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Over the past decade, computational approaches to neuroimaging have increasingly made use of hierarchical
Bayesian models (HBMs), either for inferring on physiological mechanisms underlying fMRI data
(e.g., dynamic causal modelling, DCM) or for deriving computational trajectories (from behavioural data)
which serve as regressors in general linear models. However, an unresolved problem is that standard methods
for inverting the hierarchical Bayesian model are either very slow, e.g. Markov Chain Monte Carlo Methods
(MCMC), or are vulnerable to local minima in non-convex optimisation problems, such as variational Bayes (VB).
This article considers Gaussian process optimisation (GPO) as an alternative approach for global optimisation of
sufficiently smooth and efficiently evaluable objective functions. GPO avoids being trapped in local extrema and
can be computationally much more efficient than MCMC. Here, we examine the benefits of GPO for inverting
HBMs commonly used in neuroimaging, including DCM for fMRI and the Hierarchical Gaussian Filter (HGF).
Importantly, to achieve computational efficiency despite high-dimensional optimisation problems, we introduce
a novel combination of GPO and local gradient-based searchmethods. The utility of this GPO implementation for
DCM andHGF is evaluated against MCMC and VB, using both synthetic data from simulations and empirical data.
Our results demonstrate that GPO provides parameter estimates with equivalent or better accuracy than the
other techniques, but at a fraction of the computational cost required for MCMC. We anticipate that GPO will
prove useful for robust and efficient inversion of high-dimensional and nonlinear models of neuroimaging data.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The application of neuroimaging methods, such as functional
magnetic resonance imaging (fMRI), to cognitive neuroscience has
significantly enhanced our understanding of brain function. Following
the advent of fMRI in the early 1990s, a first decade of neuroimaging
research focused on the problem of mapping, i.e., where particular
cognitive functions are implemented, by localising task-induced activity
in specific brain structures. Approximately one decade later, this per-
spective began to shift towards a computational approach, emphasising
thequestion how cognitive functions are implemented. Thiswas accom-
plished by introducing a variety of mathematical models to neuroimag-
ing (for review, see Friston and Dolan, 2010). These models can be
categorised into two groups. First, models of information processing
(“computational models”) from reinforcement learning or Bayesian
accounts of cognition which serve to infer, from the observed subject-
specific behaviour, trajectories of computational quantities such as
prediction errors. These computational quantities can then be used as
rich, Switzerland. Fax: +41 44
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regressors in conventional mass-univariate analyses based on the
general linear model (GLM). This approach, often referred to as
“model-based fMRI” (Glascher andO'Doherty, 2010), has been very suc-
cessful in providing a more fine-grained account of the computations
implemented in particular brain regions. Prominent examples include
the encoding of different types of prediction errors and uncertainty in
brain regions such as the dopaminergic midbrain (D'Ardenne et al.,
2008), striatum (O'Doherty et al., 2003), or the basal forebrain
(Iglesias et al., 2013), and cortical structures like the insula (Preuschoff
et al., 2008). Over the years, themodels employed have become increas-
ingly complex, from classical reinforcement learningmodels such as the
Rescorla-Wagner model (Rescorla and Wagner, 1972) or temporal dif-
ference learning (Schultz et al., 1997) to more complicated hierarchical
models (e.g., Behrens et al., 2007). One particular model we will exam-
ine in more detail below, the Hierarchical Gaussian Filter (HGF; Mathys
et al., 2011), describes a hierarchy of coupled belief updating processes
whose subject-specific parameters are inferred through variational
inversion.

The second group of models concerns the physiological processes
underlying neuroimaging data. In particular, these are dynamic causal
models (DCMs) of fMRI (Friston et al., 2003) or electrophysiological
data (David et al., 2006). As generative models, DCMs embody a
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Box 1
Outline of a general algorithm for Bayesian Global Optimisation.

• Define initial points xinit
• Evaluate the target function f in xinit and store xinit and f(xinit)
in the approximation set S = [xinit; f(xinit )]

• Until expected improvement E[I] falls below a pre-defined
threshold:

○ Approximate S with the approximation function fa

○ Find new point which maximises expected improvement:
xnew ¼ argmaxx�E I x�ð Þ½ �

○ S = [S {xnew; f(xnew )}].
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probabilistic forward mapping from hidden brain states (neuronal and
haemodynamic states) to the observed measurements in multiple
interacting regions. A Bayesian inversion of this forward model then
enables computing of the posterior probability of the parameters which
represent, for example, effective connectivity strengths. An additional
key goal is to obtain an approximation to the log-evidence in order to
perform model selection, i.e., comparing alternative explanations of
how the observed data could have been caused (Penny et al., 2004).

Many of the computational and physiological models mentioned
above, e.g. DCM and HGF, can be understood as special cases of hierar-
chical Bayesian models (HBMs). These models are powerful tools
for analysing behavioural and neuroimaging data and are finding
widespread application. One potential problem is, however, that
statistical inference can be difficult due to the computational challenges
of model inversion (for an earlier discussion focused on DCM, see
Daunizeau et al., 2011). Commonly employed inversion methods are
either very slow, e.g. Markov Chain Monte Carlo Methods (MCMC)
such as the Metropolis–Hastings algorithm (MH; Metropolis and
Ulam, 1949), or are susceptible to local minima, such as gradient
descent schemes used in variational Bayesian methods (Friston et al.,
2007; Daunizeau et al., 2014).

Here, we consider Gaussian process optimisation (GPO; Osborne
et al., 2009; Frean and Boyle, 2008) as an alternative to MCMC and var-
iational methods. GPO offers three potential advantages: (i) as a global
optimisation method for sufficiently smooth and efficiently evaluable
objective functions it is less susceptible to local minima than gradient
descent schemes; (ii) it makes nonparametric assumptions about the
objective functions; and (iii) it is computationally more efficient than
MCMC.

Specifically, in this technical note, we propose an implementation of
GPO for inverting HBMs commonly used in neuroimaging, including
DCM for fMRI and a standard three-level HGF for learning and
decision-making tasks. Critically, to dealwith the “curse of dimensional-
ity” (Bellman, 1957) in applicationswhere the number of parameters to
optimise over is fairly high (e.g., N30 parameters as often encountered
in DCMs), we introduce a novel combination of GPO and local gradient
methods which greatly reduces procedural complexity and ensures
computational tractability. The utility of this implementation for DCM
and HGF is evaluated using both synthetic data (from simulations)
and empirical data.

