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ARTICLE INFO ABSTRACT

The development of large-scale network models that infer the effective (directed) connectivity among neuronal
populations from neuroimaging data represents a key challenge for computational neuroscience. Dynamic
causal models (DCMs) of neuroimaging and electrophysiological data are frequently used for inferring effective
connectivity but are presently restricted to small graphs (typically up to 10 regions) in order to keep model
inversion computationally feasible. Here, we present a novel variant of DCM for functional magnetic resonance
imaging (fMRI) data that is suited to assess effective connectivity in large (whole-brain) networks. The approach
rests on translating a linear DCM into the frequency domain and reformulating it as a special case of Bayesian
linear regression. This paper derives regression DCM (rDCM) in detail and presents a variational Bayesian
inversion method that enables extremely fast inference and accelerates model inversion by several orders of
magnitude compared to classical DCM. Using both simulated and empirical data, we demonstrate the face
validity of rDCM under different settings of signal-to-noise ratio (SNR) and repetition time (TR) of fMRI data.
In particular, we assess the potential utility of rDCM as a tool for whole-brain connectomics by challenging it to
infer effective connection strengths in a simulated whole-brain network comprising 66 regions and 300 free
parameters. Our results indicate that rDCM represents a computationally highly efficient approach with
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promising potential for inferring whole-brain connectivity from individual fMRI data.

Introduction

The human brain is organized as a network of local circuits that are
interconnected via long-range fiber pathways, providing the structural
backbone for the functional cooperation of distant specialized brain
systems (Passingham et al., 2002; Sporns et al., 2005). Understanding
both structural and functional integration among neuronal populations
is indispensable for deciphering mechanisms of both normal cognition
and brain disease (Bullmore and Sporns, 2009). Neuroimaging tech-
niques, such as functional magnetic resonance imaging (fMRI), have
contributed substantially to this endeavor. While the early neuroima-
ging era focused mainly on localizing cognitive processes in specific
brain areas (functional specialization), the last decade has seen a
fundamental shift towards the study of connectivity as the fundament
for functional integration (Friston, 2002; Smith, 2012).

Three different aspects of brain connectivity are typically distin-
guished. First, structural connectivity — that is, anatomical connections

such as long-range projections that make up white matter and link
cortical and subcortical regions. Structural connectivity is typically
inferred from human diffusion-weighted imaging data or from tract
tracing studies in animals. Second, functional connectivity describes
interactions among neuronal populations (brain regions) as statistical
relations. Functional connectivity can be computed in numerous ways,
including correlation, mutual information, or spectral coherence
(Friston, 2011). Third, effective connectivity is based on a model of
the interactions between neuronal populations and how the ensuing
neuronal dynamics translate into measured signals.

While structural and functional connectivity methods have pro-
vided valuable insights into the wiring and organization of the human
brain both in health and disease (for reviews, see Buckner et al., 2013;
Bullmore and Sporns, 2009; Fornito et al., 2015; Sporns et al., 2005),
they are essentially descriptive and do not allow for mechanistic
accounts of a neuronal circuit — that is, what computations are
performed and how they are implemented physiologically. By contrast,

* Corresponding author at: Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, 8032 Zurich,

Switzerland.
E-mail address: stefanf@biomed.ee.ethz.ch (S. Frissle).
1 Contributed equally to this work.

http://dx.doi.org/10.1016/j.neuroimage.2017.02.090
Received 6 November 2016; Accepted 28 February 2017
Available online 01 March 2017

1053-8119/ © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
http://dx.doi.org/10.1016/j.neuroimage.2017.02.090
http://dx.doi.org/10.1016/j.neuroimage.2017.02.090
http://dx.doi.org/10.1016/j.neuroimage.2017.02.090
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2017.02.090&domain=pdf

S. Frdssle et al.

models of effective connectivity that rest upon a generative model can,
in principle, infer upon the latent (neuronal or computational)
mechanisms that underlie measured brain activity. In other words,
models of effective connectivity seek explanations of the data, not
statistical characterizations. This is not only fundamentally important
for basic neuroscience, but also offers tremendous opportunities for
clinical applications (Stephan et al., 2015).

The last decade has seen enormous interest and activity in devel-
oping methods for inferring directed connection strengths from fMRI
data, such as Granger causality (GC; Roebroeck et al., 2005) and
dynamic causal modeling (DCM; Friston et al., 2003). While GC
operates directly on the data and quantifies connectivity in terms of
temporal dependencies, DCM rests on a generative model, allowing for
inference on latent neuronal states that cause observations (Friston
et al., 2013). While these methods have already made fundamental
contributions to our understanding of functional integration in the
human brain, existing methods are still subject to major limitations
(for reviews on strengths and challenges of models of effective
connectivity, see Daunizeau et al., 2011la; Friston et al., 2013;
Stephan and Roebroeck, 2012; Valdes-Sosa et al., 2011). For example,
there is a fundamental trade-off between the complexity of a model and
parameter estimability: while biophysical network models (BNMs)
capture many anatomical and physiological details (Deco et al.,
2013a; Jirsa et al., 2016), their nonlinear functional forms, very large
number of parameters, and pronounced parameter interdependencies
usually render parameter estimation an extremely challenging compu-
tational problem (for discussion, see Stephan et al., 2015). At present,
large-scale BNMs are therefore usually used for simulating data, as
opposed to inferring the strength of individual connections.

In contrast to biophysical network models, generative models like
DCM rest on a forward model (from hidden neuronal circuit dynamics
to measured data) that is inverted using Bayesian principles in order to
compute the posterior probability distributions of the model para-
meters (model inversion). To render this challenge computationally
feasible, DCM typically deals with small networks consisting of no more
than 10 regions (but see Seghier and Friston, 2013) whose activity has
been perturbed by carefully designed experimental manipulations.
DCM for fMRI has also been extended to cover resting state fMRI
time series by modelling endogenous fluctuations in neuronal activity.
These neuronal fluctuations can be treated as hidden or latent neuronal
states (leading to stochastic DCM; Daunizeau et al, 2009).
Alternatively, the second order statistics of neuronal fluctuations can
be treated deterministically within DCM for cross-spectral responses
(Friston et al., 2014a). Irrespective of the particular form of DCM, the
restriction to a small number of nodes can be a major limitation; for
example, for clinical applications concerned with whole-brain physio-
logical phenotyping of patients in terms of directed connectivity.

