Þ

ð6Þ

Therefore, for optimal SNR, target density and acquisition density
should be equal in k-space (up to a proportionality factor), in analogy
to the matched-filter theorem (Fig. 1; North, 1963). Specifically, in the
common case where the target PSF is a Dirac function that maps the
object onto image pixels identically, uniform sampling is optimal
(Pipe and Duerk, 1995).

The SNR ratio between a matched acquisition and the standard uni-
form sampling can be expressed via the ratio of final noise variances, i.e.,

SNRmatched
final

SNRuni
final

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ uni

final

��� ���2
2

σ matched
final

�� ��2
2

vuuut : ð7Þ

We now simplify the numerator and denominator of the right hand
side term separately using Eq. (5). For the square of the numerator,

the acquisition density fulfills ∫
Vk

dacq kð Þdk ¼ Tacq , while the uniform

sampling density reads duni(k) = Tacq/VK = const., yielding

σ uni
final

��� ���2
2
¼
Z
Vk

d2
target kð Þ
Tacq

Vk

dk ¼ Vk

Tacq

Z
Vk

d2
target kð Þdk: ð8Þ
Fig. 1. The concept of matched-filter acquisition: After identifying the target post-processing filt
acquisition. Following the matched-filter theorem, this trajectory delivers SNR optimal images,
target post-processing filter.
Wenormalize thematched acquisition density to dmatched (k)= C−1 ∙
Tacq∙dtarget(k)withC :¼ ∫

Vk

dtarget kð Þ dk, and, hence, can rewrite the square

of the denominator of Eq. (7):

σ matched
final

��� ���2
2
¼
Z
Vk

d2target kð Þ
C−1 � Tacq � dtarget kð Þdk ¼ 1

C−1 � Tacq

Z
Vk

dtarget kð Þdk

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼C

: ð9Þ

The SNR ratio between matched and uniform acquisition then
evaluates to

SNRmatched
final

SNRuni
final

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ uni

final

��� ���2
2

σ matched
final

�� ��2
2

vuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vk

Tacq

Z
Vk

d2
target kð Þdk

C2

Tacq

¼

vuuuuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vk

C2 �
Z
Vk

d2
target kð Þdk;

vuut ð10Þ

and is therefore proportional to the 2-norm of the target density.
For the fMRI application under consideration, the SNR gain can be

explicitly calculated given the ratio between the nominal resolution
before smoothing and the FWHM of the Gaussian target PSF, as
derived formally in Appendix A. The result is an intrinsic SNR gain
capturing the situation of ideal density weighting, which, in practice,
is limited by the fidelity of the gradient system. Typical choices of the
er Ksmooth of a statistical analysis, a corresponding k-space trajectory is designed for image
if its variable k-space acquisition density dacq is equivalent to the Fourier transform of the



Table 1
Theoretical SNR gains expected for amatched-filter 2D acquisition of a Gaussian target PSF
for different values of its full width at half maximum (FWHM). The intrinsic SNR gain re-
fers to a perfect realization of a Gaussian acquisition density, while the reference experi-
ment values are calculated for the designed matched-filter EPI trajectory constrained by
typical gradient amplitude and slew rate system limits.

FWHM of target PSF in nominal pixels 1 1.5 2 2.5 3 3.5 4

SNR gain (2D)Intrinsic 6% 23% 53% 88% 126% 163% 201%
SNR gain (2D)Reference Experiment 3% 12% 25% 40% 55% 72% 92%

1 According to a recent meta-study on 300 fMRI studies (Carp, 2012), 88% of all studies
reported using (presumablyGaussian) smoothing, and nearlymore thanhalf of themwith
a FWHM of 8 mm and larger, which corresponds tomore than 2.5 pixels for voxel sizes of
3 mm and below.
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Gaussian FWHM deliver an intrinsic SNR gain of 2D matched-filter
compared to uniform acquisition between 6% and 200% (see
Table 1) that depends approximately linearly on the FWHM of the
Gaussian kernel.

Intuitively, this linear dependence of SNR gain on FWHM can be
understood as follows: Acquisition time is spent inefficiently byuniform
sampling in areas of k-space where the target density weighting is low,
because noise is accumulated, but the signal information is hardly used.
This area shrinks quadratically with the FWHM of the target k-space
density and therefore increases quadratically with the FWHM of the
target PSF. Thus, the additional standard deviation in the final image
increases linearly with this FWHM of the target PSF due to uniform
sampling.

Theory: EPI trajectory design for a matched-filter Gaussian density

As a k-space trajectory is needed for MR image encoding, we now
show how to transform the target acquisition density obtained in the
last section into a continuous trajectory subject to gradient system
limitations. Specifically, we design a single-shot Gaussian acquisition
density 2D EPI trajectory to enable a direct comparison with the
most prominent fMRI acquisition technique, i.e., a 2D EPI with uniform
acquisition density.

In principle, the k-space acquisition density can be altered by two
aspects of trajectory specification: Firstly, the shape of the trajectory
can be modified by variable spacing of different trajectory segments,
such as EPI traverses or spiral revolutions (Greiser and von Kienlin,
2003; Greiser et al., 2005; Kim et al., 2003; Spielman et al., 1995).
Secondly, the velocity along the trajectory can be modulated, thus
distributing acquisition time variably in k-space.

For EPI, modifying the trajectory shape could be readily imple-
mented by only modulating the density of traverses. A variable
time allocation would be accomplished, as more acquisition time is
allocated to regions with relatively more traverses. On the downside,
more traverses would accrue more traverse turns locally, such that
too much acquisition time is deployed compared to the Nyquist
sampling density needed. To minimize the number of such turns,
the general objective of an effective trajectory design is to pay as
few separate visits to the same k-space region as possible.
Consequently, as reducing the number of turns would violate Nyquist
sampling, it is best to perform density weighting for single-shot EPIs
via velocity modulation exclusively.

The Gaussian kernel is separable, therefore the density weighting in
kx and ky can be designed independently. First, we will determine the
acquisition weighting within a single EPI traverse, i.e. along kx: Because
gradient strength is proportional to k-space speed, it is inversely
proportional to the time spent in this particular part of k-space and
therefore to the acquisition density (cf. Eq. (1)). The ideal k-space (and
gradient) evolution k (t) (G(t)) then solves the following differential
equation (γ being the gyromagnetic ratio for protons):

dacq kð Þ∝ 1
k̇
�� �� ¼ 1

γ � G tð Þj j : ð11Þ

If the acquisition density is Gaussian, a closed form solution exists for
this equation, whose derivation can be found in Appendix B. With the
nominal resolution Δx determining kmax ¼ π
Δx and the FWHM of the

smoothing kernel defining σ r ¼ FWHM=
ffiffiffiffiffiffiffiffiffiffiffiffi
8 ln2

p
, one obtains:

G tð Þ ¼ C1 � exp erf−1 C2 � 2
t

T traverse
−1

� �� �2� �

With C1 ¼

ffiffiffiffiffiffi
2π

p
� erf σ rkmaxffiffiffi

2
p

� �
γT traverseσ r

; and C2 ¼ erf
σ rkmaxffiffiffi

2
p

� �
:

ð12Þ

In practice, due to gradient amplitude and slew rate limitations, this
time course cannot be realized at the traverse turns which require the
fastest possible gradient switching.

