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Dynamic causal modeling (DCM) is a Bayesian framework for inferring effective connectivity among brain
regions from neuroimaging data. While the validity of DCM has been investigated in various previous studies,
the reliability of DCM parameter estimates across sessions has been examined less systematically. Here, we
report results of a software comparison with regard to test-retest reliability of DCM for fMRI, using a challenging
scenario where complex models with many parameters were applied to relatively few data points. Specifically,
we examined the reliability of different DCM implementations (in terms of the intra-class correlation coefficient,
ICC) based on fMRI data from 35 human subjects performing a simple motor task in two separate sessions, one
month apart. We constructed DCMs of motor regions with fair to excellent reliability of conventional activation
measures. Using classical DCM (cDCM) in SPM5, we found that the test-retest reliability of DCM results was high,
both concerning the model evidence (ICC = 0.94) and the model parameter estimates (median ICC = 0.47).
However, when using a more recent DCM version (DCM10 in SPM8), test-retest reliability was reduced notably.
Analyses indicated that, in our particular case, the prior distributions played a crucial role in this change in
reliability across software versions. Specifically, when using cDCM priors for model inversion in DCM10, this
not only restored reliability but yielded even better results than in cDCM. Analyzing each component of the
objective function in DCM, we found a selective change in the reliability of posterior mean estimates. This sug-
gests that tighter regularization afforded by cDCM priors reduces the possibility of local extrema in the objective
function. We conclude this paper with an outlook to ongoing developments for overcoming the software-
dependency of reliability observed in this study, including global optimization and empirical Bayesian procedures.

© 2015 Elsevier Inc. All rights reserved.
Introduction

While early neuroimaging studies focused on the functional special-
ization of brain regions (i.e., the localization of task-dependent neuronal
activation), it is now generally accepted that any cognitive process rests
on multiple brain regions acting in concert (i.e., functional integration).
Hence, assessing the functional integration among regions is essential
for understanding a particular brain function. Researchers have there-
fore addressed various aspects of brain connectivity, including graph
theoretical approaches, resting-state networks, the concept of the
connectome, or biophysical modelling (for a review on fMRI-based
inference on connectivity, see Smith, 2012). Whereas all of these ap-
proaches have their advantages and drawbacks, a common requirement
is the definition of network structure in terms of nodes (neuronal
on of Brainimaging, Department
, Germany.
sle).
populations or brain regions) and edges (anatomical connections
among the nodes). Given such a structural model, connectivity can be
characterized in terms of functional connectivity (defined by mere sta-
tistical relationships between the nodes of the network) or effective
connectivity, which refers to directed interactions between nodes and
typically rests on mechanistic models of brain responses (for a review
of different methods, see Valdes-Sosa et al., 2011). One frequently
used method to infer effective connectivity from fMRI data is dynamic
causal modeling (DCM; Friston et al., 2003). Specifically, DCM focuses
on how directed interactions among brain regions are perturbed by
experimental manipulations (e.g., sensory stimulation, task demands).
Using DCM, researchers have gained deeper insight into the mech-
anisms underlying cognitive tasks, such as visuospatial attention
(Kellermann et al., 2012; Siman-Tov et al., 2007), face perception
(Fairhall and Ishai, 2007; Li et al., 2010; Nguyen et al., 2014), working
memory (Dima et al., 2014), decision making (Stephan et al., 2007a;
Summerfield et al., 2006; Summerfield and Koechlin, 2008), motor pro-
cesses (Grefkes et al., 2008; Grol et al., 2007), and the “resting state”
(Goulden et al., 2014; Di and Biswal, 2014; Friston et al., 2014). In this
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regard, research questions have become increasingly complex, leading
to ongoing refinements and extensions of DCM for fMRI, such as
(i) two-state DCM (Marreiros et al., 2008), allowing for two neuronal
states per brain region tomodel the activity of inhibitory and excitatory
populations; (ii) nonlinear DCM (nlDCM; Stephan et al., 2008), which
accounts for synaptic gating; i.e., themodulatory influence of a neuronal
population on the connection between two other populations; and
(iii) stochastic DCM (sDCM; Daunizeau et al., 2009; Friston et al.,
2008, 2010), that allows for endogenous (stochastic) fluctuations at
the neuronal level. More recently, DCM studies have been conducted
in clinical settings in order to gain a better understanding of pathophys-
iological mechanisms of psychiatric disorders such as major depression
(Almeida et al., 2009; Schlösser et al., 2008), autism (Grèzes et al.,
2009; Radulescu et al., 2013) or schizophrenia (Deserno et al., 2012;
Brodersen et al., 2014; Roiser et al., 2013).

So far, numerous studies have examined different aspects of validity
of DCM for fMRI, including face validity (Friston et al., 2003; Stephan
et al., 2008), construct validity in relation to other models (Lee et al.,
2006; Penny et al., 2004), cross-validation against other data modalities
(Dima et al., 2009, 2010) of neuroimaging, and predictive validity
(Brodersen et al., 2011; David et al., 2008; Reyt et al., 2010). In contrast
to validity, another test-theoretical property, reliability, has received
comparatively less attention. This refers to the stability of estimates
obtained when applying the model to multiple datasets over time,
acquired under the same condition in the same subject.

While reliability has been investigated frequently in the context
of conventional fMRI activation (e.g., Aron et al., 2006; Brandt et al.,
2013; Fliessbach et al., 2010; Friedman et al., 2008; Loubinoux et al.,
2001; Plichta et al., 2012; Raemaekers et al., 2007) and functional con-
nectivity studies (e.g., Braun et al., 2012; Birn et al., 2014), the reliability
of DCM estimates has received less attention. To date, only two studies
have addressed test-retest reliability in the context of DCM for fMRI.
Schuyler et al. (2010) examined DCM connectivity parameter estimates
for visual and auditory tasks, finding fair to excellent reliability. How-
ever, the authors did not report the reliability of another important
feature of DCM: Bayesian model selection (BMS), which evaluates the
plausibility of competing models with respect to the (log) evidence, a
principled measure of the trade-off between model accuracy and
model complexity. Rowe et al. (2010) investigated the reliability of
DCM using a motor paradigm involving free vs. constrained action
selection. They found excellent reliability of model selection, but low
test-retest reliability for connectivity parameter estimates, a result
they suspected to arise from parameter interdependencies in their par-
ticular model.

In the present work, we investigated test-retest reliability of both
BMS andmodel parameter estimation for DCM in a simple task probing
hemispheric interactions in the motor network. To this end, 35 right-
handed subjects performed visually synchronized unimanual or bi-
manual hand movements in the MR scanner, a paradigm which was
previously established for DCM analysis by Grefkes et al. (2008) and
subsequently reused in multiple studies, including patient studies
(Grefkes et al., 2010). Subjects in our study performed the experiment
twice, in two separate sessions approximately one month apart.

In this paper, we focus entirely on a software evaluation with regard
to test-retest reliability of model selection and parameter estimation.
A separate quantitative analysis of reproducibility (i.e., how well
our parameter estimates reproduce the previous results by Grefkes
et al., 2008) will be reported in a separate report (Frässle et al., in
preparation).

