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A major reason for disappointing progress of psychiatric

diagnostics and nosology is the lack of tests which enable

mechanistic inference on disease processes within individual

patients. The resulting inability to pursue formal differential

diagnosis has forced the field to stick to symptom-based

diagnostic schemes with limited predictive validity concerning

treatment response and clinical outcome. A promising new

approach is the use of computational modeling for inferring

mechanisms which generate observed behavior and brain

activity in psychiatric patients. However, while this

computational approach to psychiatry is rapidly gaining

attention, much work remains to be done to finesse existing

computational models, making them ‘fit for practice’ in a

clinical setting and proving their validity in longitudinal studies.

This review outlines recent methodological advances and

strategies in this regard, focusing on generative models which

infer mechanistically interpretable parameters (of

computational or physiological processes) from measured

behavior and brain activity.
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Why are computational approaches important
for psychiatry?
The present diagnostic toolkit of psychiatry does not in-

clude diagnostic tests (other than those for excluding

‘organic’ causes of brain disease) which reveal precise

mechanisms underlying a given behavioral symptom and

predict clinical outcome or guide individual treatment [1��].
This is a major reason why psychiatry has been unable to

move beyond descriptive categorizations (such as the Diag-

nostic and Statistical Manual of Mental Disorders, DSM)
www.sciencedirect.com 
which define mental diseases phenomenologically as clus-

ters of symptoms but have limited predictive validity [2��].

Some reasons for this absence of mechanistically

grounded tests are easily named. Genetics and neuroima-

ging as key methods of biological psychiatry face con-

siderable hurdles: genetics struggles with strong gene–
environment interactions, which is a likely key reason

why clinically relevant predictions based on genomic data

alone have been unsuccessful so far; cf. [3]. In contrast,

while neuroimaging has the advantage of providing read-

outs of the functional status quo of putatively symptom-

producing circuits, its measurements are indirect and

distal from the neuronal processes of interest, aggravating

the formulation of mechanistic hypotheses. One import-

ant strategy for breaking this impasse rests on the use of

‘computational’ models [4�,5��,6,7,8��]. In this review, we

consider two possible meanings of the broad term ‘com-

putational’: first, modeling mechanisms of information
processing and second, inferring physiological processes

from measurements of brain activity.

Computational approaches to psychiatry are rapidly gain-

ing attention, as demonstrated by transregional research

programs (e.g., the joint initiative by University College

London and the Max Planck Society on ‘Computational

Psychiatry and Ageing Research’, [9]), the first conference

dedicated to ‘Computational Psychiatry’ [10], and newly

founded institutions specifically dedicated to transla-

tional neuromodeling [11]. Numerous encouraging

proof-of-concept examples exist how computational mod-

eling can be applied to patients, for example [12–15]. So

far, however, so far none of these computational

approaches has been evaluated using a prospective study

design, which is essential for evaluating clinical utility.

Therefore, this review on recent advances in methods and

strategies for unlocking the translational potential of the

computational approach to psychiatry. We concentrate on

so-called ‘generative models’ which specify a joint prob-

ability distribution over all variables (observations and

parameters) and serve to infer on cognitive and physio-

logical mechanisms from measured behavior or brain

activity [4�] (see Box 1). By contrast, limited space prohi-

bits us from discussing the rich modeling literature inspired

by neuroeconomics, game theory, graph theory or machine

learning applications to psychiatric neuroimaging; for com-

prehensive review on these topics, see [16–18].

Modeling computation
The majority of existing computational treatments of

psychiatric diseases concern aberrant learning and
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Box 1 Generative models

A generative model defines a joint probability distribution p(y,u) over

observations (measured data y) and parameters u. It has two

components, a likelihood function p(yju) and a prior density of the

parameters p(u). It is called ‘generative’ because one can generate

synthetic data by sampling parameter values from the prior and

plugging these into the likelihood. One can thus also regard a

generative model as a ‘forward model’ from parameters to observed

data. ‘Model inversion’ refers to the opposite process: estimating the

posterior probability of the parameters, given some observed data.

