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The deployment of visuospatial attention and the programming of saccades are governed by the inferred likelihood of events. In the
present study, we combined computational modeling of psychophysical data with fMRI to characterize the computational and neural
mechanisms underlying this flexible attentional control. Sixteen healthy human subjects performed a modified version of Posner’s
location-cueing paradigm in which the percentage of cue validity varied in time and the targets required saccadic responses. Trialwise
estimates of the certainty (precision) of the prediction that the target would appear at the cued location were derived from a hierarchical
Bayesian model fitted to individual trialwise saccadic response speeds. Trial-specific model parameters then entered analyses of fMRI
data as parametric regressors. Moreover, dynamic causal modeling (DCM) was performed to identify the most likely functional archi-
tecture of the attentional reorienting network and its modulation by (Bayes-optimal) precision-dependent attention. While the frontal
eye fields (FEFs), intraparietal sulcus, and temporoparietal junction (TPJ) of both hemispheres showed higher activity on invalid relative
to valid trials, reorienting responses in right FEF, TPJ, and the putamen were significantly modulated by precision-dependent attention.
Our DCM results suggested that the precision of predictability underlies the attentional modulation of the coupling of TPJ with FEF and
the putamen. Our results shed new light on the computational architecture and neuronal network dynamics underlying the context-
sensitive deployment of visuospatial attention.

Key words: attentional networks; Bayesian inference; fMRI; saccades; spatial cueing

Introduction
Saccades enable us to explore our visual environment efficiently
and to focus on informative cues by foveal sampling with the
highest visual acuity. Eye movements are crucially related to co-

vert attention shifts (Rizzolatti et al., 1987; Awh et al., 2006),
which precede saccades to select salient visual targets and adjust
oculomotor programming. Therefore, eye movements and co-
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Significance Statement

Spatial attention and its neural correlates in the human brain have been studied extensively with the help of fMRI and cueing
paradigms in which the location of targets is pre-cued on a trial-by-trial basis. One aspect that has so far been neglected concerns
the question of how the brain forms attentional expectancies when no a priori probability information is available but needs to be
inferred from observations. This study elucidates the computational and neural mechanisms under which probabilistic inference
governs attentional deployment. Our results show that Bayesian belief updating explains changes in cortical connectivity; in that
directional influences from the temporoparietal junction on the frontal eye fields and the putamen were modulated by (Bayes-
optimal) updates.
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vert attention shifts share a common neuroanatomy (Corbetta et
al., 1998; Nobre et al., 2000; Beauchamp et al., 2001; Fairhall et al.,
2009).

Prior beliefs about the location of behaviorally relevant stimuli
such as imminent saccade targets facilitate stimulus detection and
increase response speed (RS). Prior beliefs can be induced by spatial
cues, which indicate the probability of a target’s location (percentage
of cue validity, %CV) on a trial-by-trial basis (Posner, 1980). Sensory
events that violate prior beliefs (invalid trials on which the target
appears at the uncued location) elicit a response in a ventral fronto-
parietal network (comprising the temporoparietal junction, TPJ),
but also in dorsal regions such as the frontal eye fields (FEFs) and
intraparietal sulcus (IPS) (Corbetta et al., 2008; Corbetta and Shul-
man, 2011). In addition, behavioral performance and BOLD re-
sponses within these networks are modulated by the precision or
predictability (%CV) (Vossel et al., 2006). The TPJ exhibits higher
reorienting-related activity when the cue predicts the target location
with a high probability (Vossel et al., 2012). The predictability of
reorienting also affects activity in the striatum, insula, and frontal
cortex (Shulman et al., 2009). In summary, attentional effects, both
neuronally and behaviorally, are highly sensitive to probabilistic
context; namely, the predictability or precision of prediction errors.
However, the formal (computational) nature of these effects, and
how they are implemented physiologically, has not been resolved as
yet. Therefore, this study investigated the origin of these probability-
dependent effects in terms of their computations and connectivity
patterns within cortical networks.

In contrast to the classic location-cueing paradigm, in which
subjects are explicitly informed about %CV, the likelihood of
events in real life needs to be continuously inferred on the basis of
recent observations. There is now considerable evidence that this
inference process can be plausibly represented by hierarchical
Bayesian models that provide a principled/normative description
of how beliefs are updated optimally in the presence of new data
(Behrens et al., 2007; Nassar et al., 2010; Payzan-LeNestour and
Bossaerts, 2011; Iglesias et al., 2013). In the particular context of
saccades, using an adapted version of Posner’s location-cueing
paradigm with unpredictable changes in %CV, RSs were found to
covary with trialwise quantities derived from such a model
(Vossel et al., 2014a). Although this suggests that the effects of
predictability in the location-cueing paradigm follow Bayesian
principles, it remains to be established whether—and in which
brain areas—these computations are implemented neuronally.
Moreover, it remains to be determined whether a Bayesian model
outperforms simpler models of brain responses.

In the present study, we combined computational modeling
(Vossel et al., 2014a, 2014b) with fMRI to investigate which neuro-
physiological processes may implement Bayesian inference for the
deployment of attention and the programming of saccadic eye
movements. We used a hierarchical Bayesian learning model (Ma-
thys et al., 2011, 2014) to quantify the subjects’ trialwise beliefs for-
mally and used brain responses to identify the neuronal correlates of
these beliefs. Accordingly, trialwise parameters from our computa-
tional model of behavioral responses were used as parametric ex-
planatory variables in a general linear model (GLM) of our fMRI
data. We then tested for modulation of neuronal activity in the areas
of the frontoparietal attention networks and/or the striatum. The
striatum is implicated in the learning of stimulus associations, ac-
tions, and rewards (Liljeholm and O’Doherty, 2012) and might con-
tribute to attentional reorienting when reorienting is unexpected
(Shulman et al., 2009). The parameters from the Bayesian model of
behavior were also used as modulatory variables in analyses of effec-

tive connectivity to determine how Bayesian inference is mediated
by connectivity within cortical or corticostriatal networks.

