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In this paper, we revisit the problem of Bayesian model selection (BMS) at the group level. We originally
addressed this issue in Stephan et al. (2009), where models are treated as random effects that could differ
between subjects, with an unknown population distribution. Here, we extend this work, by (i) introducing
the Bayesian omnibus risk (BOR) as a measure of the statistical risk incurred when performing group BMS,
(ii) highlighting the difference between random effects BMS and classical random effects analyses of
parameter estimates, and (iii) addressing the problem of between group or condition model comparisons.
We address thefirst issue by quantifying the chance likelihood of apparent differences inmodel frequencies. This
leads to the notion of protected exceedance probabilities. The second issue arises when people want to ask
“whether a model parameter is zero or not” at the group level. Here, we provide guidance as to whether to
use a classical second-level analysis of parameter estimates, or random effects BMS. The third issue rests on
the evidence for a difference in model labels or frequencies across groups or conditions. Overall, we hope that
the material presented in this paper finesses the problems of group-level BMS in the analysis of neuroimaging
and behavioural data.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Any statistical measure of empirical evidence rests on some form of
model comparison. In a classical setting, one typically compares the null
with an alternative hypothesis, where the former is a model of how
chance could have generated the data. Theoretical results specify the
sense in which model comparison can be considered optimal. For
example, the Neyman–Pearson lemma essentially states that statistical
tests based on the likelihood ratio (such as a simple t-test) are the
most powerful, i.e., they have the best chance of detecting an effect
(see e.g., Casella and Berger, 2001). From this perspective, Bayesian
model comparison can be seen as a simple extension to likelihood
tests, in that it allows for the comparison of more than two models. In
fact, likelihood ratios are used in a Bayesian setting, under the name
of Bayes factors (Kass and Raftery, 1995). These are just the ratio of
experimental evidence in favour of one model relative to another.
Having said this, established classical and Bayesian techniques may
give different answers to the same question — a difference that has
entertained generations of statisticians (see e.g., Fienberg, 2006).

In this paper, we consider the problem of performing random
effects Bayesian model selection (BMS) at the group level. This was
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originally addressed in Stephan et al. (2009), where models were
treated as random effects that could differ between subjects and
have a fixed (unknown) distribution in the population. The implicit
hierarchical model is then inverted using variational or sampling
techniques (see Penny et al., 2010), to provide conditional estimates
of the frequency with which any model prevails in the population.
This random effects BMS procedure complements fixed effects pro-
cedures that assume that subjects are sampled from a homogenous
population with one (unknown) model (cf. the log group Bayes factor
that sums log-evidences over subjects; Stephan et al., 2007). Stephan
et al. (2009) also introduced the notion of exceedance probability,
which measures how likely it is that any given model is more frequent
than all othermodels in the comparison set. These two summary statistics
typically constitute the results of random effects BMS (see, for example,
den Ouden et al., 2010).

While the random effects BMS procedure suggested in Stephan et al.
(2009) and Penny et al. (2010) has proven useful in practice— and has
been employed by more than hundred published studies to date, some
conceptual issues are still outstanding. In this paper, we extend the
approach described in Stephan et al. (2009) in three ways: (i) we
provide a complete picture of the statistical risk incurred when
performing group BMS, (ii) we examine the formal difference be-
tween random effects BMS and classical random effects analyses of
parameter estimates, when asking whether a particular parameter
is zero or not, and (iii) we address the problem of between-group
and between-condition comparisons.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2013.08.065&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2013.08.065
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http://dx.doi.org/10.1016/j.neuroimage.2013.08.065
http://www.sciencedirect.com/science/journal/10538119
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Section 2 revisits random effects BMS, providing a definition of the
null at the group level. This allows us to quantify the statistical risk in-
curred by performing randomeffects BMS, i.e. how likely it is that differ-
ences inmodel evidences are due to chance. En passant, we clarify the
interpretation of exceedance probabilities and provide guidance with
regard to summary statistics that should be reported when using ran-
dom effects BMS.

Section 3 addresses the difference between randomeffects BMS and
classical random effects analyses of parameter estimates. In princi-
ple, group effects can be assessed using a classical random effects
analysis of the parameter estimates across subjects (e.g., using t-
tests), or using random effects BMS (reduced versus full model). How-
ever, these approaches do not answer the same question (and therefore
may not give the same answer). Here, we explain the nature of this dif-
ference and identify the situations thatwould yield identical or different
conclusions.

Section 4 introduces a simple extension to the original framework
proposed in Stephan et al. (2009). In brief, we propose a test of
whether two (or more) groups of subjects come from the same
population. We also address the related issue of between condition
comparisons. The key idea behind these procedures is a generalization
of the intuition that underlies classical paired t-tests; i.e. one has to
quantify the evidence for a difference — as opposed to the difference
of evidences.

For all three issues, we use Monte-Carlo simulations to assess the
performance of random effects BMS in the context of key applications,
e.g. Dynamic Causal Modeling (see Daunizeau et al., 2011a for a recent
review).

On the statistical risk of group BMS

In this section, we first revisit the approach to random effects
BMS proposed in Stephan et al. (2009), recasting it as an extension
of Polya's urn model. This serves to identify the nature of the risk
associated with model selection. In brief, we focus on the risk of
stating that a given model is a better explanation for the data than
other models, given that chance could have favoured this particular
model. In turn, we propose a simple Bayesian “omnibus test”, to ex-
clude chance as a likely explanation for an apparent difference in
model frequencies.

Polya's urn model

The random effects BMS can be viewed as a simple extension of the
so-called Polya's urn model (see, e.g., Johnson and Kotz, 1977),
which we will revisit here. Consider an infinite urn, containing K dif-
ferent sorts of marbles. Let rk be the frequency of marbles of type
k ∈ [1,K] in the urn. The marble frequencies satisfy: 0 ≤ rk ≤ 1 and
1 = ∑ k = 1

K rk. Let us randomly draw n marbles from the urn. Let
mi be the outcome of the ith sample, where i ∈ [1,n]. The probability
of observing any given outcome mi is determined by the respective
frequency rk of each type of marble and has the following multinomial
distribution:

pðmi rkj Þ ¼ ∏
K

k¼1
rk

mik

mik ¼ 1 if k ¼ l
0 otherwise

∀k∈ 1;K½ �
� ð1Þ

wheremi ∈ [0,1] is a one-in-K vector, i.e. the index l ∈ [1,K] of the non-
zero entry encodes themarble's type. Given a set of n observedmarbles,
one can ask questions about the unknown marble frequencies in the
urn. Within a Bayesian approach, Eq. (1) expresses the likelihood func-
tion, which is completed with priors p(r|H) on marble frequencies to
form a posterior density over marble frequencies p(r|m,H), as
follows:

pðr m;Hj Þ ¼ pðr Hj Þ
pðm Hj Þ∏

n

i¼1
pðmi rkj Þ

¼ pðr Hj Þ
pðm Hj Þ ∏

K

k¼1
rk

Xn
i¼1

mik

pðm Hj Þ ¼
Z

pðr Hj Þ∏
K

k¼1
rk

Xn
i¼1

mik

dr

ð2Þ

where p(m|H) is the (Polya's urn) model evidence, under the prior as-
sumption H. A “reasonable” prior assumption H1 is that, a priori, the
urn is expected to be unbiased, i.e.: E[rk|H1] = 1/K. This prior assump-
tion can be captured using the following Dirichlet probability density
function:

pðr H1j Þ ¼ Γ Kα0ð Þ
Γ α0ð ÞK ∏

K

k¼1
rk

α0−1 ð3Þ

where Γ is the gamma function and α0 is the so-called concentration
parameter (it controls the prior variance of marble frequencies). Usu-
ally, one invokes uninformative (flat) priors on marble frequencies,
by setting α0 = 1. Under H1, one can explain differences in the ob-
served frequencies of marbles with a difference in the “true” (but un-
known) frequencies of marbles. This will be expressed in the
posterior distribution p(r|m, H1), which will deviate from the prior,
i.e.: E[rk|m, H1] ≠ 1/K. One can also derive the so-called exceedance
probability (EP) φk — the probability that the kth marble type is
more frequent in the urn than any other type (given observedmarbles):
φk ¼ P rk≥rk′≠k m;H1j Þ�

. As with marble frequencies, the EPs satisfy:
0 ≤ φk ≤ 1 and 1 = ∑ k = 1

K φk. They express a degree of (posterior)
confidence on the difference between marble frequencies; we will
discuss EPs in detail below. At this point, it suffices to say that all
conclusions drawn from these sufficient statistics are valid, under
H1.