To achieve a Gaussian density weighting along the phase encoding
direction, ky, we vary the acquisition time spent on different traverses,
Ttraverse: While the gradient shape follows Eq. (12) for all traverses,
the scaling factor C1 of the gradient amplitude depends on the ky-
coordinate of the specific traverse, according to Eqs. (6) and (12):

C1∝
1

T traverse ky
� � ∝ 1

dtarget ky
� � ∝ exp

ky
2σ2

r

2

 !
: ð13Þ

For traverses where C1 exceeds the maximum gradient amplitude,
the Gaussian acquisition density is replaced by a baseline uniform
density ensuring Nyquist sampling.

This method for designing a Gaussian density 2D EPI trajectory may
be applied to arbitrary fields of view, resolutions and readout acquisi-
tion times. Furthermore, parallel imaging acceleration in phase
encoding direction can be implemented simply by increasing the con-
stant spacing between EPI traverses. The matched-filter considerations,
including the expected SNR gain, equally apply to the parallel imaging
case since parallel imaging reconstruction is highly local in k-space
and the Gaussian acquisition density is smooth, i.e. approximately
constant locally.

Due to the finite acquisition time and gradient system limitations,
the matched-filter EPI trajectory implemented as such does not lead
to a perfect Gaussian acquisition density. Strictly speaking, a standard
EPI trajectory does not implement a uniform acquisition density either
due to the traverse turns mentioned above which over-emphasize
high spatial frequencies.

Therefore, the expected reference SNR gain must be calculated spe-
cifically for the matched-filter and uniform EPI trajectory implemented
by inserting their actual acquisition densities into Eqs. (5) and (7). For
the imaging parameters and gradient specifications reported in the
subsequent section, the reference SNR gain reaches approximately half
of the intrinsic SNR gain referring to ideal density weighting (Table 1),
i.e., about 40% for a typically chosen Gaussian FWHM of 2.5 voxels.1

Image acquisition, concurrent field monitoring and image reconstruction

For all our experiments, data were acquired on a Philips 3 T Achieva
(Best, The Netherlands) system equipped with an 8-channel head
coil (Philips, Best, The Netherlands) and gradient specifications of 31
mT/m maximum amplitude and 200 T/m/s maximum slew rate. We
compared a matched-filter EPI to a uniform EPI trajectory that shared
the following acquisition parameters: TR 3 s (phantom data: 6.25 s),
TE 35 ms, readout duration 41 ms, receiver bandwidth 375 kHz, FOV
227mm, SENSE reduction factor 3, voxel size 1.8 × 1.8 × 3mm3, 5 slices
with 3mmbetween-slice gap. The target filterwas a 2DGaussianwith a
FWHM of 4.5 mm (or 2.5 voxels).
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We deliberately designed the uniform EPI to have the same readout
duration as the matched-filter EPI (41 ms), although the gradient
specifications would have allowed for a faster uniform readout
(29ms), and hence,more volumes per time. This prolonged readout en-
abled a fair SFNR comparison to the matched-filter trajectory, because
the increase in temporal SNR when decreasing slice TR ≈ TE + Tacq/2
from 56 to 50 ms is outweighed by the SNR loss per image when
decreasing image acquisition time from 41 to 29 ms.

Separate B0 and coil receive sensitivity maps were acquired in each
session (TR 800 ms, TE1 1 ms, ΔTE = 2.3 ms, spin-warp images with a
resolution of 1 × 1 × 3 mm3).

Our implementation of the matched-filter Gaussian EPI trajectory
using variable gradient strengths is particularly susceptible to any
kind of gradient imperfections. There are two reasons for this sensitivi-
ty: On the one hand, the gradient system is operated close to its limits to
enable a large range of velocitymodulation. On the other hand, the non-
periodic gradient time course precludes standard correction methods
for gradient inaccuracies, such as EPI phase correction. Therefore, we
utilized concurrent magnetic field monitoring as introduced by
Barmet et al. (2008, 2009, 2010, 2011) to (1) investigate the
feasibility and accuracy of the demanding gradient evolutions of the
proposed matched-filter EPIs on a clinical MR system, (2) study
deviations in k-trajectories and k-space densities from the ideal
matched-filter EPI and (3) enable image reconstructions informed by
the actual, measured k-space trajectory. In the hetero-nuclear monitor-
ing setup 16 transmit/receive 19F NMR field probeswere attached to the
head coil (Barmet et al., 2010; De Zanche et al., 2008;Wilm et al., 2011).
The acquired probe phase evolutions were expanded into real-valued
spherical harmonics (Barmet et al., 2008; Vannesjo et al., 2013b; Wilm
et al., 2011), yielding phase coefficients for the global phase, k0(t), the
linear k-space, kx(t), ky(t) and kz(t) and second order phase coefficients
k4-8(t) over the entire readout.

All image reconstructions, for both matched-filter and uniform EPI,
were performed using concurrent field monitoring data from the
probe phase fits. Global (k0) phase information was used for demodula-
tion of the raw coil data of the 8-channel head coil. Afterwards, the im-
ages were reconstructed from the demodulated data in combination
with 1st order k-space trajectory information (kx, ky, kz) in an iterative,
gridding-based, conjugate-gradient SENSE algorithm (Beatty et al.,
2005; Jackson et al., 1991; Pruessmann et al., 2001), using an in-house
Matlab implementation (The MathWorks, Natick, MA). This algorithm
was augmented with multi-frequency interpolation (MFI) for static
B0-field correction (Manet al., 1997; Sutton et al., 2003). The application
of this reconstruction algorithm ensured an SNR optimal image recon-
struction where the target PSF was achieved post hoc via smoothing,
which is equivalent to direct reconstruction with the target PSF
(Pruessmann and Tsao, 2008). In particular, the objective function of
the reconstruction imposed a Dirac target PSF, thus performing an
implicit density correction for the variable acquisition density of the
matched-filter trajectory. Consequently, both matched-filter and
uniform EPI scans exhibited the same image resolution and smoothness
before entering statistical pre-processing.

Experiment 1: Assessment of SFNR gain for EPI time series in different noise
regimes

The first experiment assessed the validity of the matched-filter
acquisition argument for different noise regimes with different levels
of signal fluctuations. Phantom data were acquired from a water-filled
sphere. In vivo data were acquired from 4 healthy volunteers
(1 male) after written informed consent and with approval of the
local ethics committee. Subjects were asked to lie still in the scanner
with their eyes closed (i.e., a “resting-state” condition).

