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Functional neuroimaging has made fundamental contributions to our understanding of brain function. It
remains challenging, however, to translate these advances into diagnostic tools for psychiatry. Promising
new avenues for translation are provided by computational modeling of neuroimaging data. This article re-
views contemporary frameworks for computational neuroimaging, with a focus on forward models linking
unobservable brain states to measurements. These approaches—biophysical network models, generative
models, and model-based fMRI analyses of neuromodulation—strive to move beyond statistical character-
izations and toward mechanistic explanations of neuroimaging data. Focusing on schizophrenia as a
paradigmatic spectrum disease, we review applications of these models to psychiatric questions, identify
methodological challenges, and highlight trends of convergence among computational neuroimaging
approaches. We conclude by outlining a translational neuromodeling strategy, highlighting the importance
of openly available datasets from prospective patient studies for evaluating the clinical utility of computa-
tional models.
Introduction
Non-invasive measurements of human brain activity have been

available for almost a century. Following electroencephalog-

raphy (EEG) in the 1920s, themore recent developments of posi-

tron emission tomography (PET), magnetoencephalography

(MEG), and fMRI have greatly enriched human neuroscience.

Collectively, these methods have enabled major advances in

our understanding of brain physiology and cognition.

Neurology and psychiatry have welcomed these techniques

enthusiastically, in the hope that non-invasive readouts of brain

function might enable more precise diagnoses and better pre-

dictions for individual patients. While thousands of functional

neuroimaging studies over the past few decades have made

important contributions to elucidating pathophysiological pro-

cesses, the impact on clinical practice has been limited. Success

stories where functional neuroimaging has contributed concrete

diagnostic tools are restricted to neurology, e.g., presurgical

evaluation of epilepsy, differential diagnosis of coma, and

brain-computer-interfaces for locked-in patients. By contrast,

in psychiatry, functional neuroimaging procedures are yet to be

established as diagnostic tools for routine clinical practice.

There are several explanations for this poor translational suc-

cess rate in psychiatry (Kapur et al., 2012). One issue of interest

to this article is that conventional analyses of neuroimaging

data—such as statistical parametric mapping or functional con-

nectivity analyses—are essentially descriptive. While they are

powerful methods to identify potential nodes and connections

of disease-relevant circuits, on their own neither ‘‘blobs’’

(regional activations) nor ‘‘networks’’ (patterns of functional con-

nectivity) provide a mechanistic account of circuit function, i.e.,

what computations are performed and how they are imple-

mented physiologically.
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An alternative are mathematical models that describe putative

processes underlying the generation of neuroimaging data.

These are forward models that embody a probabilistic mapping

from unobservable (‘‘hidden’’) brain states—cognitive or neuro-

physiological—to experimental measurements. In other words,

these models seek explanations of data, as opposed to sta-

tistical characterizations. Importantly, some of these forward

models can be inverted, i.e., they allow one to infer hidden brain

states from neuroimaging measurements. This opens up the

possibility of detecting pathophysiological processes in individ-

ual patients (‘‘computational assays’’) (Stephan and Mathys,

2014) and renders thesemodels attractive candidate techniques

for stratifying patients into mechanistically distinct groups.

In this article, we concentrate on three major approaches: (1)

biophysical network models, (2) generative models sensu stricto

of neuroimaging data, and (3) model-based fMRI analyses of

neuromodulation (Figure 1). For simplicity, we will refer to all

these models by the umbrella term ‘‘computational models,’’

appealing to the multiple meanings of ‘‘computation’’ (e.g., infor-

mation processing, or algorithmic—as opposed to analytical—

mathematical treatments). Furthermore, these models represent

different facets of an emerging research program, ‘‘Computa-

tional Psychiatry’’ (Deco and Kringelbach, 2014; Friston et al.,

2014; Maia and Frank, 2011; Montague et al., 2012; Stephan

and Mathys, 2014; Wang and Krystal, 2014).

This article has twomajor aims. First, it provides an overview of

contemporary computational models of neuroimaging data, dis-

cussing what mechanistic insights these models may allow for

and exploring trends of their convergence. Second, we outline

strategies how these models can be applied to clinical questions

such that not only novel pathophysiological insights result

but, eventually, concrete diagnostic procedures. To ensure
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Figure 1. Graphical Overview of Modeling Approaches Discussed in This Paper
The figure contains graphics that has been adapted, with permission, from Deco et al. (2013a) and Chen et al. (2009). See main text for details.
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coherence and focus, we concentrate on a single psychiatric

spectrum disorder—schizophrenia. This is because patho-

physiological theories of schizophrenia highlight themes that

feature prominently in existing computational neuroimaging

frameworks, i.e., connectivity, synaptic plasticity, neuromodula-

tion, and perceptual inference.

Due to space limitations, this article strictly focuses on

‘‘forward modeling’’ approaches of how measured signals

are generated by hidden mechanisms. Other important ap-

proaches—e.g., graph-theoretical analyses or analyses of func-

tional connectivity—are covered by existing excellent reviews

(Buckner et al., 2013; Bullmore and Sporns, 2009; Fornito

et al., 2015).

Why Computational Modeling—And What to Focus on?
Standard classification schemes like the Diagnostic and Statisti-

cal Manual of Mental Disorders (DSM) define schizophrenia as

a syndrome, i.e., a collection of symptoms and phenomenology

over certain periods. The predictive validity of this classification

is limited, and patients with the same diagnosis often exhibit

markedly different clinical trajectories, outcomes, and treatment

responses (Casey et al., 2013; Cuthbert and Insel, 2013; Krystal

and State, 2014). This spectrum nature of schizophrenia stems

from at least three sources. First, a polygenetic basis, with a

large number of genome variants conveying risk (Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014);

the functional consequences of these genetic variants, however,

may converge on only a small set of intracellular signaling cas-

cades and synaptic processes (Krystal and State, 2014; Stephan
et al., 2006). Second, environmental factors such as infections,

nutrition and stress interact with risk-conveying genes and

modulate their expression (gene-by-environment interactions)

(van Os et al., 2008). Third, environmental factors can also affect

pathophysiological processes directly, e.g., immunological,

metabolic, and hormonal factors can alter NMDA receptor

(NMDAR) function (Stephan et al., 2009).

Collectively, these considerations imply that different patho-

physiological pathways can be affected in different combina-

tions across patients. The ensuing lack of pathophysiological

interpretability of the label ‘‘schizophrenia’’ under current diag-

nostic schemes has major consequences for clinical practice,

such as the necessity of resorting to trial-and-error treatment

and the difficulties of stratifying patients for clinical studies (Ka-

pur et al., 2012). Only very few physiologically defined subgroups

of patients with psychotic symptoms can presently be identified

through clinical tests, e.g., patients suffering from neurosyphilis

or NMDAR antibodies.

Computational modeling may help addressing this problem

by inferring disease mechanisms from non-invasive readouts

of circuit function. In analogy to diagnostic procedures in internal

medicine, it is the functional status quo of disease-relevant cir-

cuits that may prove crucial to assign patients to pathophysio-

logical subgroups and to derive individual treatment predictions.

However, what are the most relevant pathophysiological pro-

cesses and circuits that should inform the development

of computational models? Clearly, more than one theory of

schizophrenia exists and could provide guidance here. For

example, long-standing theories have focused on dopamine
Neuron 87, August 19, 2015 ª2015 Elsevier Inc. 717
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(DA), neurodevelopment, NMDARs, GABA receptors, and exci-

tation-inhibition (E-I) balance, respectively (Gonzalez-Burgos

and Lewis, 2012; Howes and Kapur, 2009; Insel, 2010; Lisman

et al., 2008; Uhlhaas, 2013). Regardless of their specific propo-

sitions, however, a shared perspective among these theories is

that schizophrenia is essentially a network disease (Harrison

and Weinberger, 2005), where a primary pathology at the level

of synapses leads to maladaptive reconfigurations of circuits

for learning and perceptual inference (Stephan et al., 2006).