However, one may want to consider another prior assumption,
which arises at the infinite concentration limit, i.e.: H1 →α0→∞ H0 .
Under the null H0, the marble frequencies are all equal to each other,
i.e.: rk = 1/K. This is typically encoded through a delta-Dirac distribu-
tion, as follows:

pðr H0j Þ ¼ 1 if rk ¼ 1=K ∀k∈ 1;K½ �
0 otherwise

:

�
ð4Þ

Eq. (4) means thatH0 differs fromH1 in that the actual marble fre-
quencies r are fixed (their prior variance is zero). Under the null, any
apparent difference in the frequencies is simply due to chance. This
makes the null a candidate explanation for the observed marbles.
This is important, because it means that any inference based upon
sufficient statistics derived under H1 implicitly assumes that the
null is a (comparatively) less plausible assumption. Crucially, should
the null turn out to be a viable assumption, this would invalidate the
conclusions drawn under H1. In other terms, the risk we take in rely-
ing upon the posterior density p(r|m, H1) can be defined in terms of
the probability Po of having erroneously chosen H1 against H0, given
the observedmarblesm. This is simply the posterior probability of H0

versus H1 (see Daunizeau et al., 2011b for a formal decision theoretic
derivation of model selection error risk). Under flat priors on H, Po is
given by:

Po ¼
1

1þ pðm H1j Þ
p m H0j Þ:ð

ð5Þ
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Eq. (5) evaluates the probability that the observed sample may have
occurred by chance. The above Bayesian omnibus risk (BOR) Po can be
compared to any desired error rate, e.g. 5%, in analogy to classical
p-values of “omnibus tests”. The statistically-literate reader might
notice that the BOR is but a normalization of the Bayes factor
p(m|H1)/p(m|H0). Although introducing the BOR might thus appear
superfluous, we believe that it is useful to think in terms of the
statistical risk incurred when relying on EPs (see next section). In
addition, we will eventually use the BOR to define protected
exceedance probabilities (see the Implications for group BMS
section).
Testing whether any (marble) model is “significantly more frequent than
any other”

Through the Bayesian comparison of H1 and H0, the BOR directly
quantifies the probability that model frequencies are all equal to
each other. However, it may also be tempting to interpret (one
minus) the maximum exceedance probability (EP) as some form of
“Bayesian p-value” — in the sense that a departure of the maximum
EP from 1/K expresses evidence in favour of H1 (against H0). This in-
tuition deserves careful scrutiny: one can show (see Appendix 1)
that, although the qualitative behaviour of the maximum EP is simi-
lar to the Bayesian omnibus risk, the impact of a difference in the
marble counts differs. In brief, for the maximum EP, it is proportional
to the square root

ffiffiffi
n

p
of the number of marbles, whereas it is simply

proportional to n for the (log-transformed) BOR. Although this partly
justifies the intuition behind the interpretation of EPs, this also begs
the question: which of these two statistics should be used to detect a
difference in marble frequencies?

To address this question, we conducted a Monte-Carlo simula-
tion study where K = 4 models were compared, given a group of
n ∈ {16,64} subjects. In brief, Polya's urn counts m were simulated
under H0 and H1, respectively. Then both EPs1 and BOR omnibus
statistics were computed for both types of datasets. This procedure
was repeated 1024 times, in order to perform a Receiver Operating
Characteristic (ROC) analysis. Fig. 1 summarizes the comparison of
EPs and BOR, with respect to their relative ability to disambiguate
chance from real differences in marble frequencies.

First, one can see that the maximum EP and 1-BOR are correlated
across Monte-Carlo simulations (upper panels in Fig. 1). This
means that they both reflect the strength of evidence for or against
H0. Second, it is clear that the net effect of increasing the number of
subjects n is to improve the discriminability ofH0 andH1 for both sta-
tistics. Their empirical histograms suggest that – on average – H0 and
H1 are better discriminated using BOR (lower panels). This was con-
firmed by deriving the area under the ROC curve AROC. For n = 16
subjects, AROC = 0.90 for BOR and AROC = 0.81 for EPs. For n = 64
subjects, these scores increase to AROC = 0.98 and AROC = 0.90,
respectively.

As a further quantitative comparison, we examined the statistical
power (true positive rate) for thresholds that yield a false positive
rate of 5%. For n = 16 subjects, the power was 65.3% for BOR and
47.5% for EPs. For n = 64 subjects, power increases to 94.6% and
68.2%, respectively. Finally, we examined the total error rate (the
sum of type I and type II error rates) that indicates the probability of
confusing H0 and H1. We determined the disambiguation threshold
(on either φ and P0), at which the probability of confusing H0 and H1

is minimal and thus best discriminates between H1 and H0 (under
equal costs for type I and type II errors). For n = 16 subjects, the disam-
biguation thresholds were 0.55 for BOR and 0.74 for EPs, whereas for
n = 64, these were 0.49 and 0.79, respectively. The associated total
1 Note that here,we inspect the behaviour of themaximumEP (max
k

φk), as this is a typ-
ical summary statistics of applications of random effects BMS.
error rates were: 0.38 (n = 16) and 0.09 (n = 64) for BOR, 0.52
(n = 16) and 0.34 (n = 64) for EPs. In other words, one can interpret
1 − P0 ≈ 0.75 as strong evidence in favour of H1, whereas φ ≈ 0.75
provides little evidence in favour or againstH1. Taken together, these re-
sults demonstrate a slight overconfidence bias for EPs. This implies that
the risk of wrongly declaring a model “more frequent than any other
one” (above and beyond chance) is better assessed in terms of BOR
than in terms of EPs.

Implications for group BMS

Random effects BMS, as described in Stephan et al. (2009), is a
simple extension of Polya's urn model, where label variables m
are observed indirectly, through subject-wise log model evidences
Lik =log p(yi|mik = 1), which encode how likely the ith subject's
dataset yi is under the kthmodel. This induces a hierarchical probabilistic
model that can be inverted using either sampling (e.g. Gibbs) or varia-
tional approaches, to yield a posterior density p(r|y,H1) over model fre-
quencies. As with Polya's urn model above, a Bayesian omnibus risk
Po can be derived, which evaluates the chance likelihood of observed
subject-specific data y = (y1, …,yn):

Po ¼
pðy H0j Þ

pðy H0j Þ þ pðy H1j Þ

pðy Hj Þ ¼
X
m

Z
pðy m;Hj Þpðm r;Hj Þpðr Hj Þdr

pðy m;Hj Þ ¼ exp
Xn
i¼1

XK
k¼1

mikLik

 ! ð6Þ

where p(m|r,H) and p(r|H) depend on H ∈ {H0,H1} and are given by
Eqs. (1), (3) and (4). The derivation of P(y|H) given within-subject
model evidences Lik is described in Appendix 2.

In most recent studies relying on random effects BMS, researchers
typically report EPs φk in a similar way to classical p-values; i.e., as a
quantitative measure of the amount of evidence for the “best” model
(e.g., Boly et al., 2011; Daw et al., 2011; den Ouden et al., 2010;
Fleming et al., 2010; Tricomi et al., 2010). However, the argument
above suggests that EPs may not be ideally suited for such a purpose.
This is because their derivation is conditional upon H1 and does not
consider that apparent differences in model frequencies may be due
to chance. Having said this, using the BOR alone does not tell us which
model (if any) is the “best” — because it is an omnibus statistic.

To facilitate inferences about specific models (as opposed to
omnibus testing), we now introduce a protected exceedance proba-
bility eφk that uses the BOR to compute a Bayesian model average of
the exceedance probability. This average accounts for the fact that
the observed variability in (log-) model evidences could be due to
chance by marginalizing the exceedance probabilities over H1 and H0,
as follows:

eφk ¼ Pðrk≥rk′≠k yj Þ

¼ Pðrk≥rk′≠k y;H1j ÞPðH1 yj Þ þ Pðrk≥rk′≠k y;H0j ÞPðH0 yj Þ

¼ φk 1−P0ð Þ þ 1
K
P0

ð7Þ

Here, we have used the limit definition of H0 (i.e.: H1→α0→∞ H0 ),
to derive the exceedance probability under H0.2 Eq. (7) is a direct
application of Bayesian model averaging (Madigan et al., 1996),
where we have averaged over H0 and H1. Note that these protected
2 At the limit α0 → ∞, the posterior counts of the frequency Dirichlet density are dom-
inated by the prior counts (αk → α0), irrespective of the likelihood term. As a conse-
quence, the posterior tends to an equi-frequency belief.
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Fig. 1. Exceedance probabilities and the Bayesian omnibus risk. This figure depicts the distribution of the maximum exceedance probability (EP) and the Bayesian omnibus risk (BOR)
under H0 (in red) and under H1 (in green). Upper-left: EPs (y-axis) is plotted against 1-BOR (x-axis) for n = 16 subjects. Each dot is one (out of 1024) Monte-Carlo simulation. Dotted
blue lines indicate the lower and upper bounds for the BOR and the maximum EP. Upper-right: same format, with n = 64 subjects. Lower-left: Monte-Carlo histogram of 1-BOR (thick
line: n = 64, thin line: n = 16). Upper-right: same format, for the maximum EP.
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exceedance probabilities still sum to one. In short, protected EPs
quantify the probability that any one model is more frequent than
the others, above and beyond chance. To demonstrate the gain in
terms of statistical risk, we repeated the ROC analysis of the previous
section (Testing whether any (marble) model is “significantly more
frequent than any other” section). For protected EPs, AROC = 0.88
for n = 16 subjects and AROC = 0.95 for n = 64 subjects. The
power was 59.3% for n = 16 subjects and 94.8% for n = 64 subjects.
The disambiguation threshold was 0.48 for n = 16 subjects and 0.51
for n = 64, with associated total error rates of 0.35 and 0.09. This
represents a considerable improvement over the unprotected EP.
For completeness, Table 1 summarizes the results for BOR, unpro-
tected and protected EPs (cf. Testing whether any (marble) model
is “significantly more frequent than any other” section above).
Table 1
Detecting differences inmarble frequencies: ROCanalysis of BOR (top), unprotected (middle)
and protected EPs (bottom). The area under the ROC curve (AROC), power (at 5% false positive
rate), disambiguation threshold and its associated total error rate (TER) are given for both
n = 16 and n = 64 sample sizes.