The paper is structured as follows. The “Methods” section describes
the idea of ourmethod alongwith a brief overview of Gaussian Process-
es and a number of related technical issues, such as optimisation of
hyperparameters and the challenge by the ‘curse of dimensionality’.
While GPs have found application for classification analyses of neuroim-
aging data (e.g., Marquand et al., 2010; Salimi-Khorshidi et al., 2011;
Mourão-Miranda et al., 2012; Pyka et al., 2013), they have found little
application in computationalmodelling of brain physiology or cognition
so far. We therefore discuss some of their central properties in a
tutorial-like fashion. In the “Results” section we present the perfor-
mance of our method (i) in finding the global maximum of a highly
multimodal function, (ii) for inverting DCMs given synthetic data (and
thus known underlying parameters), and (iii) for inverting HGFs given
real data. When inverting these models, we compare the performance
of GPO to two well-established approaches: Gauss–Newton descent
(in the context of the Variational Laplace scheme typically used for
DCMs; Friston et al., 2007), and an MH sampling scheme.

Methods

Global optimisation of complicated objective functions

As a basis for our implementation described below, this section
briefly summarises a general approach to optimising multimodal
functions in cases where stochastic optimisation methods such as the
MH algorithm are computationally too expensive while local methods
such as Gauss–Newton descent schemes are too vulnerable to localmin-
ima. This general framework, Bayesian Global Optimisation (BGO;
Mockus et al., 1978), offers a useful compromise between MH and
local methods. The underlying idea of BGO is to approximate the target
functionwith some easy-to-evaluate proxy based on a set of points over
which the target function has already been evaluated, and optimise the
current approximation instead of the target function itself. The key
challenge here is to compute, based on a few evaluated data points, a
(possibly multimodal) approximation function which allows for rapid
identification of a candidate optimum, while suggesting additional
data points whose evaluation may help to further improve the present
estimate. More specifically, the approximation is derived from a
Gaussian process which, given a set of evaluated points and under the
assumption of the function being smooth, predicts how the function
typically behaves over its domain. Critically, since this approach returns
confidence intervals for function values at non-sampled points, it
enables us to derive a number of criteria which guide the sampling
from hitherto unexplored domains, such as Expected Improvement
(Mockus et al., 1978) or Upper Confidence Bound (Srinivas et al.,
2010). These criteria suggest a principled exploration-exploitation
trade-off. An outline of the general BGO algorithm is provided in Box 1.

Notably, the approximating function can be any regression function,
including ridge regression, random forest or Gaussian processes (GP). In
this paperwewill focus on global optimisation usingGP as it has several
important advantages: (i) GPs are fast at evaluation; (ii) their only
assumption is that the underlying function is structurally smooth in
some space; (iii) by intuitive adjustments, GP can approximate a wide
range of functions; finally and most importantly, (iv) GP has an in-
built approximation not only to the function itself but also to the
variance of this approximation. Before we explain these points and
their importance for the overall scheme in more detail below, it should
be emphasised that using GP for BGO is well-established. For example,
using GP mean estimates for approximation corresponds to “kriging”
(Krige, 1951). By contrast, more recent approaches to efficient global
optimisation exploit both mean and variance estimates provided by
GP (Osborne et al., 2009).

Gaussian processes

This section provides a short, tutorial on Gaussian processes. A
Gaussian process is defined as a stochastic process forwhich realisations
are jointly distributed according to themultivariate normal distribution.
More specifically, a collection of N points and their corresponding
targets are jointly distributed according to the following normal
multivariate distribution:
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where x= {x1, x2,⋯, xN} is a collection of points, t= {t, t2,⋯, tN} is a col-
lection of corresponding targets, and k(⋅,⋅) is some kernel or covariance
function. The meaning of the kernel function will be explained in more
detail below. For themoment it is sufficient to note that the kernel func-
tion encodes the smoothness of predictions, i.e., non-zero off-diagonal
elements of the covariance function enforce that data points close to
each other result in similar target variables. In other words, we can
think of distribution (1) as a prior distribution over the function t(x),
which forces it to be smooth.

Analogously we can specify a joint distribution over a collection of
already observed data points and previously unseen ones:

t1
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⋮
tN
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Here and in the following derivations we deal with the case of a
single unseen data point {x*, t*} but this easily generalises to a collection
of unseen points.

Given distribution (2), one can derive the conditional distribution
p(t*|t). Using a Schur complement, one can show that this distribution
will be a multivariate normal distribution as well, with the following
mean and variance:

μ y x�ð Þ ¼ μy x�ð Þ ¼ kTK−1
N t

σ 2
y x�ð Þ ¼ k x�; x�ð Þ−kTK−1

N k;
ð3Þ

where KN is the covariance matrix in Eq. (1) and k = [k(x*, x1),⋯, k(x*,
xN)]. This means that the distribution over any new point can be fully
estimated analytically and requires only one inversion of an N × N ma-
trix. This computational simplicity renders GP an efficient prediction
method, especially when a dataset is not too large. In addition, various
numerical techniques exist which accelerate the inversion of the
covariance matrix; others serve to increase its numerical stability,
e.g., Cholesky decomposition (Rasmussen and Williams, 2006).

However, so farwe have assumed that there is nonoise in themodel,
in other words, that all targets are observed exactly. This assumption
does not necessarily hold, as our observations can be corrupted due to
measurement noise. To generalise the model, we can assume that the
Fig. 1.An illustration of Gaussian processes and the underlying smoothness assumption about fu
case, the covariancematrix of the joint distribution of their targets has large off-diagonal elemen
where points are sufficiently far from each other that the associated targets exhibit only small
actually observed variables y are equal to true targets t corrupted by
some normally distributed noise:

p yjtð Þ ¼ N t;β−1IN�N
� �

; ð4Þ

where IN × N is an N × N identity matrix, and β specifies the precision of
the observations. From this the distribution over the target for the new
point can be derived given noisy observations y. This distribution is also
Gaussian with the following mean and variance:

μy x�ð Þ ¼ kTC−1
N y

σ2
y x�ð Þ ¼ c−kTC−1

N k;
ð5Þ

where

СN ¼ K þ β−1IN�N

k ¼ k x�; x1ð Þ;⋯; k x�; xNð Þ½ �
c ¼ k x�; x�ð Þ þ β−1:

ð6Þ

For details of the derivation, please see Rasmussen and Williams
(2006)who fully specify GP based prediction for the case of noisy obser-
vations. Importantly, the introduction of noise invokes a regularisation
of the covariance matrix and thus makes numerical inversion of the
matrix more stable.

Gaussian processes for global optimisation

Eq. (5) highlights that the computational efficiency of GP based pre-
diction is limited by the efficiency of computing mean and variance as
specified. From Eq. (5) we can see that this requires only one inversion
of the covariance matrix CN, where N is the number of observed points
(typically much smaller than the number of points we want to test).
All other computations include the evaluation of the kernel function
k(⋅,⋅) andmatrixmultiplication and thus grow linearly with the number
of test points. In other words, at relatively low computational cost, one
can evaluate as many test points as required, given a set of observed
data.

