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Abstract. This paper shows how a planning as inference framework
with discrete latent states can be used to implement homeostatic control
by providing an agent with multivariate autonomic set points as goals.
Before receiving these goals the agent navigates according to the ‘Prior
Dynamics’ which embody a cognitive map of the environment. Given the
goals, optimal value functions are implicitly computed using a forward
and backward message passing algorithm, which is then used to construct
the ‘Posterior Dynamics’. We propose that this formalism provides a
useful description of computations in the mammalian Hippocampus.
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1 Introduction

In previous work we have shown how an autonomous agent can be specified us-
ing a Hidden Markov Model, and that probabilistic inference in that model can
be used to instantiate the operations of localisation and planning [12]. Impor-
tantly, both of these operations rely on the same underlying algorithm; belief
propagation using forward and backward message passing. The only difference
is that sensory inputs are upregulated during localisation whereas goal inputs
are upregulated during planning.

The operations of localisation and planning are naturally addressed together
as both require access to the same underlying environmental model or ‘cognitive
map’. Our inference approach naturally allows uncertainty from localisation to
be incorporated into planning. Moreover, localisation and planning are both
thought to engage the hippocampus [11,7,14].

Our overall approach conforms to a ‘planning as inference’ perspective in
which sequential decision making problems that have previously been the domain
of Reinforcement Learning (RL) and dynamic programming, have been recast
as problems of statistical inference [1]. More specifically, our HMM agent uses a
cognitive map of its environment and its decisions are based on this model. This
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is to be contrasted with the state-action mappings that are learnt in RL. The
two approaches to decision making may more generally be referred to as model-
based and model-free control [13] and are thought to have different neuronal
substrates [4].

One interesting recent development in RL has been the replacement of scalar
reward signals with homeostatic goals [9]. This incorporates the simple notion
that an agent’s behavioral objective is dependent on its current autonomic state.
Thus, food rewards are more important when an agent is hungry. In this paper
we show how the HMM framework can be used to implement homeostatic control
[3] by providing an agent with multivariate autonomic set points, rather than
binary goals. Our overall approach thus provides a mechanism for model-based
homeostatic control.

Fig. 1. The agent’s generative model. This corresponds to an HMM with two sets of
observations; goals, gn, and sensory inputs, sn.

2 Methods

We consider a dynamical system evolving over time points n = 1..N with dis-
crete latent states xn, goals gn and sensory states sn. The overall generative
model is shown in Figure 1 and is fully specified via the definition of three prob-
ability distributions (i) the state transition density p(xn+1|xn), (ii) the sensory
observation density p(sn|xn) and (iii) the goal observation density p(gn|xn).

Inference is implemented in two separate phases (i) planning and (ii) locali-
sation. In the planning phase, goals are provided and the posterior distribution
over latent states is computed. At this time sensory states are either not provided
or their influence on planning is eliminated, for example, by reducing sensory
precision.

In the localisation phase, sensory observations are provided and the posterior
distribution over latent states is computed. In this phase goals are either not
provided or their influence on localisation is eliminated, for example, by reducing
goal precision. This paper focusses on planning, as localisation has been dealt
with in a previous publication [12].
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In what follows each of the k = 1..K discrete latent states is associated with a
location in a 2D environment, lk, and N(x;µ,Σ) denotes a multivariate Gaussian
distribution over x with mean µ and covariance Σ.

2.1 Prior Dynamics

In the planning phase the agent is given information about task goals. Prior to
observing these goals the hidden states evolve according to Markovian dynamics

p(xn+1 = i|xn = j) = Aij (1)

where A is a K × K state transition matrix. Although high-dimensional this
matrix is sparse, reflecting the spatial structure of an environment and allowed
transitions within it, as shown in Figure 2. We refer to the above equation as
describing the ‘Prior Dynamics’.

Fig. 2. Left Panel: The environment contains K = 15× 15 = 225 discrete states, with
black squares denoting forbidden locations. At each time step agents may move to
cardinal neighbours or remain in the same position but cannot transit across edges of
the domain (eg top to bottom). Right Panel: The prior dynamices are embodied in
a state transition matrix A of dimension 225 × 225 having a highly sparse structure
reflecting the allowed transitions in an environment.