Materials and Methods
Subjects. Eighteen healthy volunteers gave written informed consent to par-
ticipate in the current study. Two subjects had to be excluded from further
analysis due to technical difficulties with eye tracking in the MRI environ-
ment. Therefore, data from 16 subjects were analyzed (8 males, 8 females; age
range, 19–31 years; mean age 24.9 years). All subjects were right-handed and
had normal or corrected to normal vision. The study was approved by the
local ethics committee (University College London).

Stimuli and experimental paradigm. Stimuli were presented using a
video projection screen mounted at the back of the magnet bore. Partic-
ipants viewed the screen via a mirror system attached to the head coil. A
location-cueing paradigm with central predictive cueing was used (Pos-
ner, 1980). On each trial, two peripherally located boxes were shown (2°
wide and 8.4° eccentric in each visual field; Fig. 1A) that could contain
target stimuli. A central diamond (0.7° eccentric in each visual field) was
placed between them, serving as a fixation point. Cues were signaled by a
200 ms period of increasing brightness of one side of the diamond, cre-
ating an arrowhead pointing to one of the peripheral boxes. After an 800
ms stimulus onset asynchrony, the target, a vertical circular sinusoidal
grating, appeared for 200 ms in one of the boxes.

Subjects were instructed to maintain central fixation during the cue pe-
riod and to make a saccade to the target stimulus as fast as possible. They were
encouraged to blink and refixate the central fixation dot after the saccade. On
a separate day before the fMRI experiment, each subject completed two short
practice sessions (one session with 100 trials with constant 80% predictive
validity (%CV) and one session with 121 trials with changes in %CV). The
fMRI experiment comprised 612 trials with blockwise changes in %CV that
were unknown to the subjects. Each block with constant %CV contained an
equal number of left and right targets, counterbalanced across valid and
invalid trials. In addition, to optimize the statistical efficiency of our design,
192 null events (in which only the fixation dot and the two peripheral boxes
were shown) were randomly intermixed with the experimental trials. %CV
changed every 32–36 trials, switching randomly among levels of 88%, 69%,
and 50% (Fig. 1B). Subjects were told in advance that there would be changes
in %CV over the course of the experiment, but were not informed about the
levels of these probabilities or when they would change. Each subject was
presented with the same sequence of trials. This is a standard procedure in
computational studies of trial-by-trial learning (Behrens et al., 2007;
Daunizeau et al., 2010b; Iglesias et al., 2013) because the parameters of the
learning process depend on the exact sequence of trials. This dependency will
diminish asymptotically with an increasing number of trials. However, for
the relatively short sequences (of a few hundred trials at best) that are feasible
within a standard experiment, different trial sequences per participant could
increase the variability of parameter estimates over and above the intrinsic
interindividual differences per se. We therefore decided to keep the trial
sequence constant to ensure that differences in model parameters can be
attributed to subject-specific rather than task-specific factors. During the
experiment, the subjects had four short rests of 50 s each in which the word
“pause” was shown on the display. In total, the fMRI session lasted for 39
min.

Eye movement data recording and analysis. Eye movements were re-
corded from the right eye with an EyeLink 1000 MR-compatible eye-
tracker (SR Research) with a sampling rate of 1000 Hz. A 9- or 5-point
eye-tracker calibration and validation were performed at the start of the
experiment. The validation error was �1° of visual angle.

Eye movement data were analyzed with MATLAB (The MathWorks)
and ILAB (Gitelman, 2002). Blinks were filtered out and pupil coordi-
nates within a time window of 20 ms around the blink were removed.
Trials with �20% missing data were discarded from the analyses. After
target appearance, only the first saccade was analyzed. Saccades were
identified when the eye velocity exceeded 30°/s (Fischer et al., 1993;
Stampe, 1993). Moreover, the saccade amplitude needed to subtend at
least 2/3 of the distance between fixation point and the target location.
Saccadic RT was defined as the latency between target and saccade onset.
Saccades in which the starting position was not within a region of 1° from
the fixation point; saccades with a latency �90 ms (i.e., anticipated re-
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sponses) were discarded. Our analyses focused on inverse response times
(RTs) or RSs (RSs) because, in contrast to RTs, RSs are distributed nor-
mally (c.f. Carpenter and Williams, 1995; Brodersen et al., 2008).

In a first analysis, mean RSs were analyzed as a function of validity
(valid/invalid) and true %CV (50%/69%/88%) using a within-subject
ANOVA. Results from this analysis are reported at a significance level of
p � 0.05 after Greenhouse–Geisser correction. This analysis was used to
test for significant effects of predictability, which we then sought to
model in terms of trialwise Bayesian belief updating.

Single-trial RSs were used to estimate parameters from a hierarchical
Bayesian learning scheme. Herein, we will refer to this Bayesian hierarchical
model as the perceptual model because this model provides a mapping from
experimental causes to observations (Daunizeau et al., 2010a, 2010b; Vossel
et al., 2014a; Fig. 2). Please note that, in our case, the observations do not
represent the physical visual inputs (i.e., left and right cues and targets), but
rather are defined at a higher level of abstraction in terms of the cue–target
relationship (i.e., targets appearing at the cued or uncued location, respec-
tively). However, as demonstrated in previous work (see derivation in the
supplementary material to Iglesias et al., 2013), this formulation is formally
identical to separately modeling two belief trajectories (for the two possible
outcomes). The present formulation has the advantage of requiring a single
belief trajectory only, allowing for a more compact model.

In contrast, the response model describes the mapping from the sub-
jects’ beliefs, as derived from the perceptual model, to their responses as
observed by the experimenter (i.e., saccadic RS; Fig. 2).