Viewing schizophrenia as a network disease has a long tradi-

tion dating back to the early 20th century when Wernicke (1906)

and Bleuler (1911) stressed structural and cognitive deficits of

functional integration in schizophrenia, respectively. With the

advent of neuroimaging, observations of abnormally distributed

activity and functionally disconnected areas paved the way for

the concept of ‘‘dysconnectivity’’ in schizophrenia (Andreasen,

1999; Friston and Frith, 1995). This widely adopted view refers

to disturbances of functional integration that manifest as

abnormal connectivity and oscillatory activity (Buckholtz and

Meyer-Lindenberg, 2012; Bullmore et al., 1997; Friston, 1998;

Pettersson-Yeo et al., 2011; Stephan et al., 2006; Uhlhaas,

2013).

Notably, dysconnectivity could result from a variety of synap-

tic mechanisms. For example, theories differ in their relative

emphasis on abnormalities of glutamatergic, GABAergic, dopa-

minergic, and cholinergic signaling (Gonzalez-Burgos and

Lewis, 2012; Lisman et al., 2008; Stephan et al., 2009). This mo-

tivates the construction of computational models for clarifying

how alterations in different ionotropic and metabotropic recep-

tors impact on functional coupling as assessed by neuroimag-

ing.

In addition to physiology, however, models are required that

link neuronal to computational processes and explain how

aberrant cognition arises from circuit dysfunction. One theory

that provides a framework for constructing such models is the

dysconnection hypothesis (Friston, 1998; Stephan et al., 2006,

2009; Adams et al., 2013). It postulates that, physiologically, dys-

connectivity in schizophrenia results from abnormal NMDAR-

neuromodulator interactions (NNI)—i.e., aberrant regulation of

NMDAR-dependent synaptic plasticity by DA or acetylcholine

(ACh)—with failures of perceptual inference as a computational

consequence. More specifically, the dysconnection hypothesis

and conceptually related concepts of psychosis (Corlett et al.,

2011; Fletcher and Frith, 2009) build on the ‘‘Bayesian brain’’

notion that the brain constructs a model of the world in order

to predict its sensory inputs and infer on the environmental

causes of its sensations (Dayan et al., 1995; Doya et al., 2011).

One particular variant of this Bayesian view is the ‘‘free-energy

principle’’ (Friston, 2010) that postulates that the brain’s central

function is to minimize surprise, by updating beliefs and/or

choosing actions that lead to expected sensory inputs. Physio-

logically, Bayesian message passing is typically assumed to

rest on glutamatergic signaling of predictions and prediction er-

rors (PEs) via cortical long-range connections, weighted by esti-

mates of precision (inverse uncertainty) that may be encoded by

slow changes in release of neuromodulatory transmitters like DA

or ACh (Corlett et al., 2010; Friston et al., 2012). Impairments of

these processes lead to abnormal perceptual inference that in
718 Neuron 87, August 19, 2015 ª2015 Elsevier Inc.
turn may explain a range of salient symptoms in schizophrenia,

e.g., hallucinations or delusions, as discussed below.

This brief overview has outlined target processes for computa-

tional models suggested by current pathophysiological theories

of schizophrenia. We now turn to different classes of computa-

tional models that may prove useful for inferring these putative

disease processes from neuroimaging data.

Biophysical Network Models of Neuroimaging Data
Over the last decades, a variety of single-neuron models have

been developed that describe the dynamics of ion channel con-

ductances, membrane potential, and firing rate. A straightfor-

ward way of constructing neuronal population models are

‘‘direct simulations’’ (Omurtag et al., 2000), i.e., simulating a large

number of individual neurons and linking them via local synaptic

connection rules. The resulting neuronal ensembles can be

treated as distinct nodes that are linked by anatomical long-dis-

tance connections to yield a large-scale biophysical network

model (BNM). Simulated neuronal population activity in each of

the regions can then be fed into a forward model that predicts

regional fMRI, M/EEG, or PET measurements.

Some BNMs of fMRI data have used the strategy of ‘‘direct

simulations,’’ usually considering on the order of 103 neurons

per network node (Deco and Jirsa, 2012). Most present BNMs

of neuroimaging data, however, do not pursue a ‘‘direct simula-

tion’’ approach. This is not only because of the high computa-

tional costs. First, models with large numbers of biophysically

detailed single neurons are too complex for parameter estima-

tion; this necessitates fixing model parameters a priori, usually

referring to electrophysiological studies in animals. However,

many biophysical and morphological parameters show pro-

nounced variability within and across species (Kötter and Feizel-

meier, 1998; Marder and Goaillard, 2006). Furthermore, in large-

scale models it is difficult to identify the decisive mechanisms

underlying a particular empirical measurement: both simulations

with systematic exploration of parameter space and analytical

treatments become impractical.

For these reasons, most BNMs of neuroimaging data have

sought lower-dimensional representations of neuronal mecha-

nisms that strike a balance between biophysical realism and

model complexity. This typically rests on ‘‘mean-field’’ reduc-

tion, a concept from statistical physics that describes system

behavior in terms of average effects resulting from the probabi-

listic interactions of many individual components (e.g., tempera-

ture and pressure of a gas). In the context of neuronal population

models, instead of accounting for all interactions between indi-

vidual neurons, the mean-field approach only considers interac-

tions between the statistical moments of neuronal populations

(Freeman, 1975). In other words, neurons of one population are

only influenced by the mean activity of another population (and

possibly higher order moments such as variance). Effectively,

this perspective transforms the representation of neuronal dy-

namics from the microscopic (single neuron) to the mesoscopic

(neuronal population) level.

The last decade has seen important advances in mean-field

formulations of neuronal population models. A systematic over-

view and nomenclature can be found in Deco et al. (2008) who

adopt a population density perspective, conceptualizing the
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temporal evolution of the population’s probability density in the

form of a flow-diffusion process. Considering the statistical mo-

ments of this density corresponds to a ‘‘dynamic mean field’’

approach; considering only the mean activity of each population

results in ‘‘neural mass’’ models. Finally, ‘‘neural field’’ models

capture the spread of activity across the brain (Jirsa and Haken,

1996; Robinson et al., 2001).

These advances have paved the way for tractable large-scale

BNMs of neuroimaging data. The general strategy consists of

three steps (Figure 1): (1) representing each network node as a

neural mass or mean-field model of local neuronal populations

(e.g., excitatory and inhibitory neurons within a cortical area);

(2) linking these nodes by long-range connections; and (3)

feeding the resulting network activity into an observation model

that predicts regional fMRI, M/EEG, or PET data. (It is worth

noting that such models possess a likelihood function and allow

one to generate synthetic data; this, however, does not yet

render them ‘‘generative models’’ in a statistical sense. This

distinction will be revisited below.)

For M/EEG, the history of BNMs goes back to neural mass

models of event-related potentials (ERPs) (Freeman, 1975; Jan-

sen and Rit, 1995; Valdes et al., 1999). Recent BNMs have

covered whole-brain activity, demonstrating, for example, the

importance of conduction delays for explaining distributed oscil-

lations in the ‘‘resting state’’ (Nakagawa et al., 2014). Neural field

models have also been applied to empirical M/EEG data, eluci-

dating general principles of brain dynamics, such as multistabil-

ity and scale-invariance (Freyer et al., 2011, 2012), and providing

important insights into disorders such as epilepsy (Breakspear

et al., 2006).