Notably, by integrating out the dependency of the data on the

parameters, one obtains the ‘expected data’, that is, the marginal

likelihood or model evidence:

pðyÞ ¼
Z

pðy juÞ pðuÞ du (1)

The model evidence is a principled measure for the generalizability of

a model (i.e., its trade-off between accuracy and complexity) and is

widely used for model comparison; see [69,71].
decision-making as core components of maladaptive cog-

nition. While many types of such models exist, two have

found particularly widespread application to empirical

data: models of reinforcement learning (RL) and Baye-

sian inference. While originating from different theoreti-

cal roots, the two frameworks share some conceptual

links. Most importantly, as highlighted in a recent deri-

vation of RL equations from a variational approximation

to hierarchical Bayesian learning [19�], both frameworks

posit a structurally similar driving force behind learning:

prediction error (PE), weighted by learning rate (RL) or

precision/uncertainty (Bayesian theories). In this review,

we give particular emphasis to Bayesian approaches,

given that several excellent recent reviews on develop-

ments of RL exist [20–24].

One research question of particular relevance for psychia-

try concerns the difference between ‘model-free’ and

‘model-based’ systems which are supposed to mediate

habitual and goal-directed learning, respectively [25].

Simply speaking, in the former case, the PE represents

the difference between actual and expected outcomes

(e.g., a reward PE); in the latter case, the model embodies

explicit knowledge about the environment and updates

its representations by ‘state PEs’ (the difference between

implied and expected states).

This distinction has received much interest by RL

approaches in recent years. This was motivated by ideas

about potential competition between different learning

systems, for example, counter-productive Pavlovian influ-

ences on goal-directed learning [26], or a disturbance in

the balance between habitual and goal-directed learning

in obsessive–compulsive disorder [27]. An initial fMRI

study [28] found that healthy participants’ learning beha-

vior reflected both reward and state PEs, where the

former were correlated with activity in the ventral stria-

tum, consistent with many previous studies, while state
Current Opinion in Neurobiology 2014, 25:85–92 
PEs were encoded by activity in parietal and prefrontal

areas. This was broadly compatible with subsequent

fMRI results [29] of ventral striatal activations by reward

PEs, while state PEs where reflected by activity in pre-

frontal areas. However, another study with a two-step

task, designed to maximally distinguish model-free and

model-based learning, showed that fMRI activity in the

ventral striatum did not purely reflect model-free learn-

ing, but a mixture of both learning forms, with proportions

identical to those which optimally explained behavior

[30��]. According to the authors, ‘these results challenge

the notion of a separate model-free learner and suggest a

more integrated computational architecture for high-level

human decision-making.’

Moving from RL to Bayesian approaches, the ‘Bayesian

brain hypothesis’ [31,32], which views the brain as con-

structing and continuously updating a generative model

of its sensory inputs (cf. Box 1), has inspired recent

modeling frameworks with considerable potential for

applications to psychiatry. For example, the ‘free-energy

principle’ [33��,34], posits that the continuous optimiz-

ation of the brain’s generative model depends on mini-

mization of free energy, a principled and tractable

approximation to surprise (see Box 2 for a formal defi-

nition). Simply speaking, this corresponds to minimiz-

ation of net prediction error (across potentially many

levels of inference) and can be achieved by either adjust-

ing one’s beliefs about the world (perception) or changing

the way one samples the world through the sensorium

(action).

This perspective has led to a series of recent theoretical

treatments of (mal)adaptive cognition, particularly with

regard to schizophrenia [4�,35,36��,37]. Moreover, it has

inspired concrete strategies for analyzing empirical data.

One such framework for practical applications is a meta-

Bayesian approach which considers the Bayesian infer-

ence (by an experimenter or psychiatrist) on Bayesian

inference processes (in the brain of a subject or patient)

that underlie the observed behavioral responses [38,39].

In this framework one models how the subject’s ‘hidden’

(internal) belief updating processes give rise to his/her

overt responses which, in turn, are observed by the

experimenter. The appeal of such a hierarchical approach

is that the experimenter’s beliefs (about the subjects’

beliefs driving the observed behavior) can be estimated

by inverting a single generative model and under the

same assumption about how Bayesian inference is imple-

mented in the brain (e.g., by free-energy minimization).

A particular implementation of such a meta-Bayesian

approach is the Hierarchical Gaussian Filter (HGF;

[19�]) which derives RL-like update equations from a

variational approximation to ideal hierarchical Bayesian

learning and contains parameters that represent the

individual’s approximation to Bayes-optimality. This
www.sciencedirect.com
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Box 2 Free energy

The free energy F represents an upper bound on the surprise

(negative log probability) of encountering the data y, given a

generative model m. The difference is given by the Kullback-Leibler

divergence (KL; a measure of the dissimilarity of two probability

densities) between an approximate posterior density q(u) and the true

but unknown posterior density p(ujy,m):

F ¼ �log pðy jmÞ þ KL½qðuÞ; pðujy ; mÞ� (2)

Eqn (2) reveals two important things. First, instead of computing the

posterior density directly (which can be intractable or computation-

ally expensive), one can minimize free energy; this will minimize the

KL divergence term and thus optimize the approximate posterior.

