Diffusion MRI with Concurrent Magnetic Field Monitoring

Purpose: Diffusion MRI is compromised by unknown field perturbation during image encoding. The purpose of this study was to address this problem using the recently described approach of concurrent magnetic field monitoring.

Methods: Magnetic field dynamics were monitored during the echo planar imaging readout of a common diffusion-weighted MRI sequence using an integrated magnetic field camera setup. The image encoding including encoding changes over the duration of entire scans were quantified and analyzed. Field perturbations were corrected by accounting for them in generalized image reconstruction. The impact on image quality along with geometrical congruence among different diffusion-weighted images was assessed both qualitatively and quantitatively.

Results: The most significant field perturbations were found to be related to higher-order eddy currents from diffusion-weighting gradients and B₀ field drift as well as gradual changes of short-term eddy current behavior and mechanical oscillations during the scan. All artifacts relating to dynamic field perturbations were eliminated by incorporating the measured encoding in image reconstruction.

Key words: diffusion; DWI; DTI; artifact correction; distortion correction; field monitoring

INTRODUCTION

Diffusion-weighted (DW) MR (1) and MRI (2) allows for a noninvasive assessment of water diffusion, thereby enabling probing of the tissue microstructure. DW imaging (DWI) is a standard method for the early detection of stroke (3), and the structural information from DW MR data has gained increasing interest in clinical practice and research in the past years.

Diffusion MRI is challenging in many respects, and various MR sequences have been suggested to achieve optimal image quality. One fundamental challenge is the inherently low signal-to-noise ratio (SNR) of DW images, which motivates the use of MR sequences with high SNR efficiency. Another challenge is the sensitivity to motion such as that stemming from breathing and cardiac pulsation. In conjunction with the strong diffusion sensitizing gradients, motion results in unpredictable phase changes as well as echo time shifts for each acquisition. This impedes the application of multishot acquisition techniques (4) or fast spin echo sequences (5). These problems have been addressed in recent years, and promising results have been shown in particular by using multishot DWI approaches that estimate motion-related phase errors by k-space oversampling (6) or using navigators (7–9). Nevertheless, owing to their inherent robustness against motion, the vast majority of scans that are performed in practice are single-shot echo planar imaging (EPI) sequences (10).

However, single-shot EPI is susceptible to several artifacts, including global and local image distortions as well as image ghosts, which can impair the clinical value of obtained DW images and drastically limit the accuracy of quantitative diffusion (11,12) imaging. The latter requires the combination of DW images to fit a chosen diffusion model, which increases the sensitivity to encoding perturbations that result in geometrical incongruence among variable diffusion-encoded images.

One problem common to all EPI acquisition strategies is their sensitivity to gradient system imperfections. In particular, gradient delays and eddy currents cause inconsistency among the acquired k-space lines with different read direction and thus result in half-field of view ghosting artifacts. On most clinical MRI systems, this problem is addressed by EPI phase correction techniques (13). However, EPI phase correction does not account for all gradient imperfections. Moreover, gradient heating can render such calibrations invalid by altering the behavior of short–term eddy currents and mechanical oscillations.

A second challenge are eddy current field effects that are induced by the diffusion-sensitizing gradients. Because the duration of the diffusion encoding gradients is long, the resulting eddy current fields with long time
constants can significantly perturb the subsequent image encoding. In the images, these effects result in distortions as well as ghosting artifacts that vary with the applied DW gradients. Eddy currents are diminished by the MR system’s eddy current correction (ECC)—that is, pre-emphasis of the demand waveform that is sent to the gradient amplifier as well as demodulation of B₀ eddy currents. Another approach is to reduce eddy current effects by sequence design, such as with bipolar diffusion gradient lobes (14) or twice-refocused spin-echo sequences (15,16). The remaining eddy currents are typically addressed by coregistration after image reconstruction (17–19). However, image coregistration only addresses geometric distortions and commonly assumes an affine transformation model, which can be insufficient to model the actual image distortions. Moreover, coregistration requires sufficient SNR, which is often not available, particularly with strong diffusion encoding (high b values and/or q values).

Another source of image artifacts are drifts of the static B₀ field. Such field changes can be caused by temperature changes of the MR system’s hardware components such as the shim irons or the heat shield. When the field changes are of the 0th order, they result in image shifts as well as minor ghosting artifacts. Field drifts of the 1st order in space result in image scaling and shearing. Except for B₀-induced ghosts, field drifts up to the 1st order can potentially be addressed by the aforementioned image coregistration methods, again having to rely on high SNR in individual images. Field drifts of higher spatial order must be addressed at the image reconstruction level (eg, by static B₀ off-resonance correction [20–22]). Such approaches, however, can only be applied when knowledge of these field changes is available.