The smoothness assumption made by GP follows directly from the
kernel function in Eq. (1). This kernel function specifies the similarity
between data points, as reflected by the off-diagonal elements of the
covariance matrix. It means that targets of points close to each other
under a chosen kernel function should also be similar, which conforms
to an intuitive notion of smoothness. An illustration of this concept is
depicted in Fig. 1. Importantly, a kernel function specifies a mapping
nctions. Panel a demonstrates the situationwhen two points are close to each other. In this
ts which enforces similarity in the value of the associated targets. Panel b presents the case
dependencies.
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of data points to a potentially unknown space in which this kernel
function is an inner product, thus smoothness specified in this space
does not necessarily imply smoothness in a Euclidian space. However,
for typical kernel functions such as a squared exponential, this
complication does not arise.

The central role of the kernel function for GP is a major reason for its
flexibility. By varying the kernel function k(⋅,⋅) and its hyperparameters,
we obtain very different predictions, as illustrated in Fig. 2, and can thus
approximate functions with various dynamical ranges or smoothness
properties. Moreover, the method is not limited to real vectors but can
work with any type of object, including graphs or distributions, as
long as we can specify a meaningful kernel or similarity metric for
them. However, this flexibility comes at a price, as the specification of
the kernel function and its hyperparameters becomes critically impor-
tant. We will discuss possible kernel functions and their properties in
more detail below.

The fourth property of GP we highlighted, i.e., providing both an
approximation and the variance of this approximation, follows directly
from Eq. (5). This is crucially important for using GPs as amethod to im-
plement BGO as the variance estimate in Eq. (5) is the basis for assessing
the “expected improvement” obtained by selecting new evaluation
points. Importantly, in Eq. (5) the variance depends only on the
pairwise similarities of the points and not on their values. Simply speak-
ing, high variance of a candidate point for evaluation indicates that this
point is distant from previously explored domains andmay be close to a
“hiding” extremum. Having access to both the approximation and its
variance allows one to balance exploration against exploitation.

Given these additional properties, an optimisation algorithm based
on GP has the following general structure described in Box 2:

There are number of possible criteria for convergence, i.e. Expected
Improvement (cf. Mockus et al., 1978; Jones et al., 1998). However, in
Fig. 2.An illustration of how different parameters of the kernel function translate into different
particular example, a hyperparameter of the squared exponential kernel is changed (see Eq. (11
function better matched the observed data.
this work, we primarily focus on the Upper Confidence Bound (UCB)
criterion (Srinivas et al., 2012) due to both its simplicity and robustness
in practical applications:

UCB μ x�jSð Þ; σ2 x�jSð Þ� � ¼ μ x�jSð Þ þ ασ2 x�jSð Þ; ð7Þ

whereα ≥ 0 enables control of the exploration–exploitation trade-off. Ifα
turns to zero, this approach reduces to using the approximation alone,
whereas if α is greater than zero, the variance of the approximation is
also taken into account, forcing the algorithm to visit unexplored areas
of the domain of the approximating function, despite their predicted
low function value. An illustration of this concept is presented in Fig. 3.

In this subsection we have illustrated some key properties of GP and
explained how they can be useful for BGO.We now turn to a number of
technical considerations caused by the nature of GP per se, or driven by
the specific applications we have in mind, i.e., inversion of hierarchical
Bayesian models for neuroimaging and behavioural data.

Kernel functions

The kernel function determines the space in which smoothness is
assumed and thus becomes a crucial choice for approximation. Most
kernel functions have their own hyperparameters, which can either
be defined a priori by the user or optimised within the algorithm.
These hyperparameters can strongly affect the behaviour of the kernel
function, as demonstrated in Fig. 2.

Here, a kernel function is defined as a function of two arguments,
K(⋅,⋅), which represents an inner product of single argument functions
φ(⋅) in some potentially infinite dimensional space V:

K x1; x2ð Þ ¼ φ x1ð Þ;φ x2ð ÞV : ð8Þ
priors over functions and thus lead to different posterior beliefs given the same data. In this
)), resulting in different prior beliefs about the function's smoothness. Here, a less smooth



Fig. 3.An illustration of howGaussian process optimisation utilises variance estimates of the approximating function (red line) to evaluate unexplored regionswhich promise to provide a
maximum amount of additional information.
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To prove that some function can be used as a kernel function we
need to show that it can be represented in the form above. As V can be
infinite dimensional, it is not always possible to express it explicitly;
however, we can construct kernels from simpler ones using a set of
rules. For example, a linear combinations of kernels is also a kernel
(for further details, see Bishop, 2006). In the followingwe briefly discuss
some of the most widely used kernels.

A linear kernel is the simplest possible kernel, in which we assume V
to be the same as the kernel space. In otherwords, this kernel function is
just a linear product of Euclidian vectors of data point features:

K x1; x2ð Þ ¼ x1; x2: ð9Þ

This kernel, however, is not appropriate for functions which are as-
sumed to be multimodal and thus pose a highly nonlinear optimisation
problem.

Another widely used kernel is theMatern kernel:

K x1; x2ð Þ ¼ σ 2 2
1−ν

Γ νð Þ

ffiffiffiffiffiffi
2ν

p
x1−x2j j
l

 !ν

Kν
ffiffiffiffiffiffi
2ν

p x1−x2j j
l

� �
; ð10Þ

where KV is amodified Bessel function of the second type and l, σ 2 and v
are non-negative hyperparameters. The special case of ν→ ∞ yields the
widely used Gaussian (squared exponential) kernel:

K x1; x2ð Þ ¼ σ 2 exp
− x1−x2ð Þ2

2l2

 !
: ð11Þ

Here, an intuitive interpretation of the hyperparameters is that l
encodes the smoothness of the function (the larger l, the more distant
data pointswill affect each other), andσ2 specifies the overall amplitude
of the function (see Fig. 2). It is important to note that l, in the case of a
multivariate observation, can become a vector of the parameters and
thus specify the relative sensitivity along each parameter.

The choice of a kernel function is a central issue for the application of
Gaussian process. For an in-depth discussion, the reader is referred to
Duvenaud (2014). In brief, sometimes the choice of kernel function
can be guided by a priori knowledge; for example, if we know that the
target function is periodic or linear, a periodic/linear kernel is a natural
choice. Another approach is to select the kernel function from a set of
standard options (as those described above) using cross-validation or
Bayesian model selection. Alternatively, one can choose a kernel
functionwhich is sufficiently flexible that it can capture target functions
with various smoothness under different regimes of hyperparameters,
e.g. the Matern kernel, and infer appropriate hyperparameters from
the data.