The importance of conductance delays in M/EEG models and

the high spatial resolution of fMRI data highlight the need of

BNMs for accurate information on anatomical long-range con-

nections. This information can be obtained from human diffu-

sion-weighted imaging (DWI) or from the CoCoMac database

of tract tracing studies in the macaque monkey (for review, see

Stephan, 2013). Neither approach is without uncertainty: while

DWI data cannot resolve directionality of connections and has

limited resolution, CoCoMac rests on mapping procedures that

integrate data across different parcellation schemes (and, for hu-

man studies, species).

Despite this limitation, BNMs of M/EEG and fMRI data have

become important tools for investigating the mechanisms that

link microscopic (single neurons), mesoscopic (areas), and

macroscopic (networks) levels of description. For fMRI, initial

BNMs focused on task-specific networks (Husain et al., 2004);

subsequent models have encompassed the entire brain, using

parcellations with up to 103 regions. Thesemodels have typically

focused on the ‘‘resting state,’’ i.e., unconstrained cognition in

the absence of sensory perturbations (Ghosh et al., 2008; Honey

et al., 2007). Collectively, these studies provided important in-

sights into how large-scale dynamics are constrained by the

anatomical ‘‘skeleton’’ of long-range structural connectivity

(Deco et al., 2013a).

Despite all simplifications, the models discussed so far are still

too complex for parameter estimation, and the applications

described above used simulations under fixed parameters. Infer-

ring subject-specific parameters from neuroimaging data, how-
ever, is crucial for future diagnostic applications of BNMs

(Woolrich and Stephan, 2013). While this motivates the simpler

generative models discussed below, recent BNMs have begun

to acquire a limited capacity of estimating parameters from

empirical data. In particular, Deco et al. (2013b) derived a linear-

ized simplification of the model by Wong and Wang (2006), al-

lowing for the estimation of a global parameter (that uniformly

scales connection strengths across the brain) from empirical

fMRI data.

A notable example of the rapid development of large-scale

BNMs for neuroimaging data is the ‘‘Virtual Brain’’ project (Jirsa

et al., 2010; Sanz-Leon et al., 2015). This open-source software

provides a platform for constructing whole-brain models, allow-

ing for the combination of different neural mass and neural field

models with different measures of long-range connectivity

(CoCoMac or human DWI data). Using realistic head models

and different forward models, fMRI and M/EEG signals can be

simulated simultaneously from the same underlying neuronal

model (http://thevirtualbrain.org).

Applications to Clinical Questions
While BNMs of neuroimaging data have developed rapidly, their

application to diseases has only begun recently. In schizo-

phrenia, working memory (WM) is an attractive target for bio-

physical modeling: it is frequently impaired, and the underlying

circuit mechanisms are known in great detail (Brunel and

Wang, 2001; Durstewitz et al., 2000; Lisman et al., 1998). One

key mechanism concerns dopaminergic regulation of glutama-

tergic receptor conductances in the dorsolateral prefrontal

cortex (DLPFC). In brief, a DA-mediated increase in the conduc-

tance of NMDARs, relative to those of AMPARs, is necessary

to switch pyramidal cells into a high-frequency firing mode that

is critically required for and time-locked to memory mainte-

nance. This is of relevance for schizophrenia, given that the

interaction of NMDARs and DA is a central theme in pathophys-

iological theories of schizophrenia (Laruelle et al., 2003; Stephan

et al., 2006).

Recent BNM studies of WM have used the NMDAR antagonist

ketamine—an established pharmacological model of schizo-

phrenia symptoms (Corlett et al., 2011)—in healthy volunteers.

These studies were particularly interested in disturbances of

E-I balance, given that NMDAR antagonism may exert a prefer-

ential loss of excitatory drive at GABAergic interneurons, leading

to disinhibition of pyramidal cells (Homayoun and Moghaddam,

2007). A first study used a circuit model of spatial WM in DLPFC

that suggested that ketamine would reduce lateral inhibition and

hence decrease the selectivity of stimulus representations; the

ensuing predictions about ketamine effects onWMperformance

were verified in behavioral experiments (Murray et al., 2014). A

second study using fMRI found that ketamine disrupted func-

tional connectivity between fronto-parietal areas and the default

mode network (DMN) duringWM (Anticevic et al., 2012). Further-

more, ketamine reduced DMN deactivation during the task; a

BNM comprising fronto-parietal and DMN modules suggested

that this could be explained by local disinhibition and the result-

ing decrease in sensitivity to long-range inputs.

BNMs have also been used in three recent fMRI patient

studies. The first compared adolescents with early-onset
Neuron 87, August 19, 2015 ª2015 Elsevier Inc. 719

http://thevirtualbrain.org


Figure 2. Application of a BNM to fMRI Data from Patients with Schizophrenia
(A) Voxels in medial PFCwith enhanced global connectivity at 12-month follow-up compared to baseline. Connection strengths for healthy controls are shown for
comparison.
(B) BNM with two key parameters: local coupling (w) within nodes and long-range global coupling (G) between 66 nodes.
(C) Simulations showed enhanced global connectivity when increasing either w or G. Adapted from Anticevic et al. (2015), with permission.
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schizophrenia to healthy controls, using a whole-brain model (90

regions) informed by individual DWI data (Cabral et al., 2013).

While structural network properties did not differ significantly

when correcting for multiple comparisons, applying the BNM

to the fMRI data indicated a trend toward reduced global

coupling in patients; this would explain lower small-world indices

of functional connectivity in schizophrenia (Lynall et al., 2010).

However, a second BNM study of adult patients with schizo-

phrenia (Yang et al., 2014) suggested that reduced functional

connectivity may not occur universally across the brain. This

study focused on functional connectivity of the DLPFC, finding

‘‘hyperconnectivity’’ in schizophrenia; a result mimicked in the

BNM by increasing either within-node or inter-node coupling.

Importantly, this study showed that global signal regression dur-

ing fMRI data preprocessing decisively affected conclusions

about global coupling estimates in schizophrenia (cf. Fornito

and Bullmore, 2015).

The same BMN was used by a longitudinal fMRI study of 129

patients with early-stage schizophrenia who were scanned

prior to medication; 25 patients were followed up after 1 year

(Anticevic et al., 2015). Focusing on medial prefrontal (mPFC)

cortex, its coupling estimates with the rest of the brain were

mostly increased (for other areas, there was a mixed pattern of

increased and decreased connectivity). Importantly, mPFC hy-

perconnectivity normalized after one year and predicted positive
720 Neuron 87, August 19, 2015 ª2015 Elsevier Inc.
(but not negative) symptoms. As Yang et al. (2014), Anticevic

et al. (2015) found that increasing either global or local coupling

parameters mimicked the observed pattern of prefrontal

hyperconnectivity. They interpreted this as altered E-I balance

in early-stage schizophrenia that normalized in parallel to symp-

tom improvements over time (Figure 2).

Generative Models of Neuroimaging Data
While BNMs offer a detailed representation of (patho)physiolog-

ical mechanisms, a central challenge for clinical utility is the

difficulty to estimate these mechanisms from subject-specific

measurements. This motivates considering a different class of

models, so-called ‘‘generative models’’ that represent the joint

probability of data andmodel parameters (Figure 1). They require

two things: a prior distribution, indicating the expected range of

parameter values and a likelihood function. The latter encodes

a probabilistic forward model, quantifying the probability of

obtaining a particular observation (e.g., pattern of regional

BOLD signals) as a function of the model parameters (e.g.,

synaptic connection strengths). Once likelihood and prior are

specified, it is possible, in principle, to ‘‘invert’’ the model and

compute the posterior probability of the parameters given the

measured data; this fully characterizes amechanism (parameter)

of interest, providing both its expected value and one’s uncer-

tainty about it.