For both uniform and matched-filter EPI, we acquired 9 sessions
with different excitation flip angles (0, 5, 15, 25, 40, 50, 60, 75 and 90
degrees) to vary the signal content and therefore the contribution of
signal-dependent noise. Each session contained 95 scans for the
phantom data, and 48 scans for in vivo sessions, plus 5 void scans to
minimize saturation effects. Realignment and smoothing with the
matched target kernel were performed on all images using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/).

We considered SFNR ROI-wise by first determining the mean of the
magnitude signal within the ROI for each image. Then, the SFNR was
computed as the ratio of the temporal mean of this ROI mean and its
temporal standard deviation. The ROI in the phantom was a centered
disc in each slice extending to 2/3 of the object diameter to avoid edge
effects. For the in vivo case, subject-specific gray matter, white matter
and CSF regions—that suffer from different levels of physiological
noise (Krüger and Glover, 2001; Triantafyllou et al., 2006)—were in-
cluded as separate ROIs in the analysis. These regions were extracted
using B1 bias field correction (Salvado et al., 2006) and a k-means
clustering algorithm on the spin-warp TE1 image.
Experiment 2: fMRI paradigm and analysis

In the second experiment, the benefits of matched-filter EPI acquisi-
tionwere assessed in a visual fMRI paradigmusing t-contrast values as a
summary statistic of activation detection.

The fMRI paradigm was designed to stimulate the quarter-fields of
the visual cortex: 16 s of flickering, color-changing wedges were inter-
leaved with 5 s of fixation; 8 blocks of upper left/lower right (ULLR) and
upper right/lower left (URLL) wedges were presented over 120 scans
(TR 3 s). The visual presentation was performed using a projector
(resolution 800 × 600) and a mirror mounted on the head coil. Subjects’
attention was maintained using a simple button response task to any
contrast alteration of the fixation point.

The datawere acquired in the same subjects and—apart from subject
4—on the same measurement day as for experiment 1. Two sessions of
each uniform EPI and matched-filter EPI acquisition were measured to
compare within-modality variance to between-modality variance of
the statistical results. The order of matched and uniform acquisitions
was counterbalanced between subjects, and independently for the 1st

and 2nd repetition of these sessions. The slice geometry was equivalent
to experiment 1. Specifically, slice orientation was oblique transverse,
parallel to the calcarine sulcus to cover visual cortex. Peripheral physio-
logical measures characterizing cardiac pulsation and the respiratory
cycle were recorded simultaneously with fMRI using an electrocardio-
gram (ECG) and breathing belt, respectively.

Spatial preprocessing and statistical analysis of the fMRI data were
performed in SPM8. Pre-processing included realignment and spatial
smoothing with the target Gaussian PSF. The general linear model
(GLM) for the statistical analysis included a canonical hemodynamic re-
sponse function (HRF) and temporal/dispersion derivative regressors of
the ULLR and URLL blocks. Furthermore, we included 2 types of nui-
sance regressors into the GLM: 6 movement parameters from realign-
ment and physiological noise modeling using RETROICOR (Glover et al.,
2000). Our specific implementation of RETROICOR, the physIO Toolbox
(Kasper et al., 2009; open source code available as part of the TAPAS
software collection: http://www.translationalneuromodeling.org/
tapas/) uses Fourier expansions of different order for the estimated
phases of cardiac pulsation (3rd order), respiration (4th order) and car-
diorespiratory interactions (1st order) following (Harvey et al., 2008).

The statistical results were assessed on t-maps contrasting ULLR–
URLL (contrast 1) and URLL–ULLR (contrast 2). Both peak t-value and
total cluster sizeswere compared betweenmatched and uniform acqui-
sition sessions. All results were p = 0.05 FWE-peak level corrected for
the whole acquisition volume. Finally, for a more quantitative handle
on BOLD sensitivity, we performed a total least squares regression
(TLS, modifiedMatlab implementation; Hall, 2011) of all corresponding
brain voxels for the t-value change of one session compared to a refer-
ence session. TLS reports an average t-value change over all voxels,

http://www.fil.ion.ucl.ac.uk/spm/
http://www.translationalneuromodeling.org/tapas/
http://www.translationalneuromodeling.org/tapas/
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and thus a more robust summary measure than peak t-values or
activation extent.
Results

Monitoring: Trajectories and k-space densities

For the implemented matched-filter EPI, the concurrently moni-
tored encoding magnetic fields, phase coefficients and corresponding
k-space densities are shown in Figs. 2–4, respectively. We present the
measured matched-filter readout for the representative 5th scan of
the 1st fMRI session of subject 3, but the asserted statements hold for
all observed readouts.

In general, the demanding non-trapezoidal readout gradient wave-
form is reproduced quite accurately by the gradient system, exhibiting
only the common bandwidth limitation of the gradients, smoothing of
switching events and small gradient delays (Fig. 2, red curve, compared
to black curve of nominal gradient evolution). Note that the amplitude
of the measured phase encoding gradient blip is also greatly reduced
due to this low-pass filter property of the gradient chain (Fig. 2B),
but its area is preserved due to commensurate broadening of the blip
(cf. the EPI traverse spacing in Fig. 4A.)

Fig. 3 shows the phase evolutions induced by this gradient wave-
form expanded in 0th to 2nd spatial order spherical harmonics: For
the monitored global phase k0, a roughly linear increase during the
readout is evident that carries the distinct sinusoidal modulation of
the EPI traverses (about 300 Hz). This modulation presumably stems
from slight B0 eddy currents induced by the readout gradient. Similarly,
the reduced slope of the linear component of k0 during the central part
of the readoutmight result from the lower frequency of phase encoding
gradients and their concomitant B0 eddy currents for the inner, density-
weighted traverses.

The linear phase coefficients (Fig. 3, middle panel), i.e. the k-space
representation of the trajectory, exhibit two main deviations from the
nominal matched-filter EPI, which are best visible in the classical 2D
representation of the trajectory (Fig. 4): Firstly, we found a compression
of about 25 rad/m of the trajectory in frequency encoding direction,
resulting in a slightly reduced actual image resolution, which has also
been reported for uniform EPI trajectories (Vannesjo et al., 2013b). Sec-
ondly, the actual sampling points within the traverse did not coincide
exactly with the nominal positions but deviated by up to one Nyquist
A

B

Fig. 2. Gradient design and concurrent field monitoring results of a 2D Gaussian density-
weighted “matched-filter” EPI. (A) Intra-traverse weighting via gradient modulation in
readout-direction (black = nominal; red = measured). (B) Inter-traverse weighting via
variable traverse duration in phase-encoding direction.