For the reliability analyses in this paper, we contrasted classical DCM
(cDCM as implemented in SPM5), which was also used by Grefkes et al.
(2008), to a more recent version (DCM10 as implemented in SPM8,
v4290). Notably, DCM10 differs from classical DCM in several ways.
Most importantly, it allows for constructing models that factorially
combine different variations of the neuronal state equation, resulting
in eight different principal forms: {bilinear vs. nonlinear} × {one-state
vs. two-state} × {deterministic vs. stochastic}. As a consequence, refine-
ments of various technical details, including the priors and the hemody-
namic model, were required when unifying all DCM variants in one
common implementation framework. Our analyses using both DCM
versions indicated a considerable impact of the software implementa-
tion on the reliability of DCM results, with DCM10 being less stable
over sessions. This motivated a more thorough investigation of some
of the above-mentioned technical refinements from cDCM to DCM10
and their potential role in the reduction of test-retest reliability.

Materials and methods

Subjects

Thirty-five subjects (17 female, 18male, mean age: 23.5± 2.8 years,
range: 19–31 years) participated in the experiment. All were healthy,
with no history of neurological or psychiatric diseases, brain pathology
or abnormal brain morphology on T1-weighted MR images. Subjects
were native German speakers and right-handed according to the
Edinburgh Inventory of Handedness with a cut-off at +30 (Oldfield,
1971). Prior to the study, each gave informed written consent. The
study conformed to the Declaration of Helsinki and was approved by
the local ethics committee of the Medical Faculty of the University of
Marburg. To investigate test-retest reliability, subjects underwent the
identical experiment twice, separated by 32 ± 5 days on average
(range: 25–44 days).

Experimental procedure

The experimental paradigm was closely matched to the paradigm
established for DCM analysis by Grefkes et al. (2008). An fMRI block
design was used, asking subjects to perform visually synchronized
whole-handfist-closingmovements. Each block startedwith an instruc-
tion period, followed by a time-variable delay period, a handmovement
period and a time-variable resting period. First, an instruction text was
shown for 1.5 s, informing subjects which hand to use in the upcoming
block. Subjects had to perform hand movements (i.e., whole-hand fist
closure) with either the left (condition “LH”), right (condition “RH”)
or both hands (condition “BH”). The instruction was then replaced by
an empty red circle (diameter: 7.26 degrees). The circle was shown
for either 1.5, 2.0 or 2.5 s before starting to blink at a rate of 1.5 Hz for
15 s. Subjects were asked to close and open their hands synchronized
with the rhythmof the blinking. Awhite screen, indicating that subjects
should rest and wait for the next instruction screen, then replaced the
red circle. The resting period lasted for either 11, 11.5 or 12 s, depending
on the duration of the variable delay period, such that subsequent task
and baseline periods summed to 30 s cycle length. All stimuli were
displayed on a video screen (visible through a mirror attached to the
MR head coil). The experiment consisted of 24 blocks; hence, each
hand-movement condition was performed eight times. The order of
LH, RH and BH blocks was pseudorandomized and identical in both
sessions. Before the experiment started, subjects were trained outside
theMR scanner to guarantee accurate performance. Inside theMR scan-
ner, hand movements were visually inspected from the control room
through a glass pane.

Image acquisition

Time courses of subjects’ brain activitywere acquired using a 3-Tesla
MR scanner (Siemens TIM Trio, Erlangen, Germany) with a 12 channel
head matrix receive coil at the Department of Psychiatry, University
of Marburg. Functional images were obtained using a T2⁎-weighted
gradient-echo echo-planar imaging sequence (EPI) sensitive to the
Blood Oxygen Level Dependent (BOLD) contrast (33 slices, TR =
2000 ms, TE = 30 ms, matrix size 64 × 64 voxels, voxel size 3.6 ×
3.6 × 3.6 mm, gap size 0.4 mm, flip angle 90°). Slices covered the
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whole brain and were positioned transaxially parallel to the inter-
commissural (AC-PC) plane. In each session, 380 functional images
were collected; both sessions were 1 month apart from each other.
For each subject, an additional high-resolution anatomical image was
acquired using a T1-weighted magnetization-prepared rapid gradient-
echo (3d MP-RAGE) sequence in sagittal plane (176 slices, TR =
1900 ms, TE = 2.52 ms, matrix size 256 × 256 voxels, voxel size
1 × 1 × 1 mm, flip angle 9°).

Functional imaging data analysis

Preprocessing and analysis of the functional images were conducted
using the SPM8 software package (Statistical Parametric Mapping,
Wellcome Trust Center for Neuroimaging, London, UK; http://www.fil.
ion.ucl.ac.uk) and Matlab (MathWorks). The first four images were
discarded from the analysis. To control for small headmovements, func-
tional images from both sessions were realigned to the mean image
of each subject. Realigned images were coregistered with the high-
resolution anatomical image and then spatially normalized into the
Montreal Neurological Institute (MNI) standard space using the unified
segmentation-normalization of the anatomical image (Ashburner and
Friston, 2005). Normalized functional images were spatially smoothed
using an isotropic 8 mm full width at half maximum Gaussian kernel.

Voxel-wise BOLD activity was modelled by means of a first-level
General Linear Model (GLM; Friston et al., 1995; Worsley and Friston,
1995). The three hand-movement conditions (i.e., LH, RH and BH)
were included as block regressors with the above-mentioned stimulus
duration. The regressors for the two sessionswere entered into two sep-
arate sessions in oneGLM (i.e., were not concatenated) to allow for con-
junction analyses. This resulted in six task regressors (3 per session),
which were convolved with SPM8’s standard canonical hemodynamic
response function (HRF). In addition, the instruction periods and
the six realignment parameters of each session were entered into the
first-level GLM as nuisance regressors to control for task-independent
activation and movement-related artifacts not accounted for by the
realignment during preprocessing, respectively. A high-pass filter
(cut-off frequency: 1/128 Hz) was used to account for low-frequency
noise. Individual BOLD activity related to each of the three hand-
movement conditions for each sessionwas identified from the six linear
baseline contrasts (i.e., LH, RH, and BH each for both sessions).

The individual baseline contrasts were then entered into a random
effects group-level analysis (3 × 2 within-subject ANOVA) to assess
BOLD activity for each hand-movement condition and session. Anatom-
ical localization and characterization of the activated brain regionswere
achieved using the Anatomy toolbox extension within SPM8 (Eickhoff
et al., 2005).

