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High-resolution blood oxygen level dependent (BOLD) functionalmagnetic resonance imaging (fMRI) at the sub-
millimeter scale has become feasible with recent advances in MR technology. In principle, this would enable the
study of layered cortical circuits, one of the fundaments of cortical computation. However, the spatial layout of
cortical blood supply may become an important confound at such high resolution. In particular, venous blood
draining back to the cortical surface perpendicularly to the layered structure is expected to influence the mea-
sured responses in different layers. Here, we present an extension of a hemodynamic model commonly used
for analyzing fMRI data (in dynamic causal models or biophysical network models) that accounts for such
blood draining effects by coupling local hemodynamics across layers. We illustrate the properties of the model
and its inversion by a series of simulations and show that it successfully captures layered fMRI data obtained dur-
ing a simple visual experiment. We conclude that for future studies of the dynamics of layered neuronal circuits
with high-resolution fMRI, it will be pivotal to include effects of blood draining, particularly when trying to infer
on the layer-specific connections in cortex— a theme of key relevance for brain disorders like schizophrenia and
for theories of brain function such as predictive coding.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Although only a few millimeters thin, the cerebral cortex is com-
posed of microcircuits whose layered architecture plays a key role in
cortical computation (Douglas and Martin, 2007; Heinzle et al., 2007;
Bastos et al., 2012). Studying layer-specific computations non-
invasively in humans would require two key ingredients: First, non-
invasive high-resolution imaging to resolve cortical layers and, second,
a modeling approach that explains the measured data as a function of
neuronal interactions within and across layers.

Recent advances in high-field functional magnetic resonance imag-
ing (fMRI) have made it feasible to measure blood oxygen level depen-
dent (BOLD) signals from cortical structures with sub-millimeter
resolution (Feinberg et al., 2010; Moeller et al., 2010; Poser et al.,
2010; Heidemann et al., 2012). At this resolution both columnar archi-
tecture (Cheng et al., 2001; Yacoub et al., 2007; Yacoub et al., 2008) as
well as cortical layers (Koopmans et al., 2010a; Polimeni et al., 2010;
Koopmans et al., 2011; Olman et al., 2012) can be resolved. In rats, a
).
highly specialized fMRI line-scanningmethod has been used to demon-
strate that the layered pattern of temporal onsets of BOLD responses is
in line with anatomical cortical connectivity (Yu et al., 2014).

Despite these encouraging technical developments, inferring on
neural mechanisms at such high resolution with standard fMRI analysis
procedures is complicated. This is due to fact that the strongest signals
measured with fMRI depend on blood oxygenation mainly in venous
compartments which are not evenly distributed over the cortical
depth. Cortical blood supply is organized in a highly regular, layered
fashion, similar to the neuroanatomical structure of cortex (Duvernoy
et al., 1981; Weber et al., 2008). As illustrated in Fig. 1, arterial blood
reaches the layers of cortex via diving arterioles that run perpendicular
to cortex, passes the fine capillary bed within individual layers and
flows back through ascending venules towards the pial surface
(Duvernoy et al., 1981; Weber et al., 2008). This anatomical arrange-
ment of blood flow has been modeled in detail (Boas et al., 2008;
Reichold et al., 2009) and poses a fundamental problem for the analysis
of layered BOLD activity since draining blood might affect the BOLD
signal in lower (close to the white matter) and upper (close to the pial
surface) layers differently. Standard hemodynamic models, like the
“Balloon model” (Buxton et al., 1998) and subsequent extensions
(Friston et al., 2000), assume that themeasured BOLD response is driven
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Fig. 1. Illustration of blood drainingmodel equations. Top: Schematic visualization of fMRI
voxel grid overlaid on an illustration of the layered architecture of blood flow (Duvernoy
et al., 1981; reproduced with permission). Arterioles (red) and venules (dark blue) travel
perpendicular to the cortical layers. Arrows indicate the directions of arterial and venous
blood flow. Shaded voxels correspond to upper (blue) and lower (green) regions of inter-
est whose BOLD signals interact through blood draining effects (gray arrow). Bottom: The
local balloon model equations and the newly introduced blood draining (gray) effects.
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by changes in relative blood volume and deoxyhemoglobin concentra-
tion in the venous blood. However, a fundamental assumption of this
model is that the BOLD signal only depends on local neuronal activity.
While this assumption seems adequate for conventional fMRI data anal-
yses, it is problematic for high-resolution laminar fMRI since venous
blood from deeper layers contributes to the BOLD signal in upper layers
as it flows towards the pial surface.

In this work, we address this problem by introducing a novel exten-
sion to an established hemodynamicmodel (Buxton et al., 1998; Friston
et al., 2000; Stephan et al., 2007). This extended model takes into ac-
count effects of cortical blood flow across layers and considers three dif-
ferent contributions to layer-wise BOLD measures: layer-specific
neuronal inputs (e.g., synaptic inputs from remote regions), local neuro-
nal connections across layers, and local blood flow effects across layers.
To this end, themodel incorporates distinct representations of neuronal
connectivity across layers and a phenomenological description of ve-
nous blood flow effects perpendicular to the cortical surface; the latter
allows BOLD activity in lower layers to contribute to the measured
BOLD signal in upper layers via blood inflow, referred to as “blood
draining” (BD) for the remainder of the paper. In order to evaluate the
utility of this layered hemodynamic model, we use Bayesian model in-
version and selection, implemented within the framework of dynamic
causal modeling (DCM; Friston et al., 2003).

To prevent anymisunderstandings, wewould like to emphasize that
this study does not present a model of layered BOLD measurements
which strives for complete interpretability in physical and physiological
terms, as recentmodels of non-layered BOLD (e.g., Havlicek et al., 2015).
Notably, this study pursues a more modest ambition: it introduces a
phenomenological description of blood draining effects across layers
and examines (i) to what degree this relatively simple model can
capture main features of layer-wise BOLD and (ii) the feasibility of
model inversion, i.e., how well model parameters and structure can be
identified from empirical data. This represents a first step towards
establishing a hemodynamic component for models of effective
connectivity which can operate on layer-wise BOLD data. Such future
models are needed to test predictions from influential theories like pre-
dictive coding (Rao and Ballard, 1999; Friston, 2005) which postulate
that supragranular and infragranular cortical layers convey different
signals via their connections. It is possible that more ambitious and so-
phisticated biophysical models of blood flow across layers will be bene-
ficial for this endeavor; however, this is an empirical question which
will have to be adjudicated by model comparison in future work (see
Discussion section).

Following the theoretical derivation of the model, we test the face
validity and performance of the proposedmodel using both simulations
and empirical analyses. First, we tested whether adding blood draining
from lower to upper layers would reproduce key features of layer-
specific BOLD signals as obtained from high-resolution fMRI in humans
(e.g. in Siero et al., 2011). Second, we examinedwhether themodel was
capable of distinguishing between effects of neuronal connectivity and
blood draining across layers, respectively. Third, we illustrate what ef-
fect the inclusion or exclusion of blood draining has on inferring the lay-
ered input structure from fMRI data. Fourth, we asked how well the
parameters of the model could be inferred from simulated data where
“ground truth” is known. Finally, we applied the model to fMRI data
from a visual paradigm. Here, we used Bayesian model selection
(BMS) to investigatewhichmodel provided amore convincing explana-
tion for the observed data— the proposedmodelwith blood draining ef-
fects across layers or an alternative model that allowed for between-
layer differences in local hemodynamics.

Methods

In the following, we describe our novel model for layered hemody-
namic responses. Starting from the standard hemodynamic model in
DCM of fMRI — an extension of the Balloon model by Buxton et al.
(1998) — we outline in detail the assumptions made in order to intro-
duce hemodynamic coupling, from lower to upper layers.

The standard hemodynamic model in DCM

The standard hemodynamicmodel inDCMhas beendescribed in de-
tail in previouswork (Stephan et al., 2007). In thismodel, neurovascular
coupling equations relate local changes in blood flow f to local changes
in the neuronal activity x:

ds
dt

¼ x−κs−γ f−1ð Þ
df
dt

¼ s;
ð1Þ

where s is a vasodilatory signal, and f represents blood flow. x denotes
the time course of neural activity, κ is the rate constant of the
vasodilatory signal decay and γ specifies the rate constant for
autoregulatory feedback by blood flow. These (and all further) hemody-
namic states below are time-dependent and normalized to their values
at rest. The changes in blood flow lead to local changes in relative blood
volume v and in q, deoxygenated hemoglobin (deoxyHB) content of the
venous blood. The dynamics of these two quantities are modeled using
the Balloon model of Buxton et al. (1998).

τ
dν
dt

¼ f−ν
1
α

τ
dq
dt

¼ f
1−ð1−E0Þ1= f

E0
−ν1=α q

ν

: ð2Þ
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Finally, the relative BOLD signal change is given by the nonlinear sig-
nal equation (Stephan et al., 2007)

ΔS
S

≈ V0 k1 1−qð Þ þ k2 1−
q
v

� �
þ k3 1−vð Þ

h i
; ð3Þ

where the coefficients ki are field- and acquisition-dependent. In this
paper, we restrict ourselves to simulations and data acquired at 3 T. A
detailed description of the parameters ki and their dependency on
field strength is provided in the Appendix A.