The perceptual model comprises three states denoted by x (Fig. 2). The
state x1

�t� represents the observation/environmental state of each trial,

which, in the present paradigm, consisted of either a validly or invalidly
cued saccade target (with x1

�t� � 1 for valid and x1
�t� � 0 for invalid trials).

The probability distribution of x1
�t� � 1 is a Bernoulli distribution

governed by a sigmoidal transformation of the next higher state x2
�t�,

which in turn changes over time as a Gaussian random walk. The
volatility of x2

�t� (i.e., how fast x2
�t� changes after new observations) is

determined by two quantities: x3
�t� (the state of the next upper level of

the hierarchy) and a subject-specific parameter �. The third state x3
�t�

also changes as a Gaussian random walk, with the dispersion of the
random walk being determined by a second subject-specific parame-
ter �. The values of the subject-specific parameters � and � were
estimated from the individual RS data (see below).

To infer the probabilistic representations of the subject from envi-
ronmental states, the perceptual model needs to be inverted; this
yields the posterior densities of the three hidden states x�t�. In the
following, the sufficient statistics of the subject’s posterior belief will

be denoted by ��t� (mean) and ��t� (variance) or ��t� �
1

��t� (preci-

sion). We use the hat symbol (^) to denote predictions before the
observation of x1

�t� on a given trial t. As described in detail in Mathys et
al. (2011), variational model inversion under a mean field approxi-
mation yields simple analytical update equations in which belief up-
dating rests on precision-weighted prediction errors. These update
equations provide approximately Bayes-optimal rules for the trial-
by-trial updating of the beliefs. In this experiment, they provide us
with the subject’s estimate of the probability that the target appears at

Figure 1. Experimental design and behavioral results. A, Exemplary illustration of a trial with a right, validly cued, target. In invalid trials, the target appeared at the location opposite
to that cued. The subjects were instructed to maintain central fixation during the cue period and to make a saccade to the target stimulus as fast as possible. B, Trial-by-trial changes in
precision-dependent attention ���̂1

�t�� that reflects the precision of the subject’s belief that the target will appear at the cued location (black line) in relation to the experimentally
manipulated cue validity (%CV, shaded areas). For this graph, ���̂1

�t�� was calculated on the basis of the average parameter estimates over all subjects. C, Mean RS for valid and invalid
trials as a function of true (unknown) percentage of cue validity %CV. Error bars indicate SEM. D, Observed and predicted saccadic RSs as a function of precision-dependent attention
���̂1

�t�� derived from the hierarchical Bayesian learning scheme. For this graph, ���̂1
�t�� and predicted RS were calculated on the basis of group average values of the model parameters.

Error bars indicate SEM.
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the cued location on a particular trial (note that this is an individu-
alized approximate Bayes optimality in reference to the subject-
specific values for the parameters � and �).

A response model was used to map the subject’s posterior beliefs to
observed responses (Fig. 2). In our previous work (Vossel et al., 2014a),
we compared three alternative response models and found that the most
plausible model (the model with the highest evidence) was based upon
the trialwise precision of the prediction at the first level of the perceptual
model, �̂1

�t�. In this model, the precision �̂1
�t� determines the amount of

attentional resources allocated to the cued location, ���̂1
�t��, which varies

between 0 and 1. Trialwise RSs can then be described as a linear function
of ���̂1

�t�� as follows:

RS�t� � � 	1
 � 	2���̂1
�t�� for x1

�t� � 1 �i.e. valid trial�
	1i � 	2�1 � ���̂1

�t��� for x1
�t� � 0 �i.e. invalid trial�

�̂1
�t� quantifies the precision of the prediction at the first level of the model

before the observation of the target in trial t; that is, the precision of the
prediction that the target will appear at the cued location. In our specific
case, �̂1

�t� has a minimal value of 4 when �̂1
�t� � 0.5 (both target locations

are equally likely) and approaches infinity as �̂1
�t� approaches 1. The most

parsimonious way to meet the constraints of the response model (namely
that the amount of attentional resources ��t� varies between 0 and 1 and
amounts to 0.5 for �̂1

�t� � 0.5) is to equate ��t� with a logistic function of
�̂1

�t� minus its minimum, ���̂1
�t�� � s��̂1

�t� � 4�. Because the cue be-
comes a counterindication of outcome location when �2

�t�1� falls below 0
(or equivalently, when �̂1

�t� drops below 0.5), a suitable definition of � for
the whole range of �̂1

�t� is ���̂1
�t�� � s�sign ��2

�t�1�� ��̂1
�t� � 4�� (cf. Vossel

et al., 2014a).
In the response model as outlined above ���̂1

�t�� determines trialwise
RS according to a linear function. The linear relationship depends on the
subject-specific response model parameters, 	, which are estimated from
the data. While 	1v and 	1i determine the constants of the linear equation
(i.e., the overall levels of RSs), 	2 parametrizes the slope of the affine
function (i.e., the strength of the increase in RS with increased precision-
dependent attention ���̂1

�t��).
The perceptual model parameters � and �, as well as the response

model parameters 	1v, 	1i, and 	2 were estimated from the trialwise RS
measures using variational Bayes as implemented in the HGF toolbox

(http://www.translationalneuromodeling.org/tapas/). Variational Bayes
optimizes the (negative) free-energy F as a lower bound on the log evi-
dence, such that maximizing F minimizes the Kullback–Leibler diver-
gence between exact and approximate posterior distributions or,
equivalently, the surprise about the inputs encountered (for details, see
Friston et al., 2007).

