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Patients with neuropsychiatric disorders, in particular

schizophrenia, show a variety of eye movement abnormalities

that putatively reflect alterations of perceptual inference, learning

and cognitive control. While these abnormalities are consistently

found at the group level, a particularly difficult and important

challenge is to translate these findings into clinically useful tests

for single patients. In this paper, we argue that generative models

of eye movement data, which allow for inferring individual

computational and physiological mechanisms, could contribute

to filling this gap. We present a selective overview of eye

movement paradigms with clinical relevance for schizophrenia

and review existing computational approaches that rest on (or

could be turned into) generative models. We conclude by

outlining desirable clinical applications at the individual subject

level and discuss the necessary validation studies.

Addresses
1 Translational Neuromodeling Unit, Inst. for Biomedical Engineering,

University of Zurich & Swiss Federal Institute of Technology (ETH

Zurich), Switzerland
2 Wellcome Trust Centre for Neuroimaging, University College London,

United Kingdom
3 Max Planck Institute for Metabolism Research, Cologne, Germany

Corresponding author: Heinzle, Jakob (heinzle@biomed.ee.ethz.ch)

Current Opinion in Behavioral Sciences 2016, 11:21–29

This review comes from a themed issue on Computational modelling

Edited by Peter Dayan and Daniel Durstewitz

http://dx.doi.org/10.1016/j.cobeha.2016.03.008

2352-1546/# 2016 Elsevier Ltd. All rights reserved.

Introduction
Eye movements represent easily measurable behavioural

responses which provide rich information about latent

(hidden) cognitive processes — such as perceptual infer-

ence, learning and decision-making — which are of cen-

tral interest for disease theories of psychiatric disorders.

Additionally, many psychiatric disorders are accompanied

by pronounced eye movement abnormalities (for reviews

see [1–3]). Together with the practical ease of data

acquisition, this makes eye movements of great interest

for translational and clinical applications in psychiatry.
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However, the wealth of existing experimental findings

has not yet been translated into diagnostic tools for

clinical practice. For example, while a general deficit of

smooth pursuit eye movements (SPEM) in patients with

schizophrenia allows for a nearly perfect separation of

patients from healthy controls [4], this does not constitute

practically relevant progress: the diagnosis of schizophre-

nia is not a clinical problem; and the diagnostic label

‘schizophrenia’ does not allow for patient-specific predic-

tions due to the heterogeneous nature of this disorder [5].

One strategy to address this is computational psychiatry

[6,7] which strives for understanding the cognitive and

physiological underpinnings of aberrant behaviour by

using mathematical models and, ultimately, translate

these findings into clinical practice. The ongoing appli-

cation of this approach to neuroimaging data has

highlighted the importance of so-called ‘generative mod-

els’ (Figure 1) for clinical applications [8]. This is due to

three main features (for detailed discussion and review,

see [9]): generative models enforce mechanistic thinking

about how observed data could have been caused; they

deal with uncertainty (about model structure and param-

eters) in a principled way and thus provide a natural

fundament for formalizing differential diagnosis; and they

can be combined with unsupervised approaches, such as

clustering, for detecting mechanistically distinct patient

subgroups in heterogeneous disorders (e.g. [10]). Here,

we review emerging generative models for eye movement

data and discuss their possible role for translational re-

search in psychiatry, with a focus on schizophrenia.

While there is evidence for disturbed eye movements in

schizophrenia in many different tasks, historically, SPEM

[2] and voluntary control of eye movements in antisaccades

[1] have been the most widely used eye movement para-

digms in schizophrenia. More recently, theories highlight-

ing failures of inference and predictions in schizophrenia

[11–13] have triggered an additional line of research focus-

ing on corollary discharge (CD) during eye movements.

The following sections revisit these paradigms, describe a

selection of existing computational models, and hint at

possible developments towards generative models.