Inferring the hyperparameters, including the precision parameter β
(see Eq. (4)) can exploit a priori knowledge about the target function,
if available, or can be inferred using maximum likelihood estimation,
given the GP approximation under a specific kernel function. Alterna-
tively, optimisation of the hyperparameters could be performed online,
for example, locally using a gradient descent method such as Gauss–
Newton (cf. Rasmussen and Williams, 2006). Here, the trade-off be-
tween computational efficiency and approximation quality needs to
be optimised. In the current work, we use the Matern kernel (ν ¼ 3

2)
for both real and synthetic data and perform a few iterations (up to 15
if convergence is not achieved earlier) of the local optimisation of the
parameters at every approximation step, starting from their previous
values.
Dynamical causal modelling for fMRI

DCM for fMRI is a generative model of the blood oxygen level
dependent (BOLD) signal in multiple regions (Friston et al., 2003). It
has a hierarchical structure with two layers. The evolutions of hidden
neuronal states (one or several per region) which interact through syn-
aptic connections are described by differential equations. These neuro-
nal dynamics are translated into regionally specific BOLD signals
through a hemodynamic forward model (Friston et al., 2000; Stephan
et al., 2007). The DCM parameter set thus consists of three subsets: pa-
rameters of the neuronal state equations (“connectivity parameters”),
parameters of the hemodynamic forward model (“hemodynamic
parameters”) and hyperparameters which encode the amplitude of
observation noise in each region.

DCM is formulated in a fully Bayesian setting with Gaussian or
log-normal priors on (hyper)parameters. Given aparticularmodel, Bayes-
ian inversion serves to obtain the posterior distributions of the parame-
ters; typically these are specified in terms of maximum a posteriori
(MAP) estimates and posterior variance. Additionally, as a basis for com-
paring alternative models, one would like to obtain an approximation to
the log evidence (or logmarginal likelihood) as ameasure for the balance
between the fit (accuracy) of the model and its complexity (Bayesian
model selection, BMS; MacKay, 2003). However, as the model evidence
is an integral over the joint probability, it is usually prohibitively expen-
sive to compute. One solution to this problem is variational model inver-
sion: by optimising a free energy bound on the log evidence, one
implicitly diminishes the Kullback–Leibler divergence between an ap-
proximate posterior and the (unknown) true posterior. In other words,
optimising the free energy bound both yields an approximation to the
log evidence and the MAP estimates. In DCM, this variational inversion
scheme is combined with a Laplace approximation (i.e., approximating
the posterior by a Gaussian centred on its mode). Collectively, this has
led to an efficient Bayesian inversion scheme called “Variational Laplace”
(cf. Friston et al., 2007) and is used in the current implementation of DCM
in the Statistical Parametric Mapping (SPM) software package (http://
www.fil.ion.ucl.ac.uk/spm). While this method is computationally

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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efficient and provides both MAP estimates of the parameters and the log
evidence, it is susceptible to local minima, as it implicitly assumes a
unimodal objective function (seeDaunizeau et al., 2011 for a previous dis-
cussion of this potential problem).

In our approach, we use GP global optimisation to find the mode of
the posterior distribution by maximising the log joint. To initialize the
algorithm,we randomly sample K (typically 20 points) from amultivar-
iate normal distribution (i.e., the priors of the model parameters) to in-
duce a certain degree of exploration from the first step. Another
initialization option is to sample from nodes of a predefined grid. This,
however, is an approach that is applicable only to low-dimensional
problems and becomes intractable in case of DCMswith a large number
of free parameters. As DCMs often contain 30 or more parameters,
parameter estimation is typically not a low-dimensional problem and
raises certain challenges which we address below in the “Curse of
dimensionality” section.

To evaluate our GP implementation for DCM, we compared GPO
against the standard inversion scheme (Variational Laplace) for DCM
in SPM, as well as against MCMC (i.e., the MH algorithm). To this end,
we used a “ground truth” scenario, where synthetic data were generat-
ed from DCMs with known parameters, as described below.
ox 2
utline of a general algorithm for BGO based on GP.

• Define initial points xinit
• Evaluate the target function f in xinit and store xinit and f(xinit)
in the approximation set S = [xinit; f(xinit )]

• Until Criterion falls below a pre-defined threshold:
○ Approximate S with GP
○ xnew∈ argmaxx�Criterion μ x�jSð Þ; σ2 x�jSð Þ� �
○ S = [S {xnew; f(xnew )}].
Hierarchical Gaussian filtering (HGF)

As a complementary approach to assessing the accuracy of different
optimisationmethods for synthetic data, we now turn to the analysis of
empirical data, using a different model than DCM. This is the Hierarchi-
cal Gaussian Filter (HGF), a hierarchical Bayesian model of learning
which consists of a hierarchy of coupled Gaussian random walks. In
the standard three-level HGF implementation (see Mathys et al.,
2011), this coupling is specified by three parameters which encode a
subject's individual approximation to Bayes optimal learning. A detailed
account of this model can be found in Mathys et al. (2011); for a recent
application to fMRI data, see Iglesias et al. (2013). Importantly, the stan-
dard implementation of the HGF rests on a quasi-Newton local gradient
descent method (QN) for model inversion. This algorithm is fast and
robust, but assumes that the objective function is convex. As a local
method, it is vulnerable to local extrema.

In recent work, we adopted a similar evaluation approach as
described for DCM above, i.e., we generated synthetic data and tested
the accuracy of HGF parameter estimation for different optimisation
methods, i.e., QN, GPO, and MH (Mathys et al., 2014). While this previ-
ous evaluation found that all three methods were comparably accurate,
it concerned the standard implementation of a three-level HGF, where
the assumption of a unimodal convex objective function is likely to
hold. Present applications of the hierarchical Bayesian model of cogni-
tionmove to increasinglymore complexmodelswithmore complicated
objective functions (e.g., Diaconescu et al., 2014). This increase in com-
plexity raises the question whether the equivalence of optimisation
methods still holds.

Here,we examine this issue, using a set of nine differentHGFs, someof
which are considerably more complex than previous implementations.
The models are applied to empirically measured behavioural data from
a social learning paradigm (Diaconescu et al., 2014). This paradigmexam-
ines howhumans represent other agents' intentions in an interactive eco-
nomic game, which included periods of both aligned and conflicting
interests between subjects who were randomly assigned to a “player”
or an “adviser” role. The key idea underlying the variousmodelswe tested
was that participants employ hierarchically-structured learning as they
infer on both the advice accuracy and the volatility of the adviser's chang-
ing intentions. This paradigm yields data which enable a challenging test
for model inversion: (i) binary inputs and outputs but continuous hidden
states, (ii) imbalanced input classes, (iii) heterogeneous player–adviser
pairs, and (iv) complex learning processes under pronounced volatility
(of the adviser's intentions).
As above, we chose the log joint probability as an objective function.
We compared the performance of QN, GPO and MHwith respect to the
objective function values as well as to additional criteria such as model
selection performance andpredicting independent questionnaire scores
of the subjects. The latter analysis uses an external criterion to assess the
predictive validity of the model and how it is affected by the inversion
scheme.