Time series extraction

Given the group-level results, eight regions of interest (ROIs) were
selected for DCM analyses, in line with previous approaches (Grefkes
et al., 2008). These eight ROIs were located bilaterally in the primary
motor cortex (M1), the lateral premotor cortex (PMC), the supplemen-
tarymotor area (SMA) and themotion-sensitive visual area (V5).While
bilateral M1, PMC and SMA are key components of the cortical motor
system (Rizzolatti and Luppino, 2001), activation in V5 was attributed
to the blinking of the red circle (Zeki et al., 1991) and bilateral V5 thus
served as input regions in the DCMs. The coordinates of the ROIs were
determined for each subject individually, anatomically constrained by
masks that were defined by the group-level activations as follows:
First, the group-level peak activation coordinates of the conjunction
analysis of hand-specific contrasts of both sessions served to identify
motor areas. That is, left M1/PMC/SMA were determined from the
conjunction of the right-hand baseline contrasts (RH_session1 ∩
RH_session2), and right M1/PMC/SMA were determined from the
equivalent left-hand conjunction (LH_session1∩ LH_session2). Bilateral
visual areas V5 were defined from the conjunction of all three con-
trasts of both sessions (LH_session1 ∩ RH_session1 ∩ BH_session1
∩ LH_session2 ∩ RH_session2 ∩ BH_session2). Second, for each of
these peak activations, a mask was created that included all voxels
significantly activated at p b 0.05, family-wise error (FWE) corrected,
within a sphere of 16 mm radius (M1 and V5) or 10 mm radius (PMC
and SMA) centered on the respective group peak coordinates. The
SMA masks were further constrained to one hemisphere (i.e., the
mask for the left SMA was restricted to the left hemisphere only).
To account for inter-subject variability in the location of the regions,
coordinates of each ROI were then defined individually. First, indi-
vidual ROI center coordinates were defined as the subject-specific
maximum within the respective mask (Supplementary Table S1).
Second, for each session and subject separately, time series were
extracted from each ROI as the first eigenvariate of all voxels that
survived p b 0.001, uncorrected, within a 4 mm sphere centered on
the individual coordinates. Time series were mean-centered and sig-
nal variance due to head movements and task instructions was re-
moved (i.e., adjusting the time series with regard to an F-contrast
on the effects of interest, thus removing all variance there could be
explained by effects of no interest).

Dynamic causal modeling

Dynamic causal modeling (DCM; Friston et al., 2003) is a Bayesian
framework for the inversion and comparison of state-space models
based on neuroimaging data. It is frequently used in fMRI research to
assess effective connectivity within a network of interest, quantifying
how experimental manipulations perturb both the neural activity in
brain regions and the interactions among those regions. The original
implementation described changes in the neural state using the follow-
ing bilinear differential equation:

dz
dt

¼ Aþ
Xm

j¼1
ujB

j
� �

zþ Cu ð1Þ

where z represents a vector of neuronal population activities in the
regions considered, A contains the endogenous connection strengths,
Bj describes the effect of the j-th experimental perturbation on the con-
nections among the network regions (modulatory connectivity), and C
represents the strengths of driving inputs. Over the last decade,multiple
extensions to the original framework have been suggested, allowing, for
instance, the assessment of nonlinear (Stephan et al., 2008) and sto-
chastic effects (Daunizeau et al., 2009; Friston et al., 2010; Friston
et al., 2008). In this study, the original bilinear framework was utilized.

Following the approach byGrefkes et al. (2008), four DCMswere con-
structed, modeling various intra- and interhemispheric interactions of
the motor network during uni- and bimanual hand movements. For
all models, the pattern of endogenous connectivity and driving inputs
(A- and C-matrix) were identical. Since bilateral V5 activity served as
driving input for themotor network, exogenous influences (representing
the cued response times)were set to excite activitywithin these regions.
Both V5 areas then sent forward endogenous connections to ipsi- and
contralateral PMC and SMA. Within the motor network (M1, PMC,
SMA), all six ROIs were reciprocally connected to each other ROI,
i.e., full endogenous connectivity (cf. Grefkes et al., 2008).

The effects ofmodulatory inputs on connectivity (B-matrix) differed
across the four models and represented hypotheses of how uni- and
bimanual hand movements affected connections within the motor
network (Fig. 1).

Modulatory input structure differed in complexity, ranging from
a sparsely modulated (model 1) to a complex model where all connec-
tions were subject to modulatory effects (model 4); additionally,
symmetry between hemispheres was considered (asymmetric models
1–2, symmetric models 3–4). Random effects BMS (Stephan et al.,
2009) was used to rank models according to their log model evidence

http://www.fil.ion.ucl.ac.uk
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Fig. 1.Variations on themodulatory connectivity (B-matrix) resulting in four differentmodels, implementing distinct hypotheses of how intra- and interhemispheric connections could be
modulated by uni- or bimanual hand movements (cf. Grefkes et al., 2008). Models differed in their complexity, ranging from a sparse model (model 1) to a full model (model 4), and in
their symmetry (asymmetric models 1–2, symmetric models 3–4).
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(i.e., the likelihood of the data given a model). The log model evidence
was approximated by the negative free energy, which provides a
lower bound to the log model evidence and, under Gaussian assump-
tions about prior and posterior is given by

F ¼ −
1
2
eTyC

−1
y ey−

1
2
log Cy

�� ��−N
2
log2π

−
1
2
eTθC

−1
θ eθ−

1
2
log Cθj j þ 1

2
log Sθj j

−
1
2
eTλC

−1
λ eλ−

1
2
log Cλj j þ 1

2
log Sλj j

ð2Þ

where ey is the error of themodel’s prediction, Cy is the error covariance
matrix, N is the number of data points, eθ is the deviation of the posteri-
or from the prior, Cθ is the prior covariance matrix, and Sθ is the poste-
rior covariance matrix (the equivalent notation applies to terms of the
hyperparameters λ).

Two different DCM implementationswere used formodel inversion:
classical DCM (cDCM) as implemented in SPM5, and DCM10 as imple-
mented in SPM8 (version: 4290). Please note that experimental inputs
were not mean-centered when using either DCM implementation to
ensure comparability of parameter estimates across software versions.
Choosing the same approach tomean-centering is essential for compar-
ing different DCM implementations, since this affects the meaning of
the parameter estimates. For example, the parameters of the endoge-
nous connections correspond to the partial derivative of the neuronal
state equation with respect to the neuronal states, when the inputs
are zero. Depending on whether inputs are mean-centered or not, this
changes the interpretation (i.e., coupling at the average input level vs.
coupling when inputs are zero). Comparing results from both software
versions (under the same mean-centering settings) allowed for an
investigation of how changes to priors and technical refinements
made in DCM10 affected the reliability of model selection results and
parameter estimation.

Test-retest reliability of BOLD activity and DCM

Test-retest reliability of BOLD activity and DCM results were exam-
ined using the intra-class correlation coefficient (ICC). Specifically,
the ICC(3,1) type (Shrout and Fleiss, 1979) was utilized, providing



Table 1
Test-retest reliability of the median BOLD activity (i.e., contrast value) within the ROIs
entered to DCM analyses.

ICCmed 95% CI p

ROI test-retest reliability
M1_L 0.71 0.49–0.85 1.20e-06
M1_R 0.75 0.56–0.87 1.30e-07
PMC_L 0.65 0.40–0.81 1.48e-05
PMC_R 0.75 0.55–0.87 1.66e-07
SMA_L 0.51 0.21–0.73 9.61e-04
SMA_R 0.42 0.10–0.67 6.30e-03
V5_L 0.76 0.57–0.87 9.51e-08
V5_R 0.87 0.75–0.93 1.80e-11
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an adequate relation of within-subject (σwithin
2 ) and between-subject

variability (σbetween
2 ) in the context of fMRI:

ICC 3;1ð Þ ¼ σ2
between−σ2

within

σ2
between þ σ2

within

ð3Þ

ICC values range from −1 to 1, and reliability is typically classified
as “poor” for ICC b 0.4, as “fair” for 0.4 ≤ ICC b 0.6, as “good” for
0.6 ≤ ICC b 0.75, and as “excellent” for ICC ≥ 0.75 (Cicchetti, 2001). The
reliability of BOLD activity was addressed by calculating the ICC(3,1)
for each voxel in the brain and for the median contrast values, which
were estimated from the subject-specific ROIs entering DCM analyses
(i.e., M1, PMC, SMA, and V5 each in both hemispheres). This yielded
information on the test-retest reliability of the BOLD signal relevant
for later DCM analyses.