Generative models for eye movements
Generative models represent a probabilistic mapping

from latent (unobservable or hidden) variables u (e.g.

the parameters of a system) to observed data. This
Current Opinion in Behavioral Sciences 2016, 11:21–29
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Illustration of generative modelling. (a) Schematic illustration of generative modelling. A generative model for eye movements describes how a

latent (unobserved or hidden) neurophysiological process produces eye movements, for example, pursuit traces or reaction times (RTs) for

saccades. The forward model m defines the joint probability of data (here: eye movement measurements) and model parameters; this results from

the product of the a prior distribution p(ujm) of model parameters and a likelihood function p(yju,m) that encodes the probability of the observed

data y given the parameters u. Model inversion corresponds to inferring the posterior probability of the parameters, given the data, p(ujy,m). (b)

Representation of the generative model in (a) as a graphical model. The likelihood specifies the mapping from parameters to data and thus

encodes a particular proposal how the observed data were generated. A simple phenomenological approach is to assume that the data result

from a weighted combination of distributions pi(ui) with mixing weights ai (panel i), Biologically more interpretable models can be constructed by

choosing a hierarchically formulated likelihood, where hidden states x evolve according to a biophysically motivated dynamical system f (with

parameters uf) and are linked to data through an observation function g (with parameters ug) and measurement noise e. See panel ii. The data is

assumed to be normally distributed around the predicted trace yc with standard deviation s. This formulation is known as dynamic causal

modelling (DCM).
mapping is specified by two components (Figure 1; [14]):

First, a prior distribution p(u) defines the range of param-

eter values which are plausible a priori. Second, a likeli-

hood function p(yju) specifies a mechanism by which

measured data y are generated probabilistically, given

the parameters. The product of prior and likelihood yields

the joint probability of data and parameters. Models of

this sort are called ‘generative’ because one can generate

synthetic data, by feeding samples from the prior into the

likelihood function.

The specific mechanism proposed by the likelihood

function is one of the defining features of a particular

generative model; for eye movements, this can take very

different forms. A simple approach is to explain saccadic

RTs phenomenologically, as a mixture of distributions

(Figure 1, panel i). By contrast, biologically more inter-

pretable models can be constructed by choosing a hierar-

chically structured likelihood function, where hidden

(neuronal or computational) states evolve according to

a biophysically motivated dynamical system f and are
Current Opinion in Behavioral Sciences 2016, 11:21–29 
linked to data through a static observation function g with

measurement noise s (Figure 1, panel ii). This hierarchi-

cal formulation underlies a special class of generative

models, so-called dynamic causal models (DCMs) [15].

It is possible, in principle, to extend existing dynamical

models of eye movement control to full generative mod-

els. This requires rendering them fully probabilistic by

introducing priors on the parameters and adding a proba-

bilistic observation function.

For all generative models, statistical inference on the

model parameters can be performed by computing the

posterior probability of the parameters, given the data,

using Bayes’ rule (model inversion). The numerical feasi-

bility of model inversion depends on the complexity of the

model. Thus, restricting generative models to a limited

number of unknown parameters is important for practical

utility. Generative models also offer a principled approach

for model comparison, based on the model evidence

p(yjm), which represents a principled measure for the

trade-off between accuracy and complexity of a model.
www.sciencedirect.com
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This allows one to compare the relative plausibility of

alternative dynamical system mechanisms [16] that might

underlie observed eye movements.

Smooth pursuit eye movements
Among the different types of eye movements, studies of

SPEM have the longest experimental tradition in schizo-

phrenia research [2]. Patients with schizophrenia show a

general deficit in SPEM which distinguishes them from

healthy controls almost perfectly [4]. In addition, compared

to controls, patients show reduced ability to predict a

target’s trajectory during occlusion [17]; at the same time,

patients with schizophrenia are superior in tracking targets

with unpredictable changes in their trajectory [18]. Both

phenomena can be explained by the same putative mech-

anism, that is, reduced efficacy (precision) of predictions

during perceptual inference [12,19]. This hypothesis is

difficult to test with traditional mathematical models of

SPEM, which have typically taken the form of dynamical

systems with a focus on questions of gain control and less on

prediction [20,21]. More recently, in order to account for

predictions, Kalman filtering [22] and models based on the

notion of ‘predictive coding’ (a hierarchical inference

scheme where each level predicts the state of the next-

lower level below and updates its predictions proportional

to precision-weighted prediction errors; [23,24]) and ‘ac-

tive inference’ (where actions are selected in order to fulfil

sensory predictions) [19,25�] have been introduced to

smooth pursuit. For example, the generative model intro-

duced by Adams and colleagues [19,25�] is a dynamic

causal model (DCM; Figure 1) that provides a physiologi-

cal implementation of predictive coding principles during

SPEM (Figure 2). This model has found application to

empirical SPEM data from healthy volunteers [25�] and for

simulating the empirically observed SPEM anomalies in

patients with schizophrenia, including their superior per-

formance in tracking target trajectories with unpredictable

changes [19]. A recent combined SPEM and magnetoen-

cephalography (MEG) application of this model demon-

strated how a precision parameter of the pursuit model can

be linked to recurrent connectivity in visual areas and

inferred from MEG data [26��]. An important next step

will be to apply this model to empirical data from patients,

and to examine whether its parameter estimates allow for

clinically relevant predictions in individual patients (see

below).