Fig. 3. Measured phase evolution during a matched-filter EPI readout of 40 ms (TE 35 ms).
Shown are the spherical harmonics coefficients k of different spatial order retrieved by con-
current magnetic field monitoring. (A) 0th order phase coefficient: A linear component
(frequency offset) is modulated by the EPI traverse frequency as well as the density
weighting close to the echo time. (B) 1st order phase coefficients in readout (kx, red line)
and phase direction (ky, green line). The nominal k-space evolution is plotted for comparison
(black and black-dotted line): The only apparent difference is the reduced kmax of the mea-
sured compared to the prescribed kx. (C) 2nd order phase coefficients: maximum phase in
a spherical acquisition volume of 20 cm diameter. The concomitant field in k6 ∝ 2z2 −
(x2 + y2) exhibits the strongest deviation to the spatial non-linearity of the phase evolution.
sampling interval in frequency encoding direction (Fig. 4, zoomed
panels).

In turn, the distribution of these actual sampling points determines
the realized acquisition density dacq, whose resemblance to a Gaussian

image of Fig.�2
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Fig. 4.Measured2D sampling scheme and k-space acquisition densities of thematched-filter EPI trajectory. (A) 2Dvisualization of themeasured (red) andnominal (black) trajectory. Dots
indicate every 10th k-space sample. The general shapes of the nominal and measured trajectory, including the more densely sampled k-space center, coincide. However, the individual
position of samples as well as the EPI turns differ between nominal andmeasured trajectory (zoomed insets). (B) k-space acquisition density calculated from themeasured 2D trajectory.
The shape approximates a Gaussian distribution. (C) Difference between k-space acquisition density of measured and nominal k-space trajectory. While the realized density in k-space
center is slightly lower than prescribed (RMSE 3%), the actual EPI turns provide an increased density in k-space periphery (RMSE 20%).
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is crucial for the expected SNR gains derived in the theory section of this
paper. Visually, the 2D sampling point distribution (Fig. 4) indicates a
density weighting with rotational symmetry whichwas assessed quan-
titatively using a gridding-based estimation of the acquisition density
from the sampling points (Jackson et al., 1991). Indeed, the acquisition
density is Gaussian (Fig. 4B), but, compared to the nominal density, ex-
hibits a slight reduction (root mean square error, RMSE, 3%) in k-space
center, i.e. for |k| b 60% kmax, and considerable overshoot (RMSE 20%) at
its periphery, i.e. the EPI turns (Fig. 4C).

In summary, even though the individual positions of the k-space
samples vary between nominal and actual trajectory, the induced den-
sities exhibit high similarity and render thematched-filter prerequisites
on the expected SNR gains valid.
Monitoring: Image reconstruction

Fig. 5 shows the unsmoothed reconstructed images of the
undersampled, single-shot variable-density EPI acquisition in comparison
to the spin-warp image acquired for coil sensitivity estimation. The
matched-filter EPI (Fig. 5A) exhibits a low level of artifacts and high geo-
metric congruency to the spin-warp image used as anatomical reference
(Fig. 5C). Specifically, the edges of the brain, CSF and gray/white matter
boundaries coincide in the matched-filter EPI and the anatomical refer-
ence (Fig. 5B, edges of spin-warp image overlayed onmatched-filter EPI).

We investigated the particular impact of concurrent field monitoring
on image quality in a series of alternative reconstructions, where we ei-
ther used the nominal trajectory, the fully monitored 1st order trajectory

image of Fig.�4


Fig. 5. Image quality and geometric accuracy of a single-shot matched-filter EPI slice reconstructed with concurrent field monitoring data, SENSE (3) and B0-map based conjugate-phase
correction. (A) Matched-filter EPI reconstruction, virtually artifact-free. (B) Geometric accuracy: An edge contour map of the geometric reference (C) overlaid onto (A). (C) Spin-warp
image used as geometric reference and as 1st TE image for the B0-correction.
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including the global phase k0, or a hybrid reconstruction with measured
global phase, but nominal kx and ky, as input to the gridding-based itera-
tive reconstruction (Fig. 6). The resulting images show the necessity of a
reconstruction utilizing full knowledge about the actual trajectory and
global phase. While this image reconstruction is virtually artifact-free, a
reconstruction on the sole nominal trajectory exhibits both ghosting
and blurring artifacts (Fig. 6B, D, G, I). The reconstruction incorporating
the measured global phase to the nominal trajectory sheds light on the
different artifactmechanisms (Fig. 6C, E, H, J): The ghosting edges parallel
to phase encoding direction ky are greatly reduced for this reconstruction,
hence they mainly stem from a mismatch in k0 during the readout.
However, the blurred, rippled edges along frequency encoding direction
remain and, thus, are presumably related to the gradient impulse
response-induced compression of the matched-filter trajectory along kx.

SFNR analysis

We evaluated local SFNR for each EPI session as a function of signal
strength, which is proportional to the sine of the excitation flip angle
(Fig. 7). First, we captured the statistics of pure thermal noise by mea-
suring a session with 0° excitation flip angle, both in the phantom and
in vivo (Fig. 7, horizontal dashed lines). Before reconstruction, each of
these measured noise instances was added to the coil data of one
fixed scan of the 90° session to evaluate pure thermal noise influence
on SFNR. In this limiting case, the local SFNR gain of matched-filter
compared to uniform EPI reached 45%, in good congruence with the
theoretical expectation of 41%.

Secondly, in the phantom, the SFNR increased with signal level for
both, matched-filter and uniform EPI, but with a steeper slope for
matched-filter EPI, thus preserving an SFNR advantage compared to
uniform EPI. However, the observed SFNR gain decreased for higher
signal level (Fig. 7A, blue-shaded area). This indicates MR signal fluctu-
ations in addition to thermal noise, which could occur at any stage of the
excitation, encoding and reception process. Nevertheless, even for the
Fig. 6. Image reconstructions of matched-filter EPIs using nominal and concurrently monitored
with the concurrentlymonitored k0-phase and linear k-space trajectory. (B, G) Reconstruction w
tory, but incorporating themeasured k0-phase.(D) Difference image of (B) and (A): Themismatc
well as strong intensitymodulations. Artifact levels reach up to±20 % voxel intensity. (E) Differ
nominal trajectory greatly reduces intensity modulations, but does not fully eliminate image ar
tual trajectory creates prominent SENSE-ghosting in phase encoding direction as well as Gibbs
±20 % voxel intensity. (J) Difference image of (H) and (F). Correcting for the measured k0-ph
SENSE-ghosting, while the edge-ringing and blurring artifacts remain unaltered.
practically relevant case of high signal level, the SFNR gain in the
phantom remained well above 30% for matched-filter compared to
uniform EPI.