Log-model evidence values can also be used to compare alternative
models (Kass and Raftery, 1995). The relative differences between log-
evidence values of different models (summed over individual subjects in
a fixed-effects approach; Stephan et al., 2009) can be expressed as poste-
rior probabilities of the model given the observed data. Here, we com-
pared the hierarchical Bayesian model with a standard Rescorla–Wagner
learning model (Rescorla and Wagner, 1972) in which the update of the
probability estimate is the product of a fixed learning rate and a predic-
tion error (i.e., the difference between the observed and predicted out-
come). The learning rate was estimated from RSs by assuming a linear
relationship with the estimated cue probability (analogous to the re-
sponse model of the Bayesian model outlined above). Furthermore, we
compared the Bayes and Rescorla–Wagner model with a model that
assumed that RSs were explained by the true %CV levels.

MRI data acquisition. T2*-weighted echoplanar (EPI) images with
BOLD contrast (matrix size 64 � 64, voxel size 3 � 3 � 3 mm 3) were
obtained using a 3 T MRI System (Trio; Siemens). Before the functional
scans, a B0 field map was acquired using a double-echo FLASH sequence
for distortion correction of the acquired EPI images (Weiskopf et al.,
2006). Field maps were estimated from the phase difference between the
images acquired at the short and long TE using the FieldMap toolbox
(Hutton et al., 2002). Additional high-resolution anatomical images
(voxel size 1 � 1 � 1 mm 3) were acquired using a T1-weighted 3D
MDEFT sequence (Deichmann et al., 2004).

A total of 825 EPI volumes, each consisting of 40 axial slices were
acquired sequentially (repetition time 2.8 s, echo time 30 ms). The first
five volumes were discarded to allow for T1 equilibration effects. The
data were preprocessed and analyzed with Statistical Parametric Map-
ping software SPM8 (Wellcome Department of Imaging Neuroscience,
London; Friston et al., 1995; http://www.fil.ion.ucl.ac.uk/spm). Images
were bias corrected. To correct for interscan movement, the images were
spatially realigned to the first of the remaining 820 volumes and subse-

Figure 2. Illustration of the perceptual model and the response model. The perceptual model comprises three hierarchical states (x1, x2, and x3). The subject-specific parameters � and � affect
the updating of the subjects’ beliefs about states of the world x and are estimated from individual RS data on the basis of precision-dependent attention ���̂1

�t�� that depends on the precision of
the prediction at the first level of the perceptual model. Circles represent constants; diamonds represent quantities that change over time (trials); hexagons, like diamonds, represent quantities that
change in time but that additionally depend on their previous state in time in a Markovian fashion.
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quently rerealigned to the mean of all images. The mean EPI image for
each subject was then spatially normalized to the MNI single subject
template using the “unified segmentation” function in SPM8. The ensu-
ing deformation was subsequently applied to the individual EPI volumes
and the T1 scan, which was coregistered to the mean of the realigned
EPIs. All images were thereby transformed into standard stereotaxic
space and resampled into 2 � 2 � 2 mm 3 voxels. The normalized images
were spatially smoothed using an 8 mm full-width half-maximum
Gaussian kernel.

During scanning, peripheral measurements of subject pulse and breath-
ing were acquired, together with scanner slice synchronization pulses using
the Spike2 data acquisition system (Cambridge Electronic Design). The car-
diac pulse signal was measured using an MRI-compatible pulse oximeter
attached to the subject’s finger. The respiratory signal (thoracic movement)
was monitored using a pneumatic belt around the abdomen, close to the
diaphragm. A physiological noise model was used to account for artifacts
related to cardiac and respiratory phase and changes in respiratory volume
(Hutton et al., 2011). Models for cardiac and respiratory phase and their
aliased harmonics were based on RETROICOR (Glover et al., 2000). A Fou-
rier series basis set, extending to the third harmonic, was used to model the
physiological fluctuations. Additional terms were included to model changes
in respiratory volume (Birn et al., 2006, 2008) and heart rate (Chang and
Glover, 2009). This resulted in a total of 14 regressors, which were included
as confounds in the first-level analysis for each subject (see below).

Statistical analysis of imaging data. Data were analyzed using a random-
effects general linear model (GLM). Four regressors of interest were defined
at the single-subject level (valid and invalid trials for left and right targets,
respectively). For each of these regressors, two parametric modulators were
defined. The first parametric modulator was the (subject-specific) atten-
tional weight (precision) for the cued location, ���̂1

�t��. The second regressor
was the (subject-specific) volatility estimate (�3

�t�), orthogonalized with re-
spect to ���̂1

�t�� (cf. den Ouden et al., 2010). Error trials (anticipated re-
sponses and incorrect/missing responses) were modeled separately. Events
were time locked to the onset of the target and the resulting stimulus func-
tions were convolved with a canonical hemodynamic response function
(and its first and second derivative). The four rest periods, six movement
parameters of the (rigid body) realignment, and the physiological
regressors (see above) were included in the design matrix as addi-
tional regressors. Data were high-pass filtered at 1/128 Hz. For each
subject, 12 condition-specific contrast images were created (for each
trial type and parametric modulator).

For the main hemodynamic response function (HRF) regressor and
the two parametric regressors precision ���̂1

�t�� and volatility �3
�t�, the

respective contrast images were analyzed according to 2 (validity: valid/
invalid) � 2 (hemifield of target presentation: left/right) within-subject
second-level ANOVAs. We focused on the analysis of main effects of
validity, as well as its interaction with hemifield, by using planned
t-contrasts. Moreover, to characterize the saccade network in the present
study, we tested for a positive effect of the HRF regressor across all four
conditions (valid and invalid left and right trials) in relation to the im-
plicit baseline. In the analyses of the parametric regressors, we also tested
for positive or negative effects across all four conditions. All contrasts
were thresholded at p � 0.05 familywise error whole-brain corrected at
the cluster-level (with a voxel-level cutoff of p � 0.001).