n = 16 n = 64

AROC Power Threshold TER AROC Power Threshold TER

P0 0.90 65.3% 0.55 38% 0.98 94.6% 0.49 9%
max

k
φk 0.81 47.5% 0.74 52% 0.90 68.2% 0.79 34%

max
k
eφk 0.88 59.3% 0.48 35% 0.95 94.8% 0.51 9%
Application to Dynamic Causal Modeling

Akey application of randomeffects BMS is Dynamic CausalModeling
(DCM),whichwas introduced to study the effective connectivity among
brain regions using neuroimaging data. At the core of DCM are biophys-
ical models that describe how the brain is wired and how it responds to
different stimuli. DCM then embeds these models into a formal
(Bayesian) statistical framework that allows for parameter estima-
tion and model comparison when analyzing neuroimaging time
series. We have summarized the relevant mathematical details in
Appendix 3 of this manuscript (see also Daunizeau et al., 2011a for
a recent review).

In this section, we focus on a simple DCM three-region network
comparison, namely: parallel (m1) versus serial (m2) connectivity
structures (see Fig. 2). The main difference between this example
and the above Polya's urn treatment comes from the uncertain nature
of within-subject (relative) empirical evidence in favour of candidate
models. In brief, we expect natural variations in within-subject
log-Bayes factors to induce a higher model selection error risk at
the group level. We simulated synthetic fMRI time series y under
m1 andm2 (64Monte-Carlo repetitions for eachmodel, session duration:
10 min; TR = 2 s; SNR = −20 dB). Each dataset was then inverted
under both models, yielding 64 × 2 = 128 model evidences.

First, we checked that models could be disambiguated on the
basis of ‘within-subject’ Bayesian model comparison. Let LBF =
log p(y|m1) − log p(y|m2) be the log Bayes factor that measures
the relative evidence in favour of m1 against m2. Fig. 2 shows the
Monte-Carlo empirical distributions of LBF for data simulated
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Fig. 2.Group-BMS: application toDCM.Upper-left: The two candidate three-region networkmodels thatwill be compared at the group level (m1: parallel architecture,m2: serial architecture).
Upper-right: Mote-Carlo distribution of – subject-level – log Bayes factors LBF, given data generated either under modelm1 (green) or under modelm2 (red). Lower-left: Monte-Carlo histo-
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situated at r1 = 1/2. Lower-middle: same format, for BOR P0. Lower-right: same format, for protected EP eφ1.

Table 2
Detecting differences in model frequencies: ROC analysis of BOR (top), EPs (middle) and
protected EPs (bottom). The area under the ROC curve (AROC), power (at 5% false positive
rate), disambiguation threshold and its associatedminimal total error rate (TER) are given
for groups of n = 16 subjects.

AROC Power Threshold TER

P0 0.76 48.4% 0.67 56%
max

k
φk 0.75 47.5% 0.99 56%

max
k
eφk 0.76 48.4% 0.84 56%
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either under m1 or under m2. Statistical analysis confirms that the
mean LBF is significantly positive (resp. negative) for data simulated
underm1 (resp. m2), at p = 10−4. However, one can see that the vari-
ability around these mean effects is likely to induce some confusion,
and thus increase the posterior uncertainty at the group level.

We then wanted to assess the impact of the population profile, in
terms of model frequencies. We thus spanned the frequency r1 ofm1

from 0 to 1. For each frequency, we then randomly draw 256 groups
of subjects (sample size: n = 16), from the multinomial distribution
given in Eq. (1). For each group of subjects, we derived the BOR, as well
as the protected and unprotected EP of modelm1 using the group-BMS
approach. Their empiricalMonte-Carlo distributions can be eyeballed in
Fig. 2. One can see that unprotected EP's distribution tends to extreme
values for relatively small departures fromH0 (equalmodel frequencies,
i.e.: r1 = r2 = 1/2). In addition, its distribution under the null is almost
flat. As expected, the BOR is maximal around the null, and minimal for
extreme values of the true model frequency (i.e. r1 → 0 or r1 → 1).
This eventually refocuses the distribution of the protected EP under
the null, which is centered on eφ ¼ 1=2 and shows no extreme value.
This means that observing an extreme protected EP is strong evidence
forH1, which is themain difference between protected and unprotected
EPs.

Finally, we reproduced the ROC analysis of Testing whether any
(marble) model is “significantly more frequent than any other” section,
by splitting samples into H0 (equal model frequencies, i.e.: r1 = r2) and
H1 (pooled samples for all r1 ≠ r2). Table 2 summarizes the comparison
of (protected and unprotected) maximum EPs and BOR, with respect to
their relative ability to disambiguate between H0 and H1.

Although power and area under the ROC curve are similar, one can
see how strikingly different are the disambiguation thresholds. In brief,
unprotected exceedance probabilities have to be of the order of 0.99 to
indicate strong evidence in favour of H1. This is because extreme EP
values are likely under H0 (cf. Fig. 2). For example, an unprotected
exceedance probability of 0.75 yields a total error rate of about
80%. Protected exceedance probabilities do not suffer from such
overconfidence bias (e.g., for the same numerical value, the total error
rate is less than 60%).

In the next section, we turn to the more pragmatic issue of how to
pool evidence from multiple subjects to determine the form of the
model that best explains their responses and how this relates to testing
for the role of specific model parameters.
Random effects BMS and classical random effects analysis of
parameter estimates

In this section, we focus on a specific question, namely “whether a
model parameter is zero or not” at the group level. In a classical setting,
this is typically addressed using a two-sided t-test on the parameter of
interest. Effectively, this relies on the parameter estimate — from each
subject — as a summary statistic to perform a random effects analysis;
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testing whether the group mean is significantly different from zero.
However, one could also perform a group BMS with two models (with
and without the parameter of interest) and report the protected EP of
the fullmodel; i.e., the probability that the parameter ismore frequently
present than absent in the population. The difference between the two
approaches is fundamental. In brief, classical random-effect analysis de-
tects whether parameter estimates are consistent across subjects. In
contrast, the group-BMS approach identifies the proportion of subjects,
who are best described in terms of the full model. Critically, this is not a
statement about the consistency of parameter estimates over subjects.
In this section,we compare both approaches and identify the conditions
in which they will yield similar (resp. different) conclusions, using
simple numerical simulations. We then demonstrate how this trans-
lates to the context of Dynamic Causal Modeling (DCM) — a key appli-
cation domain for random effects BMS. In particular, we investigate
the impact of SNR, sample size, magnitude of the group mean and
group variability.

Linear mixed-effect analysis

Recall the form of the linear mixed-effects model (see, for example,
Friston et al., 2007a for an application to fMRI data analysis):

yi ¼ Xβi þ e 1ð Þ
i

βi ¼ β þ e 2ð Þ
i

ð8Þ

where yi is subject i's data,X encodes some experimental factors that are
weighted by (unknown) parameters βi, ei(1) are themodel's residuals, β
is the groupmean and ei

(2)model random effects over subjects. In a clas-
sical setting, this model can be used to assess whether there is an effect
of X at the group level, by testing β = 0. Under the assumption that the
variance of ei(1) is roughly the same over subjects, this is simply done
using a t-test on the within-subject estimates β̂i (e.g., least-square
solution to the first line in Eq. (8)). This is the summary statistic
approach to mixed effects, where the parameter estimates are used
to summarize subject specific effects (Friston et al., 2005; Holmes
and Friston, 1998).

In a Bayesian setting, one could invert the whole random-effect
model given in Eq. (8), and quantify the evidence in favour of a
non-zero group-mean β (using model comparison). This is known
to be qualitatively similar to the above summary statistic approach
(Penny et al., 2007). Alternatively, one could use group-BMS to com-
pare two models: the full model m1 (first line of Eq. (8)) and a
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Fig. 3. The difference between group-BMS and classical random effect analysis. This figure summ
within-subject evidence for the effect of interest (upper versus lower panels), and (ii) whether
estimates for each of the n = 16 subjects, for scenarios A, B, C andD (seemain text). Simulated
for the mean) and EP. These test statistics are highlighted in green when the test is positive an
reduced (null) model m0, which assumes βi = 0 (i.e. a prior mean of
zero with infinite prior precision). The latter approach culminates in
the derivation of the protected EP eφ for the full model m1 compared
to the reduced model m0.