Furthermore, the test-retest reliability of DCM was addressed by
computing the ICC(3,1) for the negative free energy (as an approxima-
tion to the log model evidence) and for the model parameter estimates
after BMA (Penny et al., 2010), for both DCM implementations. Note
that we used the reliability of the negative free energy as a measure of
the reliability of random effects BMS. The test-retest reliability of the
neuronal parameter estimates of the DCMs (i.e., endogenous connec-
tions, modulatory and driving inputs) was assessed by calculating an
ICC for each parameter. Notably, as the ICC is particularly meaningful
for parameters showing a substantial effect size, we additionally report
reliability when restricting the analysis to parameter estimates that
deviated strongly from the prior expectations (i.e., with a posterior
probability larger than 0.95).

Results

BOLD activity during uni- and bimanual hand movements and its
test-retest reliability

We found activation of awidespread cortical networkwhen subjects
performed visually synchronized uni- or bimanual hand movements.
The activations included bilateral M1, lateral PMC, SMA as well as the
motion-sensitive area V5 in the extrastriate cortex (Fig. 2A, Supplemen-
tary Fig. S1A-B and Supplementary Table S2). Across sessions, we found
the test-retest reliability of BOLD activity in the network (i.e., voxels sur-
viving a threshold of p b 0.05, FWE-corrected for the respective contrast
Fig. 2. BOLD activity during bimanual hand movements. (A) Activation pattern shows regions
session (L= left hemisphere, R= right hemisphere).White circles indicate regions of interest t
voxel-level threshold of p b 0.05 (FWE-corrected). (B) Cortical reliability map of the voxel-wis
calculated using the ICC toolbox extension within SPM5 (Caceres et al., 2009). Results were re
of the first session) to be fair (median ICC; LH: 0.53, RH: 0.53, and BH:
0.54; Supplementary Fig. S1C), with high voxel-wise ICC values within
the group-level ROIs selected for subsequent DCM analyses (Fig. 2B
and Supplementary Table S3). Assessing the ICC of the median contrast
value for each of these ROIs, we found the test-retest reliability to be
fair (ICCmed = 0.42) for the right SMA (Table 1), as well as for the left
SMA (ICCmed = 0.51). For all other ROIs, the test-retest reliability was
considerably higher, ranging from good for the left PMC (ICCmed =
0.65) to excellent for the right V5 (ICCmed = 0.87). This suggests that
BOLD activity within DCM-relevant ROIs was sufficiently stable across
sessions to allow for a meaningful examination of test-retest reliability
of DCM in further analyses.

Bayesian model selection and test-retest reliability of BMS

Two subjects were excluded from DCM analyses, as they did not
show consistent activation in all ROIs of the network. For some of the
remaining subjects, a few DCMs under DCM10 “flat-lined”, i.e., the
Variational Laplace algorithm (Friston et al., 2007) converged almost
immediately without notable changes in the parameter estimates.
Since slight changes to the starting value (not to be confused with the
priors) of the optimization scheme resulted in reasonable model fits,
flat-lining was presumably due to local extrema close to the default
starting value of the algorithm. Here, we addressed this issue in a prag-
matic way: For flat-lined DCMs, we redefined the starting value of the
algorithm by using the mean posterior parameter estimates across all
models that had not flat-lined. Under this adjustment, initially flat-
that were activated when subjects performed bimanual hand movements during the first
hat were entered into subsequent DCM analyses. The activation pattern is thresholded at a
e ICC(3,1) values for the baseline contrast of bimanual hand movements. ICC maps were
ndered onto the surface of a standard anatomical template image.

Image of Fig. 2


Table 2
Results from random effects Bayesian model selection, as well as their reliability, for
classical DCM (cDCM) and for DCM10. Model selection is based on the exceedance prob-
abilities (i.e., ex. prob.). Reliability is given by the intra-class correlation coefficient (ICC)
for the negative free energy, on which the random effects BMS procedure is based.

Model 1 Model 2 Model 3 Model 4

cDCM ex. prob. (session 1) 0 0 0 1
ex. prob. (session 2) 0 0 0 1
ICC (F) 0.94 0.94 0.94 0.94

DCM10 Ex. prob. (session 1) 0.70 0.24 0.01 0.05
Ex. prob. (session 2) 0.96 0 0.04 0
ICC (F) 0.60 0.61 0.60 0.60
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lining DCMs produced a reasonable fit, as indicated by SPM’s routine for
post-hoc diagnostics (i.e., the function spm_dcm_fmri_check), for each
model in every subject (with allfits explainingmore than 25%variance).

We then used random effects BMS (as implemented in DCM10) to
compare our four alternative models, using the negative free energy as
a lower bound approximation to the log model evidence. For cDCM,
model 4 (i.e., the most complex model) was the most likely model
in both sessions (exceedance probability: 1.00 in either session; see
Table 2). For DCM10, however, model 1 (i.e., the model with sparsest
modulation) was selected in both sessions as the most likely model
(exceedance probability: 0.70 and 0.96 in sessions 1 and 2, respectively).

To address the test-retest reliability of BMS, we calculated an ICC for
the negative free energy of each model. For cDCM, the negative free
energy showed almost perfect reliability (ICC = 0.94; see Table 2),
regardless of the specific model. By contrast, reliability was reduced
when using DCM10, although still classified as “good” (with ICCs be-
tween 0.60–0.61; see Table 2).

Test-retest reliability of DCM connectivity parameters

Using Bayesian model averaging (BMA), individual connectivity
parameter estimateswere obtained by averaging over all modelswithin
the standard Occam’s window. Concerning the stability of results, we
found themodel parameter estimates to be consistent across the differ-
ent software versions (Supplementary Tables S4-S11): A statistical
comparison of the group-level parameter estimates of both sessions
between cDCM and DCM10 indicated that parameter estimates were
significantly correlated across software versions. This was the case for
all parameter types in DCM, i.e., endogenous connectivity parameters
(n = 76): r = 0.31, p b 0.01; modulatory input parameters (n =
180): r = 0.74, p b 0.001; driving input parameters (n = 12): r =
0.78, p b 0.01. This indicates that, despite the differences inmodel selec-
tion results described in the previous section, the parameter estimates
are fairly stable across software versions when taking into account
model uncertainty. Similarly, our results qualitatively reproduced the
Fig. 3. Reliability of DCMmodel parameter estimates. (A) Group-level results for themodulation
2 for cDCM. Connectivity patterns and the strength of the connections are almost identical acros
C-matrix) as well as the median ICC for cDCM (black). Additionally, histogram and median of t
main conclusions reported in Grefkes et al. (2008), regardless of the
software version. For both cDCM and DCM10, unimanual hand move-
ments positively modulated intra- and interhemispheric connections
to the contralateral M1, as well as negatively modulated connections to
or among motor regions of the ipsilateral hemisphere (Supplementary
Tables S5-S6 and S9-S10). For bimanual hand movements, intra- and
interhemispheric connections toM1were positivelymodulated (Supple-
mentary Tables S7 and S11). A detailed quantitative analysis of the
reproducibility is, however, beyond the scope of this paper and will be
reported separately (Frässle et al., in preparation).