2.2 Probabilistic Goals

The probability of observing goal gn given state xn is given by the density
p(gn|xn). This formulation has many interesting properties. First, goals are in-
herently probabilistic; one specifies the likelihood of obtaining a goal at a given
location. The simplest instantiation of this is the case of binary goals

p(gn|xn = k) = rk (2)

where rk denotes the probability of reward at location k.
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More interestingly, the goal signal gn can be multivariate, allowing an agent
to have multiple simultaneous goals. Here, the observed goal signal can be used to
specify set points and thereby implement a system for instantiating homeostatic
control. For example, if we have

p(gn|xn = k, a) = N(gn; a+ ak, C) (3)

where gn is the homeostatic set point (the multivariate goal), C encodes the
allowed (co-)variance around that set point, a is the agent’s autonomic state,
and ak denotes the change in autonomic state (per unit time) that will accrue
from visiting state k.

If the autonomic variables (eg. body water, glucose, temperature) have their
own dynamics, the posterior dynamics, q, (see below) will need to be recomputed
to account for this. The posterior dynamics could be updated at satiety, at
every time point, or according to some other regime. In this paper, we choose
to update them periodically, after a fixed number of time points. We consider
linear autonomic dynamics

an = Ban−1 + ak (4)

where B encodes the relevant time scales and ak is the change accrued from
visiting state k. This dynamical process is external to the HMM agent (loosely
speaking, it is instantiated in the agent’s body).

2.3 Posterior Dynamics

We now consider an agent being in receipt of a goal signal g. In order to specify
to the agent that this goal is to be reached within a ‘time horizon’ of N steps we
set the sequence of observation variables gn = g for n = 1..N . We denote this
sequence as GN = {g1, g2, ..., gN}.

The dynamics of the agent after receiving the goal signal, or the ‘Posterior
Dynamics’, are defined as

qij ≡ p(xn+1 = i|xn = j, a,GN ) (5)

=
p(xn+1 = i|xn = j)p(xn = j|a,GN )∑K

i′=1
p(xn+1 = i′|xn = j)p(xn = j|a,GN )

Note also the dependence on the autonomic state, a. In this paper we set a to the
autonomic state observed just prior to computing the posterior dynamics (but
see Discussion). An agent following the posterior dynamics implements goal-
directed navigation, whilst one following the prior dynamics merely obeys the
physics of a given environment, and its motion within it.

2.4 State Posterior

The posterior dynamics constitute a reweighting of the prior dynamics by the
density p(xn = j|a,GN ). This density can be computed using standard inference
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algorithms such as the alpha-beta recursions [2]. This requires a forward sweep
to compute

α(xn) = p(gn|xn, a)
∑
xn−1

p(xn|xn−1)α(xn−1) (6)

with α(x1 = k) = p(x1 = k)p(g1|x1 = k, a), and a backward sweep to compute

β(xn) =
∑
xn+1

p(gn+1|xn+1, a)p(xn+1|xn)β(xn+1) (7)

with β(xN = k) = 1. We then have

p(xn = j|a,GN ) =
α(xn = j)β(xn = j)∑
k α(xn = k)β(xn = k)

(8)

To avoid numerical underflow [2] we scale the forward and backward messages
by

∑
k α(xn = k). The forward ‘alpha’ recursions embody the prior distribu-

tion and provide a normalisation factor for the backward ‘beta’ recursions. It
is also worth noting that both the alpha and beta recursions implicitly make
use of prediction errors, as the Gaussian goal densities take on higher values
with smaller prediction errors between the set point and predicted autonomic
state. In equations 6 to 9, n is a virtual time index that organises the planning
computations. We hypothesise that these are instantiated within a hippocampal
ripple (see Discussion).