Bayesian model selection of alternative GLMs. To determine whether
the observed responses in the areas revealed by the ANOVA on the
���̂1

�t�� regressor were best explained by precision-dependent attention
as derived from the hierarchical Bayesian model, we calculated log-
evidence maps in these regions for the first-level GLM with precision-
dependent attention ���̂1

�t�� for each subject (Penny et al., 2007).
Moreover, log-evidence maps were calculated for GLMs with probability
estimates derived from a Rescorla–Wagner model and from a model with
the true probabilities as parametric regressors. The log-evidence maps
from these three alternative models in the clusters of interest were com-
pared at the second level using Bayesian model selection to evaluate
group-level posterior probabilities (Rosa et al., 2010).

DCM. To investigate effective connectivity and compare different
models of functional architecture, DCM was performed using SPM12
(r6225).

Time series extraction. DCMs were fitted to distributed BOLD time series
from individual subjects. Subject-specific time series were extracted from
specific ROIs that were selected on the basis of the group GLM analysis. Time
series were extracted from the nearest local maximum within a radius of 8
mm from the group maximum in right FEF, TPJ, and the putamen. The first
eigenvariate was then computed across all voxels within 6 mm of the subject-
specific maximum. The resulting time series were adjusted for effects of no
interest (e.g., rest periods, error trials) and physiological confounds so that
the analyses focused on BOLD responses reflecting the effects of valid and
invalid cueing and the modulation by precision (effects of the volatility re-
gressor were also excluded).

Specification of DCMs and the model space. On the basis of our GLM
results, we specified bilinear deterministic DCMs (Friston et al., 2003).
DCMs are defined in terms of fixed (endogenous) connections between
brain areas and input-specific changes in the strength of these connec-
tions (i.e., modulatory or bilinear effects). In the present analysis, we
focused on the connectivity between those three regions in which the
response to invalidly versus validly cued targets was modulated by ���̂1

�t��
according to our GLM results (i.e., areas FEF, TPJ, and putamen in the
right hemisphere). In all of the models we compared, we assumed full
endogenous connectivity among the three areas (see Fig. 5). The target
stimuli (collapsed over left and right validly and invalidly cued targets)
were used as driving inputs. Driving input was assumed to enter the
putamen because it receives visual input from the superior colliculi and
thalamus (Redgrave and Gurney, 2006). Furthermore, we explored
whether additional driving inputs into FEF and/or TPJ, respectively, im-
proved the model. For simplicity, we did not include lower-level visual
areas in our DCMs, focusing instead on the subgraph modeling of the
attentional network engaged by our paradigm. Because the ranking of
FEF and TPJ within the visual hierarchy is unclear, we specified three
model families to determine whether the sensory input drives: (1) puta-
men and FEF; (2) putamen and TPJ; or (3) putamen, FEF and TPJ. For
each of these three families, we specified models with different modula-
tory (bilinear) effects (see Fig. 5). Specifically, we tested whether the
source of the precision-dependent processing was located in the puta-
men, FEF, or TPJ and how self-connections or efferent connections
between the source region and connected regions changed as a func-
tion of ���̂1

�t�� on valid and invalid trials. Systematic combinations of
the source of precision and its modulation of efferent connections
resulted in 12 models for each visual input family (see Fig. 5). Because
���̂1

�t�� reflects the number of precision-dependent attentional re-

Table 1. Results of the ANOVA on the main HRF regressor

Region Direction Side

MNI coordinates

Voxels Z-scorex y z

All trials � baseline
Precentral gyrus/FEF N/A L �48 �4 44 2155 7.19

N/A R 38 �4 50 1054 6.74
IPS N/A L �30 �48 50 714 6.01
Visual cortex/V1 N/A L �8 �76 8 8100 6.59

N/A R 14 �76 4 6.47
Cerebellum N/A L �10 �74 �20 6.96

N/A R 8 �74 �18 6.80
Middle occipital gyrus/V5 N/A L �38 �62 6 6.38

N/A R 50 �58 4 772 4.97
Putamen N/A L �22 6 6 750 6.35

N/A R 22 8 10 488 5.53
Main effect of validity (I vs V trials)

Superior frontal gyrus I � V R 26 0 54 1641 4.97
Precentral gyrus I � V R 50 8 30 5.13

I � V L �28 �2 60 1084 4.58
Middle temporal gyrus I � V R 64 �52 �2 1062 4.47
Supramarginal gyrus I � V R 52 �28 38 8711 5.48
Superior parietal lobe I � V L �36 �48 62 4.83
Precuneus I � V L �12 �54 72 4.76

Validity � hemifield interaction
n.s.

N/A, Not applicable; I, invalid; V, valid; n.s., not significant.
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sources directed to the cued location, we ex-
pected differential modulatory effects for
valid and invalid trials: namely, negative
modulation on valid trials and positive mod-
ulation on invalid trials (compare the results
for the contrast of parametric regressors in
the GLM analysis). Note that the DCM pa-
rameters for fixed and bilinear connections
have zero prior means so that the directions
of the modulations are not a priori included
in the models.

Model selection and parameter inference. We
used a two-step fixed-effects approach to
Bayesian model selection to determine which
model best explained our observed responses
in putamen, FEF, and TPJ. This analysis as-
sumes that all subjects engage the same net-
work for attentional deployment, but with
different connection strengths (Stephan et al.,
2010). In a first step, we used family-level in-
ference (Penny et al., 2010) to determine
whether models with visual input into puta-
men and FEF, putamen and TPJ, or all three
areas best explained the observed data. Second,
the models of the winning family were com-
pared to identify the most plausible DCM of
precision-related effects. The parameters of the
winning DCM were summarized by Bayesian
parameter averaging, which computes a joint
posterior density for the entire group by com-
bining the individual posterior densities (Neu-
mann and Lohmann, 2003; Garrido et al.,
2007).