In this work, we couple this hemodynamic model to the standard
neural model used in DCM in order to test whether the model can
disambiguate hemodynamic (blood flow) and neuronal (connectivity)
influences across layers. Concretely, neuronal population activity x in
Eq. (1) is provided by a simple linear form of the neuronal state
equation in DCM where bilinear or nonlinear terms are omitted:

dx
dt

¼ Axþ Cu: ð4Þ

Here, A is the static (fixed) connectivity between neuronal popula-
tions, and C describes the weights of driving inputs (experimentally
controlled perturbations, e.g., sensory stimuli).

Incorporating blood draining effects in layered DCM

A critical assumption made by the hemodynamic model described
above is that the hemodynamic response depends only on local neuro-
nal activity. However, this assumption is violated when modeling lay-
ered gradient-echo BOLD responses, where layer-crossing draining
veins have to be taken into account. Here, the changes required to in-
clude effects of intra-cortical blood draining in the hemodynamic
model are presented for the simple case of two layered compartments:
anupper or supragranular layer (close to the pial surface) and a lower or
infragranular layer (close to the gray/white matter boundary). While
this two-layer model is sufficient to investigate the importance of
blood draining effects in layered fMRI data (and is adapted to the pres-
ent resolution of layered human fMRI), it is straightforward to extend
the model to more than two layers.1

Here, we propose a phenomenological description that captures two
general features of how hemodynamic changes in lower layers should
propagate towards the pial surface and, hence, influence the responses
in upper layers: first, measurements of the blood flow velocity in
small arterioles provide values on the order of millimeters per second
(Santisakultarm et al., 2012), suggesting a delay of approximately one
second between lower and upper layers. Second, due to dilution, the
purely blood draining dependent signal part in upper layers should be
smaller than the original signal in the lower layer. This decay can be de-
scribed by two differential equations:

τd
dv�l
dt

¼ −v�l þ vl−1ð Þ

τd
dq�l
dt

¼ −q�l þ ql−1ð Þ:
ð5Þ

Asterisks denote delayed volume and deoxy-HB concentration vari-
ables, respectively. Incorporating these effects into the equations of the
classical Balloon model (Buxton et al., 1998) and introducing directed
1 For example a three layered network with infra-granular, granular, and supra-
granular neuronal populations could be modeled in the following way. The two lower
layers (infra-granular and granular) could be an exact copy of the two-layer model pre-
sented here. The supra-granular layer would be yet another copy of the upper layer in this
work, stacked on top of the other two layers. Blood draining effectswould exist from infra-
granular to granular layers, and from granular to supra-granular layers (the plausibility of
alternative implementations could be evaluated by model comparison).
blood draining from lower to upper layers (Fig. 1) yields the following
equations for the relative blood volume and deoxyHB concentration in
the two layers (l: lower; u: upper):

τl
dνl

dt
¼ f l−νl

1
α

τl
dql
dt

¼ f l
1−ð1−E0Þ1= f l

E0
−νl

1=α ql
νl

τu
dνu

dt
¼ f u−νu

1
α þ λdν�

l

τu
dqu
dt

¼ f u
1−ð1−E0Þ1= f u

E0
−νu

1=α qu
νu

þ λdq
�
l :

ð6Þ

Here, we have introduced two new parameters: The draining time
constant τd controlling the delay and the coupling parameter λd

representing the strength of the blood draining effect from the
lower to the upper layer. Fig. 1 illustrates these equations. Please
note that both parameters are restricted to positive values and that
for λd = 0 the hemodynamic equations are exactly the same as for
two independent cortical areas in the standard DCM (Stephan et al.,
2007). Please note that the model described here is not a detailed
physiological model of blood flow in vessels. Instead, it tries to cap-
ture qualitatively how draining blood from lower layers will affect
the upper layer's BOLD response. Hence, there is no obvious direct
physiological correspondence to the parameter λd. However, its effect
can be summarized as the degree to which relative changes of blood
volume as well as deoxyHB concentration in the lower layer will af-
fect the corresponding values in the upper layer, respectively. See
Fig. 2 for simulations that illustrate the role of the two newly intro-
duced parameters.
Simulation of data

Simulations were conducted in order to address the following four
questions. First, we simulated BOLD signal traces in order to verify
whether the modeled responses were in agreement with empirical
measurements of layered BOLD activity (Siero et al., 2011). Second,
we asked, whether it was possible to distinguish models with different
types of interactions across cortical layers. In particular, we compared
models with blood draining to models with a neuronal connection be-
tween lower and upper layers. For this purpose, we generated data
from models with and without across-layer blood draining, inverted
themodels for all generated data sets and finally employedmodel com-
parison (Penny et al., 2004; Penny et al., 2010; Penny, 2012) to infer
which model had generated the data. Third, we investigated how well
the structure of inputs to a layered circuit could be recovered from
fMRI data generated with the model. Fourth, we tested how well
known parameters of a generating model could be recovered from
noisy synthetic BOLD time courses.

All simulations were based on an event-related scenario, where
the driving input to the two layers consisted of 90 short events of
0.5 seconds duration. A third of these events drove both layers simul-
taneously, while the other two thirds targeted the individual layers
(one third per layer). The time between events varied randomly be-
tween 3 and 10 s, leading to an “experimental” duration of less than
10 min.

The simulation parameters for the generating model (paragen) are
given in Table 1 (hemodynamic model) and in Supplementary Table 1
(neuronal model). In our simulations, we varied the signal to noise
ratio, defined as the ratio of the standard deviation of the signal and
the standard deviation of the noise (SNR = σsignal / σnoise). This defini-
tion of SNR is typically used in DCM and offers an intuitive measure of
the ratio of the variability of the signal and noise. It compares the task
induced signal with the noise of the data and is thus closely related to
the contrast to noise ratio often used in fMRI aswell as to the percentage
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Fig. 2. Illustration ofmodel dynamics and effect of parameters. A)Response of all variables to a brief input of one second duration. Traces are overlaid for lower layer (solid black) andupper
layer (dashed gray). Note that the blooddraining only affects v and q, aswell as the resultingBOLD response. B)Hemodynamic response function for three cortical depths (3–2mm: green;
2–1 mm: red; 1–0 mm: black) in motor cortex. Image taken from Siero et al. (2011), reproduced with permission. Parameters of the simulation in A) were not fitted to match these ex-
perimental traces. Note the qualitatively good agreement: increased peak amplitude and delay of responses in upper layers. C) Effect of parameters λd and τd while the other parameter
was kept fixed (see insets). The gray solid line in the upper layer indicates the same parameter setting as inA). D) Effect of parameterλd for a longer input pulse of 15 seconds duration. The
gray solid line in the upper layer indicates the same parameter setting as in A). Legend for gray scale as in C (left). E) Effect of parameter τd on BOLD signal in the upper layer for a longer
input pulse of 15 seconds duration. τd mainly affects the rising and falling slope of the response to stimulation (see insets). The gray solid line in the upper layer indicates the same pa-
rameter setting as in A). Legend for gray scale as in C (right).

Table 1
Prior distributions for hemodynamic parameters.

Parameter μ0 σ0 μphys = exp(μ0) paragen

κu,l 0.65 0.040 1.92 1.92
τu,l 0.98 0.049 2.66 2.66
ε −0.78 0.244 0.46 0.46
τd⁎ 0 1.41 1 1
λd

⁎ −2 10 0.14 0.5

559J. Heinzle et al. / NeuroImage 125 (2016) 556–570
of explained variance.2 Furthermore, it is one of the definitions of signal
to noise in fMRI considered by the comprehensive review of Welvaert
and Rosseel (2013). However, SNR as defined here clearly differs from
the definition often used to characterize the acquisition quality of MR
images. There, themean signal intensity is compared to the fluctuations
around it. In the simulations, the noise ranged from very high SNR of 10
to low SNR of 0.5. For comparison, these values correspond to values of
explained variance between 99% (SNR=10) and 20% (SNR=0.5). As a
control, we also ran simulations using noise only (SNR = 1/1000: ex-
plained variance b 0.1%).