Second, free energy represents a lower bound on the log model

evidence (negative surprise) and can thus be used for model

comparison [69,71].
framework has been used by several recent studies to

adjudicate between competing hypotheses of learning

and decision-making, using pathophysiologically relevant

paradigms, such as perceptual learning [40] or cued eye

movements [41]. It has also served as the basis for

theoretical work on ‘emotional valence’ (in terms of

the negative rate of change of free-energy) [42�].

Hierarchical Bayesian approaches are particularly useful

for paradigms where uncertainty plays a crucial role, for

example, induced by stimulus-bound (sensory noise) or

environmental factors (volatility). In addition to the

HGF, several other Bayesian models have been intro-

duced recently, for example [43,44]. In particular, these

have contributed to studies of neuromodulatory transmit-

ters (e.g., dopamine, DA; acetylcholine, ACh; norepi-

nephrine, NE), an application domain of particular

relevance for psychiatry and a ‘classical’ target of com-

putational modeling [45,46]. In the past two years, RL

and Bayesian modeling of behavioral and neuroimaging

data has yielded new insights into the roles of different

neuromodulators, in particular in the context of the

proposal by Yu and Dayan [47] that ACh and NE release

encodes levels of ‘expected uncertainty’ and ‘unexpected

uncertainty’, respectively. The proposed involvement of

NE in signaling unexpected uncertainty has received

support by studies of pupil size changes [48,49] and fMRI

[50]. An outstanding issue is that fMRI shows a decrease

of locus coeruleus activity with increase in unexpected

uncertainty [50]; a relation with the opposite sign to that

predicted [47].

An important aspect of neuromodulatory function con-

cerns the adaptive scaling of PE signals [51]. For example,

the impact of a PE on learning depends on its precision

(inverse uncertainty) [19�,34]. While midbrain neuron

activity has been found to reflect precision-weighting

for rewards [52,53], it has been unclear whether such

precision-weighting extends beyond rewards and the
www.sciencedirect.com 
dopaminergic system. A recent fMRI study on sensory

learning found that precision-weighted PEs about visual

outcome activated the midbrain (unrelated to reward or

novelty) [40]. By contrast, the precision-weighted PE on

conditional probability (of the visual outcome given an

auditory cue) — a quantity conceptually related to

expected uncertainty — was encoded by activity in the

cholinergic basal forebrain [40].

Modeling neurophysiology
While attempts to understand brain pathophysiology

through mathematical models date back many decades,

the interest in mathematical modeling of physiological

processes relevant to psychiatric diseases has grown con-

siderably in recent years. Two general approaches can be

distinguished. Whereas one is based on inverting genera-

tive models of brain activity (discussed below), the more

classical strategy rests on biophysically detailed dynamic

system models describing either local microcircuits or

ensembles thereof, linked by long-range connections.

One salient example to which this approach has been

successfully applied in recent work is the role of dopamine

and NMDA receptors (NMDARs) for the occurrence of a

frequent cognitive dysfunction in schizophrenia: impaired

working memory, for example [54,55].

The complexity of these models prohibits parameter

estimation; however, augmented with suitable forward

models, they can predict changes in measured fMRI or

EEG data which arise from changes in neuronal

parameters susceptible to experimental manipulation.

A nice example of this strategy [56��] used a biophysical

model of prefrontal cortex to predict that blocking

NMDARs would lead to less segregated representations

of working memory contents by pyramidal cell activity

and, as a result, a specific behavioral pattern of errors.

This prediction was confirmed in a group of healthy

volunteers who received the NMDAR antagonist keta-

mine versus placebo.

While the above approach is useful to generate testable

predictions about the average pathophysiology in a con-

ventionally (DSM) defined group of patients, it is not

suited to address what is perhaps the most critical chal-

lenge for psychiatric diagnostics: differential diagnosis,

that is, to infer, from observed behavior and brain physi-

ology, on the most likely disease mechanism in a given

individual patient. In other domains of medicine, such

differential diagnosis is often supported by (biochemical)

assays which allow for inference on ‘hidden’ disease

mechanisms from peripherally accessible tissue (e.g.,

blood). An attractive idea is to use computational models

for establishing equivalent procedures in psychiatry,

using non-invasive functional read-outs instead of tissue

samples. These ‘computational assays’ have been

suggested in the form of generative models that can be

fitted to measurements of brain activity and behavior [4�].
Current Opinion in Neurobiology 2014, 25:85–92
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The hope is that such assays could detect the expression

of (unknown) pathophysiological processes in individuals

and help demarcating subgroups in heterogeneous dis-

orders. Ideally, such assays would map onto processes that

are directly amenable to existing therapeutic approaches

(pharmacological or cognitive); this would allow for differ-

ential treatment predictions which could (and would have

to) be evaluated in longitudinal studies.