In practice, these two procedures may not give the same answer.
Fig. 3 summarizes a simple set of simulations that reveal the crucial dif-
ference between classical random effects analysis and group-BMS. In
brief, we simulated data under themodel in Eq. (8), for n = 16 subjects,
where we controlled the distribution of the within-subject effects βi, in
terms of how consistent (across subjects) and strong (compared to re-
siduals ei

(1)) they are. We now consider four scenarios of agreement
and disagreement between classicalmixed effects analysis of parameter
estimates and random effects BMS:

• Scenario A: within-subject effects are both consistent and strong.
More precisely, we simulated within-subject data (cf. first line of
Equation 8) with βi = 1 for all subjects (SNR = 1 dB). Parameter esti-
mates for each subjects are shown on Fig. 3. In this case, both the classi-
cal (p b 10–5) and the Bayesian ( eφ ≈ 1) inference agree on the
presence of the effect at the group level.

• Scenario B: within-subject effects are strong but inconsistent (i.e.: half
of the subjects have a positive effect – βi = 1 – and the others have a
negative effect — βi = −1; SNR = 1 dB). In this case, the classical
approach finds no effect (p = 0.98) but random effects BMS tells us
that there is an effect (eφ ≈ 1).

• Scenario C: within-subject effects are consistent but (half are) weak
(i.e. βi = 0). In this case, the classical approach tells us: “there is an
effect” (p b 10–3) but random effects BMS disagrees (eφ ≈ 0.5).

• Scenario D: within-subject effects are both inconsistent and weak
(βi = 0: 8 subjects, βi = −1: 4 subjects, βi = 1: 4 subjects). In this
case, both approaches agree with each other in finding no effect
(p = 0.99 and eφ ≈ 0.5).

These examples highlight the difference between the twoapproaches.
In brief, classical tests are sensitive to the consistency of the signed effect
(parameter estimate) across subjects. In contrast, random effects BMS
cares about the proportion of subjects who show strong evidence for
this parameter, irrespective of its sign.

Application to Dynamic Causal Modeling

Since VB model inversion provides both parameter estimates and
model evidence, both classical and Bayesian forms of group-level in-
ference can be found in the DCM literature. In this section, we ask
t-test Bayesian
0

1
1-p = 1.000  ep = 1.000

t-test Bayesian
0

1

1-p = 0.023

 ep = 1.000

t-test Bayesian
0

1
1-p = 0.999

 ep = 0.500
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0

1
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arizes the impact of two distinct features of group data, namely: (i) whether there is clear
the effect of interest is consistent across subjects (left versus right panels). Left: parameter
parameters are depicted using green circles. Right: Corresponding p-values (classical t-test
d in red otherwise.



Fig. 4. Simulation set-up and model space. Top: summary of the exemplar analysis in
Friston et al. (2003). The question we address is whether u2 modulates the connection
from V1 (region 1) to V5 (region 2). Bottom: corresponding dynamic models for the
two competing hypotheses (m0 : b = 0 andm1 : b ≠ 0).
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how these techniques compare in terms of standard statistical risk
(specificity and sensitivity measures) using Monte Carlo simulations
of synthetic fMRI data. Our hope here was to provide an extensive
comparison, across a wide range of experimental conditions. This
serves to identify the factors (e.g., within- and between-subject
variability, number of subjects) that influence the performance of these
techniques.

We focus on addressing the question of whether or not some input
has a modulatory effect on a network connection. In brief, we used a
simplified version of the exemplar analysis in Friston et al. (2003) that
tries to identify the impact of experimental factors (photic stimulation
and motion) in a three-region network (V1, V5 and SPC3). In particular,
we address whether motionmodulates the connection from V1 (a visu-
al input region) to V5 (a motion sensitive area): see Fig. 4.

Let b be the modulatory effect, and m0 and m1 the models under
which b = 0 and b ≠ 0, respectively. We simulated synthetic fMRI
time series y under m0 and m1 (session duration: 10 min; TR = 2 s).
When simulating data under m1, we controlled the mean and variance
(ηb = 0, 0.3 or 0.6; and σb = 0.2 or 0.5) of the population distribution
of modulatory effects. Note that the population mean ηb can be 0 under
m1 (but, in contradistinction to m0, the population variance σb is
non-zero). The summary statistics of the population distribution
constitute the first factor of our design (1 + 3 × 2 levels: m0 or m1,
with three population means and two population variances). We
also varied the number of subjects in the group (n = 2, 4 or 8 subjects),
and the signal-to-noise ratio (SNR = −40 dB to 0 dB). These consti-
tute the two other factors of our (1 + 3 × 2) × 3 × 2 factorial design,
for which we performed 100 Monte-Carlo simulations.

Let LBFi = log p(yi|m1) − log p(yi|m0) be the log Bayes factor
that measures the (within-subject) evidence in favour of the pres-
ence of the modulatory effect (m1 against m0). The derivation of
P(y|H1) and P(y|H0) given subject-wise model evidences Lik are de-
scribed in Appendix 2.

We now list all the group-level inference approaches (and exemplar
papers using them) that we have compared:

• Random effects group-BMS (simply abbreviated as BMS in the
following). Here, using the protected exceedance probability.

• Classical random-effects analysis of parameter estimates This is
simply the second-level analysis of the mixed-effects model above,
which consists in rejecting the null if b ≠ 0 according to a t-test on
the subject-wise parameter estimates (see, for example, Leff et al.,
2008).

• Positive evidence ratio (PER). This idea was introduced in Stephan
et al. (2007), based on the definition of “positive evidence” in
favour of a given model (Kass and Raftery, 1995). The PER is simply
the number of subjects with positive evidence in favour of m1 (i.e.,
LBFi N log(3)) divided by the number of subject with positive evi-
dence in favour of m0 (i.e., LBFi b − log(3)). One would then reject
m0 if PER N 1. Other variants of the same idea have used a binomial
test on the number of subjects showing positive evidence (Ethofer
et al., 2006).

• Classical random effects analysis of log-evidences. Here, the idea is to
test how consistent the evidence is in favour of m1, across subjects.
One way to do this is to test the null hypothesis that LBF = 0
according to a one-sided t-test on the subject-wise (log) Bayes fac-
tors; this was suggested by Stephan et al. (2009) as the classical com-
plement for random effects BMS (for a practical application see Chen
et al., 2009). For nested models, some authors have also used a classi-
cal chi-squared test on the group's log Bayes factor ∑ iLBFi (Vuong,
1989). This needs to be distinguished from a fixed-effect BMS analysis
that sums the subject-wise (log) Bayes factors to yield the pooled
evidence for m1, under the assumption that all subjects present the
3 SPC = superior parietal cortex.
same model. One could then use the usual definition of “positive
evidence” at the group level, i.e. reject m0 if ∑ iLBFi N log(3) (see
e.g., Garrido et al., 2007).

First, we ensured that the modulatory effect was identifiable under
m1. Fig. 5 summarizes an exemplar inversion, in terms of the first two
moments (μ and Σ) of the approximate posterior density q on DCM
parameters. One can see that the modulatory effect is not confounded
by hemodynamic changes (although it is only partially identifiable
from the connectivity at rest).

Second, we checked that subject-wise Bayes factors behaved as
expected. Fig. 6 summarizes one Monte-Carlo simulation, in terms
of the (n = 8) within-subject Bayes factors, as a function of both
the mean (ηb) and the variance (σb) of the population distribution
of the modulatory effect. Overall, one can see that increasing the
population mean ηb increases the average log Bayes factors, whereas
increasing the population variance σb increases the variability of log
Bayes factors across subjects.

We then conducted a Receiver Operating Characteristic (ROC)
analysis to compare the different group-level approaches in terms of
their ability to discriminate between m0 and m1. Fig. 7 depicts the
resulting ROC curves, revealing how the sensitivity/specificity trade-
off of each approach varies as the corresponding threshold on the test
statistic changes.

These results show that the main effect of decreasing SNR is to
decrease the area under the ROC curve, which measures the overall
ability to discriminate between m0 and m1. In addition, increasing
the group size (n) improves performance. Finally, there is an interac-
tion between the effects of the population mean (ηb) and variance
(σb) on the area under the ROC curve. In brief, the performance im-
provement due to an increase in ηb is dampened by an increase in
σb. We now turn to a quantitative comparison between the group-
level inferences.

