
A Bayesian perspective on magnitude
estimation
Frederike H. Petzschner1, Stefan Glasauer2,3,4, and Klaas E. Stephan1,5

1 Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich & ETH Zürich, Switzerland
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Review
Glossary

Discrimination task: requires binary decisions about the difference between

two consecutively or simultaneously presented stimuli (e.g., whether tone A is

louder than tone B).

Generative model: specifies a joint probability distribution of hidden states

and/or parameters and the observed data; this requires specification of

likelihood and prior.

Kalman filter: a statistical technique, which infers the current (hidden) state of a

state space model based on the previous observations. It can be used to model

an online Bayesian estimation process that is updated on a trial-by-trial basis.

Matching task: requires that the magnitude of a new stimulus is actively

adjusted to a previously experienced one. Matching tasks can be used within

the same stimulus dimension (‘within-modality matching’), such as reprodu-
Our representation of the physical world requires judg-
ments of magnitudes, such as loudness, distance, or
time. Interestingly, magnitude estimates are often not
veridical but subject to characteristic biases. These
biases are strikingly similar across different sensory
modalities, suggesting common processing mecha-
nisms that are shared by different sensory systems.
However, the search for universal neurobiological prin-
ciples of magnitude judgments requires guidance by
formal theories. Here, we discuss a unifying Bayesian
framework for understanding biases in magnitude esti-
mation. This Bayesian perspective enables a re-interpre-
tation of a range of established psychophysical findings,
reconciles seemingly incompatible classical views on
magnitude estimation, and can guide future investiga-
tions of magnitude estimation and its neurobiological
mechanisms in health and in psychiatric diseases, such
as schizophrenia.

Theories of magnitude estimation
Our ability to judge duration, distance, or size is crucial for
a mental representation of, and interaction with, the phys-
ical world, such as building a cognitive map, performing
accurate movements, playing an instrument, or doing
sports [1,2]. It has long been known that humans show
strikingly similar behavioral signatures (and biases) in
magnitude estimation across different sensory modalities,
such as proprioception, vision, or audition [3–9]. Along
with imaging studies, the universal expression of these
behavioral effects has supported the idea of a generalized
magnitude estimation system [10–14]. However, at the
same time, each physical quantity might also have a
specialized representation that is related to the sensory
organs with which it is typically associated and the compu-
tational problems in whose treatment it has a role
[15]. Therefore, previous work has called for computational
models as a way to disentangle common and distinct
processes in magnitude representation and estimation
[16].
1364-6613/

� 2015 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tics.2015.03.002

Corresponding author: Petzschner, F.H. (petzschner@biomed.ee.ethz.ch).
Keywords: psychophysics; generative model; perceptual inference; Weber-Fechner
law; Stevens’ power law; schizophrenia.
So far, however, attempts to model magnitude estima-
tion have often led to modality-specific or effect-specific
explanations [17]. By contrast, recently proposed Bayesian
accounts of magnitude estimation have the potential to
provide a more general explanation that covers a wide set
of behavioral characteristics and transcends any specific
modality [18–20]. This Bayesian framework suggests that
behavioral phenomena of magnitude estimation, such as
characteristic biases observed across sensory domains, are
the result of integrating noisy sensory information with
prior experience. From this perspective, estimation errors
are neither due to limitations of the sensory channels nor
result from erroneous cortical representations. Instead, on
average, they optimize behavioral outcomes by accounting
for noise and are the natural consequence of general
principles underlying perceptual inference (i.e., the deploy-
ment of a predictive model that takes the learned statistics
of the environment into account) [21]. This perspective
derives from long-standing theories of perception in gen-
eral and provides a formal foundation to examine aberra-
tions of magnitude estimation in psychiatric diseases, such
as schizophrenia [22].

In this review, we discuss how a Bayesian framework
can: (i) provide a unifying perspective that explains a
variety of behavioral features of magnitude estimation;
(ii) shed new light on classical psychophysical laws by
reconciling the work of Weber-Fechner and Stevens and
cing a walked distance, or across different modalities (‘cross-modality

matching’), such as matching a number to the brightness of a light bulb.