Curse of dimensionality

Typically, global optimisation by GPO is applied to active learning
problems where the number of parameters is relatively small or the
overall number of potential inputs is limited (for example see Krause
et al., 2008; Vezhnevets et al., 2012; Osborne et al., 2009). However, in
some of the problems mentioned above, the dimensionality of the pa-
rameter space can be quite high (e.g., DCMs for fMRI often have several
dozen parameters). This poses some challenges which motivated the
particular GPO implementation we propose in this paper.

Thefirst challenge concerns theGP surface itself. As dimensionality in-
creases, the number of evaluation points grows exponentially. Despite the
computational efficiency of the evaluation of the upper confidence bound
(Eq. (7)), this causes substantial computational problems very quickly,
even when using a very rough grid. To avoid this situation, in our imple-
mentation the upper confidence bound was only computed for a fixed
number of points (typically 106) which were randomly sampled from a
large open sphere around the point of the current maximum. The radius
of the sphere was taken to be two orders of magnitude larger than the
variance of the parameters' priors (σθ) to guarantee coverage of the
whole parameter space of interest.

The second challenge caused by high dimensionality concerns the
target function optimisation. As the space grows exponentially with di-
mensionality, GP optimisation becomesmuch less computationally effi-
cient than any local method (though still more efficient than sampling
methods). To compensate for this, we departed from conventional
GPO approaches and married local and global approaches, using the
points identified by GP on the basis of the UCB criterion (Eq. (7)) for a
subsequent local search (see Box 3 for details).

Practically, this meant that points chosen by GP optimisation were
not only saved to the approximation set but also used as initialization
points for a local gradient-based optimisation method, i.e., the quasi-
Newton Broyden–Fletcher–Goldfarb–Shanno method (BFGS; Nocedal
and Wright, 2006) which is computationally highly efficient. Since the
initial point proposed by GP was likely to be in the vicinity of the actual
extremum, we could afford restricting the local search to a few
iterations and thus ensure high computational efficiency. In summary,
combining global and local approaches in this way yields an excellent
balance between precision and efficiency.

Comparision of GPO to others techniques

To evaluate its precision and efficiency, we compared our GPO
implementation to other well-established inference schemes. Standard
B
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Box 3
The final GPO algorithm with embedded local search.

• Define initial points xinit
• Evaluate the target function f in xinit and store xinit and f(xinit)
in the approximation set S = [xinit;f(xinit)]

• Until UCB(μ(x*|S), σ2(x*|S)) falls below a pre-defined
threshold:
○ Approximate S with GP
○ Create sample test Xsample : {xi ~ N(xmax, 100σθ)}, i =

[1 ⋅ 106], where xmax ¼ argmax
x

f xð Þ
○ xnew ¼ argmaxx�∈Xsample

UCB μ x�jSð Þ; σ2 x�jSð Þ� �
○ S = [S {xnew; f(xnew )} ]
○ Start BFGS gradient descent starting at xnew → xmax

○ S = [S {xmax; f(xmax )}].

Fig. 4.Approximation of the sinc kx function (red dashed line) by Gaussian processeswith
a Matern kernel (with k equal to 5 (a), 2 (b) and 0.5 (c)) after 100 trials. The black line
shows the mean of the estimated posterior, and grey areas reflect the variance.
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benchmarks are the Variational Laplace (VL) method for DCM and the
quasi-Newton method for HGF. Both approaches are described above
and constitute fast and robust algorithmswhich are, however, suscepti-
ble to local minima.

A Metropolis–Hastings (MH) sampling scheme was used as an ad-
ditional “ground truth” benchmark for both DCM and HGF. This
method is guaranteed to find a global maximum, given an infinite
number of iterations. Reliable and robust results can be obtained for
large finite number of iterations, at the expense of high computation-
al costs. This inefficiency often makes this method inapplicable
in practise, but can provide a useful reference in methodological
evaluations as ours.

To increase the efficiency and robustness of computations, instead
of a “classical” implementation of MH we used the MCMC algorithms
in mpdcm (Aponte et al., in preparation), a toolbox for massively par-
allel dynamical causal modelling which exploits the computational
power of graphics processing unit (GPU). This toolbox includes an
implementation of parallel tempering for DCM, an extended version
of the Metropolis Hastings algorithm that simulates parallel but
connected Markov Monte Carlo Chains (Swendsen and Wang, 1986;
Laskey and Myers, 2003) and increases the statistical efficiency
of sampling. Parallel tempering is particularly efficient when the
posterior distribution is multimodal as shown by Calderhead and
Girolami (2009). During the burn-in phase, the covariance of the pro-
posal distribution of each independent chain was modified according
to Shaby and Wells (2010) in order to achieve increased sampling
efficiency.

For each type of analysis we ran 10 chains with 105 iterations
each, additional to an initial burn-in period. To initialize each chain
we randomly sampled from the prior. The prior variance was used
as step size for each dimension. To evaluate the overall chain conver-
gence we computed the Gelman–Rubin–Brooks multivariate potential
scale reduction factor. This is one of the most widely used criteria for
MCMC convergence which rests on comparing within-chain and
between-chain variances of several parallel and independently initial-
ized chains (not dissimilar to a classical ANOVA) in order to verify
whether the chains have resulted in non-distinguishable distributions
(for a description of both diagnostics see pp. 319–335, Brooks and
Roberts, 1998).

Notably, in addition to different numerical strategies, an important
difference between these optimisation schemes is the choice of
objective function. That is, our GPO and MH implementations opti-
mise the joint probability (which is proportional to the posterior),
whereas Variational Laplace optimises the sufficient statistics of an
approximate posterior by optimising a free-energy bound on the log
evidence.
Results

Validation of numerical implementation

To demonstrate the correctness of our GPO implementation we first
tested it on awell-known toy problem, using synthetic data. For this ini-
tial test we used the sinc function which has infinitely many extrema:

f xð Þ ¼ sinckx ¼ sinkx
kx

: ð11Þ

The larger parameter k, the more extrema the sinc function has and
thus the more challenging the optimisation problem becomes.We test-
ed three different values of k= 0.5, 2.0, and 5.0 with a random initiali-
zation and two kernel functions: Gaussian and aMatern 3/2 kernel. The
parameters of the kernel functions were optimised using the procedure
described in the “Kernel functions” subsection. Fig. 4 illustrates how
well these functions are approximatedby aGPwith aMatern 3/2 kernel,
and Table 1 summarises the convergence for the different kernel
functions we used. This example demonstrates that the algorithm
with a suitably chosen kernel function works fast and robust enough
to be capable of solving even extremely challenging optimisation prob-
lem. In contrast to the Matern kernel, the Gaussian function tends to be
overly smooth for this rapidly changing function. Note that in this case
we did not include any local optimisation methods as we did not face
a highly multidimensional problem.