2.5 Trajectories

A known state at time n is equivalent to a probability distribution p(xn) with
unit mass at xn = k and zero elsewhere. A probabilistic planning trajectory can
then be found by integrating the posterior dynamics from this initial distribution.
The probability mass at time point n+ 1 is

p(xn+1 = i) =

K∑
k=1

q(xn+1 = i|xn = k)p(xn = k) (9)

The state density at subsequent time points can be computed as

p(xn+m = i) =

K∑
k=1

q(xn+m = i|xn+m−1 = k)p(xn+m−1) (10)

or in matrix form as

p(xn+m+1) = Qmp(xn+1) (11)

Iteration of this equation produces ‘goal-directed flows’ and individual paths to
goal are produced by sampling from these flows.
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2.6 KL Control

The state posterior can alternately be expressed as

p(xn = j|a,GN ) =
p(GN |xn = j, a)p(xn = j)∑K

j′=1 p(GN |xn = j′, a)p(xn = j′)
(12)

Given a uniform prior p(xn = j) the equation for the Posterior Dynamics reduces
to

qij =
p(xn+1 = i|xn = j)p(GN |xn = j, a)∑K

i′=1
p(xn+1 = i′|xn = j)p(GN |xn = j, a)

(13)

Equation 13 corresponds to the ‘Active Dynamics’ of KL control, and log p(GN |xn =
j, a) to the ‘Optimal Value’ function [16]. The ‘Passive Dynamics’ of KL control
then correspond to our ‘Prior Dynamics’. The scaling of the beta recursions in
the HMM implementation (see above) is analagous to the normalisation used in
the power method for computing the Optimal Value function [16].

Fig. 3. Time to Goal The figure shows the state posterior, p(x1|GN ), for four differ-
ent times to goal (a) N = 1, (b) N = 1024. The goal location is [10, 8]. Under a uniform
prior, p(x1), these plots correspond to the exponent of the Optimal Value function of
KL control.

3 Results

This section refers to videos showing goal directed flows. These are available
from http://www.fil.ion.ucl.ac.uk/~wpenny/icais14_movies/.

3.1 Binary Goals

Figure 2 shows an example 2D environment and the state transition matrix,
A, corresponding to the prior dynamics associated with it. Here Aij has been
set to 1/Nj if a transition is allowed from j to i, with Nj being the number
of allowable transitions from j (fewer next to boundaries and corners). This
includes transitions from a state to itself. Transitions are not allowed to or from
wall or edge locations (we set 0/0 = 0, as per usual).
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Figure 3 (a) now superimposes a binary goal onto this environment. The
goal observation density p(gn|xn) is set so that the probability density is 1 at
the goal (white square in Figure 3a) and zero elsewhere. We then computed the
state posterior for different values for the time to goal N . This computation is
implemented using the alpha-beta recursions in equations 6 to 8. For N = 1
the state posterior has a single peak at the goal. The spatial gradient of the
posterior at sites remote from the goal is zero for N = 1, but increases with N .
This gradient informs the posterior dynamics via equation 5, allowing a path to
be found from remote sites to the goal. The posterior dynamics, q, were then
computed from equation 5 using N = 1024 with the goal at [10, 8]. Note that
for large N , we have p(x1|GN ) ≈ p(x2|GN ) ≈ p(x3|GN ) etc., so we can simply
use p(x1|GN ) in equation 5.

The movie known_15_1.avi shows the state density evolving according to
the posterior dynamics. The initial state density is a delta function with unit
probability mass at location [15, 1] and zero elsewhere. The state density at
subsequent time points has been computed using equation 11. We now keep the
goal at the same location, hence do not change the posterior dynamics q, but
move the initial position to [2, 8]. The evolution of the state density is shown in
the movie known_2_8.avi.

Finally, we keep the goal at the same location but update the prior dynamics,
A, to account for a small change to the environment. This hole in a wall appearing
at location [6, 10] requires a change to only four elements of A (reciprocally
between [6, 10] and [6, 9], and [6, 10] and [6, 11]). The posterior dynamics were
recomputed based on this new prior and the movie hole.avi shows the goal-
directed flow from position [2, 8].

The above results show that changes in goal location are accommodated by
recomputing the posterior dynamics, q. Small changes in the environment are
readily accommodated by small changes in the prior dynamics (and updating q).
These nonstationarities are less gracefully accommodated in RL which requires
extensive relearning of state-action mappings.

3.2 Homeostatic Goals

This simulation considers three autonomic variables reflecting the levels of body
glucose, water and temperature. The set point is given by g = [10, 10, 10] with
covariance C = 0.5I3. Here the autonomic dynamics are set by specifying a
diagonal transition matrix, B, with entries 0.99, 0.97, 0.95. These numbers reflect
the rate at which body water, food and temperature levels are depleted. The
changes in autonomic state (per unit time) afforded by visiting state k are set
as follows

ak(i) = exp(−0.5||sk − µ(i)||2) (14)

where sk is the location of the kth latent variable (place cell) and µ(i) denote
the spatial locations with maximal affordance for increases in water, glucose
and temperature respectively. This implements affordances as a continuous but
local function of space; other eg. discrete forms are of course possible. We set
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µ(1) = [6, 12]T , µ(2) = [10, 8]T and µ(3) = [10, 4]T . Thus, for example, the agent
receives a unit increase in glucose at location [10, 8] and a smaller amount at
neighbouring locations.