Stevens’ power law: proposes a power law relation between physical

magnitudes and the representation by sensory systems. The power law

exponent is characteristic for the respective sensory modality.

Weber-Fechner law: proposes a logarithmic relation between physical

magnitudes and the representation by sensory systems.
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providing a re-interpretation of their laws; and finally (iii)
guide the exploration of the neurobiological underpinnings
of magnitude estimation in health and disease.

A Bayesian framework for magnitude estimation
Regardless of whether we examine the estimation of
time, distances, length, or loudness, certain behavioral
phenomena reoccur across studies (Figure 1A) [23]. The
most common ones are depicted in Figure 1B: (i) A
tendency of subjective estimates to be biased towards
the center of the distribution (regression effect); (ii) an
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increase of this bias for larger sample ranges (range
effect); (iii) a linear increase in standard deviation of
estimates with mean magnitude (scalar variability); and
(iv) correlations between subsequent magnitude judg-
ments (sequential or order effects) (see Box 1 for a
detailed description). Although scalar variability seems
to be the consequence of a general logarithmic represen-
tation of magnitudes according to the Weber-Fechner
law [24] (see Box 2 and Glossary), the remaining
effects have often only been explained by modality-
specific theories [17].
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Box 1. Characteristic effects in magnitude estimation

Regression and range effect

The regression effect or ‘central tendency of judgment’ describes

the tendency of magnitude estimates to be systematically biased

towards the center of the tested distribution. It causes an under-

estimation of large magnitudes and an overestimation of small ones

within a fixed range of test samples [7,50] (see Figures 1B and 2 in

main text). The regression effect occurs independently of the size of

the test range, but becomes more pronounced for larger test

magnitudes. This increase of the bias towards the center with

increasing magnitudes is called the ‘range effect’ (see Figure 1B in

main text) [105].

Scalar variability

The increase in estimation bias for larger magnitudes is accom-

panied by a linear increase in the standard deviation of the

estimated magnitude with its mean. That is, estimates of larger

magnitudes are noisier than the estimates of smaller magnitudes

(see Figure 1B in main text). The effect was described in the context

of time estimation as ‘coefficient of variation’ or ‘scalar variability’

[8], but is also related to the ‘size effect’ in number estimation

[106]. Scalar variability is equally well explained by a linear increase

in noise with increasing magnitudes on linear scales or by a

logarithmic representation of magnitude with fixed variability

[16,107]. Support for the logarithmic coding hypothesis comes from

animal studies that found evidence for a nonlinear compression of

numerical information and velocity in relation to behavioral read-

outs of magnitude estimation [108,109].

Sequential effects

Magnitude judgments are dependent not only on the test range and

magnitude of the stimulus, but also on the recent history of stimuli.

This sequential effect, also known as ‘order effect’, involves

correlations between subsequent responses, such that estimates

after a large previous stimulus tend to be larger, while estimates

after a small previous stimulus tend to be smaller. The sequential

dependencies are responsible for a perceptual ‘hysteresis effect’,

which means that approaching a stimulus from larger stimulus

magnitudes (decreasing) will lead to a different estimate compared

with approaching the same stimulus from smaller stimulus

magnitudes (increasing) [110] (see also Figure 1B in main text).

Sequential effects are important because they highlight a role of

learning and prior beliefs and are one of the motivations for

considering Bayesian perspectives on magnitude perception.

Box 2. The psychophysical laws

Around 1850, Weber discovered that the just-noticeable difference

(JND) between two magnitudes Dp in a discrimination experiment

is directly proportional to the absolute physical magnitude p [111]

(Equation I):

k ¼ Dp

p
[I]

Assuming that the constant ‘Weber fraction’ k might in fact reflect a

JND difference in sensation Ds / k, Fechner derived a logarithmic

relation between absolute physical and sensed magnitudes, the

Weber-Fechner law [5] (Equation II):

s / ln
p

p0

[II]

where the integration constant p0 is often referred to as the detection

threshold.