Figure 3. Summary of the Classical
Deterministic DCM for fMRI
For mathematical details, see Friston et al. (2003)
and Stephan et al. (2007).
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In addition, a generative approach also allows for inference on

model structure: by integrating out the dependency on model

parameters, one obtains the model evidence, a principled index

of the trade-off between a model’s accuracy and complexity.

The model evidence provides a basis for Bayesian model selec-

tion and averaging (Stephan et al., 2007; Penny et al., 2010).

These procedures allow for comparing and integrating alterna-

tive model formulations (e.g., whether a connection exists, or

whether a particular form of plasticity is present).

Importantly, in neuroimaging, neuronal activity is not observed

directly; instead, the measurements reflect a (potentially compli-

cated) transformation of neuronal activity. This means the likeli-

hood function takes on the hierarchical form of a state-space

model and distinguishes between a hidden neuronal level and

an observation level (Figure 3). This formulation as a hierarchical

generative model is critical for inference on neuronal processes

and disambiguating them from potential confounds. For

example, in fMRI, regional variations in neurovascular coupling

can severely confound inference on neuronal connectivity (David

et al., 2008).

Dynamic Causal Modeling
The idea of using a hierarchical generative model to infer on

neuronal processes from neuroimaging data was first imple-

mented by dynamic causal modeling (DCM) for fMRI (Friston

et al., 2003). The original formulation rests on a low-order Taylor

approximation and describes the dynamics of interacting

neuronal populations by bilinear differential equations via three
Neuron 87
types of mechanisms: experimental per-

turbations (e.g., sensory stimuli) that

‘‘inject’’ activity into the system, fixed syn-

aptic connections by which this activity

is conveyed to target populations, and

modulatory inputs that invoke contextual

changes of connection strengths (e.g.,

short-termplasticity andneuromodulatory

influences) (see Figure 3). Subsequently,

the neuronal model in DCM for fMRI has

been extended in several ways, including

non-linear (Stephan et al., 2008) and sto-

chastic differential equations (Li et al.,

2011). The latter can model endogenous

fluctuations in neuronal activity and ex-

tends the applicability of DCM to ‘‘resting

state’’ fMRI data. The predicted neuronal

dynamics are linked to region-wise BOLD

signals via a nonlinear hemodynamic

model (Stephan et al., 2007). Notably, the

same hemodynamic model has been

incorporated into most BNMs of fMRI

data described above.
DCM represented the first complete generative model of

BOLD data that spanned both neuronal and hemodynamic levels

and was sufficiently simple that it could be inverted. While this is

usually done with variational Bayesian techniques, alternative

schemes based onMarkov chainMonte Carlo (MCMC) sampling

or Gaussian processes are currently under development.

Compared to the BNMs discussed above, current DCMs are

restricted to smaller subgraphs of brain-wide connectivity, typi-

cally with up to ten nodes, in order tomaintain feasibility of model

inversion.

By replacing the hemodynamic forwardmodel with an electro-

magnetic one, DCM can be generalized from fMRI to electro-

physiological data. The rich temporal information in M/EEG

measurements allows for constructing DCMs with more detailed

neuronal representations and for building bridges to the BNMs

discussed above. The first DCM for M/EEG data by (David

et al., 2006) was based on a classical neural massmodel (Jansen

and Rit, 1995). This DCM describes how cortical areas—each

represented by a macrocolumn composed of pyramidal cells,

excitatory, and inhibitory interneurons—interact through long-

range glutamatergic connections whose laminar patterns follow

neuroanatomical rules of cortical hierarchies. This allows for

considerably more fine-grained physiological inference than

DCM for fMRI, e.g., on the relative strength of glutamatergic

versus GABAergic transmission (Moran et al., 2011a).

Subsequent developments of DCM for M/EEG have made

further strides toward physiological interpretability, for example,

using a conductance-based formulation that distinguishes
, August 19, 2015 ª2015 Elsevier Inc. 721
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Figure 4. A Prototype Computational Assay for Inferring DA Effects on Glutamate Receptor Conductances
Adapted, with permission, from Moran et al. (2011b).
(A) A prefrontal microcircuit DCMwith three cell classes and receptor types was used to model MEG data of healthy subjects performing aWM task twice, under
L-Dopa or placebo.
(B) Differences in parameter estimates across drug conditions. In line with previous data, administration of L-Dopa reduced AMPAR conductance (g1,3) and
enhanced the sensitivity (nonlinearity) of NMDARs (a).
(C) Changes in AMPAR conductance (left) and NMDAR nonlinearity (right) each significantly (p < 0.05) correlated with drug-induced change in performance.
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ionotropic receptors with sufficiently distinct time constants,

i.e., AMPA, NMDA, and GABAA receptors (Marreiros et al.,

2010). Pharmacological validation studies have demonstrated

that this model is capable of pathophysiologically relevant infer-

ence, for example, the identification of DA-induced changes in

NMDAR conductance from MEG data (Moran et al., 2011b)

(Figure 4).

Other Generative Models
Beyond DCM, various generative models of neuroimaging data

have been proposed in recent years. These include fMRI models

of dynamic effective connectivity (Havlicek et al., 2011) or state-

space models of M/EEG data that capture neuronal interactions

by multivariate autoregressive formulations (Olier et al., 2013;

Fukushima et al., 2015). Finally, an entirely different class of

generative models aims at explaining trial-by-trial variations in

M/EEG responses; we turn to these below.

Application to Clinical Questions
Generative models have been used in numerous studies on

schizophrenia, guided by the various pathophysiological con-

cepts described above. Due to space constraints, here we focus

exclusively on studies of perceptual inference; this is a theme at

the core of the dysconnection hypothesis and related concepts

(Corlett et al., 2010; Fletcher and Frith, 2009; Stephan et al.,

2006) that provides a bridge to Bayesian brain theories like pre-

dictive coding (Rao and Ballard, 1999). In brief, predictive coding

posits that the brain constructs a generative model of its sensory
722 Neuron 87, August 19, 2015 ª2015 Elsevier Inc.
inputs and updates its beliefs about the environmental causes of

its sensations by inverting this model (Figure 5). Belief updating

rests on message passing between hierarchically related

neuronal populations, such that each population sends predic-

tions about expected input to the next lower level and, following

sensory input, a prediction error (PE) to the next higher level; this

PE is then used to update subsequent top-down predictions.

This recurrent message passing serves to minimize PE at all

levels. Importantly, the impact of PEs is context-dependent

and varies with their relative precision (inverse uncertainty). For

example, PEs arising from vague (uncertain) predictions signal

less necessity for belief adjustment than PEs based on precise

predictions. Overall, this suggests a simple classification of

computational causes why perceptual inference could break

(abnormal computation of PEs, predictions, or precision-weight-

ing) and offers potential explanations for concrete clinical symp-

toms that can be tested with computational models (Adams

et al., 2013; Jardri and Denève, 2013).

Importantly, these computational variables can be linked to

physiological processes (Figure 5): PE and prediction signaling

is assumed to be mediated by glutamatergic signaling via bot-

tom-up/forward (AMPAR and NMDAR) and top-down/backward

(NMDAR) connections in cortical hierarchies (Corlett et al., 2011;

Friston, 2005a; Stephan et al., 2006). Precision-weighting might

be implemented by the postsynaptic gain of PE-encoding supra-

granular pyramidal cells, under the influence of slow changes in

neuromodulatory transmitter levels such as DA or ACh (Friston

et al., 2012; Moran et al., 2013). On the other hand, synaptic



Figure 5. An Overview of Predictive Coding Architectures
Figures are reproduced, with permission from the respective publishers.
(A) Predictive coding (PC) assumes that the brain constructs a hierarchical generativemodel of its sensory inputs and infers their causes bymodel inversion. Belief
updating rests on message passing between hierarchically related neuronal populations: each population sends predictions about expected input to the next
lower level and prediction error (PE) to the next higher level (Rao and Ballard 1999). This recurrent message passing serves to minimize PE at all levels.
(B) A putative neuronal implementation of PC (Friston 2005a): upper and lower circles represent neural units encoding PE (x) and the posterior expectation of
causes (f), respectively.
(C) A more refined version assigns PEs and expectations to supra- and infragranular pyramidal cells, respectively, and distinguishes causal states (v) and hidden
states (x); while the former connect hierarchical levels, the latter represent the temporal dynamics of expectations and endow the model with memory (Friston
et al., 2012).
(D) Proposed neurobiological components of PC architectures (Corlett et al., 2011). PEs are assumed to be signaled by fast glutamatergic (and in some circuits
GABAergic) transmission, predictions via NMDARs, and precision by neuromodulatory transmitters (DA, ACh).
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gain is influenced by NMDAR activation itself and its interactions

with GABAergic mechanisms (Adams et al., 2013); this provides

a link to theories emphasizing disturbances of E-I balance in

schizophrenia (Uhlhaas, 2013).