Voluntary control of eye movements — the
antisaccade task
In the antisaccade task, participants are required to with-

hold a reactive eye movement to a peripheral target and

instead perform a saccade to the opposite location from

the current fixation point. On this task, patients with

schizophrenia show increased error rates (failures of with-

holding the reactive saccade) and increased latencies

compared to healthy controls [1]. It is controversial

whether this is due to a failure of inhibitory control or
www.sciencedirect.com 
a failure of initiating the endogenous movement plan for

the antisaccade [1,27]. This debate is mirrored by two

models that have been applied to antisaccades in humans

[28��,29�]; see Figure 3. In the LATER (Linear Approach

to Threshold at Ergodic Rate) model [29�], the reactive

prosaccade is stopped by a stop signal that races against

the prosaccade; here, antisaccade errors are due to failure

of inhibitory control. In the Cutsuridis model [28��], a

competition between two alternative saccadic plans —

prosaccade (error) and antisaccade (correct response) —

determines the resulting saccade. The two models differ

considerably in their implementation. The LATER mod-

el [29�] is a process model, which represents the evolution

of a decision variable (essentially the log posterior odds

ratio between two hypotheses) over time. It can be easily

expanded into a full generative model of trial-wise reac-

tion times (RTs), by formalizing its likelihood function

[30] and specifying priors. The Cutsuridis model [28��],
by contrast, specifies a detailed neuronal circuit within

the superior colliculus whose activity determines RTs. So

far, it has been used to simulate some of the deficits

observed empirically in patients with schizophrenia

[28��]. Using this model for inference from empirical data

would require transforming it into a full generative model,

possibly under appropriate simplifications.

Other models for antisaccades range from simple distri-

butional models [31] to elaborate neurophysiological

models of layered cortical units [32] or cortico-basal

ganglia loops [33]. While offering direct links to physiol-

ogy, the last two model types appear presently too com-

plex to be transformed into generative models that could

be inverted.

In summary, although fully generative models of anti-

saccades still need to be developed, a number of compu-

tational models exist which can be used as starting points.

Corollary discharge for saccadic eye
movements
Corollary discharges (CD) are neuronal signals from exec-

utive (motor) areas that inform sensory areas about upcom-

ing action [34] and thus enable a prediction about the

changes in sensory inputs that result from one’s own action.

Influential hypotheses postulate that a failure of CD causes

‘first rank’ symptoms in schizophrenia: hallucinations and

delusions of control (the sensation that an external force

controls one’s movements or thoughts) [11–13]. The

neurophysiology of CD for saccadic eye movements has

been extensively studied in primates (for a review see [34])

providing important constraints for models of CD. Figure 4

summarizes three eye movement tasks — double step

saccades, perisaccadic change detection and saccadic ad-

aptation — in which CD plays an essential role.

Several recent studies using these tasks have provided

evidence for impaired CD during saccadic eye movements
Current Opinion in Behavioral Sciences 2016, 11:21–29
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Figure 2
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A dynamic causal model of SPEM [25�], with state equations motivated by the notion of ‘active inference’ [19]. (a) Summary of the model’s state

equations for the generative process. Here, v is the angular direction of a target moving on a sinusoidal trajectory. Sensory input s includes

proprioceptive (s0) and retinal (st) input. Retinal input is modelled with Gaussian receptive fields (second term of observation function g) and

includes an occluder function O(v) that turns retinal input on or off, depending on when the target is behind an occluder. x describes the hidden

states, that is, angular position x0 and velocity x 00. Changes in position are driven by angular velocity; changes in velocity are driven by action (a).

Both hidden states and sensory inputs are noisy, where the Gaussian noise is indicated by vs and vx. For more details, see [25�]. (b) Top:

Average empirical position errors (deviation of angular direction of gaze from target: x0 � v) for four conditions (red: slow smooth target, blue: slow

noisy target, green: fast smooth target, cyan: fast noisy target). Model inversion (parameter estimation) proceeds using these traces. Model fit is

visible from predicted position errors (middle panel). Finally, comparison of posterior parameter estimates between noisy and non-noisy conditions

allows for estimating an effect of sensory noise on model parameters (bottom).