Fig. 8 summarizes the effect of group size and SNR on the area
under the ROC curve, after having pooled all the data simulated
under m1. There is a significant interaction between group size, SNR
and method on the area under the ROC curve. More precisely, at
high SNR (SNR = 0 dB), all methods (except the test on parameter
estimates) perform equally well (and almost perfectly). At low SNR



Fig. 5. Example of model simulation and inversion. Left: simulated parameters (dots) and their estimated values (95% credible interval in gray lines) for a typical Monte-Carlo simulation.
Block A corresponds to network connectivity weights, B is the modulatory effect and C is the driving effect of u1 onto region 1. Right: posterior correlation matrix of the DCM parameters
(green suggests there is no identifiability issue).
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Fig. 6. Effect of the population distribution moments onto within-subjects Bayes factors.
Left: small population variance (σb

2 ¼ :2); Right: high population variance (Sb2 ¼ :5).
In all panels, the color indicates the population mean (gray: ηb = 0, cyan: ηb =. 3, blue:
ηb =. 6). Upper panels: population distributions over the modulatory effect b. Middle
panels: Within-subjects (log) Bayes factors (x-axis) for a typical Monte-Carlo simulation
with n = 8 subjects (y-axis) and SNR = 0 dB. Lower panels: Monte-Carlo distribution
of within-subjects (log) Bayes factors (SNR = 0 dB).
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(SNR = −40 dB), all methods are at chance level. At intermediate
SNR levels (SNR = −20 dB), there is a clear ranking of all methods
(and random effects BMS performs best). Note that for all SNR levels,
the test on parameter estimates always exhibits the poorest perfor-
mance level.

In addition, these results suggest that all methods perform rather
poorly, when compared to BMS (at least for intermediate SNR levels).
These simulation results replicate previous empirical results in Stephan
et al. (2009), which highlighted the superior performance of random
effects BMS compared to a classical random effects analysis of log
model evidences. This global tendency is confirmed when inspecting
the sensitivity (statistical power) of each method when fixing its type I
error rate (false positive rate) to 5%.
Fig. 7. ROC comparison of group-level approaches. This figure focuses on the comparison
of classical RFX (Left) and group-BMS (Right) approaches. Upper panels: ROC curves
(x-axis: 1-specificity, y-axis: sensitivity), averaged across population profiles. A darker
color (resp. a thicker line) indicates an increase in SNR (resp. in group size n). Lower
panels: Areas under the ROC curve (y-axis) as a function of the population mean (x-axis)
and the population variance (solid lines: σb

2 ¼ :2 ; dashed lines: σb
2 ¼ :5 ), for

SNR = −20 dB and n = 8 subjects.

image of Fig.�5
image of Fig.�6


Fig. 8. Global ROC comparison of group-level approaches. Left panels: areas under the ROC curve (y-axis), averaged across SNR and group size n for all tested methods: (a) t-test on
parameter estimates, (b) t-test on log-evidence, (c) Chi-squared test (d) positive evidence for the group Bayes factor, (e) ratio and (f) binomial probability of positive evidence counts,
(g) group BMS as summarized by the protected exceedance probability. The color indicates themethod (violet: classical RFX, green: RFX-LE, blue: PER, orange: SBF2-3, red: BMS). Simulated
SNR decreases from left to right (10 dB per panel). Right panel: Statistical power (y-axis) at a Type I error rate of 5% (cf. marker α on upper panels of Fig. 6).
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Between-group and between-condition BMS

In this section, we address the relationship between different treat-
ment conditions and groups; for example, dealing with one group of
subjects measured under two conditions,4 or two groups of subjects.
Until now, condition and group effects have been addressed by
performing random effects BMS independently for the different condi-
tions or groups, and then checking anecdotally to see whether the
results of random effects BMS were consistent (see, e.g., van Leeuwen
et al., 2011). This approach is limited, because it does not test the
hypothesis that the samemodel describes the two conditions or groups.
In this section, we address the issue of evaluating the evidence for a
difference – in terms of models – between conditions (or groups).

Between-conditions comparison

In the following, we assume that the experimental design in-
cludes p conditions, to which a group of n subjects were exposed.
Let yij be the ith subject's response to the jth condition, which
are to be interpreted with K alternative models. We assume that a
Bayesian subject-level analysis has provided us with the log-
evidence Lijk =log p(yij|mijk) of the kth model, for the ith subject
under the jth condition, with i = 1,..., n, j = 1,..., p and k = 1,..., K.
One can think of the p conditions as inducing an augmented model
space composed of Kpp-tuples ti that encode all combinations of can-
didate models and conditions. Here, any p-tuple ti identifies the
models associated with each condition (which may or may not be the
same). The log-evidenceeLih ¼ logp yi tihj Þð of the hth tuple, for the ith sub-
ject can be derived by summing up the log evidences over the appropri-
ate conditions.

Random effects BMS can then be used to identify the best of these
p-tuples at the group level, by passing the log-evidences eLih to the
random-effect BMS. To assess the probability that the same model
underlies all conditions, one could use “family” inference (Penny
et al., 2010) on a partition of the Kp tuples that divides them into a
first subset, in which the same model underlies all conditions, and
a second subset containing the remaining tuples (with distinct
condition-specific models). The ensuing protected EPs can then be
used to test whether different conditions correspond to different
models.

Fig. 9 shows an example with K = 2 models and p = 2 conditions.
This induces four different 2-tuples (t1 to t4) that differ in which
4 Here, we do not refer to experimental conditions that co-exist within the same mea-
surement session, such as changes in task demands. Instead, we refer to conditions that
differ across two measurements within the same subject, i.e., a session-wise difference
such as drug application.
model (m1 or m2) is assumed to generate data under each condition
(y1and y2). The log-evidence of these 2-tuples is derived as follows
(dropping the subject's index):

eL1 ¼ log p ðy t1j Þ ¼ log p ðy1 m1j Þ þ log p ðy2 m1j Þ ¼ L11 þ L21eL2 ¼ log p ðy t2j Þ ¼ log p ðy1 m1j Þ þ log p ðy2 m2j Þ ¼ L11 þ L22eL3 ¼ log p ðy t3j Þ ¼ log p ðy1 m2j Þ þ log p ðy2 m1j Þ ¼ L12 þ L21eL4 ¼ log p y t4j Þ ¼ log p y1 m2j Þ þ log p y2 m2j Þ ¼ L12 þ L22ððð

8>>><>>>: ð9Þ

where Ljk refers to the log-evidence log p(yj|mk) of the kth model
under the jth condition. The set of candidate 2-tuples can then
be partitioned into two families, which differ in terms of whether
the same model underlies both conditions (f= = {t1,t4}) or not
(f≠ ={t2,t3}). The protected EP of family f= (resp. f≠) quantifies the
probability that the two conditions rely more (resp. less) frequently
on the samemodel than on differentmodels. Inwhat follows,we repro-
duce the analysis of the Application to Dynamic Causal Modeling
section, in the aim of demonstrating the between-condition (group-
level) BMS.

As in the Application to Dynamic Causal Modeling section, we focus
on the comparison of parallel versus serial DCMs (model m1 and m2,
respectively; cf. Fig. 2). Now, being exposed to two conditions, each
subject is described by a particular 2-tuple (as opposed to models).
We want to assess the impact of the frequency r= of the 2-tuples
family f=,whichwe systematically vary from0 to 1. For each frequency,
we randomly draw 256 groups of subjects (sample size: n = 16).
Subjects belonging to family f= were equally likely to be associated
with 2-tuples t1 or t4 (i.e., models m1 and m2, respectively). For
each group of subjects, we derived the BOR, as well as the protected
and unprotected EP (φ= and φ≠, respectively) of family f= using the
group-BMS approach. Their empirical Monte-Carlo distributions can be
eyeballed in Fig. 9.

One can see that these are qualitatively similar to those of the
Application to Dynamic Causal Modeling section. For example, ob-
serving an extreme value (0 or 1) around the null is much less likely
for protected than for unprotected EPs. However, when compared to
“simple” model comparison (cf. Fig. 2), the BOR is less sensitive to
deviations from the null. This is a non-trivial consequence of a slight
subject-level model identifiability issue. In brief, group-level evidence
in favour or against f= is obscured by subject-level model selection
errors. Finally, we performed a ROC analysis, in the aim of assessing
the ability of the scheme to detect whether family f= was more fre-
quent than f≠. This was done by splitting the samples according to
r= ≤ r≠ and r= ≥ r≠. Table 3 summarizes the comparison of protected
and unprotected EPs, with respect to their relative ability to disambigu-
ate between heterogeneous (r= ≤ r≠) and homogeneous (r= ≥ r≠)
conditions.

image of Fig.�8


Fig. 9. Between-conditions BMS: application to DCM. Upper-left: The four 2-tuples t1 to t4 are shown, in terms of the possible combinations of associations of models (m1 or m2) and
conditions (y1 or y2). These are partitioned into families f= (green) and f≠ (red), which correspond to homogeneous and heterogeneous conditions, respectively (see main text).
Upper-right: This table summarizes the definition of the four 2-tuples in terms of the possible combinations of models (m1 or m2) for each condition (y1 or y2). Lower-left:
Monte-Carlo histogram (z-axis) of unprotected EP φ= (y-axis) as a function of frequency r= of family f= in the population (x-axis). The blue line indicates the Monte-Carlo average.
Lower-middle: same format, for BOR P0. Lower-right: same format, for protected EP eφ¼ .
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First, note that we did not include the BOR in this analysis, as it can-
not discriminate between heterogeneous and homogeneous conditions
(in fact, its area under the ROC curve is about 0.50). Second, we do
not report the statistical power at 5%, because it does not make
sense to break the symmetry between the two hypotheses in this
case. Now, one can see that, overall, the discrimination ability of
protected and unprotected EPs is identical and very high. However,
the overconfidence of unprotected EPs expresses itself as a surpris-
ingly high disambiguation threshold (which nonetheless yields
identical total error rate). Taken together, our Monte-Carlo simula-
tions provide face validity to the above between-condition group-BMS
approach.
Between-group comparison

Assessing between-group model comparison in terms of random
effects amounts to asking whether model frequencies are the same
or different between groups. Let us partition all subjects into S sub-
groups, indexed by the variable s — for example, subgroups that
have been exposed to different treatments. Let Is be the sets of indi-
ces of subjects belonging to the sth subgroup, and ys ¼ yif gi∈Is be
the corresponding subset of data. As above, K alternative models
are considered in relation to these subject-specific responses. This
Table 3
Detecting differences in model frequencies: ROC analysis of unprotected EPs (top) and
protected EPs (bottom). The area under the ROC curve (AROC), disambiguation threshold
and its associated minimal total error rate (TER) are given for groups of n = 16 subjects.