Nearly 100 years later, Stevens showed empirically that the

relation between reproduced and physical magnitudes was best fit

by a power-function across various sensory modalities [6]

(Equation III):

r / pn [III]

This observation was based on a series of matching tasks where the

magnitude of a new stimulus is actively adjusted to a previously

experienced one. Stevens concluded that Fechner’s assumption was

wrong and viewed the estimated power law exponent n as a fixed

property of the respective sensory system (e.g., nloudness = 0.67).

Notably, Stevens and Fechner had not only different conceptua-

lizations of how sensation can be measured, but also based those

on different experimental designs (discrimination versus matching

tasks). Subsequent work proposed that in fact, both laws might be

valid, but simply reflect different processing stages in magnitude

estimation [41,42,45] (see main text).

The strongest criticism of Stevens work came from Poulton, one

of his students who found contextual variations in the fitted

exponent depending on the range of stimuli tested, the task

instructions, and various other components that were not directly

related to the sensory system [23]. Poulton argued that a full

understanding of magnitude estimation needs to take these

characteristics into account. As discussed in this paper, a Bayesian

perspective might be capable of doing so.
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The existence of different theoretical accounts for simi-
lar perceptual biases across sensory domains is an unsat-
isfactory state of affairs, and a modality-independent
principle providing a more parsimonious explanation of
the above effects would be desirable. Several recent stud-
ies have suggested that the incorporation of prior experi-
ence in the estimate of magnitudes could provide such an
overarching explanation [18,19,25,26]. A suitable mathe-
matical framework refers to a Bayesian observer using a
so-called ‘generative model’ to infer on the causes of his or
her sensory inputs (Box 3). Although Bayesian models
have been successfully applied to multiple perceptual
phenomena over the past two decades [27–30], their foray
to magnitude estimation happened more recently
[18,25,31]. In this framework, a generative model com-
bines a priori information (prior) with noisy sensory input
(likelihood), weighing the two information sources by their
relative uncertainty [32–35]. Notably, this statistically
optimal combination of prior knowledge and sensory input
produces biased magnitude judgments whenever the prior
differs from the current physical stimulus magnitude.
This bias increases with the strength (precision) of the
prior belief and decreases with the signal to noise ratio of
the sensory input (Figure 2).

A simple fixed prior at the center of the test range, which
encodes mean and variance of previously encountered
stimuli, can explain range and regression effects. Such a
‘center-prior’ would be learned for naturally occurring
classes of stimuli (or over the course of an experiment)
and would bias estimates of a newly experienced stimulus
away from the far ends of its distribution, thus causing a
‘regression to the mean’ (Figure 1C) [19,25,36]. Further-
more, larger stimulus magnitudes linearly increase the
standard deviation of the likelihood (scalar variability),
hence the influence of the center-prior on the estimates
grows stronger for larger test stimuli and so does the bias
towards the mean. This explains a stronger regression
effect for larger sample ranges or the range effect. Empiri-
cally, a Bayesian model with center-prior has proven useful
at explaining time estimation behavior, outperforming
alternative models that did not implement prior knowl-
edge [18].

The caveat with a fixed center-prior is that it cannot
account for sequential dependencies between consecutive
stimuli (Box 1). However, a straightforward explanation
287



Box 3. The Bayesian observer

The Bayesian perspective dates back to the work of Helmholtz on

perception as unconscious inference [112]. Over the past two

decades, numerous formal treatments of this idea have appeared

(e.g., [85,113,114]; collectively, these are often referred to as the

‘Bayesian brain’ theory (for overviews, see [87,115]). A key theme of

these theories is that the brain constructs and continuously updates

a generative model of the sensory inputs it receives.