While not a trivial undertaking and still far from any major

successes, in the physiological domain some important

initial steps have been made in the last years. These

typically rested on models of neuronal population

dynamics which are sufficiently simplified to enable

parameter estimation (model inversion) from fMRI or

EEG data, yet sufficiently detailed that they retain a

meaningful summary of physiological processes [57–
59]. An established Bayesian system identification frame-

work of this sort is dynamic causal modeling (DCM;

[59,60]). For fMRI, DCM rests on a low-order (Taylor)

approximation  to the unknown neuronal system and

explains measured BOLD signals as arising from synap-

tic coupling in large undifferentiated neuronal popu-

lations [60]. Despite this coarse representation, models

of this type can be potentially useful, as demonstrated

by recent studies. For example, in chronic schizo-

phrenia (SZ), prefrontal–parietal coupling during work-

ing memory is reduced, regardless of performance or

prefrontal activation [61]; across subjects at different

disease states (from health via ‘at risk mental state’ to

untreated first episode SZ), this coupling progressively

declines but returns to levels indistinguishable from

controls in treated first-episode patients [62]. Other
Figure 1

Generative
of behavi
brain act

Dissecting spectrum
disorders

optimized experimental paradigms
(simple, robust, patient-friendly) 

BMS 

Generative
embedding 
(unsupervised)

model vali
(longitudinal pat

Graphical summary of key methodological building blocks for future extensi

Current Opinion in Neurobiology 2014, 25:85–92 
DCM studies on SZ have scrutinized the effective

connectivity during other tasks than working

memory, including at risk subjects [63,64] and chronic

patients [65].

DCMs for electrophysiological data provide a much finer

conceptual resolution than for fMRI, distinguishing

different types of neurons and synaptic connections.

Following earlier validation studies in rodents (e.g.,

[66]), a recent proof-of-concept study in humans

employed a dopaminergic drug challenge to demonstrate

the feasibility of inferring DA-induced changes in

NMDA and AMPA conductances in a prefrontal micro-

circuit [67��]. Another study used DCM to examine the

contributions of NMDAR dependent short-term synaptic

plasticity and neuronal adaptation to the reduced ampli-

tude of the mismatch negativity (a model of impaired

perceptual inference in SZ) under the NMDAR antagon-

ist ketamine, finding a selective reduction of estimated

short-term plasticity at auditory connections [68]. Pro-

vided these results can be confirmed in replication stu-

dies, models of this sort might serve as blueprints of

clinically relevant assays for quantifying the status of

transmitters systems in specific circuits.

The importance of generative models for
differential diagnosis and subgroup detection
There are two reasons why generative models are import-

ant for computational psychiatry. First, as the name

implies, generative models describe how observed data

(brain activity or clinical symptoms) were generated by

hidden mechanisms and causes (cf. Box 1). They thus

force us to think mechanistically and be explicit about our
 models
our &
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ons of psychiatric diagnostics through computational modeling.
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pathophysiological theories. Second, for any given

measurement, different explanations are conceivable,

that is, different models of the underlying (cognitive or

neuronal) processes. These models can be compared

using the (log) model evidence, approximated either

during model inversion through variational Bayes (Box

2), or using classical approximations as the Bayesian

Information Criterion (BIC). The evidence is a principled

index of the trade-off between model fit and model

complexity [69] which can be used to adjudicate between

competing models. This Bayesian model selection (BMS)

approach has seen increasing application in compu-

tational and neurophysiological modeling in recent years;

for example [26,39,40,41,50,62,68,70]. Furthermore, sub-

jects may differ in the processes generating their beha-

vior, that is, the model itself may be a random variable in

the population. This issue is particularly relevant for the

heterogeneous spectrum disorders psychiatry deals with

and has been addressed by the development of random

effects BMS methods [71].