In this paper, we introduce a novel variant of DCM for fMRI that
has the potential to overcome this bottleneck and is suitable, in
principle, to assess effective connectivity in large (whole-brain) net-
works. Put simply, the approach rests upon shifting the formulation of
DCM from the time to the frequency domain and casting model
inversion as a problem of Bayesian regression. More specifically, we
reformulate the neuronal state equation of a linear DCM in the time
domain as an algebraic expression in the frequency domain. This
transformation rests on solving differential equations using the Fourier
transformation. Using this approach from the signal processing
literature (e.g., Bracewell, 1999; Oppenheim et al., 1999), we show
that — under a few assumptions and modifications to the original
framework — the problem of model inversion in DCM for fMRI can be
cast as a special case of a Bayesian linear regression problem (Bishop,
2006). This regression DCM (rDCM) is computationally extremely
efficient, enabling its potential use for inferring effective connectivity in
whole-brain networks. Note that rDCM is conceptually not unrelated to
DCM for cross-spectral responses mentioned above in the sense that
both approaches use spectral data features. However, rDCM is formally
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distinct from cross-spectral DCM because it models the behavior of
each system node (in the frequency domain) rather than the cross
spectral density as a compact summary (of functional connectivity
among system nodes).

In what follows, we first introduce the theoretical foundations of
rDCM and highlight where the approach deviates from the standard
DCM implementation. We then demonstrate the face validity and
practical utility of rDCM for a small six-region network, testing the
robustness of both parameter estimation and model selection under
rDCM using simulations and an empirical fMRI dataset on face
perception (Frissle et al., 2016b, 2016c). Having established the
validity of rDCM for small networks, we then proceed to simulations
that provide a proof-of-principle for the utility of rDCM for assessing
effective connectivity in large networks. The simulations use a whole-
brain parcellation (66 regions) and empirical connectivity matrix that
was introduced by Hagmann et al. (2008) and has been used by several
modeling studies since (e.g., Deco et al., 2013b; Honey et al., 2009),
resulting in a model with 300 free parameters.

Methods and materials
Dynamic causal modeling

DCM is a generative modeling framework for inferring hidden
neuronal states from measured neuroimaging data by quantifying the
effective (directed) connectivity among neuronal populations (Friston
et al., 2003). Specifically, DCM explains changes in neuronal popula-
tion dynamics as a function of the network’s connectivity (endogenous
connectivity A) and some experimental manipulations. These experi-
mental manipulations ; can either directly influence neuronal activity
in the network’s regions (driving inputs C) or perturb the strength of
the endogenous connections among regions (modulatory influences B).
This can be cast in terms of the following bilinear state equation:

dx “ ;
= =4+ uBY | x + Cu
dt [ Z} ’ ]

1)

This neuronal model is then coupled to a weakly nonlinear
hemodynamic forward model that maps hidden neuronal dynamics
to observed BOLD signal time series (Buxton et al., 1998; Friston et al.,
2000; Havlicek et al.,, 2015; Stephan et al., 2007). In brief, the
hemodynamic model describes how changes in neuronal states induce
changes in cerebral blood flow, blood volume and deoxyhemoglobin
content. The latter two variables enter an observation equation to yield
a predicted BOLD response. For reviews on the biophysical and
statistical foundations, see Daunizeau et al. (2011a) and Friston et al.
(2013).

Inference proceeds in a fully Bayesian setting, using an efficient
variational Bayesian approach under the Laplace approximation (VBL)
— meaning that prior and posterior densities are assumed to have a
Gaussian fixed form (Friston et al., 2007). This scheme provides two
estimates: (i) The sufficient statistics of the posterior distributions of
model parameters (i.e., conditional mean and covariance), and (ii) the
negative free energy, a lower-bound approximation to the log model
evidence (i.e., the probability of the data given the model). The negative
free energy provides a principled trade-off between a model’s accuracy
and complexity, and serves as a measure for testing competing models
(hypotheses) about network architecture by means of Bayesian model
comparison (Penny et al., 2004; Stephan et al., 2009a).

Regression DCM

Neuronal state equation in frequency domain

In this section, we introduce a new formulation of DCM that
essentially reformulates model inversion as a special case of Bayesian
linear regression (for further details of the derivation, see Lomakina,
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2016). We thus refer to this approach as regression DCM (rDCM). This
approach rests on several modifications of the original DCM imple-
mentation that include: (i) translation from the time domain to the
frequency domain, (ii) linearizing the hemodynamic forward model,
(iii) assuming partial independence between connectivity parameters,
and (iv) using a Gamma prior for noise precision. These changes allow
us to derive an algebraic expression for the likelihood function and a
variational Bayesian scheme for inference, which convey a highly
significant increase in computational efficiency by several orders of
magnitude. This potentially enables a number of innovative applica-
tions — most importantly, it renders rDCM a promising tool for
studying effective connectivity in whole-brain networks. The massive
increase in computational efficiency afforded by rDCM rests on the fact
that standard (VBL) inversion schemes require one to integrate a
deterministic system of neuronal dynamics to produce a predicted
(hemodynamic) response. This integration can be computationally
demanding, especially for long time series. The beauty of summarizing
a time series (and underlying latent states) with its Fourier transform is
that one eludes the problem of solving differential equations, enabling
the solution of a compact, static regression model.