Technically, a Bayesian observer learns the statistics of the

environment (e.g., the statistics of experimental stimuli), and

combines this prior knowledge P(p) with noisy sensory inputs

(represented by a likelihood function P(sjp), according to Bayes’ rule

(Equation I):

PðpjsÞ / PðsjpÞ � PðpÞ [I]

This results in a posterior estimate P(pjs) that is more accurate than

either of the two information sources alone. Importantly, the combi-

nation of likelihood and prior in Bayes’ rule is driven by their

respective uncertainty (variance). When both distributions are

Gaussian [i.e., P(p) � N(mp, sp) and P(s|p) � N(ms, ss), then the poste-

rior is also a Gaussian distribution P(p|s) � N(mp|s, sp|s), and the

posterior mean mp|s is a simple uncertainty-weighted average of

the ‘data mean’ ms (sensory input about physical magnitude) and

the prior mean mp (Equation II):

mpjs ¼ ws � ms þ wp � mp [II]

The respective weights (ws and wp) are also known as ‘precision’ and

are inversely proportional to uncertainty (variance) of sensory input

and prior (Equation III).

ws ¼ 1 � wp ¼
1
s2

s

1
s2

s
þ 1

s2
p

[III]

In cases where the sensory input is noisy (i.e., the variance of the

likelihood, s2
s , is high), the weight of the likelihood is small and

posterior estimates (perceptual judgments) are dominated by the

prior. Conversely, for small measurement noise, posterior estimates

would be driven by the measurement and would be less prone to

influences by the prior.

The link between the posterior estimate of magnitude and the

ensuing motor response is captured by a response model, resulting

in a probability of observing a response given both prior and

sensory input P(rjs,p) (see also Figure 3B in main text).
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for this type of bias can be obtained when considering the
acquisition of the prior over the course of the experiment
[21,37]. In contrast to a fixed center-prior, an ‘online-prior’
would be learned and updated on a trial-by-trial basis
according to Bayes’ Rule. A simple implementation of this
Posterior
Prior

Likelihood
Prior

Posterior

Likelihood

Smaller magnitude Larger magnitude

Bias

Bayes‘ rule

Bias
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Figure 2. Schematic example for Bayes rule for two different magnitudes. The

posterior is proportional to the product of the likelihood and the prior (Bayes’

theorem). If the prior is closer to the center of the test range, the posterior will be

biased towards the center of the distribution. The strength of the bias depends on

the relative uncertainty of likelihood and prior. As the standard deviation of the

likelihood for larger magnitudes increases, the bias towards the prior also

increases.
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learning mechanism would rest on Kalman filtering. The
influence of previous stimuli on updating the online-prior
decays with time, and the strongest influence is exerted by
the most recent stimulus. This explains sequential depen-
dencies between consecutive stimuli and captures both
regression and range effects: because the learned prior
will never lie outside the sample distribution, any esti-
mates of stimuli at the extreme ends of the distribution
would be biased towards previous ones (which are likely
closer to the mean of the distribution) (Figure 2). Online-
priors of this sort have successfully explained biases in
human distance and angle estimation [19], number esti-
mation [38], or reaching movements [39].

Links between classical and generative models of
magnitude estimation
At the core of understanding magnitude estimation is
building a concept of how physical causes in the world p

(actual distances, sound, etc.) are linked to the observed
behavioral responses r.

From a classical view, this relation fp!r may be decom-
posed into at least two parts (Figure 3A): a perceptual
function fp!s that transforms the physical magnitude into
a stimulus representation s by the sensory system, and a
response function fs!r that maps this internal representa-
tion onto a motor act (reproduction) [40]. Early psycho-
physics aimed at finding a lawful relation for the
perceptual function fp!s between the physical quantities
and subjective sensory representations. On the basis of
discrimination tasks, Fechner originally proposed that this
cause-sensation function has a logarithmic form (Weber-
Fechner law). A different view arose from studies by Ste-
vens on matching tasks, which focused on the overall
relation between physical magnitude and observed
responses, proposing that fp!s is a power-function (Ste-
vens’ power law) (Box 2). Various studies have suggested
that Weber-Fechner’s and Stevens’ law could be mathe-
matically reconciled [41–44]. In particular, it has been
pointed out that Stevens’ power-function only holds if
the response function fs!r is linear [42,45]. It is important
to note that although these two laws constitute seminal
findings in psychophysics, neither of them provides an
explanation for context-dependent variations in behavior,
such as the range effect or sequential dependencies [23].