Prior distributions of model parameters

The prior distributions of parameters constitute an integral part of
any model. In the following, we describe all priors of our models. The
priors for the parameters of the standard hemodynamic response
model as well as for the neuronal connections followed SPM8 (r4667;
www.fil.ion.ucl.ac.uk/spm/). The two hemodynamic parameters (κu,l,
τu,l) were fitted separately for upper and lower layers, while only one
2 For afixedHRF functionwith amplitude 1 and standarddeviationσHRF and noiseσnoise

the contrast to noise ratio of a signal of amplitude a is CNR = a / σnoise, while the SNR as
defined in this paper will result to SNR = (a∙σHRF) / σnoise = σHRF∙CNR. The percentage

of explained variance var(signal) / var(signal + noise) can be written as
σ2

signal

σ2
signal

þσ2
noise

¼
SNR2

ðSNR2þ1Þ, and can thus also be directly related to the SNR measure used here.
ε was estimated during inversion. Three other parameters were equal
in both layers and fixed in all simulations (i.e., prior variance set to 0):
γ= 0.41, α = 0.32 and E0 = 0.34. The two newly introduced parame-
ters describing the hemodynamic coupling across layers – time delay τd
and coupling strength λd – are both confined to positive values and
were thus taken as log-normally distributed. Table 1 provides a summa-
ry of all prior parameter distributions which were used in our analyses
of simulated data below (unless indicated otherwise). In addition, we
also provide the values (paragen) that were used to generate the data.
For analyses where τd was not inferred from generated data, we
Summary of prior distributions of hemodynamic parameters. The mean μ0 and standard
deviation σ0 of the prior distributions are given in log space (their native scale during
model inversion). μphys denotes the true (exponentiated) physical value which enters
the likelihood function. paragen are the parameter values used for generating data, i.e.
simulations.
⁎ The value of these priors varied across simulations. Values differing from these priors

are provided in the results section, where applicable.

http://www.fil.ion.ucl.ac.uk/spm/


Table 2
Model space for application to experimental data.

Model Nr. 1 2 3 4 5 6 7 8 9 10 11 12
Family Nr. 1 1 2 2 3 3 3 3 4 4 4 4

BD x x x x x x x x
#hp 1 1 2 2 1 1 1 1 2 2 2 2
τd x x x x
#Inp 2 1 2 1 2 1 2 1 2 1 2 1

BD: blood draining (included); #hp: uniform (1) or layer-specific (2) hemodynamic pa-
rameter sets; τd: delay constant estimated; #Inp: number of inputs.

Table 3
Priors for hemodynamic parameters: application to data.

Parameter μ0 σ0 μphys = exp(μ0)

κu,l+ 0.65 0.04, 0.30, 0.81, 2.19 1.92
τu,l+ 0.98 0.05, 0.36, 0.99, 2.69 2.66
ε (3 T) −0.78 0.24 0.46
τd⁎ 0 1.41 1
λd −0.69 1.41 0.5

Other hemodynamic parameters were kept at fixed values: E0 = 0.34, γ= 0.41 and α=
0.32.

+ All four different standard deviations (σ1, σ2, σ3, σ4) spanning the model space
are provided.
⁎ τd was kept fixed, i.e. σ 0

2 = 0 for models where τd was not inferred.
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assumed a value of τd= 1 s. This is in linewith recentmeasurements of
blood flow velocity in cortical ascending venules (1 mm per several
hundredms) (Santisakultarm et al., 2012) and assumes a cortical thick-
ness of a fewmillimeters. Please note that in analyses of empirical data,
due to regional differences in cortical thickness across the brain, this pa-
rameter is likely to differ among cortical areas.

Prior distributions for theneuronal parameterswere set according to
standards of DCM in SPM8 (r4667). Neuronal self-connections (within
layers) had a negative priormean, in order to ensure stability of the net-
work. Priors for connections between layers and for input weights were
shrinkage priors, centered on μ0, but with a relatively large variance.
Further details about priors are given in the Supplementary Tables S1
to S3.

Application to empirical data from a visual experiment

In order to test the layered hemodynamic model empirically, we ap-
plied it to previously published measured layer-wise fMRI data
(Koopmans et al., 2010b). In brief, fMRI data was measured in visual
cortex using a blocked designwith periods of luminance-matched flick-
ering concentric ring patterns: black-white, red-green, yellow-violet
and rest (gray screen). The duration of blocks was 10 volumes. MRI
data were acquired on a 3 T whole body scanner (TIM-Trio, Siemens
Healthcare, Erlangen, Germany) using a 32-channel head coil. The
parameters for the 3D-EPI sequence were as follows: voxel size
0.75 × 0.75 × 0.75 mm3, matrix 192 × 256, 32 slices covering
the calcarine sulcus, TE 30 ms, TR 79 ms, flip angle 20°, bandwidth
840Hz/pixel, 6/8 partial Fourier, and acceleration factor 4 in the primary
phase encoding direction. 640 volumes were acquired with a volume
TR of 2.5 s. We used in-house software (Koopmans et al., 2011)
and Freesurfer (Dale et al., 1999; Fischl et al., 1999) to define two
compartments – roughly corresponding to infra- and supra-granular
layers – within primary visual cortex and then extracted the average
time course from each of the two layers. More specifically, Freesurfer
was used to find the white-matter and pial surface meshes in anatomi-
cal images which were warped to the EPI images and corrected for dis-
tortions. V1 patches were drawn on these surface meshes and for each
node within V1 the line between the corresponding nodes on the
white-matter and pial surface was sampled from the EPI data, creating
a through cortex profile for each node. All profiles within V1 were
then averaged to yield a profile time-course which was split into an
upper and lower half. The average time courses of the upper and
lower part represented the data to which our layered hemodynamic
model was applied (for more details, see Koopmans et al. (2011)).

In this empirical analysis, we tried to find the most plausible expla-
nation for between-layered differences in signal, considering three
main possible reasons: (i) different strengths of neuronal inputs to
each region, (ii) different local hemodynamics, or (iii) blood draining ef-
fects across layers. Our focus was thus on inferring the hemodynamic
parameters and direct inputs; by contrast, we fixed the neuronal con-
nectivity parameters (A matrix parameters). The within-layer self-
connections were set to be highly negative (Auu = All = −5), leading
to fast neuronal transients, and the neuronal connections between
layers were set to zero. This resulted in a model where the neural acti-
vation in the two layers was completely determined by their respective
input, rendering this analysis equivalent to the approach in Friston
(2002). The parameters estimated in this version of the model are the
input strengths to the two layers as well as the hemodynamic parame-
ters. For all models, we represented the three stimulation conditions
(contrasts of the flickering checkerboards) by separate inputs.

We varied model structure along the following dimensions: (i) no
blood draining effect (λd fixed to 0) vs. estimation of this draining effect
(λd as free parameter), (ii) identical input to both layers vs. independent
inputs to the two layers, (iii) identical local hemodynamic parameters in
both layers vs. independent hemodynamic parameters for the two
layers, and (iv), fixed blood flow delay (τd = 1 s) vs. τd as free
parameter. Please note that estimation of τd is only possible for models
that include blood draining. This resulted in a model space comprising
12 different models (Table 2). For later family model comparison the
12 models were subdivided into 4 families according to whether
blood draining was included in the model and whether local hemody-
namic couplingwas forced to be identical orwas allowed to differ across
the two layers (cf. Table 2). Families 1 and 2 did not include blood
draining while families 3 and 4 had it included. Families 1 and 3 had
the same local hemodynamic parameters for both layers, while in fam-
ilies 2 and 4 the local hemodynamics were allowed to differ between
layers.

At the present time, we have little empirical knowledge about inter-
regional and inter-individual variability in the hemodynamic parame-
ters considered here, and the current choice of prior variances may
not be optimal. A wider prior conveys more flexibility in fitting a partic-
ular parameter while endowing the model with higher complexity.
Thus, inference on most likely mechanisms through model comparison
(e.g., differences in local hemodynamics across layers vs. blood
draining) is influenced by the relative width of priors for the respective
parameters. Here, we included the relative width of the priors as an ad-
ditional factor in model space. We varied the prior variance of the two
local hemodynamic parameters in four steps from small to large (cf.
Table 3) allowing for increasing flexibility of the parameters of local he-
modynamics. The entire model space thus contained 48models in total.

We used the standard variational Bayesian approach for model in-
version in SPM (Variational Laplace), with adapted priors as described
above, to fit the 48models to the empirical data of 10 subjects. Bayesian
model selection (BMS; Penny et al., 2004; Stephan et al., 2009), based on
a free-energy approximation to the log model evidence, was used to
evaluate the relative goodness of competing models. Critically, the log-
evidence does not simply reflect the fit of each model, but its trade-off
between accuracy and complexity, thus shielding against overfitting.
Furthermore, family-level model comparison (Penny et al., 2010) can
be used to compare sets of models which differ along a particular
structural dimension, enabling one to integrate out uncertainty about
detailed aspects of model definition and assessing the relative impor-
tance of general mechanistic dimensions. Here, family-level BMS was
employed to conduct two critical comparisons. First, we compared
models including blood draining vs. models without blood draining, in
order to assess whether taking into account blood draining effects was
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important at all for explaining themeasured data. Second,we compared
four families of hemodynamicmodels (one vs. two sets of hemodynam-
ic parameters, as well as models with vs. without blood draining). This
second comparison allowed us to test, in addition to blood draining ef-
fects, whether models with identical or different local hemodynamics
for the two layers provided a better explanation of the data.