In this paper, we focus on the test-retest reliability of the averaged
parameter estimates (BMA) by means of the ICC, calculated separately
for each endogenous, modulatory and driving input parameter. In a sec-
ond step, we restricted our reliability analyses to those parameters with
a substantial effect size (i.e., large deviations from their prior expecta-
tion; see Methods).

cDCM yielded highly consistent model parameter estimates across
both sessions at the group level (see Fig. 3A for the modulatory influ-
ences of left hand movements as an example). ICCs were within a
range from −0.17 (poor) to 0.78 (excellent), with a median ICC of
0.47 (Fig. 3B, black bars; see Supplementary Tables S4-S7 for a listing
of the ICC of each parameter estimate).When analyzing each connectiv-
itymatrix separately, we found amedian ICC of 0.50 for the endogenous
connectivity estimates, 0.46 for the modulatory parameter estimates,
and 0.24 for the driving input estimates. When restricting the analysis
to the parameters that showed a substantial effect size, we found
a slight elevation of test-retest reliability (median ICC: 0.48). This
was due to an increase in the reliability of the modulatory parameter
estimates (median ICC: 0.48), whereas the reliability of parameter
estimates of endogenous connectivity and driving inputs remained
unchanged.

For DCM10, the test-retest reliability of the model parameter
estimates dropped considerably compared to cDCM. Most parameter
estimates showed only poor reliability (median ICC: 0.13, range:
−0.35 to 0.68; Supplementary Tables S8-S11). In particular, ICCs of
parameter estimates of endogenous connectivity (median ICC: 0.22)
and modulatory inputs (median ICC: 0.06) were low, whereas driving
input parameter estimates were much more reliable (median ICC:
0.53). Restricting the analysis to parameters that deviated substantially
from their prior mean, we found an increase in reliability (median
ICC = 0.21; endogenous connectivity: 0.26; modulatory inputs: 0.11;
driving inputs: 0.53), although it remained poor. Notably, despite the
limited reliability of most parameter estimates, the overall group-level
connectivity patterns were consistent across sessions, as mostly the
same connections reached significance and hardly any sign error
occurred (see Supplementary Tables S8-S11).

As suggested by one of our reviewers, we repeated the analyses on
the test-retest reliability of BMS and model parameter estimation
of connectivity (B-matrix) for left handmovements in (left) session 1 and (right) session
s sessions. (B) Histogram of the ICC values of allmodel parameter estimates (i.e., A-, B- and
he ICCs are shown for model parameters obtained with DCM10 (blue).

Image of Fig. 3
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using the most recent implementation of DCM (i.e., DCM12 as imple-
mented in SPM12, version: 6225). Using DCM12, we found virtually
the same results as for model inversion under DCM10 (negative free
energy: ICCs between 0.56–0.59; parameter estimates (restricted to
large effect sizes): median ICC = 0.17; range: −0.34 to 0.84; endoge-
nous: 0.25; modulatory: 0.09; driving inputs: 0.79).

Potential sources of the differences in test-retest reliability

As mentioned above, in order to accommodate a variety of novel
DCM variants in one unifying scheme, DCM10 introduced various
changes in the implementation of DCM. In this section, we focus on
some of the most salient changes and examine whether they explain
the observed decrease in reliability from cDCM to DCM10.

Priors
In DCM10, priors were adjusted to accommodate the requirements

of novel DCM variants (such as stochastic DCM) such that the prior
variance of endogenous and modulatory parameters became much
wider than in cDCM,whereas the prior variance of driving input param-
eters stayed identical (and thus became tighter in relative terms). As
described above, we found that these changes in prior variance ap-
peared tomaponto thedifferences in test-retest reliability of the endog-
enous, modulatory and driving input parameter estimates. For cDCM,
reliability was high for parameter estimates of endogenous connections
and modulatory inputs, but poor for parameter estimates of driving
inputs, whereas the opposite was true for DCM10. This suggested a pos-
sible role of the priors for the differences in reliability between cDCM
and DCM10.
Table 3
Individual terms of the negative free energy and their test-retest reliability for the models in
Individual terms are given by their mean and standard deviation, reliability is given by the ICC
4 from the upper to the lower entry.

Components of free energy
(log evidence)

DCM10 (priors)

Session 1 Session 2

− 1
2 eyC

−1
y ey þ log Cy

�� ��� �

Accuracy (log likelihood)

2006.6 ± 590.9 2094.6 ±
2005.4 ± 600.9 2079.9 ±
2004.6 ± 583.4 2094.8 ±
2005.3 ± 584.4 2079.0 ±

− 1
2 e

T
θC

−1
θ eθ

Complexity (parameters)

−21.1 ± 8.1 −21.4 ±
−19.9 ± 7.1 −19.9 ±
−20.9 ± 7.6 −21.0 ±
−19.9 ± 6.8 −19.4 ±

− 1
2 log Cθj j
Complexity (parameters)

−816.5 −816.5
−816.5 −816.5
−816.5 −816.5
−816.5 −816.5

1
2 log Sθj j
Conditional uncertainty (parameters)

−356.4 ± 36.8 −366.5 ±
−460.0 ± 40.3 −366.7 ±
−460.2 ± 34.6 −373.0 ±
−468.4 ± 33.4 −375.1 ±

− 1
2 e

T
λC

−1
λ eλ

Complexity (hyper-parameters)

−22.2 ± 7.6 −23.1 ±
−22.2 ± 7.8 −22.9 ±
−22.1 ± 7.6 −23.1 ±
−22.1 ± 7.6 −22.9 ±

− 1
2 log Cλj j
Complexity (hyper-parameters)

0 0
0 0
0 0
0 0

1
2 log Sλj j
Conditional uncertainty (hyper-parameters)

−21.0 ± 3e-12 −21.0 ±
−21.0 ± 3e-12 −21.0 ±
−21.0 ± 3e-12 −21.0 ±
−21.0 ± 3e-12 −21.0 ±
To examine the effect of the priors more thoroughly, we transferred
cDCM’s prior expectations and prior variances to DCM10 and re-
estimated all models under this setting.While the reliability of negative
free energy estimates remained unaffected (ICC = 0.58, for the most
likely model 4), the reliability of the model parameter estimates was
considerably increased (median ICC: 0.51; range: 0.03 to 0.81). We
found high reliability, not only for the parameter estimates of endoge-
nous connections (median ICC: 0.56) and modulatory inputs (median
ICC: 0.48), but also for driving inputs (median ICC: 0.66). Restricting
the analysis to parameters with a substantial effect size, we found reli-
ability to be further increased, with a median ICC of 0.56 (endogenous:
0.57; modulatory: 0.51; driving inputs: 0.66). In fact, reliability of the
model parameter estimates in DCM10 (under the classical priors) was
even significantly higher than for cDCM (Mann-Whitney U test: Z =
2.63, p = 0.009).