The Bayesian perspective extends the classical psycho-
physical concept of magnitude estimation by formally in-
corporating the influence of prior experience (Figure 2 and
3B). This not only offers an explanation for subjective
biases in magnitude estimation, but, as explained in detail
below, also allows for reconciling the two classical laws of
psychophysics. In the examples above, we have addressed
one of the simplest instantiations of a Bayesian perspec-
tive, that is, sequential belief updating under Gaussian
assumptions about likelihood and prior. Notably, this
views perception as an inferential process, as opposed to
sequential stimulus-driven processing steps [30,46]. In
brief, ‘Bayesian brain’ theories postulate that the brain
constructs and continuously updates a so-called ‘genera-
tive model’, which provides the joint probability of hidden
physical causes and sensory inputs (Box 3 and references
therein). By inverting this generative model, the brain can



π πCauses
(physical magnitude)

Sensory input

Response
(reproduced magnitude)

(response model)

Likelihood Prior
(addi�onal knowledge, 
experience, context, ...)

Posterior

P ( s) P (s ) P ( )

fπ→s
(e.g., log 
or power 
func�on)

fs→r
(e.g., log 
or linear 
func�on)

s

r

Bayes‘ rule

(A) Classical model (B) Genera�ve model

fπ→s

fπ,s →r

P (r   π,s )

P (π  s)

P (π)P (s   π )
π ∝ π π

TRENDS in Cognitive Sciences 

Figure 3. Classical and generative model of magnitude estimation. (A) A classical model relates causes such as physical stimulus magnitude to sensory input, which is then

translated into a (motor) response, such as reproduced magnitude. The function relating the causes to a sensory representation as well as the function translating those into

motor outputs could be of any form (logarithmic, power, etc.). (B) A generative model computes the joint probability of hidden causes and the observed data by taking the

product of likelihood and prior. By inverting this generative model (i.e., computing the posterior probability of the states), the brain can solve the inverse problem of

inferring the causes in the world based on current sensory input and a priori beliefs (additional knowledge, experience, context, etc.). The posterior estimate is then

translated into a motor output via an appropriate response model.
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compute the posterior probability and, thus, solve the
inverse problem of inferring physical causes from sensory
input and a priori beliefs (Figure 3B) [47].

The utility of this perspective for understanding mag-
nitude estimation is illustrated by a recent model [19],
where the likelihood of the sensory input given its physical
cause was represented by a logarithmic transformation
fp!s according to the Weber-Fechner law (Equation 1):

PðsjpÞ ¼ Nðms; ssÞ ¼ NðlogðpÞ; ssÞ [1]

This likelihood function was then combined with a prior,
also on a logarithmic scale, by taking the weighted average
of the two information sources (Equation II in Box 3). To
reproduce magnitudes on a linear scale, the model as-
sumed that the resulting posterior magnitude estimates
P(p|s) = N(mp|s, sp|s) were transformed into motor
responses using an exponential response model fp,s!r,
giving a mean reproduced magnitude of (Equation 2):

r / empjs / ews�msþwp�mp [2]

Given that the mean of the likelihood ms is a log-transform
of the actual physical magnitude p, Equation 2 can be
rewritten as power law relation between physical magni-
tude and response (Equation 3):

r / pws [3]

In other words, regarding magnitude estimation as per-
ceptual inference is capable of reconciling the seemingly
incompatible theories by Weber-Fechner and Stevens: ap-
plying Bayes rule to a logarithmic representation of mag-
nitude, according to Weber-Fechner’s law, and assuming
an appropriate belief-response mapping yields a power law
dependency between physical and reproduced magnitudes
on matching tasks, as proposed by Stevens’ power law.
Notably, discrimination tasks, which require only binary
decisions about stimulus differences (bigger versus smal-
ler), would not require the exponential transformation of
posterior estimates to motor responses and, thus, yield the
logarithmic relation suggested by Weber.