The inversion of competing generative models, each of

which provides a different explanation for a measured

behavioral or brain response, and their subsequent com-

parison by BMS could provide a formal framework for

differential diagnosis in psychiatry. This requires, how-

ever, that the alternative disease pathways expressed

across the spectrum of patients are known. A complemen-

tary approach is generative embedding, where the

posterior estimates of relevant model parameters serve

to construct a feature space for subsequent classification

or clustering [72]. Initial proof-of-concept studies in

aphasic and SZ patients, employing DCM for fMRI, have

demonstrated excellent performance of generative
Figure 2
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embedding [72,73�], compared to standard approaches.

Most importantly, generative embedding could aid in

detecting pathophysiological subgroups in spectrum dis-

orders. Such model-based definition of subgroups was

recently demonstrated for SZ [73�]: here, clustering of

connectivity estimates from a simple DCM of inter-

actions between cortical areas during working memory

revealed three patients subgroups that were distinguished

by different visual–parietal–prefrontal connectivity (see

Figure 2). Critically, these purely physiologically defined

subgroups exhibited significantly different levels of

clinical symptoms. The hope for the future is that the

delineation of patient subgroups characterized by differ-

ent disease processes, as indexed by mechanistically

interpretable models, will allow for principled predictions

about individual treatment and, eventually, pave the way

towards a new nosology.

Summary and future challenges
This article has summarized some of the recent progress

in establishing the methodology needed for establishing

model-based assays as novel diagnostic tools for psychia-

try. Over the next years, further progress might enable

the practical implementation of a translational strategy

for neuromodeling (Figure 1): first, establishing genera-

tive models that can be applied to data from optimally

patient-friendly tasks; second, differential diagnosis for a

given clinical symptom or measurement, based on a

hypothesis set of competing neuronal and/or cognitive

mechanisms, each of which is represented by a particular

generative model; third, dissecting heterogeneous spec-

trum diseases into subgroups defined along mechanistic

dimensions.
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Clearly, many challenges lie ahead. Critically, whatever

models are proposed, their assumptions and robustness

must be carefully evaluated in basic validation studies,

including initial pharmacological and stimulation (e.g.,

optogenetics) studies in animals and humans; for

examples, see [66,67��,74,75�]. Subsequently, the most

important challenge is to conduct longitudinal studies in

patients with well-defined clinical problems (such as

outcome or treatment response) that serve as real-world

benchmarks against which the clinical utility of our

models can (and must) be tested. While there are no

such studies yet which prove that computational model-

ing can have a real practical impact on clinical decision-

making in psychiatry, the many ongoing efforts in this

regard instill hope that by the next time this topic features

in an issue of this journal, first studies will have expressed

an initial verdict on the practical utility of computational

approaches to psychiatry.
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18. Klöppel S, Abdulkadir A, Jack CR Jr, Koutsouleris N, Mourao-
Miranda J, Vemuri P: Diagnostic neuroimaging across
diseases. Neuroimage 2012, 61:457-463.

19.
�

Mathys C, Daunizeau J, Friston KJ, Stephan KE: A Bayesian
foundation for individual learning under uncertainty. Front Hum
Neurosci 2011, 5:39.

A hierarchical Bayesian model for inferring individual mechanisms of
(approximate) Bayes-optimality from measured behavior.

20. Botvinick MM: Hierarchical reinforcement learning and
decision making. Curr Opin Neurobiol 2012, 22:956-962.

21. Lee D, Seo H, Jung MW: Neural basis of reinforcement learning
and decision making. Annu Rev Neurosci 2012, 35:287-308.

22. Dayan P: How to set the switches on this thing. Curr Opin
Neurobiol 2012, 22:1068-1074.

23. Ito M, Doya K: Multiple representations and algorithms for
reinforcement learning in the cortico-basal ganglia circuit.
Curr Opin Neurobiol 2011, 21:368-373.

24. Gershman SJ, Niv Y: Learning latent structure: carving nature
at its joints. Curr Opin Neurobiol 2010, 20:251-256.

25. Doll BB, Simon DA, Daw ND: The ubiquity of model-based
reinforcement learning. Curr Opin Neurobiol 2012,
22:1075-1081.

26. Huys QJ, Eshel N, O’Nions E, Sheridan L, Dayan P, Roiser JP:
Bonsai trees in your head: how the pavlovian system sculpts
goal-directed choices by pruning decision trees. PLoS Comput
Biol 2012, 8:e1002410.

27. Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD:
Neurocognitive endophenotypes of impulsivity and
compulsivity: towards dimensional psychiatry. Trends Cogn
Sci 2012, 16:81-91.
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