Results

In the following, we first challenge the model in a series of simula-
tions. The simulations illustrate how taking into account blood draining
effects leads to notable changes in the BOLD signal of the upper layer.
Model comparison based on simulated data is then used to test to
what extent it is possible to differentiate neuronal connections between
layers from blood draining. In addition, we show simulations that illus-
trate to what degree inputs to different layers can be disentangled. Fur-
ther simulations investigate how well known parameter values can be
estimated usingmodel inversion. Finally, we focus on the hemodynam-
ics only and demonstrate that in a simple visual paradigm blood
draining explains the observed data better than layered differences in
local hemodynamics.

Qualitative properties of simulated layer-wise BOLD data

The effect of the blood draining from lower to upper layers is illus-
trated by showing simulated BOLD responses of a two-layer model for
different settings of two parameters λd (draining strength) and τd
(draining delay). Both layers received exactly the same input and had
the same intrinsic connectivity and local hemodynamic parameters.
Thus, in the absence of any coupling, the BOLD response in both layers
would be identical. Fig. 2A shows the time course of all variables within
the two-layeredmodel in response to a brief input of 1 second duration.
The parameters for this simulation were set to λd = 0.6 and τd = 1 s.
Because the draining effect concerns only volume and deoxyHB chang-
es, the neuronal signal (x), the vasodilatory signal (s) and the in-flow
(f) are identical in both layers. The modeled BOLD responses are quali-
tatively in excellent agreement with experimentally measured re-
sponses (Fig. 2B), for example in Siero et al. (2011). The effect of the
parameters λd and τd is illustrated in Fig. 2C. Finally, Fig. 2 (D and
E) shows the response to a prolonged input of 15 seconds duration.
These simulations illustrate that λd mainly affects the signal amplitude
in the upper layer, while τd changes the behavior at the transients of
the input.

Model comparison — distinguishing effects of neuronal connectivity and
blood draining

One of the main purposes of generative models like DCM is to com-
pare alternative models representing competing hypotheses of how the
data were caused. Here, we applied model comparison to simulated
fMRI data in order to test whether across-layer influences caused by
blood draining and neuronal connectivity, respectively, can be disam-
biguated by our model. Specifically, we simulated data using the two
models illustrated in Fig. 3A where the two layers received different in-
puts as described in the Methods section. The blood draining (BD)
model did not have any neuronal connection between the two layers
(Aul = 0), but the lower layer influenced the upper layer via blood
draining (λd = 0.61). The neuronal connectivity (NC) model did not
have any blood draining (λd = 0) but an excitatory connection from
the lower to the upper layer (Aul = 0.5). This scenario was chosen in
order to make the distinction between BD and NC models as difficult
as possible. A full microcircuit with reciprocal connections between
upper and lower layers will be considered below.

Fig. 3B shows sample BOLD traces for the twomodels at a noise level
of SNR = 3. Note that the parameter values for generating data were
chosen such that the simulated BOLD traces were highly similar for
the two models. The similarity of the responses reflects the difficulty
of this model comparison challenge. We then applied each model to
each synthetic dataset, using the priors given in Table 1 and Supplemen-
tary Table S1 (we did not infer the time constant τd in these analyses but
allowed local hemodynamics described by κu,l and τu,l to differ between
layers), and computed the negative free energy as an approximation to
the log model evidence. To indicate how well the two models can be
separated on average, given a single measurement (simulation), we
plot the distributions of (negative) free energy differences (ΔF) for dif-
ferent SNR levels. Bothmodels could be distinguished very clearly (with
ΔF = log BF N 3) up to a noise level of SNR= 2 (Fig. 3C). The NCmodel
was correctly identified even for most simulations with SNR = 1. Im-
portantly, the free energy difference approached zero for higher noise
levels. Hence, model comparison did not result in selecting the wrong
model; instead, the twomodels could no longer be clearly distinguished
for SNR b 2. For classical analysis, it has been suggested that onset times
of the BOLD response can be used to distinguish local from drained ef-
fects (Siero et al., 2011; Siero et al., 2013). In particular, a response
with an onset time shorter than the expected draining time should be
of local origin.

In many cases, a more realistic – but even more challenging –
scenario is a fully connected model with reciprocal connections be-
tween upper and lower layers, allowing for reverberating activity across
laminae.We simulated such amore complex network and again tried to
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separate the effects of hemodynamic and neuronal coupling by model
comparison. In particular, we compared a model that had increased
neuronal connectivity from the lower to the upper layer (NC) with a
model that included blood draining between the two layers (BD),
while assuming reciprocal neuronal connections between layers in
both cases. As above, parameter values for generating data were chosen
such that the simulated BOLD traces were highly similar for the two
models (see Fig. 4B). Supplementary Table S2 summarizes themain pa-
rameters of interest for this simulation. All other priors were set accord-
ing to Table 1 and Supplementary Table S1.

Even though the neuronal dynamics is much richer in this setting
with reciprocal neuronal connections, the two different across-layer
mechanisms could still be separated by model comparison, albeit at a
slightly higher SNR than in the simpler feedforward case above. Please
note that in either model, the neuronal connection Alu from the upper
to the lower layer was a free parameter. The detailed results of this
model comparison are shown in Fig. 4.

Model comparison— distinguishing different sources of layered input

When investigating layered responses, distinguishing inputs to
upper and lower layers may be of particular interest in future applica-
tions. This is because layer-specific connections play an important
role in computational concepts such as “predictive coding” in which
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connections from infragranular and supragranular layers signal predic-
tions and prediction errors, respectively (Bastos et al., 2012). We thus
generated data using a model that included blood draining and subse-
quently tested whether accounting for blood draining effects in models
applied to the synthetic data had an effect on how successfully the cor-
rect distribution of inputs was recovered. Two event related input trains
(uu and ul) differing for upper (uu) and lower (ul) layer were used to
generate the data (see Methods). We considered two scenarios: One
without connections between the layers (Fig. 5A) and one with recur-
rent connectivity (Fig. 5B). Supplementary Table S3 summarizes the pa-
rameters for the generating models as well as the priors used for
inversion. Here, we assumed that local hemodynamic coupling was
the same in the two layers. We simulated 30 instances of each model
with different instantiations of noise. In order to examine how well
the twomechanisms could be disambiguated in the typical experimen-
tal setting of a group study, random effects model comparison was then
used to compare two models, the generating model vs. an alternative
model with the lower layer input also added to the upper layer
(cf. Fig. 5). In order to demonstrate that including blood draining effects
in models of layered fMRI strongly affects the inference on input
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distribution,we compared these twomodels under two different condi-
tions, with and without blood draining. In particular, we expected the
model which (wrongly) assumes lower layer input targeting also the
upper layers to explain the data better, if blood draining effects were
not included in the candidate models. Figs. 5C and 5D compare the ex-
pectation of the posterior probability of the correct (blue) and alterna-
tive (red) model without blood draining. Note that the data was
generated with blood draining. Clearly, not including blood draining
dramatically changes the inference, even when neural connections (as
in the recurrently connected model, 5D) could, in principle, account
for an effect of the lower on the upper layer. Consequently, the model
with recurrent connections correctly infers the inputs for higher noise
scenarios, where the distinction between blood draining and neural
connections is difficult (cf. Fig. 4). When blood draining was included,
as in the generation of the data, the correct model was always chosen
(Fig. 5E and F).

Parameter estimation — inferring the parameters of the generating model

An additional question we addressed is how accurately known
parameter values can be inferred from noisy data. To test this, we
investigated two different scenarios. First, each of the three parameters
Aul (neuronal coupling strength), λd (blood draining strength) and τd
(blood draining delay) were inferred separately (with the other two
parameters fixed). Second, we investigated how well the two coupling
parameters Aul and λd could be inferred simultaneously for a fixed τd
of 1 s. Note that the parameters for the local hemodynamics (κu,l, τu,l)
were inverted simultaneously in all these simulations, further increas-
ing difficulty. All simulations for parameter estimation are illustrated
at a noise level of SNR = 3.

Individually, the three parameters describing the blood draining
(Aul, λd, and τd) were estimated fairly robustly from the simulated
data (see Fig. 6) for a wide range of parameter settings. In particular, in-
ferring the time constant τd is not easy, as it mostly influences the on-
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λd, C) excitatory connection from lower to upper layer Aul. Colors indicate results for different
resent the sample distributions of the maximum a posteriori estimates over 20 simulations (c
SNR = 3). Dots are plotted at different heights so that neighboring distributions can be dise
which was kept identical for all model inversions.
and off-transients of the hemodynamic response, but not the overall ac-
tivation in the upper layer (compare Fig. 2E). Please note that the nature
of Bayesian inference has the general consequence that parameter esti-
mates are aweighted compromise between the prior and the data (like-
lihood), where theweighting depends on the relative precisions. That is,
in simulationswhere the “true” (generating) values of parameters differ
non-trivially (relative to the prior precision) from the prior mean, it is
expected that the ensuing posterior parameter estimates deviate from
the parameter values used to generate the data. This effect reflects the
regularizing influence of the prior and is also referred to as “shrinkage”;
it can be observed e.g. in Fig. 6C. This effect grows with increasing dis-
tance of the generating parameter value from the priormean (and addi-
tionally depends on the form of the likelihood function, e.g., the degree
of conditional dependencies among parameters that it induces).