Importantly, the exponent in the Bayesian model has a
different interpretation than Stevens originally proposed.
Instead of representing a fixed property of a given sensory
system, it captures a variable weighting of the sensory
input in relation to the prior (Equation 2). This suggests
that higher sensory uncertainty (noisier or more difficult
stimuli) should lead to less weighting of the likelihood
(sensed magnitude) and a stronger regression effect. In-
deed an increase of the regression effect with increasing
task difficulty has been reported across a series of studies
[48–50].

Although the interpretation of the power law exponent
as reflecting a weighting by sensory uncertainty provides
convincing explanations of many empirical findings, it also
faces a potential limitation. The weight of the likelihood is
bounded between 0 and 1, but there are empirical findings
from pain studies in which the estimated exponents were
289
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reported to be larger than unity [51]. One potential expla-
nation for this discrepancy could be cross-modality match-
ing. Given that perceived pain intensity is not reproducible
by motor acts but is reported on a numerical scale instead,
magnitude reproduction requires the transformation from
one modality to another [43,52]. A rescaling factor between
the modalities would enter the exponent as a denominator
and could explain power law exponents larger than one in a
cross-modality matching setting.

A generative model not only serves to infer hidden
states of the world from noisy sensory inputs, but, as
implied by its name, to generate cognitive representations.
Such synthesis of cognitive states on the basis of a genera-
tive model has been proposed, in particular, as a mecha-
nism for imagery as well as hallucinations (e.g., [53,54]).
Assuming a generative model as the basis for imagery
would explain why perception and imagery of physical
magnitudes share many behavioral effects, with the nota-
ble exception of sequential dependencies [55]. This absence
of sequential dependency effects is immediately plausible
under a generative model perspective: when magnitudes
are purely imagined (by sampling from the prior to syn-
thesize ‘sensory inputs’), there is no prediction error and,
thus, no need to update the prior.

The utility of a Bayesian framework for future
psychophysical and neuroimaging studies
An ongoing debate concerns the question of whether dif-
ferent types of magnitude share a fundamental processing
or representation system from which specialized metrics,
such as time, space, or size, have evolved. This notion has
been supported by behavioral studies showing analogous
biases across modalities (discussed above) and from imag-
ing studies that point towards a potentially universal
representation of magnitude in the parietal cortex ([14],
reviewed in [11,12,15]). However, it is possible that parie-
tal encoding of magnitude is a downstream effect, reflect-
ing a convergence of inputs from systems with specialized
representations of different physical magnitudes (e.g., dis-
tance encoding by grid cells in the entorhinal cortex [1], or
time encoding by cortico-thalamic-basal ganglia circuits
[2]). In other words, parietal activation may reflect a
multisensory combination of various information sources,
leading to magnitude estimates that are not only a function
of the stimulus itself, but also influenced by experience,
context, or abstract knowledge [56–59]. Thus, understand-
ing the nature of potentially universal indices of magni-
tude estimation systems faces similar conceptual problems
as deciphering magnitude estimation within a given sen-
sory system. Disentangling different aspects of magnitude
representation, whether for a specific physical quantity or
as a modality-independent phenomenon, will greatly ben-
efit from computational modeling.

A Bayesian framework may prove useful for this endeav-
or, both conceptually and practically. Conceptually, it pro-
vides a framework for different processing stages, in which
representation of a stimulus (likelihood), context (prior), and
estimation or inference (posterior) of a physical magnitude
may recruit different neuronal circuits. Selective experi-
mental variations of these stages in neuroimaging experi-
ments could reveal their unique or joint implementation in
290
terms of regional circuitry. A similar approach was adopted
by a recent fMRI study on visual decision-making, which
varied the uncertainties of prior and likelihood. This study
found that likelihood uncertainty co-varied with activity in
early sensory-processing areas, whereas prior uncertainty
was reflected by activity in higher cognitive areas, such as
putamen, insula, and orbitofrontal cortex [60]. Another
study showed that the estimation stage in roughness judg-
ments recruits areas different from those involved in pure
representation [61].