In this initial paper, we focus on the simplest case — a linear DCM —
because bilinear models aggravate the derivation of an algebraic
expression for the likelihood function (but see the Discussion for
potential future extensions of rDCM). Linear DCMs are described by
the following neuronal state equation
dx
T Ax + Cu @)

This differential equation can be translated to the frequency domain
by means of a Fourier transformation. As the Fourier transform is a
linear operator, this results in the following expression

dx

dt

=AX + Cu

3
where the Fourier transform is denoted by the hat symbol. We can now
apply the differential property of the Fourier transform

dt @

where i = ++/—1 is the imaginary number and @ the Fourier coordi-
nate. Substituting Eq. (4) into Eq. (3) leads to the representation of the
neuronal state equation as an algebraic system in the frequency
domain:

X = A% + Cit (5)
The system described in Eq. (5) is still linear with respect to the
model parameters, and the meaning of the parameters is preserved.

Observation model and measurement noise

Having re-expressed the neuronal state equation in the frequency
domain, we now turn to the observation model that links hidden
neuronal dynamics to measured BOLD signals. In classical DCM, the
observation model consists of a cascade of nonlinear differential
equations describing the hemodynamics and a nonlinear static BOLD
signal equation (Friston et al., 2000; Stephan et al., 2007). These
nonlinearities pose a problem for our approach because they prevent a
straightforward translation to the frequency domain. One possibility
would be to linearize these equations (as in Stephan et al., 2007). In
this initial paper, however, we adopt a simpler approach: convolution
with a fixed hemodynamic response function (HRF). Multiplying Eq.
(5) with the Fourier transform of the HRF and making use of the fact
that a multiplication of the Fourier transforms of two functions is
equivalent to the Fourier transform of the convolution of these two
functions, one arrives at the following algebraic system:
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io(h @ x) = A(h @ x) + Chii
iwf), = AF, + Chil 6)

Here, ® denotes the convolution and 3, is the deterministic (noise-
free) prediction of the data. However, Eq. (6) is not an accurate
description for measured fMRI data, for two reasons: First, while the
neuronal activity x and BOLD response y, are continuous signals, our
measurements or observations are discrete. Second, measured fMRI
data is inevitably affected by noise.

To account for the discrete nature of the data (and the fact that
computers can only represent discrete rather than continuous data), we
use a discretized version of Eq. (6). This necessitates the use of the
discrete Fourier transform (DFT) and the discretization of frequency

and time:
m ~ l(e 1)
T T (7

iw:= imAw = 2ri—
N’

where N represents the number of data points, 7 the time interval
between subsequent points, Aw the frequency interval, and
m = [0,1, ..., N — 1] a vector of frequency indices. In Eq. (7), we have
made use of a linear approximation to the exponential function to
obtain the final expression, which is also known as the difference
operator of the DFT. Plugging Eq. (7) into Eq. (6) leads to the discrete
representation of the (deterministic) BOLD equation in the frequency
domain:

(eZni%_l)

where the hat symbol now denotes the discrete Fourier transform.
Having obtained an expression for discrete data, we now augment
the model with observation or measurement noise. Here, similar to the
setting in classical DCM, we assumed the measurement noise to be
white for each region i=[1, ..., R] (or, more precisely, the hemodynamic
responses at each region to be whitened following an estimation of
their temporal autocorrelations) with region-specific noise variances

2.
o'

.m
ZIUN_

VB _ pe s i
F:AyB+Chu

®

Y=g T €~N(0,6Tyxy) 9

where I, is the identity matrix. Inserting Eq. (9) into Eq. (8) gives an
expression for the measured fMRI signal

m
(eZI!IN_

The form of Eq. (10) is reminiscent of structural equation models
(McIntosh, 1998) and multivariate autoregressive models (Roebroeck
et al., 2005) in the frequency domain. In Eq. (10), v is a noise vector of
the following form:

m A
v= (ezm"’—l)E — Ae
T

1)1 = AF + Chii + v
T (10)

1n

While v also has white noise properties, its dependence on the
endogenous connectivity parameters (A matrix) complicates the deri-
vation of an analytical expression for the likelihood function. We
circumvent this problem by an approximation, introducing a partial
independence assumption that regards v, as an independent random
vector with a noise precision parameter z;. This approximation means
that potential dependencies amongst parameters affecting different
regions are discarded (i.e., interdependencies are only considered for
parameters entering the same region). Effectively, this constitutes a
mean field approximation in which the (approximate) posterior
factorizes among sets of connections providing inputs to each node.
This assumption allows for an extremely efficient (variational) inver-
sion of our DCM. Heuristically, because DCM models changes in
activity caused by hidden states in other regions, this approximation
means that Eq. (10) can estimate the strengths of connections to any
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given region by, effectively, minimizing the difference between ob-
served changes in responses and those predicted by observed activity
elsewhere.

Given this approximation, we can re-write Eq. (10) as a standard
multiple linear regression problem:
Y = X0 + 0, 0~N©;0,7" Iysn) (12)

Here, we have defined Y as the dependent variable, X as the design
matrix (set of regressors) and 6 as the parameter vector as follows:

pY16, 7, X)

R
H N(¥;: X6, Ti_lleN)

Y = ezm‘%_l X
T

X =[5, ¥

Ry, Rty h T

6, == la;, ap,...,q (13)

iR» Cits Cioe--Cikc ]
where y represents the measured signal in region i and u, the kth
experimental input to that region.

This derivation completes the reformulation of a linear DCM in the
time domain as a general linear model (GLM) in the frequency domain.
The resulting algebraic expression in Eq. (12) offers many advantages,
such as extremely efficient computation and exploitation of existing
statistical solutions. The transfer to the frequency domain also means
that we can exploit knowledge about the frequencies that contain useful
information in fMRI; these are constrained by the low-pass filter
properties of neurovascular coupling and the sampling frequency (cf.
Nyquist theorem), respectively. This means that sampling rate (TR)
becomes an important factor, something that will be considered in our
simulations below.