In this study, we explore the potential of addressing field imperfections in diffusion imaging comprehensively by the recent concept of concurrent magnetic field monitoring (23–25). Field monitoring yields the actual spatio-temporal evolution of the magnetic field during image acquisition. Thus, it jointly captures eddy current effects, temperature-related field drifts, and changing behavior of the gradient system, as well as dynamic field changes of external origin. Full use of this information at the reconstruction level requires generalization of the traditional Fourier perspective such as to account for higher-order spatial encoding. A suitable algebraic strategy for this purpose was proposed recently and was shown to be effective at addressing eddy currents due to diffusion gradients (26). We now seek to evaluate the prospect of this approach from the perspective of diffusion imaging practice. To this end, we assess its benefits for typically used single-shot DW EPI sequences with a high-performing gradient system in a phantom and in vivo. Furthermore, we study the ability to compensate for thermal system drifts and imperfect gradient calibration.

METHODS

Acquisition Setup

All scans were performed on a 3T Achieva System (Philips Healthcare, Best, Netherlands) using an eight-element head receive coil array. Sixteen transmit/receive 19F-based NMR probes were mounted on the surface of the head array (Fig. 1). The probe positions were chosen such as to achieve optimal conditioning for expansion into a 3rd-order spherical harmonic field model. This was achieved by placing the probes in four rings with 5-6-4-1 probes per ring, respectively (27). (The coordinates of the probes are provided in the Appendix.)

Probe excitation was triggered by the physiology trigger of the MR systems (TTL signal); a dedicated RF transmit chain was used to excite the field probes (28). The field probes’ 19F signals were amplified and then digitized by the MR system’s spectrometer, together with the eight 1H signals from the head coil array. The spectrometer was programmed to perform multiple-channel acquisition for both nuclei.

In vitro experiments were performed on a spherical phantom filled with low-diffusivity silicon oil (AK 500, Wacker Chemie AG, Munich, Germany) to minimize signal attenuation by diffusion weighting. In vivo experiments were performed in accordance with local ethics regulations on one healthy subject (female; age, 22 y) who provided written informed consent.

MR Sequence Parameters

Single-shot DW-EPI scans were acquired with a field of view of (230 mm)² and an in-plane resolution of 2.0 mm² in the phantom and 1.7 mm² in vivo in one transverse slice (thickness = 2 mm). Stejskal-Tanner (single-refocused) diffusion weighting was applied in six non-coplanar orientations |(-2/3, -2/3, -1/3)T (-1/3, 2/3, -2/3)T (-2/3, 1/3, 2/3)T (-2/3, 2/3)T (-2/3, 0, -2/3)T (-2/3, 2/3)T (0, 2/3)T (2/3, 2/3)T| with b = 1000 s/mm². In addition, a b₀ (b = 0 s/mm²) reference image was acquired to obtain a full DTI dataset. SENSE undersampling by a factor of 3 was used to reduce sensitivity to B₀ off-resonance distortions and T₂* blurring. This was implemented by performing an interleaved EPI sequence with three interleaves, each of which was treated separately as a single-shot acquisition in the reconstruction. The gradient...
mode was set to maximum gradient strength to allow for short echo times. The echo time was 60.3 ms (in vitro) and 69.1 ms (in vivo) with a readout duration of 32 ms (bandwidth = 31.2 Hz/pixel) and 41.5 ms (bandwidth = 24.1 Hz/pixel), respectively. In vitro, two static saturation slabs were applied perpendicular to the slice to add some structure to the phantom. The number of averages was set to 9 for the in vitro scans and 27 in the in vivo scans. To allow for studying temperature-related field effects separately, gradient heating of the DW scan itself was minimized by imaging only a single slice and choosing a long repetition time (5 s).

In addition, two standard spin-warp gradient-echo data sets (resolution = 2.0 × (2.0 mm)², slice thickness = 4 mm, echo time = 3.6 and 3.9 ms) were acquired and used to calculate coil sensitivity and static ΔB₀ maps.

For all scans, the encoding fields were recorded using the field probes simultaneously with image acquisition. For the gradient echo scans, the field probes were excited after slice selection. In the DW scans, the field probes were excited after the diffusion-encoding gradients, since the large gradient lobes would otherwise fully dephase the field probe signal. From the probe data, a 3rd-order phase model, including the 1st-order k-space trajectory, was calculated by spherical-harmonic expansion (26) with concomitant field correction (29).