Inversion of DCMS using synthetic data

To test the ability of GPO to address inversion problems in DCM for
fMRI we generated multiple synthetic data sets from a DCM with
three interacting regions (3-DCM). The structure of the model is
schematically shown in Fig. 5a. Stimulus inputs include a driving input
(Fig. 5b) as well as a modulatory input (Fig. 5c); these inputs mimic
two types of experimental conditions. We chose to generate 128



Table 1
The table summarises the efficiency of GP optimisation of sinc kx for different values of k
and two different kernels. The values reflect the average number of iterations necessary
to converge to the true value.

Squared exponential Matern 3/2

k = 5 NAa 29.4 ± 14.8
k = 2 NAa 16.8 ± 7.7
k = 1/2 5.3 ± 1.9 8.4 ± 2.4

a Denotes lack of convergence after 100 iterations in more than 50% of the runs.
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BOLD signal samples per region; notably, compared tomost fMRI exper-
iments this is a relatively low number of scans, particularly when
considering that the model contained 20 free parameters (neuronal
and haemodynamic). This small ratio between the number of data
points and free parameters was a deliberate choice since we wished
to examine a case which represented a fairly difficult challenge for
model inversion.

For all three methods we evaluated (Variational Laplace, GPO and
MH), we used the standard neuronal and haemodynamic priors
from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8). All
three methods used these prior means to initialize the optimisation
procedure.

Our results are summarised in Fig. 6. In a first step, we chose an ex-
tremely high signal-to-noise ratio (SNR = 1000; 60 dB) to examine
model inversion under conditions of very little noise. In this case, all
three methods lead to very similar recovery of the known parameter
values, with the Euclidian distance between true and estimated param-
eter values not exceeding 0.1 for any of the methods. Even in this case
with very little noise, however, most estimates provided by GPO are
closer to the true parameter value than the corresponding estimates
by VL; it also performed slightly better than MH. This difference is
reflected in the root mean squared error (RMSE) of the two methods:
0.31 for VL, 0.25 for MH and 0.15 for GP.

It should be noted that even in this case with very low noise, one
would not expect any of the three methods to exactly recover the true
parameter values used for data generation. This is simply because all
methods optimise the posterior and not the likelihood: in Bayesian in-
ference, the influence of the prior exerts a bias on parameter recovery
whenever the prior mean does not coincide exactly with the parameter
value used for data generation (as was the case here). Furthermore,
Fig. 5. The DCMwhichwas used for simulating fMRI data. a— overall model structure, b— traje
to the model graph show the actual parameter values which were used to generate synthetic d
even when the latter does correspond to the prior mean, parameter in-
terdependencies induced by the likelihood function can lead to differ-
ences between posterior estimates and generating parameter values.

In a next step, we tested the performance of the different methods
for high observation noise, adding as much noise as there was signal
(SNR = 1; 0 dB). To ensure that our results were robust, we generated
30 different noisy time series under the same parameter values and
inverted the model for each dataset separately. Fig. 7 summarises the
results; error bars represent standard deviation of the mean. First,
from the estimated standard deviations in Fig. 7we can see that connec-
tivity parameter values (except for the 4th parameter) are recovered in
a fairly stable way by all three methods. Second, in this high-noise
scenario, Fig. 7 shows a clear effect of the prior, leading to shrinkage of
parameter estimates towards zero. Finally, we can observe that GPO is
slightly more precise than the conventional VL approach in SPM.
Table 2 summarises some quantitative comparisons, presenting RSME
of parameter estimation as well as log joint values. A one-sample
t-test applied to the differences between GPO and VL estimates (obtain-
ed under the same model and data) indicates that RMSE is significantly
smaller for GPO (t29 = 5.12; p b 0.05), although the difference is not
large (about 15% decrease in RMSE).

In this high-noise case, MH outperformed both GP and VL (Table 2).
To ensure that this result was not affected by possible lack of conver-
gence of MH,we computed the Gelman–Rubin–Brooksmultivariate po-
tential scale reduction factor (PSRF), where values below 1.1 indicate
convergence. For the noise-free case, the PSRF was 1.0454; for the
high noise case, the average PSRF value was 1.083 ± 0.03. These results
indicate a reliable convergence of the MCMC algorithm.

In an additional analysis, we investigated the robustness of GPO es-
timates when altering the starting point of the optimization procedure
and hence the ensuing sampling points. To this end, we re-estimated
the parameters of one DCM ten times, under high observation noise
(SNR= 1). As we initialize the algorithm stochastically, starting points
varied across estimations. To assess the impact of this change, we com-
puted the variance (across the tenmodel inversions) for eachparameter
estimate. For all parameters, all 10 estimates appeared to be almost
identical, with the maximum variance being less than 10−4.

We also compared the run-time of the different methods. Since this
comparison depends on individual computer hardware and the specific
implementation of the algorithms, the numbers should be interpreted
ctory of driving input u1, c— trajectory ofmodulatory input u2. Small numbers in grey next
ata.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8


Fig. 6. Inversion of DCMs for synthetic datawith virtually absent observation noise (SNR=1000). This figure shows estimates of the neuronal parameters for themodel displayed in Fig. 5:
true values of the parameters (blue bars), Gaussian priors (grey bars indicate variances) and parameter estimates by VL (red bars), GP (green bars) and MCMC (black bars).
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in a qualitative way and are only meant to provide a rough impression
of the relative computational costs. Here, we used aMacbook Air laptop
with a 1.7 GHz Intel Core i7 processor and 8 GBmemory. The results for
DCM inversion are summarised in Table 3: while GP optimisation was
only slightly slower than VL, MH was one order of magnitude slower.
Notably, this relatively good efficiency of MH was achieved by using
the mpdcm toolbox which exploits the computational power of GPUs.
For comparison, a conventional implementation of MH, which we
tried initially, was two orders of magnitude slower than GP.

Analyses of empirical behavioural data using the HGF

We applied all three optimisation methods (QN, GPO and MH) to
behavioural data of 16 subjects, testing 9 different variations of a
three-level HGF (these models are from Diaconescu et al., 2014). For
MH, we applied the same convergence criteria as in the DCM analyses
above (here, the average PSRF across subjects was 1.08). The main
Fig. 7. Inversion of DCMs for synthetic data with high observation noise (SNR=1). This figure s
the parameters (blue bars), priors (grey error bars) and average parameter estimates across 30 s
of parameter estimates represent standard deviation of the mean.
equations of the forward model in the HGF are presented in Appendix
A of this paper; for details on model inversion, please consult Mathys
et al. (2011) and Diaconescu et al. (2014).