Results
Behavioral data
The percentage of anticipated re-
sponses, incorrect or missing saccades,
and saccades not starting from the fixa-
tion zone amounted to 1.6% (	 0.5
SEM), 2.3% (	 0.4), and 4.4% (	 1.2),
respectively. These trials were excluded
from further analysis of behavioral data
and were modeled separately in the
analysis of the fMRI data.

The 2 � 3 repeated-measures
ANOVA on condition-specific mean RS as a function of valid-
ity (valid/invalid) and %CV (50/69/88%) revealed a signifi-
cant main effect of validity (F(1,15) � 37.7, p � 0.001),
reflecting faster responses to validly than to invalidly cued
targets. The validity � %CV interaction effect was also signif-
icant (F(1.97,29.6) � 9.0, p � 0.001), indicating a differential
impact of %CV on invalid and valid trials (Fig. 1C). The main
effect of %CV was not significant ( p � 0.5).

Figure 1B shows the trial-by-trial changes in precision-
dependent attention ���̂1

�t��. This variable reflects the amount
of attention to the cued location (based on the group average
values of � and �). The RSs in relation to ���̂1

�t��, averaged
across 0.1 bins, are shown in Figure 1D. A 2 � 6 repeated-
measures ANOVA (validity: valid/invalid; ���̂1

�t��: 0.5/0.6/0.7/
0.8/0.9/1.0) revealed a significant main effect of validity
(F(1,15) � 37.4, p � 0.001), again reflecting faster responses to
validly than to invalidly cued targets. Moreover, the validity �
���̂1

�t�� interaction effect was significant (F(2.25,33.7) � 7.7, p �
0.001), indicating a differential impact (in terms of opposing

Figure 3. Results of the GLM analysis. A, Reorienting network as revealed by a t-contrast (invalid� valid) for the main HRF regressor.
B, Overlap between the saccade network and the reorienting network in the FEF. C, Precision-dependent differences between invalid and
valid trials as revealed by a t-contrast (invalid � valid) for the parametric modulation with ���̂1

�t��. The bar charts depict the mean
parameter () estimates (	 SEM) for the parametric regressor for valid and invalid trials.

Table 2. Results of the ANOVA on the two parametric regressors for precision-
dependent attention ���̂1

�t�� and volatility �3
�t�

Region Direction Side

MNI coordinates

Voxels Z-scorex y z

Parametric regressor: precision-
dependent attention ���̂1

�t��
All trials

n.s.
Main effect of validity (I vs V trials)

Precentral gyrus/FEF I � V R 42 4 42 314 3.9
TPJ I � V R 46 �46 6 214 3.75
Putamen I � V R 22 16 4 173 4.38

Validity � hemifield interaction
n.s.

Parametric regressor: volatility �3
�t�

All effects n.s.

n.s., Not significant; I, invalid; V, valid.
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effects; Fig. 1D) of precision-dependent
attention ���̂1

�t�� on valid and invalid
trials. The main effect of ���̂1

�t�� was not
significant ( p � 0.4).

The comparison of the relative log-
model evidences between the hierarchical
Bayesian model, a Rescorla–Wagner model
and a model informed by true %CV values
revealed that the Bayesian model was clearly
superior to the alternative models in ex-
plaining variations in RS (posterior proba-
bility of the Bayesian model � 1.0).

fMRI data
Whole-brain SPM analysis
In a first step, contrast images of the main
HRF regressor were analyzed according to
a 2 (validity: valid/invalid) � 2 (hemifield:
left/right) factorial design (Table 1).
Moreover, those brain areas that were
generally more active in the experimental
task than in the implicit baseline were
identified. This contrast disclosed activa-
tion in bilateral precentral gyrus/FEF, left
IPS, bilateral cerebellum, bilateral V1 and
V5, as well as in the bilateral putamen.

The network that was activated by in-
valid versus valid cues is shown in Figure 3
and comprised bilateral precentral gyrus/
FEF (extending into ventral frontal cortex),
IPS (extending into the inferior parietal lobe
and into the postcentral gyrus in the left
hemisphere), and middle temporal gyrus
(see Table 1 for a complete list of activated
regions and MNI coordinates). Figure 3B
shows the overlay between the activity re-
lated to eye movements per se (as tested us-
ing the contrast of all trials vs baseline above,
depicted in blue) and the effects of validity in
the FEF. No significant effects were obtained
when testing for interaction effects of valid-
ity with the hemifield of target presentation.

The ANOVA on the precision-dependent
attention regressor ���̂1

�t�� did not reveal posi-
tive or negative effects of ���̂1

�t��across all trials
(Table 2). However, we observed a significant
main effect of validity: precision-dependent
attentional reorienting effects were expressed
in the right FEF (x � 42, y � 4, z � 42, 314
voxels, Z � 3.9), right TPJ (x � 46, y � �46,
z � 6, 214 voxels, Z � 3.75) and the right an-
terior putamen (x � 22, y � 16, z � 4, 173
voxels, Z � 4.38) (see red activations in Fig.
3C). Intheseareas, thesensitivityto���̂1

�t��was
significantly higher for invalid than for valid
trials, with positive slopes for invalid and neg-
ative slopes for valid trials (cf. bar charts in Fig. 3C). In other words,
higher confidence or a more precise prediction that the target would
appear at the cued location decreased BOLD amplitudes on valid trials
(when the prediction was fulfilled) and increased BOLD amplitudes on
invalid trials (when the target appeared at the uncued location and the
prediction was violated). Again, there was no interaction effect with the

hemifield of target appearance. The analyses of parametric effects with
the trial-specific volatility estimates (�3

�t�) did not reveal any significant
effects.