Specific Experiments

In the phantom, three DW experiments were performed. In experiment 1, the DW sequence was applied as described in the previous section. The dataset was acquired to evaluate the effect of the DW gradients on the encoding and the resulting images. In experiment 2, the above DW scan was repeated with the MR system’s ECC turned off to mimic a miscalibrated or otherwise less refined gradient system. In experiment 3, experiment 1 was repeated after a gradient-intensive EPI-based functional MRI scan with a duration of 12 min that was known to heat up the MR system, to evaluate the effect of the changing MR system temperature on gradient and field drifts during a scan. The image averages were acquired in the outer loop (dynamics) of the scan such that the same contrasts were acquired in different temperature states. Experiment 3 was repeated in vivo.

Field Encoding Visualization

The unit of the phase coefficients is rad/mN for basis functions of degree N = 0,1,2,3. Due to different spatial features and scaling factors, the coefficients per se are difficult to interpret and compare. Therefore, the phase coefficients are visualized by plotting the related maximum field excursion, in radians (radₘₐₓ), in a centered sphere of 20 cm diameter. To study the effects of the DW gradients, the phase evolution during the DW experiments was plotted after subtraction from the b₀ scan’s phase coefficients. This was done for the scans with (experiment 1) and without (experiment 2) the MR system’s ECC for the first two diffusion directions. To study temperature-related field effects (experiment 3), the phase evolution of the first average of the b₀ and the first two DW scans were plotted after subtraction of the relating last average that was acquired approximately 5 min later.

Image Reconstruction

All DWI datasets were reconstructed using iterative image reconstruction incorporating higher-order fields as well as coil sensitivity and ΔB₀ maps (26). The gradient echo images yielding sensitivity and ΔB₀ maps were reconstructed with the same algorithm and likewise on the basis of concurrent monitoring.

To evaluate the effect of field contributions relating to the DW gradients, the DTI data from the experiments with ECC (experiment 1) was reconstructed in four different ways:

- assuming perfect gradient behavior, based on the nominal trajectory without any correction;
- using the 0th- and 1st-order monitored trajectory from the b₀ scan (monitored b₀), but neglecting higher-order fields and DW eddy currents;
- using the 0th- and 1st-order monitored trajectory from concurrently monitored fields relating to each acquisition, to assess the remaining effect of higher-order fields; and
- using the concurrently monitored full 3rd-order phase expansions relating to each acquisition (3rd-order monitored).

To assess geometric consistency, a relative difference image between the DW and b₀ images was calculated for each of the DW images in each of the image sets. The relative difference between two magnitude images I₁ and I₂ was calculated as 2(I₁ − I₂)/(I₁ + I₂) for each voxel and was displayed using either a ±10% or a ±100% scale. The relative difference was set to zero where (I₁ + I₂) was below a threshold near the image noise level. For the non-ECC scans (experiment 2), reconstruction and evaluation were performed similarly, but omitting the nominal reconstructions.

To assess the effect of gradient and field drift during the scan (experiment 3), all images were reconstructed using the monitored trajectory of the first average relating to each DW direction. The same reconstruction was then repeated taking measured individual B₀ shifts into account. A third set of images was reconstructed using the individually monitored 3rd-order phase expansions. Geometrical congruence and image quality were assessed by subtracting the first two sets from the individually 3rd-order monitored reconstructions. In addition, congruence between the DW images and the b₀ image was assessed for all reconstructed datasets.

For the in vivo DTI dataset, image reconstruction based on the nominal, monitored b₀ (0th- and 1st-order) and individual 3rd-order monitored trajectories was performed. Subsequently, the mean DW image, an apparent diffusion coefficient (ADC) map, a fractional anisotropy (FA) map and the color-coded FA (cFA) map were calculated for all image sets without image coregistration.

RESULTS

Observed Field Encoding

In the scans with ECC (experiment 1), the dominant phase terms during the b₀ acquisition (Fig. 2a) were the regular 1st-order (k-space) terms reflecting the EPI
readout with only minor (<0.5 rad\text{max}) contributions from higher-order terms. In addition, an approximately constant B_0 offset (linear 0th-order phase) was present. When adding the DW gradients (Fig. 2b, 2c), additional 0th-order deviations up to 3.5 rad as well as higher-order terms up to 3.5 rad\text{max} (2nd order) and 1.3 rad\text{max} (3rd order) were observed. The time courses of the higher-order terms indicate underlying eddy currents with noticeable decay during the readout.