Finally, for the in vivomeasurements, we found regional differences
in the SFNR dependence on signal level, most likely due to varying
contributions of physiological noise in the areas considered: For white
matter ROIs, the SFNR curves resembled those in the phantom, but
exhibiting a lower minimal SFNR gain at high signal levels of about
20% for matched-filter compared to uniform EPI (Fig. 7B). In areas
containing cerebro-spinalfluid (CSF), on the other hand, SFNR increased
at low, but decreased at high signal level, presumably due to the strong
pulsatile physiological noise (Fig. 7D; Krüger andGlover, 2001). Howev-
er, we could still observe a relative gain in SFNR of about 15% for
matched-filter compared to uniform EPI. For fMRI-relevant gray matter
ROIs, an SFNR gain of up to 20% was found at high signal levels. The
individual matched and uniform SFNR curves resembled those in
white matter qualitatively, while the SFNR ratio exhibited decay with
flip angle as in CSF, presumably reflecting the intermediate contribution
of physiological noise in gray matter regions compared to white matter
and CSF (Fig. 7C).

fMRI analysis: t-maps and total least squares

In the individual SPM analysis of each acquired session, all contrast
maps showed the expected activations patterns, representing the
quarter-fields in the visual cortex by contrasting the two stimulation
blocks either as ULLR–URLL (contrast 1, Fig. 8, red voxels) or URLL–
ULLR (contrast 2, Fig. 8, green voxels). The activation patterns are visu-
alized as overlays on an EPI scan of the corresponding session and show
nice alignment with gray matter structures in the individual subject.
Comparing the t-maps in terms of peak t-values and cluster sizes of
significant voxels, the sessions with matched-filter acquisitions
outperformed uniform EPI acquisitions consistently within subjects
(across sessions) and between subjects (Fig. 8, Table 2). In particular,
field evolutions. (A–E) Uniform EPI, (F–J) Matched-filter EPI. (A, F) Coil data reconstructed
ith nominal k-space trajectory. (C, H) Hybrid reconstruction with nominal k-space trajec-
h to the actual trajectory creates prominent SENSE-ghosting inphase encodingdirection as
ence image of (C) and (A). Correcting for themeasured k0-phase, but reconstructing on the
tifacts due to SENSE-ghosting.(I) Difference image of (G) and (F): The mismatch to the ac-
-like ringing artifacts close to tissue edges in readout direction. Artifact levels reach up to
ase, but reconstructing on the nominal trajectory greatly reduces image artifacts due to
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Fig. 7.Dependence of matched-filter signal-to-fluctuation-noise-ratio (SFNR) advantage on signal level (sine of excitation flip-angle). (A) In vivo resting-state SFNRmaps for uniform EPI scans
after smoothing. For low signal levels (5°–25 °), the SFNR distribution is governed by the SENSE geometry factor and mean signal level. For medium and high signal levels (50°–90°), the
contrast is increasingly dominated by physiological noise prevalence. (B) In vivo resting-state SFNR maps for matched-filer EPI scans after smoothing. For all signal levels, SFNR is increased
compared to the uniform EPI SFNR maps in (A). The delineation of regions with different physiological noise prevalence is even more pronounced than in uniform EPI (cf. white matter in
90° SFNR map). (C) Phantom data: Approximately linear SFNR increase for uniform and matched-filter EPI (black curves; standard error of the mean smaller than dot size). The ratio of
SFNR (blue shade) between matched-filter and uniform EPI drops below the SFNR gain bound determined by pure thermal noise (dotted horizontal line) for high signal levels. (D) In vivo
resting-state SFNR for a brain region containing white matter. The SFNR dependence on signal level resembles the phantom data in (C). (E) In vivo resting-state SFNR for a gray matter
brain region. Compared to white matter (D), the SFNR gains for high signal levels become more variable. (F) In vivo resting-state SFNR for a brain region containing cerebro-spinal
fluid (CSF): Contrary to white and gray matter, SFNR drops in CSF for high signal levels. Still, a considerable SFNR gain advantage of matched-filter compared to uniform EPI acquisition
remains.
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for both the first and second repetition (effect of session) of each acqui-
sition in all subjects, matched-filter EPI provided superior activation
patterns (according to the aforementioned criteria) than uniform EPI,
whereas the activation patterns within an acquisition modality resem-
bled each other in the 1st and 2nd repetition.

For a more quantitative and comprehensive view on this improved
BOLD contrast sensitivity, especially its robustness and test/retest
reliability, we generated a scatter plot depicting each individual voxel
of a subject (Fig. 9). The t-value change in the session of interest was
plotted against the original t-value of the corresponding voxel in the
reference session. Significant voxels were colored with the colors of
the corresponding contrasts. As contrast 2 was just the negative of
contrast 1, the voxels with highly negative t-values for contrast 1 (t b
−4.73, corresponding to a peak level family-wise error correction at
p = 0.05) were significant voxels in contrast 2.

This data representation was evaluated using a total least squares
(TLS) estimation of the mean slope Δt/t, which indicates the relative
increase in contrast (and therefore BOLD) sensitivity for the session of
interest compared to the reference session, averaged over all voxels sig-
nificant in both sessions (Table 3). TLS is an extension of ordinary least
squares regression for cases where both dependent and independent
variables contain observation noise, as in our case.

At the single-subject level, performing TLS between matched-filter
and uniform EPI sessions assessed the average effect of the acquisition
scheme on BOLD sensitivity (Fig. 9A, B), while TLS between session 1
and 2 of the same acquisition scheme (uniform or matched) provided
ameasure of test–retest reliability (Fig. 9C, D), with a horizontal line in-
dicating identical replication. For example, in the most consistent data
set (subject 4, Fig. 9A–D), the TLS analyses comparingmatched and uni-
form acquisition yielded a positive slope indicating a t-value increase of
35% ± 2% (95% confidence limits using bootstrapping) in session 1
(Fig. 9A) and 41% ± 2% in session 2 (Fig. 9B). At the same time, the
TLS analyses comparing sessions 1 and 2 found high test–retest reliabil-
ity within each acquisition scheme, with session differences of only
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EPI, 2nd session.
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2% ± 1% and 7% ± 2% for the matched-filter and uniform acquisition,
respectively (Fig. 9C, D).

The average effect of the acquisition scheme on BOLD sensitivitywas
consistently found in all other subjects as well: TLS yielded exclusively
positive slopes when comparing matched to uniform sessions
(Table 3), with the average t-value gain ranging from 14% to 146%.
The magnitude of this t-value gain typically corresponded to the
increase in cluster extent and/or peak t-value of significant voxels
(Table 2). However, two subjects (1 and 3) exhibited poor test–retest
reliability in TLS analyses between sessions 1 and 2within each acquisi-
tion scheme, presumably due to bulk motion and subsequent voxel
mis-registration, that might explain the unexpectedly high sensitivity
gains of 83% ± 3% and 146% ± 19%. Nevertheless, even for these sub-
jects, matched-filter acquisition consistently showed higher peak level



Table 2
Peak-statistic and voxel count per subject for significant activation after peak level family-
wise error correction (p = 0.05 FWE) in both relevant functional contrasts. The sessions
matched 1 and uniform 1 were measured back to back, followed by uniform 2 and
matched 2. The order of matched and uniform acquisition was counter-balanced between
subjects and independently for first and second repetition. (Left) Contrast 1: Upper left
lower right (ULLR)–Upper right lower left (URLL) checkerboard wedges. (Right) Contrast
2: URLL–ULLR.