Specification of regression DCM as a generative model

In order to turn the GLM in Eq. (12) into a full generative model
(Bayesian regression), we need to specify priors for parameters and
hyperparameters. While we keep the zero-mean Gaussian shrinkage
priors on connectivity parameters from classical DCM, we chose a
Gamma prior on the noise precision 7 (not a log-normal prior as in
classical DCM). This change was motivated by the fact that Gamma
priors serve as conjugate priors on precision for a Gaussian likelihood,
which simplifies the derivation of an expression for the posterior:

- D . _1 1 Tt i
PO0) = NO; g, Z) = )2 2] Zeap2 @70 %0 (@mr)

p(z) = Gamma(z; o, f) = T-aoilexp’

I'(ay (14)

Here, y, and ¥, are the mean and covariance of the Gaussian prior
on connectivity parameters, «, and f, are the shape and rate
parameters of the Gamma prior on noise precision, and I' is the
Gamma function. In this paper, we adopted the standard neuronal
priors from DCM10 as implemented in the Statistical Parametric
Mapping software package SPM8 (version R4290; www.fil.ion.ucl.ac.
uk/spm). For the noise precision, we used a,=2 and f=1 to match the
Gamma distribution closely to the first two moments of the standard
log-normal prior from DCM10.

Under this choice of priors, the posterior distribution over connec-
tions to each region i and for the entire model, respectively, then takes
the form:

7l¥, X) « p(YIX, 6, 7)p(@,)p(z;)

R R
p@. <Y, x) < [] pvix. 6. o) [] 0@)p)

i=1 i=1

(15)

As already highlighted above, the formulation of rDCM represents a
special case of Bayesian linear regression (Bishop, 2006). If the noise
precision were known, Eq. (15) could be solved exactly. Since rDCM
does not make this assumption, an analytical solution is not possible
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and approximate inference procedures are needed instead. Here, we
chose a variational Bayesian approach under the Laplace approxima-
tion (VBL; compare Friston et al., 2007) to derive an iterative
optimization scheme.

Variational Bayes: a brief summary

This section provides a summary of variational Bayes (VB) that
hopes to enable readers with limited experience in variational Bayes to
follow the derivation of the update equations for rDCM below.
Comprehensive introductions to VB can be found elsewhere (e.g.,
Bishop, 2006). Generally speaking, VB is a framework for transforming
intractable integrals into tractable optimization problems. The main
idea of this approach is to approximate the true posterior p(6, 7|y, m)
by a simpler distribution ¢(, |y, m). For VBL, ¢(6, |y, m) is assumed
to have a Gaussian form and can thus be fully described by its sufficient
statistics — that is, the conditional mean and covariance (Friston et al.,
2007).

Given such an approximate density, VB allows for achieving two
things simultaneously: (i) model inversion, i.e., estimating the best
approximation to the true posterior (under the chosen form of ¢), and
(ii) obtaining an approximation to the log model evidence (the basis for
Bayesian model comparison). This can be seen by decomposing the log
model evidence as follows:

npotm) = [f 4. <.

m) n polmy LE ™ joge
q(0, tly, m)

P, 0, ©im)q(, |y, m) d0de

= (] I
Jae-ctv.mm (0, 1y, myq(@, <ly, m)
PO, O dm)

0, 1
= Jfao. v G

q(0, tly, m)
+ ﬂq(ﬂ 7|y, m) In —————= 0. 2ly. m)

= F + KL[gq(0, 7|y, m)|| p(0, zly, m)]

dOdr

(16)

where F is known as the negative free energy and the second term is
the Kullback-Leibler (KL) divergence between the approximate poster-
ior and the true posterior density. Because the KL divergence is always
positive or zero (Mackay, 2003), the negative free energy provides a
lower bound on the log model evidence. The KL term can thus be
minimized (implicitly) by maximizing the negative free energy. The
latter is feasible because F does not depend on the true (but unknown)
posterior, but only on the approximate posterior (see Eq. (16)), and can
be maximized by gradient ascent (with regard to the sufficient statistics
of g).

To facilitate finding the ¢ that maximizes F, a mean field approx-
imation to ¢(0, 7|y, m) is typically chosen. For example, one might
assume that ¢ factorizes into marginal posterior densities of para-
meters and hyperparameters:

q(0, tly, m) = q(8|y, m)q(zly, m) 17

Under this mean field approximation, the approximate marginal
posteriors that maximize F can be found by iteratively applying the
following two update equations

q(6ly. m) = expl(In p(y. 0. 7Im))yiy. )]

q(zly, m) = exp[{In p(y, 0, 7lm)),cg1y,m] (18)

where (-), denotes the expectation with respect to g. While deriving the
right-hand side terms (the so-called “variational energies”) can be
complicated, once known they enable a very fast optimization scheme.

Variational Bayes for regression DCM

Having outlined the basic concepts of variational Bayes, we now present
an efficient VBL approach for rDCM, which results in a set of analytical
update equations for the model parameters and an expression for the
negative free energy. Under the VBL assumptions, update equations for
q0)Y, X) and ¢q(zY, X) — that is, for connectivity parameters and noise
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precision, respectively — can be derived as shown by Egs. (19) and (20).

Given the mean field approximation or factorization of the approx-
imate posterior over subsets of connections (see above), optimization
can be performed for each region independently. Technically, this
enables us to dissolve the problem of inverting a full adjacency matrix
of endogenous connectivity strengths into a series of variational
updates in which the posterior expectations of each subset (rows of
the A matrix) are optimized successively. Hence, without loss of
generality, we restrict the following derivation of the update equations
to a single region.

Update equation of 9:

Ing(0Y, X) = (Inp(@. 7, YIX)),(

(In N(Y:X0, 7'y ) + In N(Oip,, 20)>qm + const

y + const

T
_%(y - X0)'(Y - X0) — %(6 — 1) =510 — py) + const
Xy o ToT Xy 7T 1 rei Ts—1
= ——O0XX0+—0'XY—- 02,0+ 0 X, + const
28, B 2
Ty 7y

2 .
7y

., a,.,
—107[%)(5( + zg‘]a + eT[lXTY + 25‘,40] + const
ly

(19)

where X' is the inverse prior covariance matrix on connectivity
parameters, and a,, and 8, are the posterior shape and rate
parameters of the Gamma distribution on noise precision, respectively.