One possible explanation for the role of the priors for the drop in re-
liability across software versions is that the larger prior variance of en-
dogenous connectivity and modulatory input parameters endowed
the model with too much flexibility in fitting the data and thus led to
overfitting. Such overfitting would naturally lead to poor generalizabil-
ity and hence low reliability across sessions. This hypothesis can be test-
ed by evaluating the log evidence – a principledmeasure for the balance
between fit and complexity – under both types of priors (cDCM vs.
DCM10). However, using random effects BMS at the family-level did
not support our hypothesis of overfitting under DCM10 priors. On the
contrary, we found that themodel family with DCM10 priors was clear-
ly superior (exceedance probability: 1.00 in both sessions).

In a next step, we investigated how the two different priors influ-
enced the values of individual accuracy and complexity terms of the
verted using the original DCM10 priors as well as for the models using the cDCM priors.
. Within each cell of the table, all four models are shown, in the order model 1 to model

cDCM (priors)

ICC Session 1 Session 2 ICC

456.1 0.59 1853.8 ± 565.2 1926.3 ± 461.1 0.58
451.1 0.61 1857.7 ± 566.9 1929.3 ± 458.9 0.58
457.0 0.60 1860.4 ± 567.8 1933.4 ± 461.2 0.58
457.2 0.60 1866.1 ± 567.8 1940.4 ± 459.7 0.58

7.7 0.02 −119.9 ± 37.1 −119.1 ± 41.2 0.59
6.7 0.08 −119.5 ± 35.8 −117.6 ± 34.8 0.58
7.5 0.10 −119.5 ± 36.0 −119.1 ± 38.8 0.61
6.2 0.12 −118.6 ± 35.5 −118.6 ± 37.7 0.58

- −625.6 −625.6 -
- −594.7 −594.7 -
- −603.6 −603.6 -
- −550.6 −550.6 -

27.6 0.27 −424.3 ± 21.0 −425.9 ± 17.1 0.59
32.3 0.41 −456.1 ± 20.9 −457.5 ± 16.7 0.59
31.8 0.57 −447.4 ± 21.0 −448.9 ± 17.1 0.58
30.8 0.46 −501.8 ± 21.1 −503.5 ± 17.1 0.59

6.0 0.62 −235.8 ± 45.5 −240.1 ± 18.4 0.56
5.9 0.63 −243.0 ± 22.6 −240.0 ± 18.3 0.57
6.1 0.62 −242.9 ± 22.6 −239.8 ± 18.4 0.57
6.0 0.63 −242.6 ± 22.6 −239.5 ± 18.3 0.57

- 0 0 -
- 0 0 -
- 0 0 -
- 0 0 -

4e-12 0.52 −21.0 ± 3e-12 −21.0 ± 5e-12 0.56
4e-12 0.47 −21.0 ± 3e-12 −21.0 ± 5e-12 0.56
4e-12 0.53 −21.0 ± 3e-12 −21.0 ± 5e-12 0.55
4e-12 0.51 −21.0 ± 3e-12 −21.0 ± 5e-12 0.55
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negative free energy from Eq. (2), as well as their reliability. Models
inverted using DCM10 priors showed considerably higher accuracy
(i.e., first row in Table 3) and lower complexity (i.e., sum of remaining
terms in Table 3); as was also indicated by the BMS results described
above. Remarkably, almost all terms showed comparable reliability be-
tween DCM10 and cDCM, the only exception being the (squared and
precision-weighted) deviation of the posterior mean from the prior
mean (second row in Table 3). This is consistent with the above findings
that the reliability of posterior parameter estimates decreased far more
markedly inDCM10 than the reliability of negative free energy estimates.

One possible reason why the wider priors in DCM10 impacted neg-
atively on reliability is that they afforded less regularization than cDCM
priors, thus increasing the possibility of local extrema in the objective
function and hence more variable estimates across sessions. We return
to this possibility below.

Hyperpriors
Although high reliability of the parameter estimates could be recov-

eredwhen transferring the original cDCMprior distributions to DCM10,
the initially observed problemwith reliability in DCM10 is not necessar-
ily attributable to the priors as such. In other words, the larger prior var-
iance for endogenous connections and modulatory inputs in DCM10
might only provide a fundament for the influence of additional factors,
which impact differently on model inversion in both software versions,
such as the choice of hyperpriors, or use of highly correlated inputs.

A hyperprior h describes prior expectations about measurement
error e, e.g., e ~ N(0, exp(h)−1), h ~ N(hE, hC); this essentially encodes
prior beliefs about the signal-to-noise ratio (SNR) of the measured
data. Hyperpriors are often overlooked aspects of model specification,
but can have a profound effect on model inversion and comparison.
Heuristically, the prior expectation of log precision (hE) corresponds
to the expected SNR (under the simplifying assumption that the vari-
ance of the signal is 1). This means that by specifying the log precision,
we can tell themodel the (a priori) level of signal-to-noise that is typical
of the fMRI time series at hand. Increasing the log precision means the
inversion will strive to provide an accurate explanation and allow for
larger deviations of posterior estimates from prior values, possibly at
the price of overfitting. Generally speaking, increasing the log precision
may reduce themodel evidence but increase sensitivity to differences in
log evidence among models. We therefore tested whether the drop in
reliability could partially reflect a more “brittle” evaluation of model
evidence, given the wider priors in DCM10. To that end, we repeated
Fig. 4. Influence of the expected log precision on the test-retest reliability for (A) thenegative fre
green triangle = model 4), and (B) the model parameter estimates (shown is the median ICC
considered for the estimation of test-retest reliability. Reliabilities are shown for DCM10’s defau
in cDCM.
the analyses under DCM10 with three values of the expected log preci-
sion (hE = 2, 4 and 6). This corresponds roughly to SNRs of 7, 50, and
400, respectively. These may seem rather large values but the regional
summaries used in DCM for fMRI are based upon regional “averages”
(principal eigenvariates) that suppress noise in proportion to the vol-
ume of the region.

Re-running model inversion in DCM10 with different values of the
expected log precision did not reveal anymajor effect of the hyperpriors
on reliability, neither for BMS (Fig. 4A) nor for the averaged (BMA)
model parameter estimates. Fig. 4B shows the results for taking into ac-
count only model parameters showing a substantial effect size. In sum-
mary, regardless of the chosen value for the expected log precision,
reliability remained reduced in DCM10 as compared to cDCM.

Correlated inputs
So far, DCMs were defined as in Grefkes et al. (2008), using three

fairly strongly correlated inputs (for left hand movements, right hand
movements, and bimanual movements). Additionally, the same inputs
were used as driving inputs to V5 and as modulatory influences on the
coupling parameters. Such design choices can be expected to induce
non-negligible conditional dependencies amongst model parameters;
this, in turn, can lead to more variable parameter estimates across ses-
sions (cf. Rowe et al., 2010). While there was no systematic difference,
across models, between cDCM and DCM10 with regard to posterior
dependencies (fourth row in Table 3), we examinedwhether a redefini-
tion of inputs, leading to less correlation amongst parameters,would re-
duce differences between cDCM and DCM10.