Subject Peak t-value and number of activated voxels (contrast 1)

Uniform 1 Uniform 2 Matched 1 Matched 2
1 17.7 11.8 16.6 11.7
2 21.2 19.7 22.7 19.7
3 11.8 17.1 20.7 29.5
4 23.0 22.0 29.5 29.1

Subject Peak t-value and number of activated voxels (contrast 2)

Uniform 1 Uniform 2 Matched 1 Matched 2
1 18.2 10.2 22.8 21.6
2 19.7 20.1 22.6 24.6
3 11.9 15.6 21.0 19.8
4 20.0 18.1 27.2 23.9

B
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Change in t-value

E

Fig. 9.Whole-brain summary of BOLD sensitivity gains and reproducibility for matched-
filter compared to uniform EPI acquisition. Scatter plots depict all significant voxels, plot-
ting the t-value change in a session of interest compared to a reference session against the
t-value in that reference session. Significant voxels for contrasts 1 and 2 are colored in red
and green, respectively. A total least squares (TLS) fit summarizes the t-value change over
all voxels. (A–D) Single-subject (no. 4) scatter plots and TLS fits. Effect of acquisition
scheme (matched vs. uniform): (A) session 1; (B) session 2. Strength of reproducibility
(session 2 vs. session 1): (C) uniform EPI; (D) matched-filter EPI. (E) Group level scatter
plot and TLS fit pooling significant voxels of all subjects and sessions, comparing matched
to uniform acquisition (pairing matched 1 to uniform 1 and matched 2 to uniform 2).
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and/or larger cluster extents compared to the uniform session
measured back-to-back, i.e. matched 1 vs. uniform 1 and matched 2
vs. uniform 2 (Table 2).

At the group level, a pooled TLS analysis comprising all significant
voxels of all subjects and sessions yielded an average t-value gain of
37% for matched-filter compared to uniform EPI acquisitions of corre-
sponding sessions (Fig. 9E). This main effect of acquisition scheme
was also significant in a two-way (acquisition by session) repeated
measures analysis of variance (ANOVA) of the TLS slopes (Table 3) nor-
malized to uniform session 1 (F(1, 3) = 14.0, p b 0.05). No main effect
of session or interaction between acquisition and session could be
found (F(1, 3) = 0.37, p N 0.58; F(1,3) = 0.46, p N 0.54). Due to the
small number of measurements, we also performed a non-parametric
test on the TLS slopes that confirmed the main effect of acquisition,
with matched N uniform directionality (Mann–Whitney U = 58, n1 =
n2 = 8, p b 0.005 one-tailed; implementation: http://vassarstats.net).

Discussion and conclusion

The results presented have shown the feasibility of a matched-filter
acquisition for fMRI in four stages: First, we verified that a single-shot
EPI trajectory with Gaussian acquisition density and typical resolution
and readout duration can be accomplished within the limits of a com-
mercial MR gradient system. The concurrent field monitoring results
confirmed that the experimentally realized acquisition density was in-
deed Gaussian, as is optimal for the Gaussian filter post-processing,
with a root mean squared error (compared to the prescribed Gaussian
density) of 3% in k-space center and 20% at the EPI turns.

Secondly, virtually artifact-free image reconstructions could be
retrieved from these matched-filter k-space trajectories. To this
end, it was crucial to perform image reconstructions using both static
B0-field correction as well as concurrent dynamic field monitoring
for highest image quality. Concurrent field monitoring proved to be
a robust and reliable method for correcting eddy-current and gradi-
ent imperfections. In this study, effects on 0th and 1st order phase
coefficients entered our image reconstruction (although extensions
to incorporate concurrently monitored higher-order phase informa-
tion exist; Wilm et al., 2011, 2012). Alternatively, reproducible
deviations from the nominal k-space trajectory could be corrected
using a calibration-based image reconstruction method (Graedel
et al., 2013) that relies on the characterization of the gradient im-
pulse response function in an independent, field monitoring-based
experiment (Vannesjo et al., 2013a,b).

Thirdly, we have seen that the experimentally obtained SFNR
improvements in the phantom and in vivo match the theoretically
derived SFNR gains of 40% very well in the regime of thermal noise.
Furthermore, even in the regime of high signal-induced noise contribu-
tions, a substantial SFNR increase of about 20% could be retained.
Last, and most importantly, these SFNR increases translated into
improved sensitivity for task-based fMRI contrasts, as demonstrated

http://vassarstats.net


Table 3
BOLD sensitivity increase in task-based fMRI using matched-filter acquisition. The mean t-value increase (including 95% confidence limits determined by bootstrapping) is reported, as
computed by the TLS analysis for the relevant contrasts, comparing all pairs of sessions (columns) for all subjects (rows). A graphical representation of the corresponding data is
depicted in Fig. 9, in particular all four pair-wise session comparisons of subject 4 (Fig. 9A–D).

Subject Mean percent t-value change and 95% confidence limits

Session 1
matched vs. uniform

Session 2
matched vs. uniform

Uniform
session 2 vs. session 1

Matched
session 2 vs. session 1

1 39.7 (7.4) 145.6 (18.9) −46.2 (2.1) −21.5 (3.0)
2 23.7 (1.3) 14.7 (1.5) 11.9 (1.3) 2.2 (1.6)
3 83.1 (2.4) 42.7 (4.2) 80.3 (4.4) 30.4 (4.4)
4 34.8 (1.3) 41.2 (1.4) −6.3 (1.1) −1.5 (1.0)
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by a comparison of voxel-wise t-statistics under matched-filter and
uniform EPI acquisition. A total least squares analysis for t-values of
corresponding voxels confirmed that t-statistics of significant voxels
were replicably higher for matched-filter fMRI by 20–40%. On top of
that, again using TLS, we confirmed that inmost subjects this difference
was considerably higher than the within-modality t-value fluctuations
of matched-filter and uniform EPI acquisition sessions, though the
small number of subjects precludes a generalization of these prelimi-
nary findings.

In summary, it is remarkable that despite the multiple potential
image artifact mechanisms and limited scope of our theoretical noise
considerations, a considerable portion of the theoretical SNR advantage
of matched-filter fMRI could be preserved through these four stages.
Still, the quantitative progression of the realized SFNR gains within
and through these stages deserves further discussion here, most prom-
inently (1) the decrease of the in vivo SFNR gain from 40% to 20% for
high signal levels, and (2) the subsequent rise of contrast-to-noise
ratio (CNR) advantage in task-based fMRI to 20–40% compared to the
aforementioned 20% SFNR increase in resting-state. Both observations
arise from the intricate noise situation for in vivo time series, which vi-
olates the white Gaussian noise assumption exploited in our theoretical
treatment of matched-filter acquisitions. These deviations from a flat
noise spectrum are induced by fluctuations in the measured MR signal
and can be categorized into two classes: system-dependent and
object-dependent fluctuations.