In the scans without ECC (experiment 2) (Fig. 2d–2f), the apparent higher-order field terms were very similar to those with ECC (Fig. 2a–2c), as should be expected. However, the absence of the MR system's 0th- and 1st-order ECC resulted in strong deviations in the 0th-order (20 rad) and 1st-order (50 rad\text{max}) terms. Heating-related changes (experiment 3) (Fig. 2g–2i) were predominantly of 0th order and consistent with slow B_0 change. Smaller differences were observed in
the 1st-order terms, particularly for the direction of the read gradient. Only minor higher-order drift was observed. The drift was very similar for the b_0 (Fig. 2g) and the DW images (Fig. 2h, 2i).

Image Reconstruction

For the scans with ECC (experiment 1), image reconstruction based on the nominal trajectory resulted in substantial ghosting artifacts (Fig. 3a) as well as image incongruence that were clearly apparent on both the full-scale and the 10% scale difference images (Fig. 3b). Reconstruction based on field monitoring during the b_0 scan (Fig. 3c) largely removed ghosting and improved the congruence among the images. However, the difference images (Fig. 3d) still indicate significant geometric inconsistency. The differences of up to 100% at the phantom edges indicate relative distortions in the order of 2/3 of a voxel size. The reconstructions using the concurrently monitored 0th- and 1st-order terms showed similar ghosting and distortion levels (Fig. 3e,f). Incorporation of higher-order terms (Fig. 3g) resulted in virtually exact geometrical congruence and also reduced ghosting below the level of visibility (Fig. 3h).

For the data set without ECC (experiment 2), image reconstruction based on monitoring of the b_0 scan resulted in strong relative distortion of the different DW
images (Fig. 4a) and thus unacceptable variability among the DW and b₀ images (Fig. 4b). 3rd-order reconstruction based on concurrently monitored field evolutions (Fig. 4c) still yielded near-perfect ghost correction and image congruence (Fig. 4d). Only an intensity difference among the DW and b₀ images and subtle geometrical inconsistency remained apparent (Fig. 4d).

The analysis of the effect of temperature drift during the scan showed that neglecting temperature-related encoding errors caused prominent ghosting artifacts (Fig. 5a) as well as shifting of the image by several pixels in the phase encoding direction (Fig. 5b). Correcting for the individual B₀ drifts (Fig. 5d) removed most of the image shifts (Fig. 5e); however, prominent image ghosting remained (Fig. 5e). In both cases, the relative differences to the corresponding b₀ scans showed that artifact levels also varied slightly depending on the diffusion encoding (Fig. 5c,f). Ghost-free images with matching geometry were obtained when reconstructing all images based on individual concurrent monitoring (Fig. 5g, 5h) indicating that these images represent the phantom faithfully.

In the in vivo dataset, reconstruction based on the nominal trajectory (Fig. 6a) resulted in visible ghosting artifacts, which were particularly noticeable in the b₀ images and the ADC map. In addition, the FA maps appeared noisy and the cFA images showed nonanatomical diffusion anisotropy throughout the brain, probably resulting from the geometrical mismatch of the DW images. Using the k-space trajectory measured during the b₀ scan (Fig. 6b) slightly improved the results, but artifacts were still apparent. Incorporation of the monitored higher-order field effects (Fig. 6c) resulted in the removal of any visible ghosts and the nonanatomical anisotropy.

DISCUSSION

The analysis of the effect of temperature drift during the scan showed that neglecting temperature-related encoding errors caused prominent ghosting artifacts (Fig. 5a) as well as shifting of the image by several pixels in the phase encoding direction (Fig. 5b). Correcting for the individual B₀ drifts (Fig. 5d) removed most of the image shifts (Fig. 5e); however, prominent image ghosting remained (Fig. 5e). In both cases, the relative differences to the corresponding b₀ scans showed that artifact levels also varied slightly depending on the diffusion encoding (Fig. 5c,f). Ghost-free images with matching geometry were obtained when reconstructing all images based on individual concurrent monitoring (Fig. 5g, 5h) indicating that these images represent the phantom faithfully.

In the in vivo dataset, reconstruction based on the nominal trajectory (Fig. 6a) resulted in visible ghosting artifacts, which were particularly noticeable in the b₀ images and the ADC map. In addition, the FA maps appeared noisy and the cFA images showed nonanatomical diffusion anisotropy throughout the brain, probably resulting from the geometrical mismatch of the DW images. Using the k-space trajectory measured during the b₀ scan (Fig. 6b) slightly improved the results, but artifacts were still apparent. Incorporation of the monitored higher-order field effects (Fig. 6c) resulted in the removal of any visible ghosts and the nonanatomical anisotropy.