Figure adapted from [25�] with permission (Creative Commons Attribution License (CC BY)).
in patients with schizophrenia. Using an error correction

version of the double step paradigm, Thakkar et al. [35�]
showed that CD for saccades is disrupted in patients with

schizophrenia and is related to the severity of psychotic

symptoms [36��]. Furthermore, both a stronger misloca-

lization in perisaccadic flash detection [37�] and reduced

saccadic adaptation [38,39] have been reported in indi-

viduals with schizophrenia. While the latter was mainly
Current Opinion in Behavioral Sciences 2016, 11:21–29 
interpreted as a cerebellar deficit by the authors, there is

strong evidence that CD-based prediction errors play an

important role in saccadic adaptation [40], with the

superior colliculus as a crucial source of these error signals

for adaptation [41].

To the best of our knowledge, no model of the double

step paradigm exists so far. For perisaccadic change
www.sciencedirect.com
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Figure 3
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Illustration of two models of the antisaccade task. (a) Superior colliculus (SC) model by Cutsuridis et al. [28��]. A circuit of neuronal populations

which code for different eccentricities along the horizontal axis and represent a competitive neural network within the SC. Two unspecified inputs,

presumably of cortical origin, drive the prosaccade (reactive input Ir) and antisaccade (planned input Ip). Given these two inputs and some

assumptions about differences in neuronal time constants between the two colliculi on the prosaccade and antisaccade side, the model

reproduces a variety of findings from the antisaccade literature, including corrective saccades after errors. Figure reproduced from [28��] with

permission (Creative Commons Attribution License (CC BY)). (b) The LATER model for antisaccades [29�] is based on three race-to-threshold

units. On an antisaccade trial, prosaccade and stop units start a race, followed by the antisaccade unit with a delay. If the stop unit reaches

threshold first, the prosaccade race is cancelled and the antisaccade unit defines the RT. If the prosaccade unit reaches threshold before the stop

unit an error occurs, and the antisaccade unit is reset to trigger a corrective saccade.

Reproduced from [29�] with permission.
detection, Hamker and colleagues [42,43] have devel-

oped a detailed model of interactions between topograph-

ic cortical maps which could potentially be simplified to

provide a generative model for perisaccadic change de-

tection. Finally, saccadic adaption can be modelled by a

simple learning rule [44] that is structurally equivalent

to standard update equations in generative models of

choice behaviour [45]. Models of this type can explain

a range of observations for saccadic adaptation in mon-

keys [46]. Application of this or similar models to empiri-

cal data on saccadic adaptation from patients with

schizophrenia [38,39] would be straightforward but is

outstanding so far.

In summary, with the exception of saccadic adaption,

generative models for CD in eye movements still need to

be developed.
www.sciencedirect.com 
Additional directions
In this section, we briefly outline other eye movement

paradigms with relevance for schizophrenia and generative

modelling. Similar to SPEM, visual scene scanning almost

perfectly distinguishes between patients and controls [4].

Generative models of scan paths can be derived from Baye-

sian models of attention [47] or active inference [48]. In

addition to the scan paths, investigating fixational eye mo-

vements (small eye movements during fixations) would be

of high interest. A recent study found that fixation stability

during free viewing was the single most informative param-

eter for classification of schizophrenia patients [4]. Models

of fixational eye movements are readily available [49,50]

and have been fitted to data of healthy subjects using grid

search [50]. It would be straight forward to extend these

models to a fully generative framework. Second, reading eye
movements are abnormal in patients [51]. Mathematical
Current Opinion in Behavioral Sciences 2016, 11:21–29
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Figure 4
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Saccadic eye movement tasks that involve CD. Double step saccades require two consecutive saccades to briefly flashed targets T1 and T2. Both

targets vanish before the first saccade is initiated from the fixation point F. In the absence of any visual target, the second saccade needs to be

pre-computed as FT2! �CD1! , where CD1! is the vector represented by the corollary discharge for the first saccade. Hence, in this task, CD

is only used for motor planning, not for predicting visual input. In the perisaccadic change detection task, a visual target at position P1 is moved

to position P2 during the saccade. After landing, the expected retinal position of the target is FP1! �CD ! , which has to be compared with the

true retinal position TP2! . Here, CD ! is a vector representation of the corollary discharge and T the landing position of the saccade. In this

setting, CD is used for the prediction of visual input after the saccade and thus enables computing a prediction error if target position changed.