AROC Threshold TER

max
k

φk 0.95 0.65 24%
max

k
eφk 0.93 0.50 25%
section addresses the question of disambiguating the two following
hypotheses (at the group level):

• H=: {y1,.., yS} come from the same population, i.e. model frequencies r
are the same for all subgroups.

• H≠: {y1,.., yS} come from different populations, i.e. they have distinct
model frequencies r(s).

Again, we use subject-specific (log-) model evidences Lik =
log p(yi|mik). These can be used to derive the evidence p(H=/≠|y)
of assumptions H= and H≠ at the group level. Under H=, the datasets
ys can be pooled in the usual way to perform a standard random effects
BMS, yielding a single evidence p(y|H=) = p(y|H1), where p(y|H1) is
given by Eq. (6). Under H≠, datasets ys are marginally independent. In
this case, the evidence p(y|H≠) is the product of group-specific evi-
dences. This implies that the posterior probability of H≠ is:

pðH≠ yj Þ ¼ p
�
y H≠
�� �

p
�
y H≠
�� �þ p

�
y H¼j Þ

p
�
y H≠
�� � ¼ ∏

S

s¼1
pðys H1j Þ

pðy H¼j Þ ¼ pð ∪
S

s¼1
ys H1j Þ:

ð10Þ

This statistic quantifies the likelihood that the subgroups have dis-
tinct model frequencies.

We now adapt the analysis of the Between-conditions comparison
section above to the situation of between-group comparison (parallel
versus serial DCMs, two groups of sample size n = 16 each). We want
to assess the impact of the difference in the model frequency profile of
the two groups. We thus varied the frequency r1 of model m1 from 0
to 1 for both groups, in a factorial way. For each pair of frequencies

image of Fig.�9
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(r1
(1),r1

(2)), we randomly draw two groups of subjects, 256 times. Each
subject in each groupwas given eithermodelm1 ormodelm2, according
to the appropriate model frequency in the group (cf. Eq. (1)). For
each pair of groups, we then derived the posterior probability
p(H≠|y) (cf. Eq. (10)). The first two moments of its empirical
Monte-Carlo distribution, as a function of both group frequency profiles,
can be eyeballed in Fig. 10.

As we expected, p(H≠|y) reaches unity for very different frequency
profiles (r1

(1) ≈ 1 − r1
(2)), and is minimal for similar frequency profiles

(r1
(1) ≈ r1

(2)). However, onefindsweaker statistical evidence for the latter
situation, which yields p(H≠|y) ≈ 0.1 on average. This is because even
when the underlying models are all identical, natural variations in
within-subject log-Bayes factors (cf. Fig. 2 and Application to Dynamic
CausalModeling section) induce somemodel selection errors. This even-
tually compromises the evidence in favour of H=. In brief, partial non-
identifiability issues make it more difficult to conclude in favour of H=.
Let us now focus on the Monte-Carlo standard deviation of p(H≠|y).
First, p(H≠|y) shows minimal variability for either very different or very
similar frequency profiles. Second, one can see that, for similar frequency
profiles (r1

(1) ≈ r1
(2)), its standard deviation increases around the null

(r1
(1) ≈ r1

(2) ≈ 1/2). This is due to the bigger within-group variability in
terms of models, which increases the chance probability of observing
(seemingly) different frequency profiles. This eventually also impacts on
the mean p(H≠|y) for similar frequency profiles (r1

(1) ≈ r1
(2)), which in-

creases as the frequency profile tends towards the null.
Clearly, the question of whether it is useful to consider differ-

ences in model frequencies as diagnostic of a treatment effect de-
serves careful consideration. However, in situations where group or
condition differences are expressed in terms of categorical differences
between models, the approaches described above provide a principled
way of making suitable inferences.

Discussion

In this work, we introduced three extensions of our original approach
to random effects BMS (Stephan et al., 2009). First, we have described a
Fig. 10. Between-group BMS: application to DCM.Upper-left: The two group-level hypotheses a
from the same population frequency profile r. H≠ assumes that models underlying both group
Lower-left: quadratic distance (z-axis) between group-specific frequency profiles, as a functi
group-specific null assumptions (H0) correspond to r1

(1) = 1/2 and r1
(2) = 1/2, respectively. L

p(H≠|y). Lower-right: same format, for the Monte-Carlo standard deviation of the evidence for
protected exceedance probability that any model is more frequent than
the others (above and beyond chance). Second, we have presented sys-
tematic simulations of various approaches to address questions about
specific treatment effects on model parameters using group studies.
Third, we considered approaches to between-condition and between-
group BMS inference on models.

A major contribution of this paper is the re-evaluation of exceedance
probabilities (EP), in terms of the statistical risk incurred when
performing random effects BMS. We conclude that EP cannot be used to
assess this statistical risk. More precisely, EPs are slightly overconfident
— for example, if the best model has an EP of φ =0.95, the probabil-
ity that there is no difference in model frequencies is greater than
0.05. This is because the definition of EP does not consider a null
model at the group level. In other words, chance is discounted as a
potential explanation for the data. Although this does not invalidate
EP-based ranking of candidate models, it means that one should not
equate it with classical 5% significance thresholds.

Our reading of the literature suggests that there may have been a
potential misunderstanding about the nature of exceedance probabili-
ties. Recall that, as is evident from the Polya's urn treatment, one can
think of r as the frequency (or proportion) of models within the popula-
tion. Since r is not known with infinite precision, we quantify our
(Bayesian) belief about it using a probability density function. After
having observed the data, we can interrogate the posterior density
over model frequencies in many ways. For example, its first-order
moment is useful to define a posterior estimate 〈r〉 = E[r|y,H1] of
model frequencies, under H1 (which refers to the prior assumption of
“no bias”; cf. the Polya's urn model section). Error bars on this estimate
can be derived from the posterior variance of r. In this context, EPs
are simply the posterior probability PðrkNrk′≠k y;H1j Þ that each
model is more frequent than others, under H1 — that frequencies
can differ. From this perspective, it becomes natural to consider other
assumptions regarding model frequencies, one of which being the
null H0 — that frequencies do not differ. This motivates protected
EPs, which rely upon Bayesian model averaging to account for the
possibility that there may be no difference in model frequencies.
re shown.H= assumes thatmodels underlying both group datasets (ys andys′) are samples
datasets (ys and ys′ ) are samples from different population frequency profiles r sð Þ≠r s′ð Þ .

on of r(1) (x-axis) and r(2) (y-axis). H= is situated on the main diagonal r1(1) = r1
(2). The

ower-middle: same format, for the Monte-Carlo average of the evidence for a difference
a difference p(H≠|y).
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Effectively, this eliminates an overconfidence bias of exceedance
probability, when interpreted in a frequentist sense; i.e., in terms
of sensitivity and specificity.

The motivation for the protected EP was to correct for its slight
overconfidence, which arises when one uses the maximum EP as an
index of the evidence against the null. This bias is a consequence of
discounting the null as a potential explanation for apparent differences
in model frequencies. From this perspective, one has to consider H1 as
one candidate scenario for explaining the observed variability in
subject-wise evidences. In fact, there is another scenario that we did
not consider in detail, namely: the same model could have generated
all the data. This is the assumption that underlies fixed-effects BMS
(this is discussed in Stephan et al., 2009). The evidence for this model
could also be quantified (results not shown). Note that considering
fixed-effects in addition to H1 and H0 might increase the Bayesian
omnibus risk. In other words, as they stand, protected EPs are not
corrected for the possibility of fixed-effects. Having said this, we expect
this correction to be less severe, because fixed-effects correspond to the
limiting situation where model frequencies are all zero with the ex-
ception of one model. This means that neglecting fixed-effects in the
derivation of protected EPs is conservative. The question of which
scenarios or prior assumptions about model frequencies should be
entertained is – of course – a question about prior beliefs about the
random behaviour of models. In effect, the protected EP described
in this paper is a special case in which, a priori, model frequencies
cannot be zero or one — all these scenarios are considered, a priori,
implausible.