In this study, the most significant field perturbations in DWI acquisitions were found to relate to eddy currents induced by the diffusion-weighting gradients, B₀ drift, and gradual changes of the short-term gradient system response during the scan. It has been demonstrated that these perturbations can be comprehensively addressed by concurrent field monitoring and algebraic image reconstruction, yielding virtually artifact-free geometrically congruent image data.

Eddy current effects caused by DW gradients had significant higher-order components not amenable to ECC. Only by higher-order reconstruction it was possible to account for the full range of field distortions. The commonly employed registration methods based on affine transformations (19) implicitly assume spatially linear and temporally constant eddy current fields. According to the findings of this study, neither of these assumptions typically hold for DWI, and thus only incomplete coregistration can be expected with affine models. Another disadvantage of image coregistration is its dependence on sufficient image SNR. This is particularly problematic for high b value and q space data. Distortion models with more degrees of freedom have been explored (30) yet arguably require even more SNR to achieve stable results. The eddy current effects observed in the present study remained largely unchanged by gradient heating and generally proved very reproducible. Therefore, image reconstruction based on prior calibration of DW eddy currents [eg, using gradient impulse response measurements (31)] may well be possible. Fast implementations of higher-order reconstruction (32), which are well suited to correct for eddy currents in DWI, may then be used to make the correction practical for clinical applications. Alternatively, image reconstruction may be accelerated by using dedicated computing hardware (33).

Slow 0th-order drifts as well as changes in high-frequency 1st-order fields during the scan (experiment 3) following gradient intensive scanning probably related to temperature changes in different components of the MR
The analysis of the phase evolutions showed that mere correction of the slow B_0 changes was insufficient to address all artifacts in the images. The remaining ghosting artifacts could be attributed to changes in the high-frequency 1st-order encoding following gradient action, which probably relate to changes in gradient eddy currents or mechanical vibrations (34). Similar ghosting artifacts can be expected for nonmonitored scans when using pre-scan EPI phase calibration (13) during or after gradient-intensive scans. Phase reference scans embedded in the actual EPI readout (35) can partially address this problem but also prolong echo times.

By turning off the MR system’s ECC (experiment 2), a miscalibrated or otherwise less refined gradient system was simulated. Even in this case, field monitoring and algebraic reconstruction achieved virtually complete ghost suppression and image congruence well below the pixel scale. Thus, the presented method may relax specification requirements on MR system/gradient hardware and its calibration. The remaining issues in this experiment were differences in image magnitude and minor residual misalignment between images with the different DW directions. They are likely related to through-plane dephasing by eddy current gradient fields in the slice direction and slight slice shifts due to strong B_0 eddy currents, respectively. The issue could be further addressed by modelling and correcting for this effect.

Similarly, concurrent field monitoring removed any visible ghosting artifacts in the in vivo DW images. Moreover, the results indicate that the achieved geometrical congruence strongly improves the quality of quantitative diffusion data in vivo, which was demonstrated by the removal of nonanatomical diffusion tensor anisotropy throughout the brain. Field monitoring also captures breathing-related field changes in head imaging, as has been reported recently (36), which probably also contributed to the achieved geometrical consistency in vivo.

Enhanced depiction accuracy and geometrical congruence hold promise for many diffusion studies. These include q-space diffusion models (12,37), investigations

![Diagrams and images illustrating the effect of field/gradient drift during the scan.]
into the microstructure of grey matter (38,39), and any application that aims to investigate diffusion in the brain at high resolution (40,41).

Notably, concurrent field monitoring also improves the accuracy of parametric maps (eg, receive coil sensitivities or off-resonance maps) and their geometric consistency with data to be reconstructed with their help. Such consistency is key to the accuracy of signal models, which in turn is the basis of faithful reconstruction. Therefore, concurrent field monitoring may also prove valuable for other DWI strategies, such as multiple-shot acquisition (6,9), or more complex encoding models, such as joint estimation of parametric data (42).

APPENDIX

The field probe’s positions are denoted relative to the isocenter in the nonangulated coordinate system (left–right, anterior–posterior, head–feet) in meters: (0.0512, −0.1043, 0.0843), (−0.0820, 0.0324, −0.0908), (−0.0378, 0.1075, −0.0015), (0.1206, −0.0352, −0.0012), (−0.0528, −0.0671, −0.0952), (0.0024, 0.0904, −0.0935), (0.1090,
0.0447, 0.0629)^T, (0.0921, 0.0317, 0.0004)^T, (0.0007, 0.0921, 0.0005)^T, (0.0093, 0.0684, 0.0014)^T, (0.1041, 0.0860)^T, (0.0817, 0.0000)^T, (0.1071, 0.0267, 0.0005)^T

REFERENCES