Next, we tested to what degree the two parameters that control
the strength of the influence of the lower layer on the upper layer –
neuronal coupling and blood draining parameters – could be inferred si-
multaneously. Importantly, these are the parameters which we antici-
pate will be most relevant for future applications of our model to
empirical fMRI data, i.e., analyses of layer-specific inter-regional con-
nectivity. By contrast, τd is not a parameter ofmajor interest for analyses
of connectivity because, in contrast to the other parameters, empirical
measurements and model based estimates exist (Boas et al., 2008;
Santisakultarm et al., 2012). This allows for treating this parameter as
relatively well known and either fixing it (e.g., τd = 1 s in the following
simulations) or using a very tight prior. This reduces the problem of in-
ference to neuronal coupling and blood draining parameters, in order to
explain differences in layer-wise hemodynamic responses that may
otherwise confound estimates of inter-regional connectivity estimates.

Here, we thus generated data with a two layer model that had both
blood draining aswell as an excitatory neuronal connection. Parameters
were changed on a grid using values Aul = [0 0.25 0.5 0.75 1] and λd =
[5e-5 0.14 0.37 0.61 0.78 1] and all priors (except for τd) set according to
Table 1 and Supplementary Table S1. The simulations show that the two
2 2.5 3 3.5 4
(sec)
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λd

Aul
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er coupling separately: A) blood draining delay τd, B) strength of the blood draining effect
generating parameter values (indicated by the dots on top of the curves). The curves rep-
olored dots) with independent noise, for the different parameter values (all simulations
ntangled more easily. Vertical broken lines indicate the mean of the prior distribution
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parameters could be inferred robustly inmost cases; Fig. 7 provides a vi-
sualization of these results and highlights cases were parameter values
were underestimated, probably due to a joint influence of the prior and
the strong negative conditional dependency between the two parame-
ters. The latter is expected, given that both parameters contribute to
how strongly the lower layer influences the upper layer. However, the
blood draining occurs on a time scale that is slow enough to be distin-
guished from the neuronal connection.

Application to real data

Finally, we set out to test the model of layered hemodynamics in an
application to real data. The fMRI data used for this application were re-
cordedwhile 10 subjects viewed blocks of flickering checkerboards and
have been presented previously (Koopmans et al., 2010b). In this anal-
ysis we focused on the hemodynamics only and thus fixed all neuronal
connection parameters: Therewere no connections between layers and
a fixed, fast decay within layers. Thus, only activation amplitude, de-
fined by the input weight and hemodynamic parameters were estimat-
ed, similar to the analyses in Friston (2002). We compared 12 different
models (cf. Table 2) with different versions of local hemodynamics and
hemodynamic coupling. In addition, we varied the flexibility of the
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hemodynamic parameters (κu,l and τu,l) by including 4 different levels
of variance for the respective priors. We then inverted all 48 resulting
models and used Bayesian model family comparison (Penny et al.,
2004; Stephan et al., 2009; Penny et al., 2010) to assess the relative
goodness of the models. Specifically, in order to investigate the impor-
tance of blood draining, we compared families ofmodelswith andwith-
out BD. Families with BD clearly outperformed models without BD
(expected probability of the model p = 0.92, exceedance probability
pexc N 0.99, Fig. 8B). Next, we compared four families, defined by differ-
ent combinations of present vs. absent blood draining effects and uni-
form vs. layer-specific hemodynamic parameters (cf. Table 2). Again,
the family comparison showed a clear winning model family (Fig. 8C);
this family 3 containedmodels with uniform hemodynamic parameters
across layers and did account for blood draining effects (pexc = 0.96).
The posterior probabilities for the 4 families were 0.07 (family 1), 0.07
(family 2), 0.68 (family 3) and 0.18 (family 4). Finally, when examining
the 12 models individually (Fig. 8D, family comparison over the 4 set-
tings for hemodynamic priors), models number 8 (expected p = 0.29,
pexc = 0.65) and 6 (expected p = 0.16, pexc = 0.24) outperformed
the other models (all expected p b 0.09, all pexc b 0.04). Both these
models included one set of hemodynamic parameters for both layers
and accounted for blood draining. The best models had intermediate
variance (3rd level, cf. Table 3) for the hemodynamic priors. τd was a
free parameter in model 8 and was estimated to be on the order of sev-
eral hundreds of milliseconds (mean ± std: 641 ± 136 ms). This esti-
mate is highly similar to prior experimental results, where the delay
in peak time was roughly 0.22–0.24 s per mm when moving from
deep to superficial layers (Siero et al., 2011). Insets in Fig. 8D illustrate
the prior distributions and maximum a posteriori estimates of the pa-
rameters for the two winning models at σ3 from all 10 subjects.

On average, the model was able to capture the fMRI traces well in
both layers. Fig. 8E shows example traces (averaged over 16 cycles) of
two subjects. The same plots are given for all subjects in Supplementary
Fig. S1. The model accounted for a considerable amount of the variance
of the data, as demonstrated by SNR values between 1.27 (61.7% vari-
ance explained) and 0.53 (21.9%) in the upper (median 0.92 (45.8%))
and 1.11 (55.2%) and 0.43 (15.6%) in the lower layer (median 0.80
(39.0%)). These SNR values were calculated over the entire time series,
which was also used for modeling. It should be noted in this context
that our variational Bayesian optimization procedure for fitting the
models does not strive formaximizingfit, but instead optimizes the bal-
ance between model fit and model complexity (where the latter in-
cludes, among other things, the deviation of posterior parameter
estimates from the prior mean). This prevents overfitting and maxi-
mizes generalizability (for details, see Stephan et al., 2009).

Discussion

High-field fMRI at resolutions below 1 mm poses analysis problems
that can differ fundamentally from standard fMRI analysis. Here, in the
context of laminar fMRI, we have presented an extended version of a
commonly used hemodynamic response model (Buxton et al., 1998;
Friston et al., 2000; Stephan et al., 2007). Themodel phenomenological-
ly captures effects of venous blood draining from lower to upper layers
of cortex. The simulations reproduce observed layered BOLD responses
in visual and motor cortex in a qualitative manner (Siero et al., 2011).
Model inversion (based on simulated data) showed that the effects of
blood draining and neural connectivity can be separated, that including
blood draining strongly affects inference on the layered input structure
to a microcircuit, and that it is possible to infer the generating parame-
ters. An application to a visual fMRI data set revealed that the proposed
model captures the measured responses better than the compared
models with more flexibility on the local hemodynamic coupling pa-
rameters. Below we discuss the results and outline the consequences
for future research of layered cortical circuits based on high-resolution
fMRI.



with BDA no BD

uu

ul

λd,τd

HRFu

HRFl

uu

ul

HRFu

HRFl

uu

ul

λd,τd

HRF

HRF

uu

ul

HRF

HRF

1 HRF 2 HRF 1 HRF 2 HRF

0

0.2

0.4

0.6

0.8

1

E
xc

. P
ro

b.

No BD With BD
Model family Model family

0

0.2

0.4

0.6

0.8

1

E
xc

. P
ro

b.

1 2 3 4

CB

D

0

0.2

0.4

0.6

0.8

1

E
xc

. P
ro

b.

Models

Model 6, σ3
Model 8, σ3

c1

c2

c3

κ
τ
ε
τd

λd

−2 0 2
−2 0 2

c1

c2

c3

κ
τ
ε
τd

λd

1 2 3 4 5 6 7 8 9 10 11 12

E
Sub 1

S
ig

na
l [

a.
u.

]

0

-0.5

1

0.5

1.5

Sub 2

S
ig

na
l [

a.
u.

]

0

-0.5

1

0.5

1.5

Time [TR]
1 11 21 31

Time [TR]
1 11 21 31

Fig. 8.Model family comparison for visual fMRI data. A) Illustration of the four model families with the two factors ‘no BD vs. BD’ (no blood draining included vs. blood draining included)
and ‘1 HRF vs. 2 HRF’ (one single set of local hemodynamic parameters vs. two independent sets of local hemodynamic parameters for the two layers). Models within those families dif-
fered with regard to whether the input strengths u were estimated separately for each layer or not, and whether the delay τd was estimated or not (for models including blood draining
only). B) Family comparison betweenmodels with and without hemodynamic coupling. C) Family comparison over 4 families as defined in Table 2. Note that families 3 and 4 include BD,
while families 1 and 2 do not. D) Model comparison results (exceedance probability) for all 12 models. Note that each model here consists of 4 instances with varying priors for the he-
modynamic parameters (cf. Table 3). Dotted lines indicated borders between families (1–4 from left to right). Insets show the maximum a posteriori estimates for the parameters of the
twomodels with highest model evidence. Note that with exception of the input weights (ci) all parameter estimates are shown in log-space (and are thus negative for parameter values
smaller than one). E) Measured BOLD signals from two example subjects (all remaining subjects are shown in Supplementary Fig. S1). The plots show the average (thin line) fMRI signal
over one cycle of stimulation (average taken over all 16 cycles of the scanning session). Bold lines indicate the fit obtained by thewinningmodel (cf. D). Colors indicate lower (green) and
upper (blue) layer. Time axis is scaled to units of TR. Visual stimulation changed every 10 TRs at the indicated time points 1, 11, 21 and 31.