In the redefined DCMs, instead of using one input for each hand-
movement condition, one input implemented any visual stimulation,
one input coded the difference between right and left handmovements,
and a third input represented bimanual handmovements. For these re-
parameterized DCMs, we again assessed the test-retest reliability of
both the negative free energy and averaged (BMA) model parameter
estimates in DCM10.

As expected, conditional dependencies amongst parameter estimates
were reduced in the redefinedmodels. Contrary to our expectation, how-
ever, reliability did not increase noticeably in DCM10, neither for the
negative free energy (ICC = 0.59, for optimal model 1) nor for the
model parameter estimates (median ICC = 0.12; range: −0.44 to 0.63;
endogenous: 0.19; modulatory: 0.08; driving inputs: 0.55). Restricting
the reliability analysis only to the parameters with large effect sizes,
reliability was increased, although remaining poor (median ICC =
e energy of eachmodel (blackdot=model 1, blue cross=model 2, red square=model 3,
averaged over all parameters). Only parameters showing a substantial effect size were

lt expected log precisions, for hE= 2, 4 and 6 in DCM10, as well as for themodels inverted

Image of Fig. 4
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0.15; endogenous: 0.19; modulatory: 0.09; driving inputs: 0.55). Finally,
we varied the expected log precision (hE=2, 4 and6); as for the original
input structure described above, this did not substantially affect reliabil-
ity of model selection (Supplementary Fig. S2A) or model parameter
estimation (Supplementary Fig. S2B).

Discussion

This study reports the results of a software comparisonwith respect to
the test-retest reliability of DCM. Specifically, we examined the reliability
of model selection and parameter estimation across two sessions of an
established motor paradigm in healthy volunteers, using two different
software versions, a classical (cDCM, SPM5) and a more recent (DCM10,
SPM8) implementation of DCM.

Our results suggest that the reliability of DCM depends on the soft-
ware version used formodel inversion. For cDCM, reliabilitywas excellent
for model selection by BMS and satisfactory for model parameter esti-
mates, with most of them showing fair or good reliability. This suggests
that DCM can be a reliable tool for inferring effective connectivity from
fMRI data, as previously shown by Schuyler et al. (2010) for auditory
and visual tasks.

Using DCM10 (and similarly DCM12), we found a reduction in the re-
liability of both BMS and model parameter estimation. Whereas BMS re-
sults still exhibited good reliability, the majority of model parameter
estimates had poor reliability. This is an important issue for investigating
effective connectivity on a single-subject level (e.g., in clinical applica-
tions). We therefore tried to identify the reasons for the observed de-
crease of reliability in DCM10. Software changes in DCM10 were mostly
motivated by the goal to integrate numerous DCMvariants – such as non-
linear, two-state, and particularly stochastic DCM – under one implemen-
tation framework. Prominent modifications included numerical changes
in the inversion scheme, simplifications of the hemodynamic model,
reparameterization of self-connections, and adjustments of prior distribu-
tions. Specifically, prior variances were changed to allow for greater im-
pact of connections, relative to driving inputs, on network dynamics;
thiswas particularlymotivated from the perspective of resting-state anal-
yses under DCM.

Based on our observations on the relative reliability of endogenous,
modulatory and input parameters across both software versions, we
hypothesized that the change in prior distributions might be a key factor
for explaining the observed changes in reliability across DCM versions.
This was confirmed by transferring the priors of cDCM to DCM10:
under these classical (tight shrinkage) priors, model inversion with
DCM10 led to substantially increased reliability of the parameter esti-
mates, even beyond the levels observed with cDCM.

Subsequent analyses tried to clarify why the choice of priors had such
amarked influence on reliability. A straightforward explanation is that re-
liability might decrease due to overfitting, given that priors have higher
variance in DCM10. However, this hypothesis was refuted by examining
the log model evidence under both types of priors: models with DCM10
priors clearly outperformed models with cDCM priors.

We then examined the reliability of each individual term in the
objective function of DCM, the negative free energy, which represents a
bound approximation to the log evidence and contains components
encoding model fit and complexity, respectively. We identified a single
term whose reliability differed markedly between cDCM and DCM10.
This was the (squared and precision-weighted) difference between
posterior and prior mean. This finding is perfectly in line with the obser-
vation that reliability of BMS results decreased only moderately in
DCM10, compared to cDCM, whereas the reliability of posterior mean es-
timates dropped sharply. By contrast, there was no evidence for a more
general numerical problem in DCM10 (such as computing log determi-
nants of covariance matrices) that could have affected multiple parts of
the objective function.

We also examined the role of additional factors, which might
have interacted with the choice of priors, such as the specification of
hyperpriors (i.e., assumptions about SNR) and correlations in inputs
encoding experimental conditions. These analyses, however, did not
support the possibility that these factors could represent additional
reasons for the drop in reliability under DCM10.

We do not wish to imply that our results question previous group-
level results obtainedwithDCM10. This is for several reasons. First,we ex-
amined an unusually challenging case here, with complex models (with
up to N100 parameters) fitted to relatively few data points (i.e., 380
scans per subject and session). Most previous empirical applications
of DCM deal with a much more graceful ratio of data points to parame-
ter numbers. Second, almost all DCM studies to date report group-level
inferences based on summary statistics approaches (e.g., null hypothe-
sis tests applied tomaximumaposteriori parameter estimates); this ap-
proach depends on between-subject variability. Thismeans that studies
reporting significant effects at the between-subject level have probably
discovered large effect sizes, because the between-subject random ef-
fects are effectively revealed by less informative priors (rendering infer-
ence more conservative). Third, our current analyses demonstrate that
despite the low test-retest reliability of model parameter estimation
under DCM10, parameter estimates at the group-level were consistent
across DCM versions. This was demonstrated by statistical analyses
which showed significantly correlated parameter estimates across soft-
ware versions. This correspondencewas particularly significant for the
estimates of modulatory inputs (B-matrix); these are the estimates of
main interest in most DCM studies as they encode context-dependent
changes in connectivity.

Two previous studies have investigated the test-retest reliability of
DCM for fMRI in other contexts. Using classical DCM implemented in
SPM5, Schuyler et al. (2010) reported fair to excellent reliability of
model parameter estimates during auditory and visual tasks, but using
consecutive within-subject sessions, smaller models and not addressing
the reliability of model selection. Also using cDCM in SPM5 for model in-
version, Rowe et al. (2010) reported high reliability of BMS for an action
selection paradigm, but poor correlations of model parameter estimates
across sessions. Several reasons for this finding were suggested by Rowe
et al. (2010), including high posterior covariances amongmodel parame-
ters, model complexity and long inter-session intervals. In contradistinc-
tion to Rowe et al. (2010), our findings show that both model selection
and model parameter estimation can be reliable, even when separating
sessions by one month and when using complex models with non-
trivial posterior covariances. An alternative explanation for the results
by Rowe et al. (2010) is the relatively low number of data points (156
scans per session). This might have rendered model inversion brittle
and thus reduced the reliability of model parameter estimates. Having
said this, lownumber of data pointsmight be a critical issue in the present
study as well. Although twice as many volumes (i.e., 380 scans) were ac-
quired, we also used a model with twice as many regions (eight as op-
posed to four) and more than twice the number of parameters.