Bayesian model selection of alternative GLMs
In analogy to the model comparison of the behavioral data, we tested
whether brain responses in FEF, TPJ, and the putamen were best

Figure 4. Results from the Bayesian model selection of competing GLMs comprising the parametric regressors from the Bayes-
ian model, a Rescorla–Wagner model, and a model based upon true %CV. Posterior probabilities �0.9 for the Bayesian model in
the three ROIs are shown.

Figure 5. Illustration of the model space for Bayesian model selection: the sources of the driving inputs were varied to create
three model families with 12 models each (PUT and FEF, PUT and TPJ, PUT, FEF and TPJ; families not shown in the figure). In a first
step, the three model families were compared to reveal the most likely sources of driving inputs. Subsequently, the optimal model
within the winning family was determined. PUT, Putamen.
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explained by the hierarchical Bayesian model, or if simpler models
such as the Rescorla–Wager model or a model based on true %CV
would provide better explanations. Voxelwise log-evidence maps
were calculated for the three alternative models in the three ROIs in
each subject and compared at the second level. In all three regions,
the posterior probabilities were clearly higher for the Bayesian model
than for the other two models (Fig. 4) and there were no voxels in
which responses were better explained by the Rescorla–Wagner or
true %CV model.

DCM
DCM was used to shed light on the context-sensitive interactions
between those areas that our SPM analysis found to exhibit
precision-dependent attention effects (i.e., right putamen, FEF, and
TPJ; Fig. 5). First, family-level Bayesian model selection was used to
reveal the most likely configuration of driving inputs. Models with
visual input into putamen and TPJ were clearly superior to models
with input into putamen and FEF or all three regions (posterior
probability � 1.0). Among the 12 models of the winning visual input
family, model 10 was superior to the other 12 models (posterior
probability � 0.99). Figure 6 depicts the results of the Bayesian pa-
rameter averaging across subjects for the connections of this model
and their attentional modulation by precision.

Inspection of the modulatory parameters on valid and invalid
trials showed that higher values of precision-dependent attention
���̂1

�t�� decreased connectivity between TPJ and FEF on valid
trials. In contrast, connectivity strongly increased with higher
���̂1

�t�� on invalid trials between TPJ and FEF. The modulations
of the TPJ¡putamen connection showed the same pattern, but
the posterior probabilities just failed to reach the 90% threshold.
However, the parameters were higher for invalid than for valid
trials for both the TPJ¡FEF and TPJ¡PUT connections (Fig. 6).

Discussion
In this study, we combined computa-
tional modeling of psychophysical data
with fMRI to investigate how probabi-
listic inference guides the deployment of
visuospatial attention and explains the
activity of attentional networks. Repli-
cating previous results, RS was affected
by probabilistic context (%CV) and
could plausibly be explained by Bayes-
ian updates of precision that govern the
deployment of attention. Neuronal ac-
tivity was enhanced on invalid com-
pared with valid trials in a bilateral
frontoparietal network. In the right
FEF, TPJ, and putamen, reorienting-
related responses were modulated by
the precision of— or confidence in—the
belief that the target will appear at the
cued location. DCM suggested that
precision-dependent attention differen-
tially modulated connectivity between
TPJ and FEF, as well as between TPJ and
the putamen, on valid and invalid trials.
The trial-by-trial connection strength
from TPJ to FEF changed with
precision-dependent attention, de-
pending upon the outcome: connection
strength decreased with precision on
valid and increased on invalid trials.
These context-sensitive coupling
changes may be interpreted as a reflec-

tion of the optimal deployment of attentional resources medi-
ated by (Bayes-optimal) precision updates.

Contrasting invalid and valid trials revealed brain areas of two
well described attention networks (i.e., dorsal and ventral frontopa-
rietal regions). The TPJ, for which a right-hemispheric lateralization
has been proposed (but see Geng and Vossel, 2013), was activated in
the left hemisphere in this contrast between all invalid and valid trials
for the main HRF regressor. However, the right TPJ showed
a parametric reorienting response that was modulated by precision-
dependent attention. This finding is consistent with previous results
according to which right TPJ activity is modulated by the explicit
knowledge of %CV (Vossel et al., 2006; Vossel et al., 2012). In addi-
tion, the right putamen and right FEF showed parametric precision-
dependent reorienting responses. More specifically, these regions
showed decreased activity on valid trials and this deactivation grew
with the precision of the prediction. Conversely, activity was in-
creased on invalid trials and this activation increased with precision.

The effect in this right-hemispheric network did not depend
on the hemifield of target presentation (or saccade direction,
respectively). From the perspective of monkey single-unit re-
cordings, one could have expected contralateral activation in the
FEF. However, human imaging studies often fail to report this
lateralization, which might be too subtle to be picked up with
fMRI (Neggers et al., 2012). Interestingly, fMRI studies using
anti-saccade tasks have observed a preferential involvement of
right frontal cortex structures in antisaccades compared with
prosaccades (regardless of saccade direction; McDowell et al.,
2002; Desouza et al., 2003) and gray matter volume within right
FEF is negatively correlated with anti-saccade errors (Ettinger et
al., 2005). These findings highlight the different specialization of

Figure 6. Results of the Bayesian parameter averaging across subjects under the winning model (model 10 of Fig. 5 with inputs
into putamen und TPJ). Illustration of fixed connections and modulations of connections by ���̂1

�t�� in valid and invalid trials:
parameter estimates for valid and invalid trials were contrasted against each other (cf. graphs on the right). Tables depict the
Bayesian parameter averages with posterior probabilities in parentheses.
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left and right FEF, which has also been demonstrated by concur-
rent transcranial magnetic stimulation (TMS)/fMRI studies
(Ruff et al., 2009). Interestingly, Ronconi et al. (2014) showed
that TMS of the right (but not left) FEF disrupts updates of at-
tentional focus (zooming) in response to cues with different spa-
tial precision. This dynamic zooming may also play a role in the
precision-dependent FEF response in the present study.