Here, we made use of (z),,, = %, with (-) denoting the expected value,
7|y

and the fact that all terms independent of § can be absorbed by the
constant term.

Update equation of 7:

Ing(zlY, X) = (Inp(0, 7, YIX)),q) + const

= (In N(Y:X0, 7" Iyyy) + In Gamma(z;a, By) .+ const

4(0)

T

= %m - 5((1/ - X0)' (Y - X)), + (ag=1) In7 — Bz + const

9(0)

N T
= - E(HTXTXH—ZF)TXTY +Y7Y) ) + (@=1) In7 = 7 + const

N . "
= Jhne- %(Y = Xpg) (Y = Xptg ) — %trace(X’XZely) +(@-DInt

— Pyt + const
(20

where N is the number of data points, and Hay and %, are the mean
and covariance of the posterior (Gaussian) density on connectivity
parameters, respectively. Here, we made use of (8),,, = Hay and the
fact that all terms independent of 7 can be absorbed by the constant
term. Comparing Egs. (19) and (20) to the logarithm of the multi-
variate normal distribution and to the logarithm of the Gamma
distribution, respectively, allows one to derive a set of simple update
equations for the sufficient statistics of the approximate posterior
densities ¢(]Y, X) and ¢(z]Y, X).

Final iterative scheme:

-1
a,,
Ty = [ D xTX + zg‘]

zly

Ky o1 -1
Hyy, = Zﬂl)' Vi XY+ Z Ho
zly
N
Ay, = ag + 5

T
1 1 T
ﬂﬂy =p, + E(Y - X:“my] (Y - XM&U) + Etmce(X szy) @1
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Since the update equations for ¢(4|Y, X) and g(z]Y, X) are mutually
dependent on each other, we iterate their updates until convergence to
obtain the optimal approximate distributions. More precisely, in the
current implementation of rDCM, the iterative scheme proceeds until
the change in 7 falls below a specified threshold (i.e., 10719). In future
implementations, we will explore the utility of using changes in
variational free energy within each iteration as the criterion for
convergence (for comparison, VBL typically uses a change in free
energy of 1/8 or less to terminate the iterations).

Having obtained expressions for the approximate posterior
densities for the connectivity and noise parameters, one can derive
an expression for the negative free energy F. As described above, F
serves as a lower-bound approximation to the log model evidence
which represents a measure of the “goodness” of a model, taking
into account both its accuracy and complexity (Friston et al., 2007;
Mackay, 1992; Penny et al., 2004; Stephan et al., 2009a). F is thus
routinely used to formally compare different candidate models and
decide which of them provides the most plausible explanation for
the observed data (Bayesian model selection, BMS). To do so, one
needs to compute the actual value of F, given the data and (a
current estimate of the) approximate posterior; the following
equations show how this is done in the case of rDCM.

As can be seen from Eq. (16), the negative free energy can be cast in
terms of the difference of the expected energy of the system (i.e., log-
joint) and the entropy of the approximate posterior:

F= maxw_ﬂy,x)[- Jfa@.4v.0m MdeT]

p0, 7, Y|X)
= (In p(@, 7, YIX))y9.) = {In g0, 7Y, X))y9.)
= (Inp(Yl0, 7, X))y9.c) + (I p(0))yg.0) + {In p(2))y0.)
= (In g(AlY, X)) 4.0y — (Ing(zlY, X)) y0.0) (22)

In the following, we outline the derivation of the individual
components of the negative free energy (see Lomakina, 2016):

Expectation of the likelihood:
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where ¥ denotes the digamma function.
Expectation of the prior on 6:
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(24)

where D is the number of connections entering the region.
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Expectation of the prior on 7:
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where I' is the Gamma function.
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Summing up the components from Egs. (23)—(27) yields an
estimate of the negative free energy for each individual region. The
negative free energy for the full model can then be computed by
summing over all regions of the model

F

5

™-

(28)

Synthetic data: six-region DCM

We assessed the face validity of rDCM in systematic simulation
studies, generating synthetic data for which the ground truth (i.e., the
network architecture and parameter values) was known. More pre-
cisely, we generated data from 5 synthetic linear DCMs with identical
driving inputs but distinct endogenous connectivity architectures
(Fig. 1). For all models, two block input regressors u, and u, served
as driving inputs and were specified to elicit activity in x; and x,,
respectively. Each activation block lasted 14.5 s and alternated with
baseline periods of the same length.

While driving inputs were kept identical across models, varying the
endogenous connectivity patterns yielded models of different complexity,
with the most complex model consisting of 20 parameters (model 1) and
the sparsest model of 12 parameters (model 5). Specifically, for model 1,
feedforward and feedback endogenous connections were set between x,,,
and x;,, and between x;,, and xs,;. Additionally, reciprocal connections
were assumed between x; and x,, as well as between x5 and x,. Model 2
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resulted from model 1 by discarding feedback connections, model 3 and 4
from further removing reciprocal connections either at the highest or
intermediate hierarchical level, respectively, and model 5 by considering
only feedforward connections from x,,, to x;,,, and from x;,, to xs4.

For each of these five models, 20 different sets of observations were
generated. To ensure the data were realistic, we sampled the generating
(“true”) parameter values of each simulation from the posterior
distributions of the endogenous and driving input parameters reported
in Frissle et al. (2016b). For each set of models and observations,
synthetic BOLD data was then simulated under different conditions
where we systematically varied the signal-to-noise ratio (SNR=[1, 3, 5,
10, 100]) and repetition time (TR=[2s, 1 s, 0.5 s, 0.25 s, 0.1 s]). Here,
SNR was defined as the ratio between standard deviation of the signal
and standard deviation of the noise (i.e., SNR = g;;,,,,,/6,;.), where the
noise term is specified as additive white Gaussian noise with zero
mean. This definition offers an intuitive measure of the ratio of the
variability of signal and noise, is a standard SNR measure in DCM and
well established for fMRI analyses more generally (Welvaert and
Rosseel, 2013). Under this definition, SNR levels of fMRI time series
used for DCM are often 3 or higher; this is because these extracted time
series result from a principal component analysis (over numerous
voxels in local volumes of interest) that suppresses noise. Evaluating
the accuracy of parameter estimation and model selection under the
different settings of SNR and TR allowed us to assess the performance
of rDCM as a function of data quality and sampling rate, respectively
(Figs. 2—4). Note that in all simulations of this initial paper, we used a
fixed (canonical) hemodynamic response function. In future work, we
will extend the model to account for variations in HRF over regions
(see Discussion).