Finally, in saccadic adaption the visual target is moved consistently on every trial. The resulting prediction error is used to adapt saccade

magnitude over trials. The right panel illustrates the relations between tasks.
models of cognitive and lexical processes [52,53] are able to

reproduce a wide range of eye movement data in reading.

These could be simplified to result in fully generative

models. Finally, patients with schizophrenia show abnormal

cue-guided spatial attention (Posner paradigm; [54]). Vossel

et al. [55] have used a generative model, a hierarchical

Gaussian filter [45], to infer the mechanisms which govern

variation of saccadic RTs under volatility (changes in the

predictive strength of the cue). This task and model have

subsequently been combined with pharmacological (cho-

linergic) stimulation [56�] and fMRI [57].

Prospects for generative models of eye
movements in schizophrenia research
In this final section, we briefly outline future translational

and clinical opportunities for (generative) models of eye
Current Opinion in Behavioral Sciences 2016, 11:21–29 
movements, with a focus on the three main paradigms

described above.

Translation from animal to human research

The three eye movement paradigms described above

are strongly dependent on cortical–subcortical loops

that involve the frontal cortex [58,59] and are likely

altered in the schizophrenia spectrum [60,61]. Studies

of these circuits in primates [34,62,63] provide anatom-

ical and physiological data which are essential for the

development of biologically realistic models in humans

[32,33]. An important next step is to simplify and re-

cast these models as generative models in order to allow

for inference on pathophysiological mechanisms in hu-

man patients.
www.sciencedirect.com
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Computational phenotyping, differential diagnosis and

clinical predictions

Schizophrenia is a heterogeneous spectrum disease,

where identical symptoms can arise from different mech-

anisms across patients. For example, while many symp-

toms in schizophrenia can be understood as arising from a

general deficit in perceptual inference [12], this could be

due to different causes. For example, from a computa-

tional perspective, hallucinations could plausibly arise

from deficient CD, overly tight/inflexible high-level

priors, or attenuated/misplaced low-level prediction

errors (cf. [64]). A battery of simple eye movement tasks

which allow cross-comparing models representing these

competing explanations would introduce a valuable tool

for differential diagnosis to clinical practice. This requires

two things: prospective clinical studies which evaluate

the predictive validity of model-based differential diag-

nosis against relevant clinical outcomes, and statistical

model comparison techniques. The latter can require

computationally demanding sampling techniques for

complex models but will increasingly benefit from dedi-

cated open source software [65].

Computational assays of neuromodulation

Similar to model-based EEG or MEG [66], generative

models of eye movements could become useful as

computational assays for neuromodulatory action, such

as the availability of a particular neuromodulatory trans-

mitter. While some model-based work has focused on

neuromodulatory effects on pupil size [67,68], the pro-

nounced sensitivity of saccadic eye movements to neu-

romodulatory alterations [69] has found remarkably little

exploitation so far. If generative models of eye move-

ments allowed for establishing sufficiently sensitive and

specific assays of neuromodulatory abnormalities, this

could provide valuable guidance for treatment decisions,

for example, when deciding between antipsychotic drugs

with differential emphasis on dopaminergic and cholin-

ergic mechanisms [70]. Again, this eventually requires

prospective clinical studies; initially, however, pharma-

cological validation studies need to be conducted that test

whether generative models of eye movements can detect

specific dopaminergic or cholinergic manipulations in

single subjects.

Conclusion
Computational modelling of eye movement data is a

promising way forward in schizophrenia research, but also

for many other neuropsychiatric disorders where eye move-

ment deficits are observed. In particular, analogous to

similar developments in computational neuroimaging

[8], generative models of eye movements might enable

inference on pathophysiological and/or pathocomputa-

tional mechanisms which underlie eye movement abnor-

malities in single patients. Single subject parameter

estimates or model comparison could then enable clinically

relevant applications for differential diagnosis, to predict
www.sciencedirect.com 
treatment outcome or aid treatment choices, and estimate

risk of relapse or transition to disease. A key challenge for

the future will be to finesse existing and develop novel

generative models for eye movements; the neurophysio-

logical interpretability and clinical utility of these models

must then be evaluated in pharmacological validation

studies and prospective patient studies.
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