The involvement of the putamen in the present study could be
related to two factors. First, the putamen has been implicated in
the processing of stimulus contingencies and probabilistic infer-
ence and the coding of prediction errors (den Ouden et al., 2009,
2010; Liljeholm and O’Doherty, 2012). With regard to atten-
tional reorienting, it has been observed that basal ganglia activa-
tion is affected by the degree to which reorienting can be expected
(Shulman et al., 2009) and this is consistent with the present
findings. Second, functional and structural imaging data have
highlighted the role of the putamen in the control of saccadic eye
movements and have challenged the designation of the nucleus
caudatus and putamen as “oculomotor” versus “skeletomotor”
striatum, respectively (Neggers et al., 2012). In the study by Neg-
gers et al. (2012), the putamen was consistently involved in three
different saccade tasks and was principally connected with FEF
subregions, as revealed by DTI fiber tracking. Also in the present
task, the mere execution of saccades activated the putamen (Ta-
ble 1). Given its involvement in both probabilistic inference per
se and eye movement control, the results of the present study
motivate future research on the generality and specificity of the
putamen in Bayesian inference in different attentional and
motor-intentional cognitive systems.

Comparison of different model families revealed that visual
stimulation evoked by the target stimuli was primarily conveyed
to the TPJ and the putamen. Moreover, model comparison
within this winning model family identified the TPJ as a likely
source of precision-dependent effects on putamen and FEF. High
values of precision (high certainty about the imminent saccade
target location) decreased the modulatory influences from the
TPJ to the FEF on valid trials, whereas the reverse effect (in-
creased connectivity) was observed for invalid trials. A similar but
weaker pattern was observed for the modulatory influences from
the TPJ to the putamen. The TPJ is the key node of the ventral
attention system of the human brain, whereas the FEF is part of
the dorsal system. Previous DCM of the architecture of the dorsal
and ventral system has highlighted the role of ventral to dorsal
modulatory influences during attentional reorienting (Vossel et
al., 2012). In this previous study, invalid cueing enhanced con-
nectivity between visual areas and the right TPJ, as well as be-
tween the right TPJ and the IPS. Our present finding is consistent
with this earlier result, because visual stimulation drove right TPJ
activity and ventral to dorsal pathways (TPJ to FEF) were differ-
entially modulated on invalid and valid trials. These findings do
not necessarily imply that the right TPJ sends an early signal that
triggers attentional reorienting. This idea was initially proposed
by Corbetta and Shulman (2002), but more recent work provides
evidence against an early reorienting signal in the right TPJ (Geng
and Vossel, 2013; Macaluso and Doricchi, 2013; DiQuattro et al.,
2014; Han and Marois, 2014). Instead, the TPJ might be involved
in the updating of internal models (Geng and Vossel, 2013; Han
and Marois, 2014) and the detection of mismatches between ex-
pected and actual stimuli (Doricchi et al., 2010). Our present
finding can be plausibly interpreted along these lines: depending
on the confirmation or violation of the model predictions that the
target appears at the cued location, the TPJ suppressed or boosted
activity in the FEF (and, to a lesser degree, also in the putamen),

respectively. Given that the right FEF is involved in the top-down
controlled allocation of attentional resources and the scaling of
the attentional focus (Ronconi et al., 2014), the TPJ inputs could
be regarded as update signals to these regions after the observa-
tion of new outcomes.

From a hierarchical message-passing perspective, one might
expect that precision effects are reflected by changes in postsyn-
aptic gain. DCM studies of other tasks using EEG and MEG have
supported this notion (Brown and Friston, 2013; Moran et al.,
2013). In contrast to DCM for M/EEG, where changes in gain are
represented by changes of postsynaptic response amplitude (col-
loquially referred to as “intrinsic connectivity”), DCM for fMRI
only allows for a more phenomenological representation of gain
via the modulation of self-connections. In the present study,
models with modulations of self-connections were inferior to
models with modulations of interregional connections. Given
that DCM for M/EEG relies upon more detailed neurobiological
models with different cell populations and a more veridical rep-
resentation of gain, our future work will use EEG or MEG studies
of the precision-dependent effects observed in this study.

Although the effects were weaker, precision-dependent atten-
tion also affected the connection from the TPJ to the putamen. It
has been proposed that the striatum receives a phasic dopaminer-
gic input via retino-tecto-nigro-striatal projections (Redgrave
and Gurney, 2006). Given its short latency (70 –100 ms), this
dopamine signaling is presumably based on preattentive/presac-
cadic sensory processing and may underlie the learning of con-
tingencies. One could speculate that these signals provide the
basis for an early reorienting response to unexpected events.
However, such an effect was not observable in our DCM results
(i.e., we did not find modulations of efferent connections from
the putamen). Instead, the DCM results were dominated by TPJ
signaling. Nevertheless, this does not preclude the existence of
both early and late modulations, and neuromodulatory (e.g., do-
paminergic) influences are likely to be related to precision-
dependent gain in cortical systems (Friston et al., 2012).

The test for general effects of the precision-dependent attention
regressor across valid and invalid trials did not reveal any significant
effects (nor did the test of the volatility regressor). The design of our
experimental task, in which the target followed the cue with a fixed
800 ms stimulus onset asynchrony, did not allow for a separate char-
acterization of cue- and target-related BOLD responses. The finding
of significant validity effects of precision-dependent attention, in the
absence of a general condition-unspecific effect, may reflect that the
signal was dominated by the target-related response with differential
parametric effects (i.e., a negative modulation for valid and a positive
modulation for invalid trials). M/EEG will be helpful in investigating
preparatory and target-related responses and their modulation by
precision-dependent attention in the future.
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