Typically, object-dependent fluctuations are the dominant non-
white noise source in MRI, particularly at high main field strength
(Krüger and Glover, 2001; Triantafyllou et al., 2006). They arise from
the measured physiological systems themselves, which frequently
exhibit a tendency towards low frequency noise, i.e. a “pink” noise spec-
trum, e.g. through breathing and cardiac pulsation (Birn et al., 2008;
Chang et al., 2009; Dagli et al., 1999; Glover et al., 2000; Shmueli et al.,
2007). System-dependent MR signal fluctuations, on the other hand,
were particularly small in our measurements, since the concurrent
field-monitoring approach corrected for instabilities in the encoding
main and gradient fields, as well as any clock jitter of the spectrometer.
Still, non-white noise components might have been introduced in the
transmission and reception chain of the system, i.e. the excitation B1

field and receiver gain, respectively.
A general quantification of these system- and object-dependent

noise spectra is challenging, butmay in principle serve two applications.
Firstly, the prediction of in vivomatched-filter SFNR gains could become
more accurate when deduced from a pink noise spectrum. Specifically,
the upper bound on SFNR gain computed in the theory section for
white noise would become tighter, because acquisition weighting un-
folds its full strength if noise adds up incoherently, i.e. for white noise.
In principle, these pink noise assumptions could then predict the
aforementioned deviation between low and high signal level SFNR
gain in our resting-state experiments.

Secondly, one could envisage a pink noise spectrum dictating dif-
ferent acquisition strategies to achieve the maximum SFNR gain.
However, pink noise shares spectral characteristics with the BOLD
signal of interest, thus accruing with similar coherence over time.
Consequently, both pink noise and BOLD signal might be suppressed
by an acquisition matched in this way, causing information loss. For
pink noise, it therefore seems preferable to rely not only on noise
statistics, but rather the exact knowledge of the occurring noise
instances. Actual instances of physiological noise, for example, can
be readily modeled from peripheral measures, such as ECG and
breathing belts, and used as confound regressors to de-noise voxel
time series, e.g. using RETROICOR (Glover et al., 2000; Hutton et al.,
2011; Kasper et al., 2009). The second quantitative deviation in our
experiments (up to 40% CNR increase for task-based fMRI compared
to only 20% SFNR increase in “resting-state” fMRI) may be under-
stood as a special case of this pink noise correction: While spontane-
ous BOLD fluctuations in resting-state were considered “noise”, thus
lowering the SFNR, the contrast-related BOLD responses in signifi-
cant voxels were identified as signal of interest and therefore did
not contribute to the residual error, i.e. noise amplitude, for the
task-based fMRI sessions. Consequently, also resting-state connec-
tivity analysis (Biswal et al., 1995), in contrast to pure SFNR mea-
surements, should benefit from matched-filter acquisition on the
same order as task-based fMRI, because correlations in (BOLD) signal
fluctuations become a signal of interest here. Hence, the confounding
noise in correlation detection has a noise spectrum more similar to
white noise and the matched-filter theory assumptions.

In this work, we exemplified the principle of matched-filter acquisi-
tion, showing how a variable density 2D EPI readout can be used in fMRI
to achieve SNR optimality for a Gaussian target PSF. The general frame-
work of matched-filter acquisition, however, is not restricted to any of
the four design decisions made here; neither the EPI readout, nor the
Gaussian target PSF, not the fMRI application and not even the criterion
of SNR optimality. In the following, we will conclude with an outlook to
possible extensions of matched-filter acquisitions regarding these four
aspects, in order of increasing generality:

Choosing a 2D EPI trajectory to implement a variable density acqui-
sition was motivated by demonstrating the matched-filter principle for
the currently most robust and commonly used readout in fMRI. Howev-
er, as shown in Eq. (10), the SFNR gain scales with the square root of
covered k-space volume, which promises an even greater advantage
for 3D matched-filter acquisitions, such as concentric shell trajectories
(Zahneisen et al., 2012) or the 3D EPIs recently adopted for fMRI (Lutti
et al., 2013; Poser et al., 2010). More generally, the choice of the EPI tra-
jectory itself for a Gaussian smoothing kernel is suboptimal. Inevitably,
the EPI turns at traverse ends waste acquisition time in the de-
emphasized high-frequency regime of the target PSF. Spiral readouts
(Ahn et al., 1986; Glover and Lai, 1998) might be natural alternatives
to implement a Gaussian acquisition density, since they are rotationally
symmetric, and have been successfully utilized for variable density ac-
quisitions before (Chang and Glover, 2011). Moreover, they feature
only a few sharp turns in the k-space center, thus allowing for more
efficiency in realizing the prescribed acquisition density. However,
their sensitivity to static B0 inhomogeneity poses a considerable
challenge (Börnert et al., 1999).

The next design consideration refers to the selection of a Gaussian
target PSF itself: While smoothing with a Gaussian kernel is prevalent,
other filters for image post-processing in fMRI applications have been
proposed, such as prolate spheroidal functions or wavelets (Lindquist
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andWager, 2008; Van De Ville et al., 2006; Yang et al., 2002). The ratio-
nale for matched-filter acquisition holds unaltered for any target PSF, as
do the global SNR gains derived in Eq. (10), as long as the target PSF is
shift-invariant. For more specialized applications, e.g. cortical surface
mapping or adaptive smoothing (Andrade et al., 2001; Harrison et al.,
2008; Tabelow et al., 2006), taking into account regional anatomical
variability for kernel adaptation, a matched-filter acquisition strategy
will achieve SNR optimality for one pre-selected kernel, i.e. only locally
in the image.

Beyond fMRI, fast single-shot readouts using matched-filter ac-
quisitions may have applications in other notoriously low-SNR mea-
surements such as echo-planar spectroscopic imaging (EPSI),
diffusion- or perfusion-weighted imaging. Here, other target PSFs,
such as Hamming filters for ringing suppression, might be desirable
(Greiser et al., 2005; Kasper et al., 2012; Stobbe and Beaulieu,
2008). However, enforcing density weighting via gradient modula-
tion for an arbitrary target PSF requires amore general method to de-
sign the gradient waveform than the one presented here for the
Gaussian PSF. To this end, a promising algorithm for time-optimal
gradient waveform design was presented by (Lustig et al., 2008),
which could be extended to allow for variable k-space densities
through arc-length parameterized gradient limits along the trajecto-
ry, hence implementing Eq. (11).

One limitation of our approach to achieve acquisition density
weighting with a variable velocity in k-space is the requirement of suf-
ficient flexibility for gradient modulation. Therefore, readouts that re-
quire maximum gradient amplitude or slew rate at all times cannot be
augmented by a matched-filter acquisition. Objectives like robustness
to T⁎2 and off-resonance effects, ultra-high spatial resolution or large
slice coverage demand these maximally fast readouts. Alternatively, in
these cases, a partial matched-filter acquisition weighting can be
achieved in phase encoding direction by varying phase blip gradient
moments, i.e. spacing of k-space traverses (Kasper et al., 2010; Zeller
et al., 2013). Such variable spacing of k-space lines typically violates
Nyquist sampling and thus necessitates parallel imaging or additional
k-space traverses at the expense of lower acquisition efficiency (due
to additional traverse turns). Inherently, it can only achieve filter-
matching in phase encoding direction, limiting the expected SNR in-
crease to the square root of the 2D matched-filter acquisition through
velocity variation as presented here. Moreover, recent advances in
gradient performance that allow for maximum gradient strengths of
100–300 mT/m and slew rates above 200 T/m/s (Kimmlingen et al.,
2012; Van Essen et al., 2012), might lift current constraints on
velocity-modulated matched-filter acquisition in the near future to
open up its versatility and application range even further.