Empirical data: core face perception network

For application of rDCM to empirical fMRI data, we used a
previously published fMRI dataset from a simple face perception
paradigm (the same dataset from which the generating parameter
values in the simulations above were sampled). A comprehensive
description of the experimental design and data analysis can be found
elsewhere (Frissle et al., 2016b, 2016c¢); here, we only briefly summar-
ize the most relevant information.

Participants and experimental design

Twenty right-handed subjects viewed either gray-scale neutral faces (F),
objects (O), or scrambled (Fourier-randomized) images (S) in the left (LVF)
or right visual field (RVF), while fixating a central cross (cf. Fig. 5A). Stimuli
were presented in a block design, with each block lasting 14.5 s during
which 36 stimuli of the same condition were shown (150 ms, ISI=250 ms).
Subsequent stimulus blocks were interleaved with a resting period of the
same length where only the fixation cross was shown.

Data acquisition and analysis

For each subject, a total of 940 functional images were acquired on
a 3-T MR scanner (Siemens TIM Trio, Erlangen, Germany) using a T -
weighted single-shot gradient-echo echo-planar-imaging (EPI) se-
quence (30 slices, TR=1450 ms, TE=25 ms, matrix size 64x64 voxels,
voxel size 3x3x4 mm?®, FoV=192x192 mm?, flip angle 90°). BOLD
activation patterns were analyzed using a first-level GLM (Friston et al.,
1995) to identify brain regions sensitive to the processing of faces
([2*F]-[O+S]), as well as to the visual field baseline contrasts (RVF,
LVF). Six regions of interest (ROIs) were selected, representing
occipital face area (OFA; Puce et al., 1996), fusiform face area (FFA;
Kanwisher et al., 1997), and primary visual cortex (V1), each in both
hemispheres (Fig. 5A). Peak coordinates of the ROIs were identified for
each subject individually (to account for inter-subject variability in the
exact locations). From the individual ROIs, time series were extracted
(removing signal mean and correcting for head movements), which
then entered rDCM analyses.
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rDCM analysis

The endogenous and driving input connectivity of the DCM was
specified as follows (Fig. 5B; model A): First, intra-hemispheric
endogenous forward connections were set between V1 and OFA, and
between OFA and FFA. Furthermore, reciprocal inter-hemispheric
endogenous connections were set among the homotopic face-sensitive
regions (Catani and Thiebaut de Schotten, 2008; Park et al., 2008; Van
Essen et al., 1982; Zeki, 1970). Second, inputs representing the visual
field of stimulus presentation drove neuronal activity in the contral-
ateral V1 (i.e., RVF influenced left V1, LVF influenced right V1). Third,
driving inputs representing the presentation of faces (FP) elicited
activity in the face-sensitive areas OFA and FFA in both hemispheres
(Frissle et al., 2016c).

Synthetic data: whole-brain DCM

In a final simulation analysis, we assessed the ability of rDCM to
infer effective connectivity in a large (whole-brain) network. To this
end, synthetic data was generated from a linear DCM including 66
brain regions (Fig. 6A and Supplementary Table S1). The network
was defined on the basis of the Hagmann parcellation (Hagmann
et al., 2008), which has been utilized frequently for whole-brain
connectomics (e.g., Deco et al., 2013b; Honey et al., 2009). To
adequately capture the network characteristics of the human brain
— for instance, with regard to small-world architecture, node
degree, path length, centrality of nodes, or modularity (Bullmore
and Sporns, 2009) — the endogenous connectivity architecture of
our whole-brain DCM was based on the average structural con-
nectome provided by the diffusion-weighted imaging work by
Hagmann et al. (2008). Specifically, we used the matrix of average
inter-regional fiber densities (Fig. 4 in Hagmann et al., 2008) and
included all connections with a weight larger than 0.06. This
threshold ensured that, under randomly sampling connection
strengths from the prior densities, the system remained stable
(i.e., all eigenvalues of the endogenous connectivity matrix were
negative). As diffusion-weighted imaging does not allow for detect-
ing the directionality of fibers, connected nodes were always
coupled by reciprocal connections (i.e., two separate parameters).
This resulted in 298 connections, each of which was represented by
a free parameter in the endogenous connectivity (A) matrix of
rDCM.

Additionally, two block input regressors, mimicking the presenta-
tion of visual stimuli in the left (LVF) and right visual field (RVF),
served as driving inputs, driving neuronal activity in the right and left
cuneus (primary visual cortex), respectively. In total, this resulted in
300 neuronal parameters that had to be estimated by rDCM (Fig. 6A).

For this model, 25 simulations with 20 observations (“subjects”)
each were created by sampling the generating parameter values from
the prior density over model parameters (multivariate normal distribu-
tion, see above). The 25 simulations differed with regard to the SNR
(i.e., 1, 3, 5,10, and 100) and TR (i.e.,2s,1s,0.5s, 0.25 s, and 0.1 s)
settings that were used for generating synthetic BOLD data.