The idea that abnormal perceptual inference results from de-

ficiencies of the brain’s generative model (i.e., aberrant signaling

of precision-weighted PEs and predictions via forward and

backward connections) can be tested empirically. This rests on

using generative models (of neuroimaging data) to determine

changes in effective connectivity under experimental variations

of the difficulty of perceptual inference. An example is the ‘‘hol-

low mask’’ illusion where a concave mask of a human face is

perceived as a normal convex face. As many other illusions, it

can be understood as arising from the biasing influence of a

strong prior (here: that faces are convex objects) during the

inversion of the brain’s model of sensory inputs. Intriguingly, pa-

tients with schizophrenia are, on average, considerably less sus-

ceptible to this illusion than healthy controls (Dima et al., 2009).

Two separate fMRI and EEG studies examined potential mecha-

nisms for this phenomenon: applying structurally analogous
DCMs to fMRI and EEG data, these two studies consistently

found a strengthening of bottom-up connections and diminished

top-down connectivity in patients, consistent with the notion

of reduced precision of predictions about facial stimuli (Dima

et al., 2009, 2010). Notably, weakening of top-down predictions

may explain a range of perceptual alterations in schizophrenia

(Notredame et al., 2014) and may also play a role in the initial

formation of delusions (Schmack et al., 2013).

Another paradigm that is commonly interpreted from a predic-

tive coding perspective is the mismatch negativity (MMN), an

event-related potential (ERP) elicited by unpredicted sensory

stimuli (‘‘deviants’’). Reduced MMN amplitudes are one of the

most consistently found electrophysiological anomalies in

schizophrenia (Umbricht and Krljes, 2005). Initial DCM studies

on healthy volunteers showed that both forward and backward

connection strengths change at the presentation of a deviant, re-

flecting the bottom-up signaling of PEs and ensuing adaptation

of top-down predictions (for review, see Garrido et al., 2009).

Subsequent DCM studies in patients with schizophrenia have

demonstrated striking alterations. For visual MMN, Fogelson
Neuron 87, August 19, 2015 ª2015 Elsevier Inc. 723



Figure 6. Computational fMRI Studies of
Neuromodulation
Figures are reproduced, with permission from the
respective publishers. Please see individual papers
for significance levels.
(A–C) Midbrain activity reflects precision-weighted
sensory PEs (Iglesias et al., 2013) (A), reward PEs
(Klein-Flügge et al., 2011) (B), and precision (of
beliefs about the value of policies) (Schwartenbeck
et al., 2014) (C).
(D and E) Encoding of expected uncertainty (op-
erationalized by probability PEs) in the septal part
of the cholinergic basal forebrain (Iglesias et al.,
2013) (D) and of unexpected uncertainty in the lo-
cus coeruleus (Payzan-LeNestour et al., 2013) (E).
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et al. (2014) reported, similar to the hollow mask illusion study by

Dima et al. (2010), a marked reduction of top-down connections

in the visual hierarchy. For auditory MMN, the DCM results by

Dima et al. (2012) suggested that patients exhibited both

abnormal forward and backward effective connectivity, accom-

panied by reduced postsynaptic gain of pyramidal cells in pri-

mary auditory cortex.

Pharmacological studies in healthy volunteers have played

an important part in elucidating the mechanisms underlying

MMN deficits in schizophrenia. This has highlighted the roles

of NMDARs and ACh. For example, the NMDAR antagonist keta-

mine reduces MMN amplitude in healthy volunteers, similar to

schizophrenia, and individual MMN amplitude predicts psycho-

sis-proneness under ketamine (Umbricht et al., 2002). Applying

DCM to ERPs acquired under ketamine versus placebo, Schmidt

et al. (2013) found that ketamine significantly reduced the

PE-induced plasticity of forward connections in auditory cortex.

A DCM study of MEG data acquired under the acetylcholines-

terase inhibitor galantamine suggested that the observed

increase in MMN amplitude resulted from ACh enhancing the

precision of bottom-up signaling in the auditory hierarchy by

increasing the postsynaptic gain of supragranular pyramidal

cells (Moran et al., 2013).

An alternative generative modeling framework of M/EEG data

is worth mentioning in the context of MMN. This approach con-

centrates on trial-by-trial responses and views across-trial

fluctuations in MMN amplitude as a reflection of Bayesian belief

updating. It rests on hierarchical generative models where a

hidden layer of computational processes is linked to EEG

channels through a linear forward model. Under this framework,

competing hypotheses that specific computational variables

might be encoded by MMN amplitude can be disambiguated

by model comparison. Applying this strategy to a somatosen-

sory MMN paradigm, Ostwald et al. (2012) found that Bayesian

surprise (simply speaking, adjustments of model predictions

in response to new observations) better explained trial-wise
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MMN amplitudes than classical interpre-

tations of MMN as change detection. In

the auditory domain, Lieder et al. (2013)

compared 13 alternative implementations

of five major MMN theories. Analogous to

Ostwald et al. (2012), they found that

Bayesian belief updating proved superior
to classical interpretations of MMN in terms of change detection,

adaptation or novelty, and adjustments of model predictions

provided the best explanation for trial-wise MMN amplitudes.

Model-Based fMRI: Computational Models of
Neuromodulation
The previous sections have described computational models

of neuroimaging data with decreasing complexity, from whole-

brain BNMs to DCMs of circumscribed circuits. This section

reduces the spatial scope even further and considers model-

based explanations of single-voxel fMRI data. These rest on

generative models of behavior (e.g., trial-wise choices or reac-

tion times), yielding trajectories of computational states; these

can, in turn, be coupled to a forward (convolution) model and

used as regressors in general linear model analyses of voxel-

wise fMRI data (Figure 1). This two-step procedure differentiates

this approach from the models discussed above and provides a

bridge between two types of observations, behavior and brain

activity.

This approach—pioneered by O’Doherty et al. (2003) and

often referred to as ‘‘model-based fMRI’’—has been used

successfully in many studies, often employing reinforcement

learning (RL) or Bayesian models, to determine which circuits

implement a particular computational process. Here, we focus

on one aspect of particular interest for potential clinical applica-

tions. This is the notion that release of modulatory transmitters—

e.g., DA from midbrain neurons, norepinephrine from locus co-

eruleus, or ACh from basal forebrain—may encode the values

of specific computational variables (Figure 6).

This idea originated from the seminal observation that the tem-

poral course of phasic DA release resembled the trajectory of

reward PEs as predicted by RL models (Schultz et al., 1997).

This view nicely connected the role of PEs as ‘‘teaching signals’’

for learning to DA’s involvement in modulating synaptic plasticity

and triggered the question whether reliable in vivo estimates

of neuromodulatory transmitter release in humans could be
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obtained through the combination of fMRI and computational

models of behavior (D’Ardenne et al., 2008; Düzel et al., 2009).