565J. Heinzle et al. / NeuroImage 125 (2016) 556–570
Cortical blood supply and hemodynamics

The architecture of the blood vessel system in cortex (Duvernoy
et al., 1981; Weber et al., 2008) is highly complex. However, one of
the hallmarks of the vascular network within cortex is the arrangement
of arteries (arterioles) and veins (venules) perpendicular to the cortical
surface. This arrangement will clearly influence the interpretation of
layered BOLD signals due to venous blood from deeper layers passing
through more superficial ones. In this work, we have presented a
model of layered hemodynamics that focuses on effects of venous
blood draining perpendicular to the layers back to the large surface
vessels at the pial surface. The proposed model provides a mechanistic
explanation of several features of layered BOLD signals observed in
human high-resolution fMRI (Siero et al., 2011), but also in animal
studies (Herman et al., 2013).

Previous work on layer-wise differences in BOLD signal has focused
on other features of cortical vasculature, such as differences in capillary
density across layers (Weber et al., 2008) which likely contribute to
layer-specific BOLD signal, e.g., in layer 4 (Koopmans et al., 2010a;
Koopmans et al., 2011). Several animal studies have interpreted layered
differences in the BOLD signal in terms of layer-specific differences in
the local hemodynamic coupling (Goense et al., 2012; Herman et al.,
2013) and there is evidence that neurovascular coupling as measured
by dilation of arterioles may vary across the cortical depth (Tian et al.,
2010) as well. In fMRI, there is a longstanding discussion about effects
of large superficial draining veins on the BOLD signal (Turner, 2002). Ef-
fects of blood draining have beenmodeled for large surface vessels, and
specific non-uniform draining effects have been suggested to influence
the specificity of fMRI activation patterns (Kriegeskorte et al., 2010). In-
terestingly, although proposed as a potential explanation for varying
delays across layers (Siero et al., 2011), blood draining effects across
cortical layers have been studied less systematically. In particular,
current hemodynamic models do not take into account the potential
impact of such blood draining effects.

In our model, two parameters control the dynamics of blood
draining effects across layers. First, the time constant τd introduces a
delay between the lower and upper layers. This time constant depends
on the average blood flow velocity and on the distance between the
layers, i.e. cortical thickness. Opticalflowmeasurements inmice suggest
a flow velocity of below 5 mm/s in venules up to a diameter of 60 μm
(Santisakultarm et al., 2012). Similar values for the venous blood flow
velocity have been reported in a detailed model of cortical vasculature
(Boas et al., 2008). Our estimations based onmodel inversion from visu-
al data suggest a delay of above 0.5 s, which is in the expected range
given a cortical thickness of few millimeters (Fischl and Dale, 2000)
and is in agreement with a measured delay of roughly 0.7 s (range
0.4 s to 1.0 s) for BOLD peak times in upper layers compared to lower
layers (Siero et al., 2011). The second parameter λd controls how
strongly the lower layer affects the upper layer. It is muchmore difficult
to directly compare this parameter to measurements from animal ex-
periments, and we are not aware of any study directly measuring this
influence.

Comparison of modeling results with existing literature

It was not the goal of this study to provide a layeredmodel that cap-
tures all neuronal and hemodynamic details of layer-wise activity
known to date, but rather to extend the hemodynamic model for DCM
of fMRI in order to specifically capture blood draining effects on layered
BOLD responses. The ability of the proposed model to capture blood
draining effects on layered BOLD responses has therefore been com-
pared against themost directly related empirical findings, i.e., a detailed
report of empirically measured layer-wise BOLD signals in visual and
motor cortex (Siero et al., 2011). However, it may be informative to
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consider this comparison in the light of the wider literature on layered
hemodynamics.

Based on measured timing differences in the BOLD signal, the onset
time has been suggested as a potential measure to disentangle local he-
modynamic effects from blood draining (Siero et al., 2011; Siero et al.,
2013). Onset timeswere used to uncover layered inputs using line scan-
ning fMRI in amousemodel (Yu et al., 2014). Here, we have not studied
onset times systematically. However, we also see a temporal delay of
the BOLD signal in the model in upper layers compared to lower layers.
For example, in Fig. 2A the peak time in the upper layer is delayed by
approx. 0.5 s. This is within the range of many previous studies (Jin
and Kim, 2008; Tian et al., 2010; Siero et al., 2011). But see Hirano
et al. (2011) for the opposite finding in rats. Furthermore, the amplitude
of the BOLD signal predicted by our model increases towards the pial
surface. Previous studies in humans (Koopmans et al., 2010a) as well
as in monkeys (Chen et al., 2013) are in line with this finding but have
measured an additional peak of the layered BOLD amplitude in themid-
dle of visual cortex (presumably around layer 4). The two layeredmodel
presented here is not able to capture this effectwhich is probably due to
increased neuronal and/or local hemodynamic activity around layer 4.

In ourmodel, CBV changes are highest in upper layers. The empirical
findings on the magnitude of cerebral blood volume changes across
layers are mixed. Animal studies also suggest an increase of relative ve-
nous CBV changes towards the pial surface (Kim and Kim, 2011). By
contrast, arterial CBV changes, which are not represented by our
model, are highest around the middle of cortex, i.e. layer 4 (Kim and
Kim, 2011), resulting in relative changes of total CBV that are highest
around the middle of the cortical sheet (Jin and Kim, 2008). However,
see Hirano et al. (2011) and Herman et al. (2013), who report peak
total CBV responses increase towards the pial surface, as in our model.
Measurements in humans, finally, suggest no difference between lay-
ered CBV changes for cortical excitation (Huber et al., 2014; Huber
et al., 2015).

There is evidence for a decoupling of BOLD signal and CBV in mon-
keys that differs between layers, in particular for inhibition (Goense
et al., 2012). Similarly, the time course of the BOLD signal and CBV is
decoupled in humans (Huber et al., 2015). The volume changes are de-
layed with respect to the BOLD response, suggesting that cerebral blood
flow and CBV are decoupled. Such a decoupling cannot be achievedwith
the standard hemodynamic model in DCM, but an adaption of DCM for
fMRI that resolves this limitation has been suggested recently (Havlicek
et al., 2015).

Finally, there are layered differences in the initial dip as well as the
post-stimulus undershoot of the BOLD signal (Siero et al., 2015). These
differences have not been addressed with the current model, and ac-
counting for them properly might require a more flexible implementa-
tion of the Balloon model (Havlicek et al., 2015).

Limitations of our model

The modeling results suggests that it is, in principle, possible to sep-
arate hemodynamic and neuronal components of across-layer influ-
ences. While a simple difference in the amplitude of the signal in the
upper layer can always be captured by an increase in neuronal connec-
tion strength, it is the additional delay of the hemodynamic effect that
enables the differentiation between neuronal connectivity and blood
draining effects. The effect of this delay is only visible in transients
(fast changes of neuronal activity during stimulation), as demonstrated
by the simulations in Fig. 2. This dependence on transients is what
makes the separation of NC and BD intrinsically difficult and requires
relatively high SNR values (SNR ≥ 2) in our simulations; for analyses
of empirical data, this suggests the importance of optimized data acqui-
sition, long measurement times and experimental designs that explore
dynamics of transients rather than studying long blocks, only. An alter-
native could be to include other aspects of BOLD transients. In rats, it has
for example been shown that vasodilation in arterioles is fastest in deep
layers and lags behind in upper layers (Tian et al., 2010). This leads to an
increased initial dip in the BOLD response. A recent study has replicated
this finding in humans (Siero et al., 2015). The authors suggested that
measuring the initial dip across layers could be a promising alternative
to “conventional” BOLD fMRI of cortical layers.

It is straightforward to directly compare the noise levels of the sim-
ulated data (ratio of standard deviations of true signal and independent
Gaussian noise) to values of percentage of explained variance and thus
to F-values. A clear distinction between the BD and NC models is
achieved for SNR=2 and above; this corresponds to a percentage of ex-
plained variance of 80%. Please note that here the SNR is calculated
based on the simulated data and not on the inferred model. Hence, it
relies on knowing the true signal, which is impossible in real experi-
ments. Nevertheless, similarly high values of explained variance can
be obtained with fMRI under suitable conditions, e.g., in visual cortex
by population receptive field modeling (Dumoulin and Wandell,
2008). It is important to note that in addition to the parameters which
mediate across-layer effects, we also inferred the rate constant of the
vasodilatory signal decay (κ) and transit time of the Balloon model (τ)
of local (within-layer) hemodynamics, separately for the two layers.
This takes into account potential layer specific differences in local hemo-
dynamics. However, it makes the inference of the blood draining effects
even more challenging as hemodynamic responses that are specific for
the upper layer could potentially be partially accounted for by adapting
the across-layer hemodynamic coupling.