Results
Synthetic data: six-region DCM

Model parameter estimation

First, we tested, using 5 different models and under various settings
of SNR and TR, whether rDCM can reliably recover the generating
(“true”) parameter values in a small network of 6 regions (Fig. 1). We
quantified the accuracy of parameter recovery by (i) the root mean
squared error (RMSE) between true and estimated parameter values,
and (i) the number of sign errors (SE), that is, the number of
parameters for which the estimated sign differed from ground truth.
The latter is a metric of interest because the interpretation of effective
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Fig. 1. Five models encoding different effective connectivity patterns of a six-region
network utilized for generating synthetic data. For all models, driving inputs (C matrix)
were identical — that is, the two block input regressors u; and u, were assumed to
modulate neuronal activity in x; and x,, respectively. On the contrary, endogenous
connectivity patterns varied across the five models, ranging from a (relatively) complex
model with 20 free parameters to a sparse model with 12 free parameters. For the most
complex model (i.e., model 1), feedforward and feedback endogenous connections were
set between x;, and x;,4, and between x3,4 and xs,¢. Additionally, reciprocal connections
were assumed between x3 and x4, as well as between x5 and x4. For the sparsest model
(i.e., model 5), connections were restricted to feedforward connections from x;, to x3/4,
and from x3,4 to xs5,5. The number of free parameters for the remaining models (i.e.,
models 2—4) ranged between these two “extremes” of the complexity spectrum. Note that
the two blocked input regressors u; and u, shown here represent only a section of the
driving input regressors (exemplifying the temporal relationship between the two
inputs), rather than the entire time course. The model architecture and the generating
parameter values were motivated from a recent study on the effective connectivity in the
core face perception network (Frissle et al., 2016b, 2016c¢).

connectivity often boils down to whether directed influences are
excitatory (positive) or inhibitory (negative).

As expected, we found a dependence of the RMSE on both the SNR
and TR, with the overall pattern being highly consistent across the
different models (Fig. 2): RMSE decreased with higher SNR and
shorter TR (higher sampling rate). Notably, in the case of high SNR
data (SNR=100) and ultra-fast data acquisition (TR=0.1s), rDCM
recovered the connection strengths of the generating parameters
almost perfectly (mean RMSE<0.02, for all models). While these
settings are not realistic for fMRI experiments, this is an important
observation because it serves as a sanity check for our rDCM
implementation. For more realistic settings (TR=1s, SNR=3), we
found the mean RMSE to range from 0.28 + 0.01 (mean =+ std) for
model 2 to 0.40 + 0.02 for model 1. With regard to sign errors, rDCM
could recover whether a connection was excitatory or inhibitory with
high precision (Fig. 3). More precisely, for four models (i.e., models 2—
5), we have not observed any sign errors regardless of the SNR and TR.
For model 1, sign errors occurred only for an SNR of 1, which
represents a challenging SNR scenario (Welvaert and Rosseel, 2013).

For comparison, we also assessed the accuracy of parameter
recovery using the default VBL implementation in DCM10 (as im-
plemented in SPMS8, version R4290). In brief, VBL recovered the
generating parameter values with high accuracy with a mean
RMSE<0.2 and hardly any sign error, regardless of the particular
model. Sign errors only occurred for model 2 for the most challenging
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Fig. 2. Parameter recovery of rDCM in terms of the root mean squared error (RMSE). Each of the five subplots illustrates the results for one model (see Fig. 1 for a visualization of the
model space). Within each subplot, the RMSE is shown for various combinations of the signal-to-noise ratio (SNR) and the repetition time (TR) of the synthetic fMRI data. The various
settings of SNR (i.e., 1, 3, 5, 10, and 100) are shown along the x-axis of each subplot. The different TR settings are illustrated by the differently colored curves and were as follows: 2 s
(blue), 1 s (red), 0.5 s (green), 0.25 s (grey), and 0.1 s (black). Results show a clear (and expected) dependence of the RMSE on SNR and TR, with parameter recovery becoming more
accurate for better data quality (i.e., higher SNR) and higher sampling rates (i.e., shorter TR).
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Fig. 3. Parameter recovery of rDCM in terms of the number of sign errors (SE). Each of the five subplots illustrates the results for one model (see Fig. 1 for a visualization of the model
space). Within each subplot, the number of sign errors is shown for various combinations of the signal-to-noise ratio (SNR) and the repetition time (TR) of the synthetic fMRI data. The
various settings of SNR (i.e., 1, 3, 5, 10, and 100) are shown along the x-axis of each subplot. The different TR settings are illustrated by the differently colored curves and were as
follows: 2 s (blue), 1 s (red), 0.5 s (green), 0.25 s (grey), and 0.1 s (black). Results indicate that rDCM recovers whether a connection was excitatory or inhibitory with high precision, with
sign errors only occurring for the most complex model (model 1). Notably, for model 1, sign errors were only observed for challenging noise scenarios (i.e., SNR=1). In all other cases,

rDCM accurately recovered the sign of the true generating parameter.

scenario (TR=2s, SNR=1). This excellent performance of VBL is not
surprising given that VBL does not need to resort to simplifying
assumptions as made in the current implementation of rDCM (in
particular, assumptions of partial independence between connectivity
parameters). These assumptions affect the accuracy of rDCM most
severely for challenging scenarios with low SNR and long TR. On the
other hand, our analyses also indicated that for short TRs (<0.5 s), and
thus cases with a large number of data points, VBL rarely converged
within the limit of SPM8’s default upper bound on iterations, which
deteriorates parameter recovery performance. Overall, our simulations
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demonstrate that for realistic settings for SNR and TR, rDCM and VBL
yield qualitatively comparable results in terms of parameter recovery.

Bayesian model selection

In a next step, we aimed to establish the face validity of rDCM with
regard to Bayesian model selection under the different settings of SNR
and TR. To this end, we tested whether the model that actually
generated the data (the “true” model) was assigned the largest model
evidence — that is, for each of the 25x5 synthetic datasets (with 20
observations/“subjects” for each dataset), we inverted the five different
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Fig. 4. Accuracy of Bayesian model comparison for rDCM. Each subplot illustrates the
model comparison results for a specific combination of the signal-to-noise ratio (SNR)
and the repetition time (TR) of the synthetic fMRI data. The various settings of TR (i.e.,
2s,15,0.55,0.25s, and 0.1 s) are shown along the x-axis and the different SNR settings
(ie., 1, 3, 5, 10, and 100) are shown along the y-axis. For each combination of TR and
SNR (i.e., each subplot), a matrix is shown that summarizes the fixed effects Bayesian
model selection results for each of the five different models (see Fig. 1 for a visualization
of the model space). Specifically, each row in these matrices represents the posterior
model probabilities of all DCMs that were used for model inversion (estimated) of the
DCM that was used to actually generate the synthetic fMRI data (true). Specifically, each
row signals whether rDCM was able to recover the true data-generating model
architecture among the five competing alternatives. Hence, a diagonal structure (i.e.,
highest posterior probability on the diagonal) indicates that rDCM was able to recover
the model that actually generated the data. Note that higher posterior probabilities are
color-coded in warm colors (yellowish).