As key regulators of synaptic plasticity, neuromodulatory

transmitters drive (mal)adaptive changes of neuronal circuits

and thus play a key role in pathophysiological theories of almost

any psychiatric disease (Montague et al., 2012). Another reason

for the interest in computational approaches to neuromodulation

(Dayan, 2012) is that most drugs used in psychiatry target either

synthesis, metabolism, or postsynaptic binding of neuromodula-

tory transmitters. This suggests that computational assays infer-

ring neuromodulatory processes from neuroimaging data might

prove useful for treatment predictions in individual patients (Ste-

phan and Mathys, 2014).

Initial model-based fMRI studies of neuromodulation mainly

used conditioning paradigms and RL models to demonstrate

that reward PEs explained human fMRI responses in the dopa-

minergic midbrain or dopaminoceptive regions like the ventral

striatum (e.g., D’Ardenne et al., 2008; O’Doherty et al., 2003;

but see Klein-Flügge et al., 2011). There are several reasons,

however, why DA is unlikely to be restricted to ‘‘classical’’ PEs

about primary reward, as examined by Pavlovian and operant

conditioning paradigms. First, DA midbrain neurons show pro-

nounced heterogeneity with regard to neurodevelopment, con-

nectivity, and electrophysiology (Roeper, 2013). Furthermore,

they contribute to reward-unrelated cognitive processes, such

as WM (Matsumoto and Takada, 2013), and may encode PEs

about purely sensory events (Iglesias et al., 2013). Third, what

constitutes a ‘‘reward’’ is context-dependent and depends

on the individual’s internal model and the subjective beliefs it

rests upon. Finally, DA release fluctuates at different timescales,

e.g., tonic versus phasic responses. This suggests that DA neu-

rons may emit a multiplexed signal reflecting several computa-

tional variables concurrently (Hiroyuki, 2014).

Other quantities that may be reflected by DA release include

novelty (Düzel et al., 2009) and uncertainty or its inverse, preci-

sion (Friston et al., 2012). Several studies in animals and humans

have provided evidence that uncertainty or precision are en-

coded by slow fluctuations in DA neuron activity within and

across trials (de Lafuente and Romo, 2011; Fiorillo et al., 2003;

Schwartenbeck et al., 2014). It has been suggested (Corlett

et al., 2011; Friston, 2005b) that DA and other neuromodulators

may serve to implement the precision-weighting of PEs that

arises from Bayesian models under Gaussian assumptions (Fris-

ton et al., 2012; Mathys et al., 2011; Rao and Ballard, 1999)

(Figure 5). Empirically, a recent fMRI study demonstrated that

trial-by-trial midbrain activity reflected precision-weighted PEs

about visual stimuli (Iglesias et al., 2013) (see Figure 6).

Uncertainty has also been a major theme in theories about

other neuromodulatory transmitters. An influential proposal by

Yu and Dayan (2005) posited that ACh and NE levels may repre-

sent ‘‘expected uncertainty’’ (EU; known/estimated unreliability

of a prediction) and ‘‘unexpected uncertainty’’ (UU; induced by

a change of the environment), respectively. Empirical evidence

was obtained by recent fMRI studies (Figure 6) that showed

that model-based indices of EU were linked to trial-wise activity

in the cholinergic basal forebrain (Iglesias et al., 2013), while UU

was found to correlate with activity of the noradrenergic locus

coeruleus (Payzan-LeNestour et al., 2013).
Application to Clinical Questions
So far, computational models of neuromodulation in schizo-

phrenia have largely focused on abnormal DA signaling and its

potential role in delusion formation. One influential idea is that

dysregulated activity of DA neurons might result in PE signals

that are ill-timed and/or of abnormal precision, leading to erro-

neous attribution of importance (‘‘aberrant salience’’) to random

or irrelevant events (Heinz, 2002; Kapur, 2003). This induces

ongoing violations of the individual’s model of the world such

that, eventually, only the compensatory adoption of complicated

and seemingly bizarre beliefs can lead to cognitive resolution

(Corlett et al., 2010;Roiser et al., 2013). Thismay rest onan imbal-

ance of precision, where abnormally high precision of PE signals

(aberrant salience) at lower levels of the inference hierarchy dom-

inates over relatively low precision of predictions at higher levels;

under this perspective, the subsequent adoption of extremely

rigid (high precision) beliefs that become visible as delusions

may represent a compensatory response (Adams et al., 2013).

A prediction of the ‘‘aberrant salience’’ theory is that patients

with schizophrenia should show a diminished difference in PE re-

sponses to relevant and neutral stimuli. This hypothesis has been

tested by several computational fMRI studies using RL models

and conditioning paradigms in patients with schizophrenia (Gra-

din et al., 2011; Murray et al., 2008; Romaniuk et al., 2010) and

individuals at ultra-high risk for psychosis (Roiser et al., 2013).

Despite differences in tasks, models, and clinical groups, these

studies indeed point to abnormal PE responses in midbrain

and ventral striatum (Figure 7): overall, in patients, PEs elicited

less activity on both rewarding or aversive trials, butmore activity

in response to neutral or irrelevant cues. Additionally, midbrain

PE responses correlated with psychotic symptom ratings

(Gradin et al., 2011; Romaniuk et al., 2010). Finally, abnormal

midbrain activity in patients with first-episode schizophrenia

has also been reported for other aspects of associative learning

(Corlett et al., 2007).

A recent study by Horga et al. (2014) used a PE-dependent

learning model to investigate another key symptom of psycho-

sis, auditory hallucinations. Previous fMRI studies demonstrated

auditory cortex activation during auditory hallucinations, in the

absence of external stimuli (Dierks et al., 1999). From a predictive

coding perspective, this points to overly precise and rigid priors

that induce misinterpretations of noisy baseline activity in audi-

tory cortex (Fletcher and Frith, 2009; Friston, 2005b). This idea

was tested by Horga et al. (2014) in patients with schizophrenia

compared to healthy controls. Probabilistically varying the

absence and presence of auditory stimuli (voices) and modeling

trial-wise fMRI responses as a weighted mixture of predictions

and PEs, they found that patients with hallucinations showed

reduced PE signals in a voice-sensitive region of secondary

auditory cortex and, at the same time, increased activity during

silent trials. Both abnormalities varied with the individual severity

of hallucinations, but not other symptoms. These findings do not

directly prove but are consistent with the notion of rigid priors at

higher auditory levels that have become impervious to update re-

quirements signaled by PEs and evoke percepts during silence.

It is possible, but presently speculative, that this represents a

maladaptive response to initial PE abnormalities, similar as dis-

cussed for delusions above.
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Figure 7. Model-Based fMRI Studies of Neuromodulation in Patients with Schizophrenia versus Controls
Figures are reproduced, with permission from the respective publishers. Please see individual papers for significance levels.
(A and B) During instrumental conditioning, patients showed reduced midbrain PE responses on reward trials (A) and augmented PE responses to neutral cues
(Murray et al., 2008) (B). A similar paradigm found a trend to reduced PE activity in the midbrain (MB) of patients. Decreases in PE activity correlated with severity
of psychotic symptoms in MB, right insula (RIn) and amygdala-hippocampus (RA-H) (Gradin et al., 2011).
(C) Patients’ midbrain activation to neutral stimuli versus fearful stimuli during aversive conditioning correlated significantly with delusional symptoms (Romaniuk
et al., 2010).
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Strengths, Limitations, and Convergence
Intuitively, the potential diagnostic utility of amodel increases the

more detailed its representations of biological mechanisms and

the more accurately estimates of these mechanisms can be ob-

tained in individual patients. However, these desiderata oppose

each other: the more detailed and biologically realistic a model,

the greater the challenges of parameter estimation and the

danger of overfitting. How do the approaches discussed in this

paper fare with regard to this general trade-off?