The movie auto.avi shows the agent navigating according to the posterior
dynamics, which are recomputed every 32 steps. This requires a forward and
backward pass to compute the posterior state density, based on the autonomic
state of the agent at that time point. Figure 5 shows a snapshot of this movie at
time step n = 65 and figure 4 plots the time series of autonomic state variables
over all time points.

Fig. 4. Autonomic Variables Body temperature (red), glucose (green) and water
(blue). The state is initialised to the set point [10, 10, 10]. Increases correspond to the
agent visiting locations which afford increases in body temperature, glucose, temperature
and water respectively. Decreases reflect the time scales of depletion encoded in matrix
B.

4 Discussion

This paper has described a simple algorithm, based on inference in an HMM,
that an agent can use for localisation, planning and homeostatic control. We
propose that it provides a useful computational-level description of aspects of
Hippocampal function and associated networks. There are several appealing fea-
tures.

First, the use of a discrete rather than a continuous latent space allows multi-
modal posteriors to be supported using simple, exact inference. This is necessary
for solving the problem of localisation, as shown in previous work [12]. This is to
be contrasted with the approximate inference procedures (particle filtering etc.)
required for nonlinear continuous latent space models [13].

Second, discretisation of an otherwise continuous state space is generally
unworkable for generic control problems because of the curse of dimensionality.
However, spatial navigation is inherently two dimensional so discretisation is
tenable.
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Fig. 5. Agent State The state of the agent at time step n = 65. Left Panel: The
letters W, G and T denote locations which afford maximal increases in body water,
glucose and temperature, respectively. The location of the agent is marked with the
black square (close to T). Right Panel: Levels of autonomic variables, an. At this time
point the agent has sufficiently warmed itself and is now leaving location T and heading
towards G, as its glucose level is far from set point.

Third, this work builds on earlier proposals that the hippocampus itself is
suited to solving shortest path problems [10]. It has been proposed that CA3 en-
codes path distances in its connections and may implement a heuristic planning
approach such as Dijkstra’s algorithm. A similar proposal could be based on the
Prior Dynamics where the connection from unit j to i encodes Aij . This shares
previous advantages in that the inevitable local changes in an environment can
be reflected in a small number of modified connections. Previous work [12] has
shown that our approach has the advantage that the uncertainty in localisation
is readily incorporated into planning.

Fourth, it has been proposed that the hippocampus replays goal-directed
state sequences so that the striatum can learn the appropriate state-action map-
pings [8]. However, it may be the case that these ‘replays’ are not memories of
successful episodes but sample trajectories from the Posterior Dynamics.

Fifth, the two phases of inference we have proposed may map onto two dis-
tinct modes of hippocampal function, differentiated by the degree of theta ac-
tivity. Mammalian localisation is accompanied by a high theta state [5], whereas
planning related replay activity [14] is accompanied by high frequency ripples in
a low theta state. In rats, planning related ripple activity is observed to occur
after reaching a goal.

We have shown that homeostatic control can be instantiated using a prob-
abilistic goal model in which the goals are autonomic set points. By endowing
autonomic variables with their own dynamics, and periodically reactivating the
agent’s planning algorithm, the agent has been shown to exhibit rather complex
autonomous behaviour.
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The resulting system is similar to, and inspired by, the free-energy princi-
ple which is founded on the concepts of active inference and homeostasis [6].
Our approach is marked out by its use of discrete latent variables and back-
wards message passing, and we have previously proposed that these messages
are instantiated in ripple activity [13].

In this paper, planning is based on the agent’s autonomic state just prior
to computation of the posterior dynamics. Its homeostatic control mechanism is
therefore reactive rather than predictive. However, if the agent were also endowed
with a predictive autonomic model (cf. equation 4) planning could be based on
these predicted autonomic states [15].
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