Three main mechanisms of decision makingwere tested: in the first
three models (models 1 to 3) it was assumed that participants both
tracked the volatility on the third level of HGF and incorporated the
volatility in their belief-to-choice mappings; the second group of
models (models 4 to 6) assumed that participants' decisions reflected
their beliefs but were affected by a fixed amount of decision noise;
finally, the third and simplest group (models 7 to 9), assumed that
participants did not track volatility. Additionally, as subjects could
base their decision on two separate sources of information (visual cue
and human advice), three different response models were considered:
incorporating both sources or only one of them. The first three of
these models had a more complex (nonlinear) output equation than
the remaining models, and model 1 was considered most likely a priori
on theoretical grounds (for details, see Diaconescu et al., 2014).
hows estimates of the neuronal parameters for themodel displayed in Fig. 5: true values of
ynthetic data sets by VL (red bars), GP (green bars) andMCMC (black bars). The error bars



Table 3
The table shows the approximate time (in minutes) required by the three methods
for inverting a single DCM of the type shown in Fig. 5. Clearly, these numbers may
change for different computer hardware and different implementations of the algo-
rithms, therefore this table is only meant to demonstrate the approximate relative
computational costs.

Method Approximate analysis time cost (mins)

VL ~1.9
GP ~7.6
MH ~73.3

Table 2
This table summarises the comparison between GP, VL and MH in terms of parameters
RMSE and relative log joint value (divided by the log joint of true parameters) based on
estimates for 30 models applied to high-noise data. RMSE is significantly smaller for GP
compared to VL (p b 0.001) and for MH compared to VL (p b 0.001).

Method GP VL MH

RMSE (parameter estimates) 0.42 ± 0.05 0.49 ± 0.07 0.32 ± 0.05
Relative log joint value 1.02 ± 0.01 1.01 ± 0.01 0.97 ± 0.01
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First, we compared our results in terms of log joint values (Fig. 8)
and found thatwhile formostmodels the threemethods gave very sim-
ilar results, for the first three models there was a notable difference be-
tween the performance of GPO and MH in comparison to QN. This
behaviour signals the likely presence of local minima in the objective
function. The more complex models, like model 1, appeared to be
most vulnerable to QN getting stuck in local minima (Fig. 9). Note that
since both GP optimisation and MH are of a stochastic nature, we re-
peated the analysis 50 times and provide means and standard devia-
tions across runs in Fig. 9.

To evaluate the impact of optimisationprocedure onmodel selection
results, we computed the free energy for each model in each subject by
applying a Laplace approximation to the log joint. We then performed
random effects Bayesian model selection (Stephan et al., 2009) and
found that while all three methods produced the same ranking of
Fig. 8.Comparison of difference of log joint values across the subject (rows) andmodels (column
difference between methods, red = superiority of GP, blue = superiority of QN and MH, respe
models, GPO leads to a cleaner separation of models, compared to QN
(Fig. 10).

As a second validation step, we used themodel parameter estimates
to predict the subject's accuracy on the social learning task as well as
their score from an independent questionnaire (Interpersonal Reactivi-
ty Index, IRI) which probes subjective traits of perspective-taking, a skill
of central relevance for this task (the values for QN were previously re-
ported by Diaconescu et al., 2014). We performed standard regression
analysis alongwith Variational Bayes Regression (using the open source
toolbox TAPAS: www.translationalneuromodeling.org/tapas). Checking
the negative free energy as a criterion of model goodness for the GP-
and MH-based regression analyses, we decided to use the estimates of
all free HGF parameters for the regression analysis of task accuracy,
and all free parameters except for one (κ) for the regression analysis
of IRI.

For both regressionmethods and both prediction problems, we found
that prediction performance (in terms of R2 and negative free energy, re-
spectively) was improved when using estimates based on GP optimisa-
tion (Tables 4, 5); the only exception was a larger R2 for predicting task
accuracy based onMH estimates. Importantly, the difference in the nega-
tive free energy (an approximation to the log evidence) between GP and
the conventional QN method was larger than 3 in both cases; this value
corresponds to an approximate Bayes factor of 20 and is usually consid-
ered as a threshold for decision in Bayesian model comparison (Kass &
Raftery, 1995). Notably, these analyses only test for linear relations be-
tween model parameter estimates and behavioural/questionnaire data,
andwe cannot exclude that the threemethodsmight perform differently
if non-linear relations were considered.

Preliminary comparisons of run time are shown in Table 6, similar to
DCM above. GP required, on average, a run time of the same order of
magnitude as QN, not more than twice longer, while being significantly
faster than MH.

Discussion

In this article, we have evaluated the utility of Gaussian processes as
an alternative to MCMC and VB for inverting hierarchical Bayesian
s). Left panel: GP log joint–QN log joint; right panel: GP log joint–MH log joint. Green=no
ctively (see colour scale).

http://www.translationalneuromodeling.org/tapas


Fig. 9. Log joint difference between GP and QN (left) and GP andMH (right) for model 1 across 16 subjects, based on 50 runs of GP andMH. Error bars represent standard deviation across
subjects.
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models of neuroimaging and behavioural data. As a global optimisation
method for sufficiently smooth objective functions, GPO is potentially
less vulnerable to local extrema than VB while promising a marked
increase in speed compared to MCMC. An important challenge is, how-
ever, to ensure computational efficiency when facing high-dimensional
problems as they are encountered, for example, in DCM where one
commonly deals with dozens of model parameters.

To address this issue, this paper proposes a variant of GPO which
embeds a local search based on a quasi-Newton gradient descent. The
Fig. 10. Expected posterior probability of each model, given the negative
practical utility of this implementation for inverting hierarchical
Bayesian models commonly used in neuroimaging, i.e. DCM and HGF,
was evaluated using both synthetic and empirical data, and the perfor-
mance of GPOwas benchmarked against standardmethods (MCMC and
VB). In this study, model inversion based on GPO yielded parameter es-
timates with comparable or superior accuracy to the other techniques,
while being one order of magnitude faster than a highly efficient GPU-
based implementation ofMCMC for DCM (and two orders of magnitude
compared to a conventional MCMC implementation used in the case of
free energy estimates based on all three methods (QN, GP and MH).



Table 4
The table shows R2 for multiple linear regression and negative free energy for Variational
Bayesian Regression when all model parameter estimates are used to predict the subjects'
accuracy on the social learning task. A higher (more positive) negative free energy
indicates a better model.

R2 Negative free energy

GP 0.61 (p = 0.04) −134.38
QN 0.50 (p = 0.11) −137.39
MH 0.62 (p = 0.03) −134.54

Table 6
The table shows the approximate time (in minutes) required by the three methods
forHGFmodel inversion. Clearly, these numbersmay change for different computer
hardware and different implementations of the algorithms, therefore this table is
only meant to demonstrate the approximate relative computational costs.