BNMs have introduced an innovative treatment of whole-

brain neuroimaging data, based on detailed representations of

neuronal mechanisms. Despite careful abstractions, estimating

most of these mechanisms from empirical data is presently not

possible, due to various reasons. First, an issue affecting models

of fMRI in general is that the low-pass filtering property of neuro-

vascular coupling restricts identifiability to mechanisms that are

expressed in a relatively low-frequency domain. Second, in

BNMs, the large number of parameters and their ubiquitous

inter-dependencies represent difficult numerical challenges for

system identification. This requires fixing most parameters to a

priori values. Parameters encoding connection strengths repre-

sent a particular problem because different configurations of

effective connectivity can lead to extremely different dynamic re-

gimes, and there are no simple rules for deducing effective con-

nectivity from anatomical nor functional connectivity. Although

the common assumption that synaptic weights are proportional

to anatomical connection strengths (as obtained from individual

DWI data) is a helpful first approximation, anatomical connectiv-

ity only constrains but does not determine effective connectivity.

This is because connection strengths change dynamically at

short timescales, under the influence of synaptic plasticity and
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neuromodulation (Stephan et al., 2008). Deco et al. (2013b) intro-

duced a free parameter that scales functional coupling strength

globally. This parameter has an indiscriminative effect on all con-

nections; by contrast, cognitive processes invoke selective

changes in subsets of long-range connections. A final challenge

is the substantial variability in neurovascular coupling across

brain regions and across subjects. Assuming fixed hemody-

namic parameters across regions may confound identification

of neuronal mechanisms from fMRI data (Valdes-Sosa et al.,

2011).

Some of thesemethodological issues are addressed by gener-

ativemodels, such as DCM. These adopt a simplermathematical

characterization of neuronal dynamics and are restricted to

smaller circuits. While their parameters can still be numerous,

they are constrained by priors; this enables computing the poste-

rior distribution of the parameters (model inversion). This should

not be confused with point estimates of parameters as obtained,

for example, in BNMs that optimize the correlation between

observed and predicted BOLD functional connectivity) (Deco

et al., 2013b). Importantly, the regularization afforded by priors

avoids overfitting and reduces identifiability issues, enabling

one to estimate both neuronal parameters and region-specific

hemodynamics in individual subjects. There are, however, non-

trivial issues for the inversion of current DCMs, such as local

extrema during optimization or the choice of priors; see Dauni-

zeau et al. (2011) for discussion. These methodological chal-

lenges have inspired ongoing developments for DCM, such as

global optimization schemes and empirical Bayesian procedures

for a ‘‘data-driven’’ choice of priors.

The physiological interpretability of model parameters in DCM

for fMRI is limited, given the relatively abstract state equations.



Figure 8. Graphical Summary of the
Translational Neuromodeling Strategy
Outlined in This Paper
Panel 1 adapted, with permission, from Chen et al.
(2009).
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For example, there is only a coarse representation of types of

synaptic transmission (excitatory versus inhibitory), and synaptic

plasticity is only characterized phenomenologically (as a change

in connection strength). By contrast, M/EEG data contain much

richer temporal information than fMRI, allowing for representa-

tion of different types of neurons and postsynaptic receptors.

This enables a finer characterization of pathophysiological pro-

cesses, such as E-I balance or DA modulation of glutamatergic

synapses, under suitable pharmacological challenges (Moran

et al., 2011a, 2011b). While this indicates promising potential

for treatment predictions, a major future challenge for clinical

utility will be to develop models that can disambiguate different

neuromodulatory mechanisms from M/EEG data in the absence

of designed pharmacological perturbations.

Given that both BNMs and DCMsmove toward the same goal,

but from different ends of the complexity spectrum, it is not

surprising to see signs of methodological rapprochement. For

example, there are efforts to extend DCMs to larger networks,

while preserving the capability of model inversion (Seghier and

Friston, 2013). For BNMs, one of the most important future

developments concerns parameter estimation; at present, only

very few BNMs possess free parameters at all (Deco et al.,

2013b; Freyer et al., 2011) and these are of a global and physio-

logically unspecific nature. As discussed recently (Deco and

Kringelbach, 2014; Woolrich and Stephan, 2013), this might be

improved by turning BNMs into fully generative models. For

example, importing model inversion and comparison proce-

dures from DCM might allow for obtaining connection-specific

parameter estimates, for resolving uncertainty about model

structure (e.g., connectivity layout) and for detecting overfitting.

Overall, it is likely that we will see a convergence of BNM and

DCM in the future. This will need to be complemented by compu-

tational perspectives, describing how circuit architecture

gives rise to specific computations. For BNMs and DCMs,

so far only very simple ‘‘neurocomputational’’ models exist;

for example, inferring short-term plasticity from trial-wise PE-

dependent changes in effective connectivity (den Ouden et al.,

2009). An important goal is to obtain generative models that
Neuron 87
predict both measured brain activity

and behavior from the same underlying

neuronal state equations (Rigoux and

Daunizeau 2015; Wiecki and Frank 2013).

Translational Neuromodeling
The examples discussed in this article

illustrate how computational neuroimag-

ing can contribute to unraveling patho-

physiological mechanisms in schizo-

phrenia. However, direct demonstrations

of diagnostic utility do not exist so far.

One reason is that the vast majority of
studies to date have contrasted patients with schizophrenia (as

defined by DSM) to controls or other patient groups. This does

not address the spectrum nature of schizophrenia with the likely

existence of different pathophysiological pathways that underlie

the variability in clinical trajectories and treatment responses

across patients (Krystal and State, 2014). Establishing models

that can distinguish between DSM-defined patient groups only

recapitulates the current diagnostic categories—with their lack

of predictive validity (Casey et al., 2013; Cuthbert and Insel,

2013)—but using a considerably more expensive approach

than conventional clinical interviews. Instead, psychiatry needs

approaches that allow for inference on disease mechanisms in

individual patients and a stratification of patients according to

pathophysiological types with predictive validity (Kapur et al.,

2012). In brief: we need tools and strategies for dissecting the

spectrum.

Provided the methodological issues discussed above can be

addressed, it might become possible to establish computational

assays with a similarly important role for differential diagnosis in

psychiatry as biochemical assays in internal medicine; cf. Ste-

phan et al. (2006). However, we do not wish to claim that this

is a panacea for psychiatry; additionally, various pitfalls exist

and will need to be addressed carefully. In this final section,

we consider some of these issues and outline strategic aspects

for translational neuromodeling (Figure 8). For simplicity,

we adopt a categorical perspective and assume distinct

pathophysiological subgroups in spectrum diseases. However,

model-based differential diagnosis can be equally approached

from a dimensional perspective; see Brodersen et al. (2014) for

discussion.

Basic Validation Studies
Candidate models for clinical applications should pass basic

validation studies. For example, face validity should be exam-

ined in initial simulation studies, probing whether the model

can recover known system structure and parameter values

from noisy data (Havlicek et al., 2011; Stephan et al., 2008). Eval-

uating predictive validity requires experimental perturbations,
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challenging the model to identify a system state induced by a

well-defined experimental manipulation, e.g., a selective phar-

macological intervention. For example, previous studies have

challenged DCM to identify, from fMRI data, the source of epilep-

tiform activity as established by invasive recordings (David et al.,

2008), or to detect the consequences of changes in anesthesia

levels and application of selective drugs, respectively (Moran

et al., 2011a, 2011b). Animal studies play an important role for

model validation since they allow for more controlled and spe-

cific test scenarios, including highly selective perturbation tech-

niques like optogenetics or ‘‘Designer Receptors Exclusively

Activated by Designer Drugs’’ (DREADDS).