In terms of the insights provided by the simulation results of the
last section — we demonstrated that the classical random effects
tests of parameter estimates are not suited to test for consistent
evidence for the presence of model parameters across subjects. How-
ever, it is a perfectly valid method for asking whether an effect is
consistent across subjects. In fact, our Monte-Carlo simulations dem-
onstrate that its usefulness as the test for consistency generalizes to
all DCM parameter estimates (results not shown). The point here is
that these inferences do not compete with each other: they are es-
sentially complementary and address different questions. In other
words, it is perfectly reasonable to ask both types of questions, and
thus use both approaches.

In the context of DCM, Bayesian model selection rests on the free
energy approximation to the model evidence (Stephan et al., 2009).
However, other approximations (that also penalize model com-
plexity) have been used (Penny, 2012). The so-called Bayesian
Information Criterion (Schwarz, 1978) and Akaike's information cri-
terion (Akaike, 1973) are two common examples. We assessed the
impact of model evidence approximations on the efficiency of ran-
dom effects BMS (results not shown). In brief, group-BMS performs
significantly worse with AIC and/or BIC indices than with the Free
Energy. More precisely, we found statistical evidence that, in com-
parison to the Free Energy, BIC over estimates model complexity,
whereas AIC underestimates it. This replicates the results in Penny
(2012).

Finally, we would like to emphasize our take-home message. One
may askwhich summary statistics to report froma (potentially complex)
group-level analysis. In brief, one should report the statistics that directly
quantifies the statistical risk incurredwhen stating the assertion of inter-
est (e.g. “there is no difference between group A and group B”). This is
because readers can then both evaluate the strength of evidence, and
compare the risk to any acceptable error rate. With this work, we hope
to have shown that— in most cases— this risk can be evaluated in a rel-
atively straightforward way.
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Appendix 1. Limit results for the Polya's urn model

In this section,we quantify the impact of a small difference inmarble
counts on the Bayesian omnibus risk (BOR) and on the exceedance
probability (φ), in the context of Polya's urn model.

The Bayesian omnibus risk (BOR)

Recall that the Bayesian omnibus risk (BOR) can be defined in
terms of the log-Bayes factor (LBF) that measures the evidence for
H1 (against H0):

BOR ¼ 1
1þ exp LBFð Þ

LBF ¼ log
pðm H1j Þ
pðm H0j Þ

¼ log

Kn Γ Kα0ð Þ∏
K

k¼1
Γ α0 þ

Xn
i¼1

mik

 !
Γ α0ð ÞKΓ Kα0 þ nð Þ :

ðA1Þ

Consider the behaviour of LBF around the limiting case, where the
observed number of marbles of each type is the same. Let us assume
that we observe n/K marbles of each type, except for two (arbitrary)
types, whose number of marbles are n/K + ε and n/K − ε, respectively.
Here, ε is a small perturbation around equal counts. Under flat priors on
the marble frequencies (α0 = 1), one can express the LBF as a function
of the perturbation ε:

LBF εð Þ ¼ log
Kn K−1ð Þ!Γ 1þ n

K

� �K−2Γ 1þ n
K
þ ε

� �
Γ 1þ n

K
−ε

� �
Γ K þ nð Þ

¼ log
Kn K−1ð Þ! n

K

� �
!

� �K−2 n
K
þ ε

� �
!
n
K
−ε

� �
!

K þ n−1ð Þ! :

ðA2Þ

We can make use of Stirling's approximation (Dan Romik, 2000) to
yield the asymptotic behaviour of the log-Bayes factor:

LBF εð Þ≈n log K þ K−1ð Þ log K−1ð Þ− K−1ð Þ

þ K−2ð Þ n
K

log
n
K
− n

K

� �
þ n

K
þ ε

� �
log

n
K
þ ε

� �
− n

K
þ ε

� �
þ n

K
−ε

� �
log

n
K
−ε

� �
− n

K
−ε

� �
− K þ nð Þ log K þ nð Þ þ K þ nð Þ:

ðA3Þ

One can now use a Taylor expansion around ε = 0 to arrive at an
approximation of the omnibus Bayes factor:

LBF εð Þ≈LBF 0ð Þ þ ε
∂
∂ε LBFjε¼0

þ 1
2
ε2

∂2

∂ε2
LBFj

ε¼0

¼ K log
K−1
K þ n

þ n log
n

K þ n
− log K−1ð Þ þ 1þ K

n
ε2

ðA4Þ

where the linear term in the Taylor expansion vanishes. The limiting
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behaviour of Eq. (A4) can now be used to derive the behaviour of the
Bayesian omnibus risk as a function of ε (BOR(ε), cf. Eq. (A1)).

First, note that: BOR 0ð Þ→n→∞1 , i.e., equal counts asymptotically
yield unambiguous evidence for the null. Second, note that
BOR(ε) ≤ BOR(0), i.e., the net effect of the perturbation ε is to decrease
the evidence for the null. However, the contribution of the perturbation
term is inversely proportional to the number of marbles n.

The exceedance probability

Recall that the exceedance probability is defined as follows:
φk ¼ PðrkNrk′≠k m;H1j Þ . As above, we are interested in the asymptotic
behavior of max

k
φk , given small perturbations ε around equal counts.

For the sake of simplicity, we will focus on the K = 2 case. In this case,
the exceedance probability can be written as:

φ1 ¼
Z1
1=2

pðr1 m;H1j Þdr1

¼ Γ 2α0 þ nð Þ

Γ α0 þ
Xn
i¼1

mi2

 !
Γ α0 þ

Xn
i¼1

mi1

 ! Z1
1=2

r
α0þ
Xn
i¼1

mi1−1

1−rð Þ
α0þ
Xn
i¼1

mi2−1

dr

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I mð Þ

ðA5Þ

where I(m) is an integral that depends on the marbles' counts m. Again,
let us assume that we observe n/2 + ε marbles of type 1 and n/2 − ε
marbles of type 2, respectively. Under flat priors on themarble frequen-
cies (α0 = 1), one can express the exceedance probability as a function
of the perturbation ε:

φ1 εð Þ ¼ Γ 2þ nð Þ
Γ 1þ n

2
−ε

� �
Γ 1þ n

2
þ ε

� � I εð Þ

¼ nþ 1ð Þ!
n
2
þ ε

� �
!
n
2
−ε

� �
!
I εð Þ:

ðA6Þ

Using integration by parts, one can derive a recurrence relation for
the integral term I(ε), as follows:

I εð Þ ¼
Z1
1=2

r
n
2þε 1−rð Þn2−εdr

¼ 1
n
2
þ 1þ ε

r
n
2þ1þε 1−rð Þn2−ε

h i1
1=2

þ n
2
−ε

� �Z1
1=2

r
n
2þεþ1 1−rð Þn2−ε−1dr

0B@
1CA

¼ 1
n
2
þ 1þ ε

−2−n−1 þ n
2
−ε

� �Z1
1=2

r
n
2þεþ1 1−rð Þn2−ε−1dr

0B@
1CA

¼ 1
n
2
þ 1þ ε

−2−n−1 þ n
2
−ε

� �
I ε þ 1ð Þ

� �
:

ðA7Þ

Note that I(n/2) can be solved analytically, i.e.:

I
n
2

� �
¼
Z1
1=2

rndr ¼ 1
nþ 1

rnþ1
h i1

1=2
¼ 1

nþ 1
1−2−n−1
� �

: ðA8Þ

From Eq. (A7), backwards induction yields:

I
n
2
−k

� �
¼ k! n−kð Þ! 1

nþ 1ð Þ!−2−n−1Xk
i¼0

1
i! n−iþ 1ð Þ!

 !
ðA9Þ
where k is an arbitrary integer. Now setting k = n/2 − ε solves the in-
tegral calculus:

I εð Þ ¼ n
2
−ε

� �
!
n
2
þ ε

� �
!

1
nþ 1ð Þ!−2−n−1 Xn=2−ε

i¼0

1
i! n−iþ 1ð Þ!

 !
: ðA10Þ

Eq. (A10) can now be inserted into Eq. (A6) to derive the following
analytic expression for the exceedance probability:

φ1 εð Þ ¼ nþ 1ð Þ! 1
nþ 1ð Þ!−2−n−1 Xn=2−ε

i¼0

1
i! n−iþ 1ð Þ!

 !

¼ 1−2−n−1 Xn=2−ε

i¼0

nþ 1ð Þ!
i! n−iþ 1ð Þ!