In fact, brittleness and problems of model inversion can be a potential
issue for fitting any nonlinear model, particularly when using a small
number of data points relative to the number of model parameters. In
analyses under parametric (normal) assumptions, a sufficiently high
ratio of data points and model parameters is required to ensure that the
posterior distribution is well approximated by a Gaussian; in DCM, this
is an important prerequisite for the stability of the Variational Laplace
(VL) scheme (cf. Daunizeau et al., 2011).

One of our reviewers asked for diagnostics of whenDCM results could
be “trusted”. Generally, when fitting nonlinear models (not just DCMs),
simple binary criteria or clear-cut thresholds that indicate the absence
or presence of problems with inversion or identifiability rarely exist.
Any such thresholds are essentially arbitrary, as in other domains of sta-
tistics (cf. significance thresholds in frequentist statistics), and can-
not replace a thorough understanding of both the model and the
inversion scheme. For example, the former can enable a
reparameterization to avoid identifiability issues (see above and
Brodersen et al., 2008 for an example of fitting behavioral data); the
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latter helps one to detect pathological updates in the sequence of objec-
tive function values returned by an optimization algorithm, such as the
VL scheme in DCM.

Having said this, there are some general heuristics which apply to the
inversion of any generative model, not just DCM, and can help detecting
problems. For example, a common rule of thumb is that a model requires
ten data points for each free parameter (Penny and Roberts, 1999). Fur-
thermore, it is informative to inspect the posterior covariance matrix
(which DCM provides by default). High posterior variances are related
to conventional indices of sensitivity analyses (Deneux and Faugeras,
2006) and signal interdependencies among parameters. This is most eas-
ily interpreted when transforming posterior covariances into posterior
correlations (cf. Stephan et al., 2007b); the finite range of the latter facil-
itates detecting potential identifiability problems of specific parameters.
High posterior correlations may reflect a redundant parameterization or
badly behaved regimes of the objective function (e.g., ridges or ravines)
that pose a problem for many model inversion schemes.

Importantly, however, potential problems with identifiability are
taken into account automatically by Bayesian model comparison. This
is because the posterior covariance among parameters increases model
complexity (cf. Daunizeau et al., 2011); in other words, in model com-
parisons, models with identifiability problems will be judged as inferior
and will contribute little to Bayesian model averages. Finally, when
problems are suspected, it is possible (albeit laborious) to examine the
identifiability of parameters in simulations using realistic signal-to-
noise ratios (which can be estimated, for example, from a conventional
GLM). This approach has been used by previous empirical DCM studies
(see, for example, Stephan et al., 2007a), and DCM offers tools to run
such simulations (e.g., see the function spm_dcm_create).

In summary, our results demonstrate that the choice of priors can
have substantial influence on the test-retest reliability of DCMresults. No-
tably, the influence of the priors could not be attributed to overfitting and
did not affect the reliability of any other objective function component
than the posterior mean estimates. The most likely explanation for this
finding is that the large prior variance of the endogenous andmodulatory
parameters inDCM10 exerted less regularization of the objective function
than the tighter priors in cDCM, thus leading tomore local extrema in the
objective function (or greater likelihood of bifurcations induced by pa-
rameter updates; cf. Daunizeau et al., 2011). Low reliability might there-
fore be attributable to the Variational Laplace algorithm being trapped
in different local extrema in each session. This hypothesis is supported
by our observations that some DCMs converged almost immediately
(“flat-lined”) when inverted under DCM10, while producing sensible re-
sults as soon as the optimization algorithm’s starting positionwas slightly
varied. To test this hypothesis systematically, wewill use global optimiza-
tion schemes in a future study, such as Markov Chain Monte Carlo
(MCMC) and Gaussian Process Optimization (GP) schemes, which are
currently under development for DCM for fMRI.

Local extrema in the objective functionmight also provide an explana-
tion for the observed influence of the prior distributions on the selection
of the winning model. Under the DCM10 priors, the sparsest model
(model 1) was most likely, whereas the full model (model 4) was
selected under cDCM priors. Our analyses of the individual terms of the
objective function of DCM illustrate that model 1 had the highest
accuracy and lowest complexity of all models under DCM10 priors. For
cDCM priors, model 1 still had the lowest complexity but at the same
time provided only poor accuracy. In contrast, the winning model
(model 4) provided the largest complexity, yet this was outweighed by
the benefit in accuracy. As for the differences in parameter estimates,
these differences in model selection might result from a higher incidence
of local extrema under the wide DCM10 priors, compared to the tighter
regularization provided by cDCM priors; the latter may have enabled
cDCM to exploit the explanatory power of additional parameters without
getting stuck during optimization.

Three important issues remain to be emphasized. First, to ensure
a clear focus, the present report was restricted to an assessment
of test-retest reliability. By contrast, a separate quantitative analysis
concerning the reproducibility of parameter estimates (with regard to
the previous group results by Grefkes et al., 2008) will be reported in
a separate paper (Frässle et al., in preparation). In brief, we found that
our group results reproduce those by Grefkes et al. (2008) well, regard-
less of the DCM implementation used for model inversion.

Second, we have focused exclusively on bilinear deterministic DCM
for fMRI and did not consider other DCM variants (e.g., nlDCM or
sDCM). These variants differ from bilinear DCM and their use is not
easily motivated for the simple task and motor network in this paper.
Furthermore, we could not extend our comparison to these variants be-
cause they were not implemented in SPM5. Thorough analyses of the
test-retest reliability of nlDCM and sDCM thus remain subject to future
research. Similarly, our findings are – strictly speaking – only applicable
to the hand-movement paradigm used in the present study. Repeating
the test-retest procedures we have introduced, with different experi-
mental paradigms, may further elucidate the impact of prior assump-
tions on test-retest reliability across software versions.

Third, one might argue that identifying the choice of prior variance
as key influence on reliability is somewhat non-surprising, in the
sense that, all other factors being equal, reliability can be expected to
increase with decreasing prior variance. Indeed, in the limit of a delta
function prior, perfect reliability is guaranteed. Having said this, cDCM
priors do allow for non-trivial deviations of posterior from prior mean
and have proven practical suitability for fitting empirical fMRI data
in many studies. Furthermore, our results using the ICC of posterior
means that deviate from the prior means cannot be explained by a
non-specific effect of increasing shrinkage priors. Therefore, our present
findings suggest that the choice of priors should represent a future focus
of DCMdevelopments. An attractive approach in this regard is Empirical
Bayes (EB), which constitutes a powerful Bayesian inference scheme
for hierarchical models (Efron and Morris, 1973; Kass and Steffey,
1989) and has been introduced to other neuroimaging analyses in the
past (e.g., posterior probability maps; Friston and Penny, 2003). For
standard DCM group-analyses, EB would estimate prior distributions
from the data across subjects, under the hierarchical structure of a
multi-subject random or mixed-effects model. A prototype of such a
scheme for DCM analyses is presently being developed in our group.
Our expectation here is that the empirical priors from the second
(between-subject) level will be sufficiently informative to shrink
subject-specific estimates and therefore improve reliability in the same
way that we have shown when shrinking the priors in the DCM10 anal-
yses of single subjects. We will explore the utility of this approach, and
its benefits for reliability, in forthcoming studies.
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