In addition, the Bayesian concept may provide a simple
explanation for universal features of magnitude estima-
tion, which reoccur across modalities. This may be due to
‘global’ priors [29,62] that, in addition to ‘local’ (modality-
specific) online-priors discussed above, reflect aspects of
general environmental statistics, or cognitive contexts that
elicit an additional influence on the individuals’ weighting
of prior and likelihood. Other domains of cognitive science
have shown that stimulus judgments are biased not only by
prior experience, but also by their affiliation to more global
stimulus categories. These effects are observed in areas
such as speech perception or episodic memory and could be
explained by similar Bayesian accounts as discussed above
[56,63,64]. For example, more complex contextual informa-
tion could be captured by hierarchical Bayesian models in
which higher levels determine estimates at lower levels
(e.g., the influence of priors about environmental volatility
on associative learning processes [65] or of abstract knowl-
edge on object category judgments [66,67]).

Concerning magnitude estimation, the existence of glob-
al priors may explain intriguing findings such as the
significant correlation of the subject-specific weighting
across two independent tasks, distance estimation and
turning angle estimation [19]. This finding is difficult to
explain without reference to overarching contextual influ-
ences, given that there are distinct and specialized neuro-
nal processing mechanisms for translational and
rotational optic flow [68]. Similarly, other studies have
reported within-subject correlations in power law expo-
nents for circle size, number, and line length or weight,
taste, and smell [69,70]. Finally, there are not only correla-
tions across estimates of different magnitude types, but
also direct intermodal influences on the estimation pro-
cess. Quantities in the non-temporal domain, such as
numerosity, size, or luminance, influence the estimation
of time, such that larger stimuli are associated with longer
durations [71,72]. Judgments of orientation, but not of
color or shape, were influenced by the co-occurrence of
task-irrelevant digits [73]. One explanation of the coupling
between some magnitudes is that this might convey useful
heuristics about the physical world [11,74], for example,
longer distances usually take more time and larger objects
are often heavier. In other words, the statistical co-occur-
rence of different magnitudes reliably reflects properties of
the physical world that link different magnitudes such as
time, space, or size, and a global prior reflecting these
probabilistic relations might lead to coupled estimates of
different physical magnitudes. In this case, it should be
possible to induce novel coupling between the magnitude of
quantities that are not systematically correlated in the
physical world; cf . [75,76]. Some evidence for learning of
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such an ‘artificial’ coupling between magnitude estimates
comes from infant studies. When larger objects were pre-
sented with a different color-pattern than smaller ones, 9-
month-old infants expected the same magnitude-color
mapping to hold for numerosity and duration. This
cross-dimensional transfer occurred bidirectionally for
size, numerosity, and duration [77].

Practically, a Bayesian perspective on magnitude esti-
mation enables new types of experiments and applications.
For example, we can use subject-dependent and unit-less
parameter estimates, such as the individual uncertainty-
weighting of sensory inputs, and prior knowledge across
different modalities for group-level analyses of neuroim-
aging data. This might allow one to examine more closely
the source of global priors as a sign of shared representa-
tions. In future experiments, varying the uncertainty of
either prior (e.g., by changing the distribution of training
data) or likelihood (e.g., by changing signal to noise ratio of
stimuli) could be used to parametrically modulate their
individual influence and identify specific or joint circuits.
Furthermore, using response models that are sensitive to
contextual variations, trial-by-trial model predictions
about performance could be used to assess regions sensi-
tive to these contextual influences (see Box 4 for additional
open questions).

Finally, it is worth noting that the explanatory power of
Bayesian concepts of cognition has been questioned [78,79]
and defended [80,81]. In the specific context of magnitude
estimation, non-Bayesian approaches to incorporate prior
experience have also been proposed [82,83]. At the purely
behavioral level, it may be difficult to decide between
different theories of cognitive representations. Eventually,
this question may only be resolved fully at the level of the
underlying neuronal code [84–87]. However, as discussed
in this review, a Bayesian perspective on magnitude esti-
mation is demonstrating considerable theoretical and
practical utility; notably, this utility is also beginning to
emerge in clinical applications.