¼ 1−2−n−1 Xn=2−ε

i¼0

nþ 1
i


 � ðA11Þ

where nþ 1
i


 �
is the binomial coefficient that counts the number of

ways to sample i marbles from an urn containing n + 1 marbles.
From Eq. (A11), one can derive the natural bounds of the exceedance
probability, i.e.: (i) if there are equal counts of each marble type (ε = 0)
then the exceedance probability is indecisive (φ1(0) = 1/2), and (ii) if
all sampled marbles are of the first type (ε = n/2), then the exceedance
probability is unambiguous (φ1(n/2) = 1). The lower bound follows
from the theorem on the sum of binomial coefficients (Abramowitz and
Stegun, 1968), i.e.:

φ1 0ð Þ ¼ 1− 1
2nþ1

Xn=2
i¼0

nþ 1
i


 �
¼ 1− 2n

2nþ1

¼ 1=2:

ðA12Þ

Now, let us approximate the derivative of the exceedance probability
through the limiting case of finite differences (for the smallest difference
in marble counts):

∂
∂ε φ1 εð Þ≈ lim

Δε→1

φ1 ε þ Δεð Þ−φ1 εð Þ
Δε

¼ 2−n−1 nþ 1
n
2
−ε

 !
:

ðA13Þ

This can now enter a Taylor expansion, to yield a linear approxima-
tion to the exceedance probability around small imbalance in the mar-
ble counts (ε/n → 0):

φ1 εð Þ≈φ1 0ð Þ þ ∂φ1

∂ε j
0
ε þ O ε2

� �
¼ 1

2
þ 2−n−1 nþ 1

n
2


 �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≈2nþ1=

ffiffiffiffi
πn

p

ε

¼ 1
2
þ 1ffiffiffiffiffiffi

πn
p ε

ðA14Þ

where the second line derives from Stirling's approximation. Note that
Eq. (A14) can easily be generalized to the maximum exceedance proba-
bility, which, by definition, benefits from the difference ε in marble
counts:

max
k

φk ¼ φ1 if ε N 0

max
k

φk ¼ 1−φ1 if εb0

)
⇒ max

k
φk ¼

1
2
þ 1ffiffiffiffiffiffi

πn
p εj j ðA15Þ

Overall, this means that the qualitative behaviour of the maximum
exceedance probability is similar to the Bayesian omnibus risk. However,
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in contradistinction to BOR, the contribution of the perturbation term to
the maximum exceedance probability is inversely proportional to the
square root

ffiffiffi
n

p
of the number ofmarbles. This means that the two statis-

tics may not show the same statistical power. In fact, we demonstrate
this difference using Monte-Carlo simulations (see main text).

Appendix 2. Model evidence for the random-effect model

In this section,we derive an approximation to the Bayesian omnibus
risk, given the VB treatment of random effects BMS, as described in
Stephan et al. (2009).

First, we derive the group evidence for the null p(y|H0): under
the null, model frequencies are a priori assumed to be fixed to 1/K,
where K is the number of models to be compared. This means
that the prior on model labels (Eq. (5) in the main text) simplifies

to pðmi H0j Þ ¼ ∏
K

k¼1
1=Kmik . This induces the following Free energy:

F0 ¼
Xn
i¼1

XK
k¼1

mik log pðyi mik ¼ 1j Þ
* +

þ
Xn
i¼1

XK
k¼1

mik log pðmik ¼ 1 H0j Þ
* +

þ S qð Þ

¼
Xn
i¼1

XK
k¼1

Likwik−
Xn
i¼1

XK
k¼1

wik log K−
Xn
i¼1

XK
k¼1

wik logwik

¼
Xn
i¼1

XK
k¼1

wik Lik− log K− logwikð Þ

ðA17Þ

where q is the (multinomial; see above) variational posterior on model
labelsmi, whose sufficient statistics iswik, i.e. the probability that the ith
subject is best described by the kth model (under H0). Maximizing F0
with respect to q yields the posterior density on model labels:

log q mð Þ ¼
Xn
i¼1

XK
k¼1

"
log pðyi mik ¼ 1j Þ

#mik

þ
Xn
i¼1

log pðmi H0j Þ

¼
Xn
i¼1

XK
k¼1

mikLik−
Xn
i¼1

XK
k¼1

mik log K ¼
Xn
i¼1

XK
k¼1

mik Lik− log Kð Þ

ðA18Þ
where we have omitted constant terms for clarity. One can see that the
posterior density on model labels has a multinomial form, whose suffi-
cient statistics wik are given by:
q mð Þ ¼ ∏

n

i¼1
q mið Þ

q mið Þ ¼ ∏
K

k¼1
wik

mik

wik ¼
exp Likð ÞXK

k′¼1

exp Lik′
� � :

ðA19Þ

Substituting Eq. (A19) into Eq. (A17) yields the evidence for the null
F0 = log p(y|H0).

Let us now focus onH1, i.e. the random-effects group-BMSmodelwe
introduced in Stephan et al. (2009). Note that the Dirichlet prior on
model frequencies (Eq. (3)) induces the following Free Energy bound:

F1 ¼
Xn
i¼1

XK
k¼1

mik log pðyi mik ¼ 1j Þ
* +

þ
Xn
i¼1

XK
k¼1

mik log pðmik ¼ 1 rkj Þ
* +

þ log pðr H1j Þh i þ S qð Þ ¼
Xn
i¼1

XK
k¼1

Likzikþ
Xn
i¼1

XK
k¼1

zik log rkh i

þ
XK
k¼1

α0−1ð Þ log rkh i þ log Γ Kα0ð Þ−K log Γ α0ð Þ−
Xn
i¼1

XK
k¼1

zik log zik

þ
XK
k¼1

log Γ αkð Þ− log Γ
XK
k¼1

αk

 !
−
XK
k¼1

αk−1ð Þ log rkh i log rkh i

¼ ψ αkð Þ−ψ
XK
k′¼1

αk′

 !
ðA20Þ
where ψ is the digamma function and the remaining expectation is
taken under the Dirichlet posterior over model frequencies q(r),
whose sufficient statistics are {αk}k = 1,...,K. Here, zik is the probability
that the ith subject is best described by the kth model under H1. The
VB treatment of this model under a mean-field assumption is described
in Stephan et al. (2009), yielding the following VB update rules:

αk ¼ α0 þ
Xn
i¼1

zik

zik ¼
exp Lik þ ψ αkð Þð ÞXK

k′¼1

exp Lik′ þ ψ αk′
� �� � ðA21Þ

for k = 1,..., K and i = 1,..., n. Inserting Eq. (A21) (after convergence
of the VB algorithm) yields the lower bound to the model evidence
F1 = log p(y|H1). The Bayesian omnibus risk can now be simply
evaluated as follows: BOR ¼ 1

1þ exp F1−F0ð Þ.

Appendix 3. Dynamic Causal Modeling (DCM)

In addition to localizing brain regions that encode specific sensory,
motor or cognitive processes, neuroimaging data is nowadays further
exploited to understand how information is transmitted through brain
networks. Addressing such questions is the raison d'être of Dynamic
Causal Modeling (DCM), which allows for the formal (Bayesian) statis-
tical analysis of large-scale network connectivity based upon realistic
biophysicalmodels of brain responses. In brief, a set of differential equa-
tions describe how neuronal populations interact and respond to exter-
nal perturbation (e.g., sensory stimulation). These state equations are
augmented with an observation model that maps the dynamics of the
hidden neuronal states (such as average membrane depolarization
within neuronal ensembles) to neuroimaging data time series (such
as EEG5 of fMRI6). Important DCMparameters are, for example, connec-
tion strengths and their modulation. Note that the latter usually
embody the question of interest — which is usually framed in terms of
plasticity (change in connectivity) induced by drugs, lesions or task
demands.

Note that the impact of model parameters on the data is nonlinear
and obscured by measurement noise. This is why DCM relies upon var-
iational approaches to approximate Bayesian inference (Friston et al.,
2007b), which are informed about the (a priori) likely values of model
parameters. In essence, the variational Bayesian (VB) scheme recovers
the approximate posterior density q(θ) ≈ p(θ|y,m) under the Laplace
approximation (Friston et al., 2007b), given the synthetic fMRI data
time series. This density can be used to define parameter estimates
(θ̂ ¼ E θ y;mj �½ ), which can then enter a second-level analysis (cf. the
Random effects BMS and classical random effects analysis of parameter
estimates section). It also provides a free energy (bound) approxi-
mation to the log model evidence log p(y|m):

F ¼ I μð Þ þ 1
2

ln Σj j þ p
2

ln2π

Σ ¼ − ∂2I
∂θ2

j
μ

" #−1

I θð Þ ¼ ln p y θ;mj Þ þ ln p θ mj Þðð

ðA22Þ

where I(θ) is the log joint density over data y and parameters θ
under the generative model m, p is the number of parameters, and μ
and Σ are the main and variance of the approximate Gaussian posterior
density q(θ) = N(μ,Σ). Here, θ includes neural parameters (e.g., network
connectivity strengths), as well as other parameters that control, for ex-
ample, the shape of the hemodynamic response function. Priors p(θ|m)
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on model parameters can be found in Daunizeau et al. (2012). Note that
Bayesian model selection rests on the VB free energy approximation to
the model evidence (cf. Eq. (A22)). In this work, DCM simulations and
model inversions used the VBA-toolbox7 (http://code.google.com/p/
mbb-vb-toolbox/).
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