Method Approximate analysis time cost (mins)

QN ~1.4
GP ~8
MH ~106
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the HGF). Generally, improvements in cloud computing (Armbrust
et al., 2010) and the use of GPUs (Wang et al., 2013) may turn MCMC
into a competitive alternative for practical use in the future. In terms
of accuracy, in our high-noise simulation scenario MCMC was slightly
more accurate than GPO for parameter estimation (Fig. 7, Table 2).

While a few previous studies have explored the use of Gaussian
processes for identification of dynamic systems and hierarchical models
(e.g., Ažman and Kocijan, 2011;Wang et al., 2008), the present work is,
to our knowledge, novel in four ways. First, we present a simple but
effective strategy for boosting computational performance of GPO by
embedding a local gradient-based search; second, it is the first applica-
tion of GPO to hierarchical Bayesian models commonly applied in
neuroimaging; third, we compare the accuracy and efficiency of GPO
to two competing methods (VL, MCMC); and fourth, we provide
independent validation analyses for two separate datasets (one
synthetic, one empirical) and models (DCM, HGF).

Our validation analyses rested on two separate approaches. For
DCM, where the curse of dimensionality is more pronounced than for
HGF, we generated 30 synthetic datasets with added observation
noise (db = 0) and then challenged the different inversion methods
to recover the known parameter values. This complements previous
analyses of empirical fMRI data which compared VB and MCMC for in-
version of DCMs (Chumbley et al., 2007). By contrast, for the HGF, sim-
ulation studies of model inversion already exist (albeit based on a
simpler HGF than the one used here;Mathys et al., 2014) andwe turned
to empirical data. Clearly, here the “true” values of the parameters are
not known, and validation has to be sought in relation to external
criteria. In this case, we examined validity with respect to two criteria,
i.e., which of the inversion schemes would (i) lead to cleaner discrimi-
nability of alternative models considered (in terms of [approximated]
log evidence), and (ii) provide parameter estimates that better predict-
ed an independent variable (a questionnaire score). Notably, GPO
outperformed the competing methods with respect to both criteria.

The practical benefits of GPOmay be of particular relevance to DCM:
here, the standard estimation scheme combines the Laplace approxima-
tion with VB, rendering model inversion fast but potentially vulnerable
to local extrema (for a discussion of this issue, see Daunizeau et al.,
2011). A previous study (Chumbley et al., 2007) verified the robustness
of this scheme for empirical fMRI data and in comparison to a
Metropolis–Hastings sampling algorithm. However, this study was
restricted to bilinear DCM where nonlinearities are relatively mild and
restricted to the haemodynamic equations. It is conceivable for local ex-
trema to become a more serious problem when inverting DCMs with
less smoothness and more pronounced non-convexity, such as DCMs
for electrophysiological data (David et al., 2006; Kiebel et al., 2007;
Chen et al., 2008; Moran et al., 2009; Marreiros et al., 2010). In future
Table 5
The table shows R2 for multivariate linear regression and negative free energy for Varia-
tional Bayesian Regression when all model parameter estimates (except for κ) are used
to predict subjects' scores on an independent questionnaire (IRI). A higher (more positive)
negative free energy indicates a better model.

R2 Negative free energy

GP 0.51 (p = 0.04) −46.79
QN 0.50 (p = 0.05) −50.77
MH 0.49 (p = 0.05) −52.54
work, wewill optimise our present GPO implementation for this partic-
ular application domain and examine the benefits of GPO for inverting
electrophysiological DCMs.

Future work will also extend the use of GPO from finding the mode
of the posterior to approximating the posterior density itself. This
discriminative approach would allow us to explicitly evaluate the
model evidence (marginal likelihood) and might improve the accuracy
of Bayesian model comparison.

In summary, our findings suggest that GPO is a promising alternative
to established inversion schemes for hierarchical Bayesian models in
neuroimaging. As a global optimisation scheme with high accuracy but
acceptable computational costs even for fairly high-dimensional models,
GPO may become a versatile tool for computational neuroimaging.

Software note

A MATLAB implementation of the GPO approach described in this
paper will be made available as an open source code in the next release
of the TAPAS Toolbox (www.translationalneuromodeling.org/tapas).
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Appendix A

This appendix provides a brief summary of the key equations of the
Hierarchical Gaussian Filter (HGF). A detailed account of themodel and
associated update equations can be found in Mathys et al. (2011). The
specific observation models used here can be found in Diaconescu
et al. (2014).

The analyses in this paper refer to a three-level HGF which rests on
three hierarchically coupled Gaussian randomwalks as state equations,
where the coupling is determined by subject-specific parameters and
the lowest level is linked to measured behavioural data through an ob-
servationmodel (Mathys et al., 2011). The lowest (first) level represents
a sequence of environmental events x1 (e.g., a binary sensory input), the
second level represents a probabilistic association between environ-
mental events (e.g., a cue-outcome contingency) x2, and the third
level encodes the log-volatility of the environment x3. The hidden
state of each level is assumed to evolve as a Gaussian randomwalk; crit-
ically, the variance or step size of this Gaussian random walk depends
on the state at the next higher level:

p x1 x2jð Þ ¼ s xð Þx1 1−s x2ð Þð Þ1−x1 ¼ Bernoulli x1; s x2ð Þð Þ ðA:1Þ

p x kð Þ
2 x k−1ð Þ

2 ; x kð Þ
3

			� �
¼ N x kð Þ

2 ; x k−1ð Þ
2 ; exp κx kð Þ

3 ω
� �� �

ðA:2Þ

p x kð Þ
3 x k−1ð Þ

3 ;ϑ
			� �

¼ N x kð Þ
3 ; x k−1ð Þ

3 ;ϑ
� �

: ðA:3Þ
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Here, k is a trial index; κ, ω, ϑ are subject-specific parameters; and s
is a sigmoid function:

s xð Þ ¼ 1
1þ exp −xð Þ : ðA:4Þ

Applying a variational approximation to ideal hierarchical Bayesian
learning under the above equations, one can derive analytical update
equations (for details, see Mathys et al., 2011). When coupled to an
observation model (representing a belief–choice mapping), these
allow one to predict trial-wise behavioural responses. A widely used
observation model is the softmax function:

p yjbð Þ ¼ bβ

bβ þ 1−bð Þβ
: ðA:5Þ

Here, y refers to the behavioural response (e.g., choice or decision), b
represents a subjectve belief (e.g., the posterior mean of x1), and β
represents decision noise. In the present analyses, models 1–3 defined
β as a function of environmental log-volatility x3 (which, in turn,
evolves under nonlinear update equations; see Mathys et al., 2011)
and thus treated it as a dynamic quantity. By contrast, models 4–9
defined β as a fixed parameter (models 4–9). For details, please see
Diaconescu et al., 2014.
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