In all simulations, we have used non-informative priors for blood
draining effects, making the distinction between the two tested scenar-
ios more difficult. The sensitivity of future versions of the model could
be improved by incorporating data on simulated hemodynamics (Boas
et al., 2008; Reichold et al., 2009) in order to constrain the priors. Such
a more constrained model might improve the distinction between dif-
ferent types of neural coupling and would also help to reduce the high
correlations between the parameters. Alternatively, high temporal sam-
pling during fMRI data acquisition should improve themodel's ability to
distinguish neural and blood draining effects as well, since this would
capture neuronal transients better.

Our model focuses on effects across cortical layers; by contrast, it
does not accommodate effects due to drainage parallel to the cortical
surface, e.g., in large pial veins. An important empirical question to be
addressed by future studies is towhat extent the size of veins influences
fMRI signals in upper layers. The currentmodel assumes the draining ef-
fect to be homogeneous across a cortical area, not taking into account
that blood flow is concentrated to veins which only constitute a small
part of the tissue. In addition, it assumes that draining is perpendicular
to the cortical surface and does not take into account the different size of
venules in lower and upper layers. The relatively large increase in
deoxyHb (Fig. 2) that is necessary to account for the experimentally ob-
served BOLD effects might, in part, be attributable to different sizes of
vessels across layers; these can only be taken into account by the
model by adjusting the magnitude of change in the oxygenation level
of the blood. However, a model that includes the effects of vessel size
or captures micro- and macro-vascular separately would become con-
siderably more complex than the present formulation and have to rely
on much more detailed information about the distribution of blood
flow, such as the average diameter of blood vessels in different cortical
areas, than is presently available. Commonly used gradient echo (GE)
echo planar imaging (EPI) has been successfully used to measure lay-
ered signals (Koopmans et al., 2010a; Siero et al., 2011). However, the
GE signal originates mainly from larger vessels and thus its size is also
linked to the venous architecture of cortex. The increased GE signals ob-
served in upper layers could be partly due to an increased average size
of intracortical veins closer to the cortical surface. Indeed, it has been
shown that the GE signal in low layers, but not close to the surface,
and the overall SE signal have a very similar shape (Siero et al., 2013).
This suggests that in lower layers the contributions to the GE signal
come mainly from microvasculature (but see Yu et al., 2012), while in
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upper layers macrovascular signals contribute significantly. In order to
reduce the contribution of draining veins, alternatives to gradient-
echo BOLD have been proposed. T2-weighted (spin-echo) methods
have been shown to be less sensitive to veins than gradient-echo
(Parkes et al., 2005; Yacoub et al., 2008) even though the T2* weighting
of the EPI readout kernel itself reduces the effectiveness of this method
for attenuating venous BOLD contributions (Goense and Logothetis,
2006). In animal studies, CBV-weighted fMRI using injection of MION
particles has shown signal changes primarily at depths with high capil-
lary density, successfully suppressing signal in pial veins (Zhao et al.,
2006). A recent study has confirmed these volume-based imaging re-
sults in humans (Huber et al., 2015). While not as sensitive as BOLD,
CBV-weighted fMRI could be used in combination with BOLD fMRI in
order to constrain the relative volume estimates of the model.

A final limitation of our present results is that the application of our
model to real fMRI data used a standard block designwith the block du-
ration being a multiple of TR.While this is efficient for estimatingmean
responses, it is not the ideal design to constrain estimates for the cou-
pling delay between the two layers. Nevertheless, the resulting estimate
for τd of roughly 0.5 s is close to values suggested by blood flow velocity
in more detailed models of vascular dynamics in cortex (Boas et al.,
2008).

Extensions and potential use of layered models of fMRI

We anticipate that our model will find useful application in studying
the dynamics of simplified layered circuits with fMRI. Layered microcir-
cuits are defining computational building blocks of cortex (Douglas and
Martin, 2004), andmodels of layeredmicrocircuits (Heinzle et al., 2007)
as well as predictive coding theories (Bastos et al., 2012) assign distinct
computational quantities to different cortical layers. Studying such theo-
retical concepts with fMRI could be facilitated with themodel presented
here, for example by using it in combinationwith computationalmodels
of trial-wise prediction errors and dynamic causal models that consider
layer-specific connections. Our simulations above demonstrated that in-
cluding blood draining effects will be critical formaking inference on the
layered structure of neuronal inputs to a cortical region. We expect such
inference on layered input structures to be most robust if other parts
of the model, such as the rate constant of blood draining, can be
constrained by tight priors informed by experimental measurements.

The use of layered models for fMRI critically depends on several ex-
perimental and preprocessing steps which need to be performed prior
to the modeling of time series. First, fMRI images need to be acquired
at very high resolution since cortex is only few millimeters thick
(Fischl and Dale, 2000). Second, one needs to define the layered struc-
ture of cortex prior to sampling the fMRI signal from layers or compart-
ments. Individual cortical layers are often difficult to separate, even in
histological analyses of cytoarchitectonics, and this becomes usually
prohibitively difficult with fMRI. Hence, usually layers are defined by in-
terpolation, following the segmentation of the pial surface and the
boundary between gray and white matter. Relatively robust segmenta-
tion can be achieved by (indirectly) incorporating cortical curvature
(Waehnert et al., 2014). Finally, partial volume effects occur during
sampling and can lead to a mixture of signals from different layers. For
a detailed treatment of this issue in the context of layered BOLD fMRI
see Koopmans et al. (2011). Partial volume effectswill reduce the differ-
ences between layers and might compromise the inversion of models
that try to represent individual cortical layers. Irrespective of the struc-
ture of any neuralmodel onemight choose tomodel fMRI data, the chal-
lenges mentioned above always apply and should be taken into careful
consideration when depth-resolved fMRI data are used for inference
about cortical circuit mechanisms.

Given the above challenges and the present resolution of layered
fMRI measurements, modeling a full six-layer circuit seems unrealistic
at this point. The most likely applications of layered circuit models in
fMRI will be simplified models focusing on few, probably two, layers.
While this is clearly a limitation, a circuit that merely distinguishes
infra- and supragranular compartments is the basic form of the famous
“canonical microcircuit” (Douglas et al., 1989), and this structure serves
for inferring hierarchies from brain wide anatomical connections in
monkeys (Markov et al., 2014). Furthermore, this two-layer circuit is
also used by predictive coding theories (Bastos et al., 2012).

In conclusion,we think that at the present time, a two-layermodel is
adequate given the constraints of layered fMRI measurements and
should serve a number of interesting applications. In particular, it is suf-
ficient to test a central postulate by predictive coding theories, i.e., that
connections originating from supragranular cells should signal predic-
tion errors to hierarchically higher areas, whereas connections with an
infragranular source should signal predictions to areas lower in the hier-
archy. However, there is one interesting possible extension to how neu-
ronal dynamics aremodeled. At present, themodel captures the average
activation very well, but misses out on some of the transient responses
at the beginning of the blocks (e.g. Sub 2 in Fig. 8E). Including neuronal
adaptation in a future version of the model might allow to better cap-
ture such transient overshoots.

A second possibility will be to use the refined hemodynamic model
for inferring effective connectivity based on more informed prior
anatomical knowledge. Cortical long-range connections but also con-
nections to sub-cortical structures follow very specific layered connec-
tivity patterns depending on the hierarchical relationship of cortical
areas (Douglas and Martin, 2004). These principles of layered anatomi-
cal connectivity have been employed to define hierarchies of cortical
processing (Fellemann and van Essen, 1991) and provide strong con-
straints for connectivity patterns, including directionality, in network
models of layered cortical areas. This source of information is exploited,
for example, in DCMs of electrophysiological data (David et al., 2006;
Moran et al., 2011), and themodel presented heremight allow to enable
this application in fMRI, too.

In our simulations, we have usedmodel comparison tomake a bina-
ry decision whether an influence from the lower to the upper layer was
either due to neural connectivity or due to blood draining. In practical
cases, theremay be amixture of neuronal and blood draining effects. In-
vestigating the relative contributions of the two influences (NC and BD)
requires inference on the parameters Aul andλd; while not trivial due to
correlations between the two parameters, our simulation results pre-
sented in Fig. 7 suggest that such an analysis is, in principle, possible.