The utility of a Bayesian framework for clinical studies
The Bayesian framework discussed in this review has
important connections to empirical findings and theoreti-
cal concepts in clinical research. Empirically, aberrant
magnitude estimation has been found in numerous neuro-
logical and psychiatric diseases. For example, distortions
Box 4. Outstanding questions

� Do links between magnitude estimation across modalities result

from statistical co-occurrences of different magnitudes types in

the world, which are captured by ‘global priors’?

� What are the exact environmental statistics that are represented

by these global priors?

� Is the weighting of priors (i.e., their precision) fixed or can it be

learned depending on the reliability of previous experience?

� Is there a way to ‘re-train’ global priors and, thus, alter the cross-

modality links in magnitude estimation?

� Do global priors explain overlapping activations in neuroimaging

studies of different types of magnitude estimation?

� Can deficits in magnitude estimation be used as diagnostic probes

in mental disease with putative abnormalities in Bayesian

inference, such as schizophrenia?
of time estimation have been reported for Parkinson’s
disease, attention deficit hyperactivity disorder, autism,
and schizophrenia [88,89]. Similarly, the susceptibility to
visual illusions concerning size or length, such as the
Ebbinghaus, Ponzo, or Mü ller-Lyer illusion, is altered in
various diseases, including schizophrenia [22,90,91] and
possibly autism [92,93].

Schizophrenia is of particular interest here, given that
several contemporary theories of this disease postulate
that a disturbance of hierarchical Bayesian inference
represents the core computational abnormality of this
disease (e.g. [94–96]), providing a direct connection to
the framework discussed in this paper. Empirically, sev-
eral studies have demonstrated prominent disturbances
of physical magnitude estimation in schizophrenia, for
example, on tasks probing force matching [97,98] or time
discrimination [99]. Notably, hierarchical Bayesian mod-
els can not only explain the empirically observed force
matching deficits in schizophrenia [100], but also provide
several testable predictions for future studies on magni-
tude estimation in schizophrenia, with putative links to
neurobiological mechanisms, such as the encoding of
belief precision by neuromodulatory transmitters
[101]. Also, Bayesian modeling of magnitude estimation
combined with neuroimaging may allow for defining sub-
groups of patients with different impairments in percep-
tual inference (cf . [102]). Overall, given the importance of
perceptual inference for pathophysiological theories of
schizophrenia and the availability of suitable Bayesian
models, it would be promising to translate more basic
psychophysical paradigms of magnitude estimation to
schizophrenia research (Box 4).

Concluding remarks
In this paper, we have revisited magnitude estimation, one
of the oldest topics in psychophysics, and re-examined it
under the general framework of Bayesian inference. This
Bayesian perspective suggests a generic and principled
mechanism for perceptual inference, providing a modali-
ty-independent explanation of a wide set of empirical
findings on magnitude estimation. Furthermore, we have
demonstrated how this view can help reconciling the seem-
ingly incompatible laws by Weber-Fechner and Stevens
and provide us with a re-interpretation of the Stevens
power law exponent as a quantity that captures the weight
of sensory uncertainty relative to a priori knowledge. We
anticipate that the modeling framework reviewed here
might be useful for distinguishing between shared and
selective representations of magnitude in neuroimaging
experiments and how they relate to cognitive distortions
observed in psychiatric disorders.
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Lyer illusion is distinctively affected by the degree of autistic traits in
the typical population. Exp. Brain Res. 230, 219–231

93 Walter, E. et al. (2009) A specific autistic trait that modulates
visuospatial illusion susceptibility. J. Autism Dev. Disord. 39, 339–349

94 Stephan, K.E. et al. (2006) Synaptic plasticity and dysconnection in
schizophrenia. Biol. Psychiatry 59, 929–939

95 Fletcher, P.C. and Frith, C.D. (2009) Perceiving is believing: a
Bayesian approach to explaining the positive symptoms of
schizophrenia. Nat. Rev. Neurosci. 10, 48–58
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