Despite their importance, predictive validation studies of

computational models are rare. As it is often prohibitively diffi-

cult, slow, and expensive to acquire experimental data for model

validation from scratch, it will be crucial to establish open data-

sets with well-defined perturbations of physiological processes.

Such datasets would greatly speed up model development and

allow one to assess at an early stage the sensitivity and speci-

ficity of a candidate computational assay for detecting known

physiological states in individual subjects.

Strategies for Identifying Patient Subgroups
Following initial model validation, model-based detection of

pathophysiological subgroups in a spectrum disease could pro-

ceed in two different ways. If theories predict the nature of sub-

groups in advance and suitable models of subgroup-specific

mechanisms exist, subgroup assignment can be formulated as

a model selection problem. That is, in each individual patient,

the plausibility of competing models is evaluated (in terms of

model evidence), and the patient is assigned to the subgroup

associated with the most likely model. A compelling example,

albeit in a non-clinical spectrum of synesthetic subjects, is pro-

vided by van Leeuwen et al. (2011).

In psychiatric spectrum diseases like schizophrenia, however,

we usually do not know how many subgroups exist and what

(combination of) mechanismsmay define them. Here, subgroups

can be identified using an unsupervised variant of ‘‘generative

embedding’’ (Brodersen et al., 2011, 2014). This approach ap-

plies the same generative model to each subject’s data sepa-

rately and uses the resulting posterior densities for subsequent

unsupervised learning (clustering). In other words, the model is

used as a theory-guided dimensionality reduction device that

creates a de-noised and mechanistically interpretable feature

space. Compared to conventional approaches, such as classi-

fying patients on the basis of functional connectivity, generative

embedding has shown significantly higher performance in fMRI

studies on patients with stroke (Brodersen et al., 2011) and

schizophrenia (Brodersen et al., 2014). Notably, the latter study

identified three connectivity-defined subgroups in schizophrenia

that mapped onto significant differences in clinical symptom

scores.

When trying to derive subgroups through generative embed-

ding, one approach is to start with DSM categories in toto, as

in Brodersen et al. (2014). Alternatively, one can use behavioral

data or symptoms for identifying phenomenologically more ho-

mogenous subgroups within these broad spectra and proceed

withmodel-based inference on physiological mechanismswithin
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these subgroups (cf. Hyett et al., 2015). Finally, it is possible to

disregard physiological data altogether and define subgroups

based on generative modeling of behavioral data alone (Wiecki

et al., 2015).

Prospective Patient Studies
Once potential patient subgroups are identified, one needs to

verify that the proposed division has predictive validity with

regard to individual patients. This requires testing whether a

model-based assignment of individual patients to proposed sub-

groups results in clinically meaningful advances, that is, whether

it improves the physician’s ability to predict future clinical out-

comes and select optimal treatments for individual patients

(Figure 8). The importance of this validation in terms of clinical

utility cannot be overemphasized: regardless how perfect the

physiological validity of a given computational assay, if it does

not enable a differential diagnosis that improves predictions

and treatment choices for individual patients, it will have no

role in clinical practice. Critically, predictive validity of this sort

cannot be established in cross-sectional comparisons but re-

quires prospective designs with a focus on individual predictabil-

ity. In contrast to neuropsychological studies (Barch et al., 2003),

so far, prospective computational neuroimaging studies are

extremely rare (but see Anticevic et al., 2015; Iyer et al., 2015).

Potential Pitfalls
The success of translational neuromodeling will depend on our

ability to develop computational assays (of pathophysiological

or psychopathological) states that yield a real improvement in

clinical decision-making for individual patients, specifically

outcome predictions and treatment selection. In addition to the

technical challenges described above, however, several con-

ceptual and practical pitfalls loom. For example, a detected

abnormality of circuit parameters in patients may either reflect

a primary biological disease mechanism, or simply a different

cognitive process (e.g., task strategy) than assumed or in-

structed (Schlagenhauf et al., 2014). Furthermore, even when

the same task strategy is employed, differences observed

in patients may arise from unusual beliefs that have formed in

response to certain (perhaps unfortunate) experiences, while

the neuronal machinery itself is physiologically intact (cf. Mathys

et al., 2011). Disambiguating these possibilities is presently

rarely done, but can, in principle, be addressed by comparing

generative models of behavior that embody veridical versus

unusual beliefs about the task and its context.

Another potential problem is that even highly accurate model-

based pathophysiological inference may only allow for relatively

short-term predictions, given that the model is agnostic about

future environmental and biological perturbations (e.g., social

stress or infections) that may significantly impact on disease-

relevant brain circuits, not only by altering gene expression

but also synaptic plasticity directly. One could address this

by longitudinal neuroimaging measurements in single patients;

this, however, may introduce practical problems and render

the cost-benefit ratio unattractive. Alternatively, predictions by

a computational assay could be augmented (and updated

iteratively) by additional measurements that are more easily

and affordably obtained over time than neuroimaging but are
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sensitive to perturbations of known relevance. This could

include, for example, plasma levels of hormones and markers

of inflammation, but also behavioral readouts in individual pa-

tients. The latter are particularly attractive for longitudinal mea-

surements in individual patients as they can be obtained as

part of games designed for mobile devices (Rutledge et al.,

2014) and lend themselves to computational analysis, using

identical models (e.g., RL or Bayesian models) as those for neu-

roimaging data. Overall, this suggests that a more comprehen-

sive (and yet to be developed) modeling frameworkmay become

necessary—one where models derive and update clinical pre-

dictions by treating computational neuroimaging estimates of

an initial pathophysiological state as an ‘‘anchor’’ for subsequent

disease dynamics expressed by biochemical and behavioral

time series.

Open Datasets and Open Code
Prospective patient studies are essential for establishing the clin-

ical utility of candidate computational assays. However, these

studies are expensive, require close cooperation between

computational and biomedical scientists, and take years to com-

plete—this represents a serious bottleneck for translation and a

career risk for scientists depending on funding renewal. Similar

to physiological validation studies described above, there is an

urgent need for openly available datasets that can be used to

evaluate the potential clinical utility of models at an early devel-

opment stage and help resolve uncertainty about the most

promising directions. While laudable data sharing initiatives

have been established in the fMRI community, there is a lack

of data from prospective patient studies with clinically relevant

targets, such as treatment response, against which the diag-

nostic utility of candidate models can be benchmarked.

Another important desideratum is the sharing of source

code: this accelerates development and reduces errors by

providing standard building blocks and facilitates reproduction

of results. Following the success of open source packages for

‘‘classical’’ neuroimaging, this development is also gaining

ground in computational neuroimaging. Somemodels discussed

in this review are already available as open source code, e.g.,

in SPM (http://www.fil.ion.ucl.ac.uk/spm), TAPAS (http://www.

translationalneuromodeling.org/tapas), and the Virtual Brain

platform (http://thevirtualbrain.org).

Conclusions
Choosing schizophrenia as an exemplary spectrum disease, this

article has outlined progress in computational neuroimaging

over the past decade, with a focus on generative or forward

models. While all modeling approaches have made impressive

advances and there is a promising trend of convergence, chal-

lenging technical and validation problems remain to be ad-

dressed in order to establish computational assays as candidate

clinical tools. Given successful physiological validation, a trans-

lational neuromodeling strategy for psychiatry foresees the use

of computational assays for spectrumdissection, where applica-

tion to patients of a conventionally defined disease (e.g., schizo-

phrenia) yields patient-specific vectors of model parameter esti-

mates and/or log-evidence for alternative disease mechanisms.

This quantitative profile could be used to delineate mechanisti-
cally distinct patient subgroups. Establishing the validity of these

subgroup definitions requires prospective studies with regard to

clinically relevant outcome criteria, such as treatment response.
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