In this work, we have used linear neuronal state equations in con-
junction with the layered hemodynamic model to generate fMRI re-
sponses. However, the very same hemodynamic equations can be
usedwith othermodels of neural activity; cf. (Friston, 2002). In the sim-
plest case, as demonstrated by the inversion of the model on empirical
fMRI data, themodel can be used to estimate the average neuronal acti-
vation in cortical layers while taking into account effects of blood
draining across layers. In the future, this could be refined by estimating
activation across columns perpendicular to the cortical sheet, and thus
getting closer to single voxel estimates of activity. The ensuing analysis
would then provide activation patterns within cortical layers and could
be used to study, for example, differences of top-down and bottom-up
inputs in different layers using pattern classification (Smith and
Muckli, 2010; Chen et al., 2011). The blood draining parameters could
in principle be estimated for every column individually taking into ac-
count variability in blood draining across the cortical sheet. However,
this application will require methods for a robust definition of columns
andwill face the challenge that the signals to be explained by themodel
represent averages over only a few voxels and can thus be expected to
be of rather low SNR. Yet another alternative would be to use a com-
bined EEG-fMRI approach based on more detailed circuit models that
have been used for modeling of EEG (Moran et al., 2013).

An additional important target for extending the presentwork is the
local hemodynamic model itself. Recently, Havlicek et al. (2015) have
presented an extension of the classical DCM for fMRI that no longer as-
sumes direct coupling of blood flow and blood volume, allowing to
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explain experimental findings where these two signals diverge. Due to
this feature and a more comprehensive biophysical interpretability,
the model by Havlicek et al. (2015) represents a promising basis for fu-
ture extensions of the present work. For example, combining their
model with blood draining effects across layers might enable direct
modeling of combined BOLD and blood volume measurements. In
particular, it would be interesting to see, whether a combination of
across-layer blood draining with the local hemodynamic coupling sug-
gested by Havlicek et al. (2015) could capture several of the effects
discussed in the previous section, including the diverse empirical find-
ings on layer-wise BOLD responses, such as those related to differences
in the initial dip and post-stimulus undershoot.

In this study, we have presented a phenomenological description of
blood draining across layers. It relies on a simple delayed coupling of
the main quantities of the hemodynamic model, relative blood volume
and deoxy-hemoglobin concentration. Clearly, this coupling does not
model the physics of bloodflowdirectly, but nevertheless successfully ac-
counts for the observed layered BOLD responses. A possible future exten-
sion would be to include a biophysical model of blood flow across layers
based on a Balloon (Buxton et al., 1998) orWindkessel (Mandeville et al.,
1999)model. This could eventually lead to a combination of layered local
hemodynamics with a sophisticated description of inter-layer blood flow
(Boas et al., 2008; Reichold et al., 2009). Such a model might be better
suited to capture differences in micro- and macrovascular BOLD re-
sponses, which are observed even in deep layers (Yu et al., 2012) and
will bemost pronounced in upper layers, where venules tend to be larger
(Duvernoy et al., 1981;Weber et al., 2008). However, given the increased
complexity of such a biophysical model, it will be important to test how
well it can be inverted, and what it adds over and beyond the phenome-
nologicalmodel presented here. In particular, if one is not primarily inter-
ested in intra-regional (neuronal or hemodynamic) effects that depend
on the layered structure of cortex, but only wishes to take these effects
into account for enabling better estimates of inter-regional effective con-
nectivity, the simpler model may be sufficient. This is an issue whichwill
have to be addressed by model comparison in future work.

Finally, the hemodynamic model used in this work is tailored to
BOLD data acquired using gradient echo sequences. However, a recent
study has suggested that using a 3D-GRASE sequence reduces the influ-
ence of surface veins and could increase the specificity of layered fMRI,
particularly in upper layers (DeMartino et al., 2013). Adapting the pres-
entmodel to data from spin-echo based sequences such as SE-EPI or 3D-
GRASE thus represents an interesting option for future developments.

In order to validate the layered hemodynamic model, it will be of
high interest and relevance to directlymeasure, in animals, neuronal ac-
tivity across cortical layers simultaneously with ultra-high resolution
layered fMRI and test whether themodel is able to recover the underly-
ing neuronal activity. In a highly specialized line scanning approach, the
onset time of the BOLD signal was shown to be related to the input to
different cortical layers (Yu et al., 2014). However, it remains an open
question to what degree such differences can also be extracted from he-
modynamic signals sampled at lower temporal resolutions.

Conclusion

Here, we have presented a novel extension of a commonly used he-
modynamic model which incorporates blood draining effects across
layers. This is important for robust estimation of layered neural activa-
tion. Our present model is based on a phenomenological account of
blood draining across layers and may represent a first step towards fu-
ture biophysiologically motivated models of layered hemodynamics.
The modeling results suggest that for the distinction between neural
and hemodynamics effects it is most efficient to study fast transients.
Our simulations and empirical analyses indicate that this model may
contribute to more refined analyses of layered microcircuits and layer-
specific connections by means of high-resolution fMRI. This, in turn,
would be important for probing a wide range of cortical pathologies –
such as abnormalities of cortical connectivity in schizophrenia
(Stephan et al., 2006) – and for testing the implications of theories of
brain functionswhich emphasize differential roles of layer-specific con-
nections, e.g., predictive coding (Rao and Ballard, 1999; Bastos et al.,
2012).
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Appendix A. Parameter dependency on field strength

The nonlinear BOLD signal includes a set of parameters ki which de-
pend on magnetic field strength and on data acquisition parameters, in
particular relaxation time TE (time to echo).

k1 ¼ 4:3ϑ0E0TE
k2 ¼ εr0E0TE
k3 ¼ 1−ε:

ð7Þ

In this section,webriefly summarize themeaning of these parameters
ki and give an expected range of their values for 1.5 T, 3 T and 7 T.Many of
the values used here are based on derivations by Uludag et al. (2009) but
also draw on subsequent experimental data as indicated below.

First, ϑ0 is the frequency offset at the outer surface of magnetized
vessels and depends linearly on the main magnetic field strength B0:
ϑ0 ≅ 28.265 ⋅ B0. Second, r0 represents the intravascular relaxation rate
as a function of oxygen saturation. The value for r0 can be derived
from the slope of the relaxation rate of blood when plotted against de-
oxygenation level. Such curves have beenmeasured for human samples
at 1.5 T, 3 T and 4.7 T (Silvennoinen et al., 2003; Zhao et al., 2007) and
are summarized in Uludag et al. (2009). Calculating the slope of these
curves at an oxygenation level of 70% and a hematocrit of 44% yields
values of r0 ≅ 15s−1 (1.5 T) and r0 ≅ 110s−1 (3 T). The value for r0 at
7 T could in theory be obtained by linear extrapolation from data at
lower field strengths. Such an extrapolation yields a value of 325 s−1,
which is close to 360 s−1 suggested by recent in vivo measurements
in humans (Ivanov et al., 2013). Based on these two estimates we sug-
gest using a value of r0 ≅ 340s−1 (7 T). Notably, however, the exact
value of this parameter is unlikely to be important at 7 T because k2,
which is the only parameter affected by r0, becomes nearly zero at
high field strengths. This is due to a third field-dependent parameter ε,

ε ¼ SI
SE

¼ e−R�
2;I TE

e−R�
2;ETE

which represents the ratio between intravascular and extravascularMR
signal. Here, R2,I⁎=1/T2,I⁎ and R2,E⁎=1/T2,E⁎ are the intravascular (venous)
and extravascular relaxation rates, whichhave differentfield dependen-
cies. Approximate values of these relaxation rates are available for all
common field strengths (Donahue et al., 2011 and references therein).
The range of observed values (cf. Table A1) can be used to determine
mean and variance of prior distributions for ε, which is treated as a
free parameter during model inversion. In particular, at 7 T, the value
of ε is expected to be nearly zero (Uludag et al., 2009). Thus, the nonlin-
ear term k2ð1− q

vÞ will become negligible in size compared to the other
two terms. In Table A1,we also provide suggested values for the prior on
ε. For this we assumed a uniform distribution of relaxation times over
the range given in Table A1 and then numerically calculated the mean
and standard deviation of the log-normal prior for ε. We assumed a TE



Table A1
Intra- and extravascular relaxation times.

B0 T2,I⁎ (ms) R2,I
⁎ (s−1) T2,E⁎ (ms) R2,E

⁎ (s−1) με; σε

1.5 T 90–100 10–11 55–65 15–18 0.25; 0.04
3 T 15–25 40–67 35–45 22–29 −0.78; 0.24
7 T 3–7 143–333 25–30 33.3–40 −3.99; 0.83

Values for T2* are taken from Donahue et al. (2011). For a detailed list of references of in-
dividual experiments, see their paper. με andσε are themean and standarddeviation of the
suggested log-normal prior for ε. These values were calculated assuming a uniform distri-
bution over the T2⁎ values, then calculating a distribution of ε using all possible combina-
tions of T2,E⁎ and T2,I⁎. με and σε can then be directly calculated.
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of 40 ms (1.5 T), 30 ms (3 T) and 25 ms (7 T), respectively. The corre-
sponding values of ε are 1.28 (1.5 T), 0.47 (3 T) and 0.026 (7 T).

Finally, the resting oxygen extraction rate E0 does not depend on
any scanning parameters and is usually assumed to be in the range
between 0.3 and 0.4 (Obata et al., 2004; Stephan et al., 2007); here we
use E0 = 0.34.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.10.025.
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