On a final, conceptual note, SNR optimality is only one, albeit im-
portant, criterion for coordinating acquisition and reconstruction to
shape signal and noise behavior. According to our Eq. (3), acquisition
weighting can be recruited to design any noise variance landscape in
k-space for a given target PSF, as the final noise variance in k-space is
simply the ratio of the squared target PSF and acquisition density at
each k-space position. For example, setting the acquisition density
to a multiple of the squared target PSF, the dependence on k between
numerator and denominator in Eq. (3) cancels out. Hence, the final
noise variance in k-space is constant, i.e. flat, and, by the Fourier
autocorrelation theorem, the noise variances in image space are un-
correlated. Taken together, this means that we can achieve voxel-
wise noise decorrelation in an MR image by making the acquisition
density proportional to the square of the target PSF. In this way, ac-
quisition density matching could broaden its scope to areas where
the delineation of unique signal contributions per voxel is crucial,
such as high-resolution, layer-specific fMRI (Goense et al., 2012;
Koopmans et al., 2010) and multivariate statistical analyses of fMRI
data (Haynes and Rees, 2006), or applications that rely on voxel cor-
relation measures, e.g. “resting-state” functional connectivity
(Biswal et al., 1995; Buckner et al., 2013; Cole et al., 2010).
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Appendix A

We calculate the expected SNR gain for a Gaussian smoothing kernel
with a FWHM defining a k-space target density:

dtarget kð Þ ¼ C � exp −k2σ2
r

2

 !
for kj j≤kmax

0 otherwise

8><>: ðA:1Þ

with kmax ¼ π
Δx and σ r ¼ FWHM=

ffiffiffiffiffiffiffiffiffiffiffiffi
8 ln2

p
and C = const., such that

∫
Vk

dtarget kð Þdk ¼ 1.

As theGaussian kernel is separable, we can calculate the SNR gain for
each acquisition dimension individually utilizing Eq. (10), where Vk =
2 ∙kmax, and yield, for a d-dimensional scan:

SNRmatched

SNRuni
¼ 2 � kmax �

Zkmax

−kmax

d2target kð Þ dk

0B@
1CA

d
2

: ðA:2Þ

The integral on the right-hand side can be expressed using the error
function erf xð Þ ¼ 1ffiffi

π
p ∫

x

−x
e−k2dk via variable substitution k→ kσr yielding

SNRmatched

SNRuni
¼ 2 � kmax � C �

ffiffiffi
π

p � erf kmaxσ rð Þ
σ r

� �d
2

: ðA:3Þ

Because of ∫
kmax

−kmax

dtarget kð Þ dk ¼ 1, C itself can be expressed via the

error function as C−1 ¼
ffiffiffiffiffi
2π

p
�erf kmaxσ r=

ffiffi
2

pð Þ
σ r

to arrive at the final expression
for the SNR gain using a matched-filter compared to a uniform
acquisition:

SNRmatched

SNRuni
¼ 2 � kmax �

σ rffiffiffiffiffiffi
2π

p
� erf kmaxσ r=

ffiffiffi
2

p� � � ffiffiffi
π

p � erf kmaxσ rð Þ
σ r

0@ 1Ad
2

¼
ffiffiffi
2

p
� kmax �

erf kmaxσ rð Þ
erf kmaxσ r=

ffiffiffi
2

p� �
0@ 1Ad

2

:

ðA:4Þ

Appendix B

Wederive the readout gradient time courseG(t) realizing a Gaussian
acquisition density dacq(k) on a k-space traverse from−kmax to kmax as
follows: By inserting theGaussian target density of Eq. (A.1) into the dif-
ferential Eq. (11), we first yield a concrete differential equation for the
one-dimensional readout trajectory time course k(t):=kx(t):

jk̇j ¼ 1
dacq kð Þ ¼

eC � exp þ k2σ2
r

2

 !
ðB:1Þ

where tilded C refers to a constant of no interest.
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As k should increase monotonously during a traverse, k̇ ≥ 0 and we
can neglect the absolute value in Eq. (B.1). Following a logarithmic
transform and differentiation, Eq. (B.1) appears in the normal form of
a second order non-linear ordinary differential equation

ln k−σ 2
r

2
k2 ¼ eeC ⇒

d
dt k

::

k̇
−σ 2

r kk̇¼ 0 ⇒k
::
−σ 2

r k̇
2 � k ¼ 0: ðB:2Þ

The general solution for this differential equation reads

k tð Þ ¼
ffiffiffi
2

p

σ r
� erf−1

ffiffiffi
2
π

r
c1σ r t þ c2ð Þ

 !
ðB:3Þ

with erf−1 being the inverse error function and c1,2 constants to be
determined via side conditions.

The side conditions arise as the interval −kmax to kmax has to be
covered within a traverse duration Ttraverse, i.e.

k 0ð Þ ¼ −kmax⇒−
ffiffiffi
π
2

r
� 1
σ r

� erf σ rkmaxffiffiffi
2

p
� �

¼ c1c2 ðB:4Þ

k T traverseð Þ ¼ kmax⇒

ffiffiffi
π
2

r
� 1
σ r

� erf σ rkmaxffiffiffi
2

p
� �

¼ c1 T traverse þ c2ð Þ: ðB:5Þ

Dividing Eq. (B.5) through Eq. (B.4) and back-substitution into
Eq. (B.4) provides the values for c1,2 as

−1 ¼ T traverse þ c2
c2

⇒ c2 ¼ − T traverse

2
ðB:6Þ

c1 ¼
ffiffiffiffiffiffi
2π

p

T traverseσ r
� erf σ rkmaxffiffiffi

2
p

� �
: ðB:7Þ

From that, we yield the final form for the k-space trajectory evolution
as

k tð Þ ¼
ffiffiffi
2

p

σ r
� erf−1 erf

σ rkmaxffiffiffi
2

p
� �

� 2
t

T traverse
−1

� �� �
: ðB:8Þ

Taking the temporal derivative of Eq. (B.8), we yield the gradient
waveform as specified in Eq. (12):

G tð Þ ¼ k̇ tð Þ
γ

¼
ffiffiffiffiffiffi
2π

p
� erf σ rkmaxffiffi

2
p

� �
γT traverseσ r|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C1

exp erf−1 erf
σ rkmaxffiffiffi

2
p

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

C2

� 2
t
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