DCMs and compared the negative free energies by means of fixed
effects BMS (Stephan et al., 2009a). To this end, we computed the
posterior model probability of the estimated model (Fig. 4). Notably, to
rule out that any of our BMS results were confounded by outliers
(against which fixed effects analyses are vulnerable), we additionally
compared negative free energies by means of random effects BMS
(Stephan et al., 2009a; as implemented in SPM12, version: R6685) and
found highly consistent results (data not shown).

As above, we observed the expected dependence of model selection
performance on SNR and sampling rate. Specifically, model selection
became more accurate for higher SNR and shorter TR. For challenging
scenarios with low signal-to-noise ratios (i.e., SNR=1), rDCM fre-
quently failed to identify the correct model, except for extremely fast
data acquisitions (TR=0.1 s) where we find perfect recovery of the data-
generating model architecture (Fig. 4, top row). More specifically, in
the case of noisy data, rDCM showed a tendency to selecting the
simplest of all models in our model space (Model 5) for TR>0.5 s. This
“Bayesian illusion” — where a simpler model, nested in a more complex
data-generating model, has higher evidence — is not an infrequent
finding when dealing with nested models that are only distinguished by
parameters with weak effects or strongly correlated parameters, whose
effects become difficult to detect in the presence of noise.

Having said this, given a reasonably high signal-to-noise ratio in the
synthetic fMRI data (i.e., SNR>3), rDCM recovered the true model in
the vast majority of cases with hardly any model selection error (Fig. 4,
rows 2-5). Even for relatively slow data acquisitions (TR=2 s), there
was only one case for which a “wrong” model had higher model
evidence compared to the generating (“true”) model. More specifically,
in the case of model 1 being the “true” model, rDCM falsely assigned
highest evidence to model 2, suggesting that the presence of feedback
connections can sometimes be difficult to detect — a finding which has
been highlighted previously (Daunizeau et al., 2011b).
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Again, we compared rDCM to VBL by assessing model selection
performance for the default implementation of DCM10. As expected,
VBL recovered the true model perfectly with no model selection error.
Consistent with our observations on parameter recovery reported
above, differences between rDCM and VBL were thus only observed
for challenging scenarios (SNR=1), where the limitations of the current
version of rDCM are likely to become most severe. On the contrary,
both rDCM and VBL provide accurate model selection results for
realistic SNR and TR settings.

Computational burden

To illustrate the computational efficiency of rDCM, we compared
run-times for rDCM with the time required to perform the respective
model inversion using the default VBL implementation in DCM10 (as
implemented in SPM8, version R4290). Specifically, we evaluated the
run-times for all different settings of TR, under a fixed SNR of 3
because we expected SNR to exert a smaller impact on run-times as
compared to TR, which essentially determines the number of data
points. Our run-time results should be interpreted in a comparative,
not absolute, manner, given their dependency on computer hardware.

Generally, model inversion under rDCM was considerably faster
than VBL across all TR values (Table 1). For instance, for TR=1 s,
rDCM was on average four orders of magnitude faster than VBL.
Additionally, our analyses suggested that the computational efficiency
and feasibility of VBL-based DCM for large numbers of data points (as
would also be the case for DCMs with many regions) rapidly
diminishes. This behavior was not only reflected by the long run-times
reported in Table 1, which ranged from approximately 1,000—40,000 s
per model inversion, but also (as mentioned above) by the fact that for
short TRs (and hence many data points), the VBL algorithm rarely
converged within the limit of SPM8’s default upper bound on iterations
(see the results for TR<0.5 s in Table 1).

By comparison, rDCM handles large amounts of data more grace-
fully due to the algebraic form of the likelihood function. In rDCM,
model inversion took less than half a second, with no significant
increase in computation time when increasing the number of data
points. This highlights the computational efficiency of rDCM and points
towards its suitability for studying effective connectivity in very large
networks, a theme we return to below.

It should be noted that in our comparative evaluation of rDCM and
VBL, there is an additional computational saving under rDCM’s fixed
form assumptions for the HRF. In other words, conventional DCM
optimizes the parameters of the hemodynamic response function
separately for each region. This means that the number of parameters
— that determines the number of solutions or integrations required to
estimate free energy gradients — increases linearly for hemodynamic
parameters and quadratically for neuronal (connectivity) parameters.
This means that the VBL analyses could be made more efficient by
adopting the rDCM (fixed form) assumptions for the HRF; however,
the computational savings would not be very marked because the key
(quadratic) determinant of computation time depends upon the
number of connections.

Empirical data: core face perception network

Model parameter estimation

We applied rDCM to an empirical fMRI dataset of a simple face
perception task, which had been used previously to investigate intra-
and inter-hemispheric integration in the core face perception network
(Frassle et al., 2016a, 2016b, 2016c¢). Individual connectivity para-
meters were estimated using model A (Fig. 5B, top), which then
entered summary statistics at the group level (one-sample t-tests,
Bonferroni-corrected for multiple comparisons). We found all para-
meter estimates to be excitatory except for the inhibitory self-connec-
tions (Fig. 5C, left). Specifically, we found excitatory driving influences
of visual stimuli (LVF and RVF) on activity in right and left V1,
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Fig. 5. Effective connectivity in the core face perception network as assessed with rDCM for an empirical fMRI dataset. (A) BOLD activation pattern shows regions that were more
activated during the perception of faces as compared to objects and scrambled images, as determined by the linear face-sensitive contrast: [2*F]-[O+S]. Reproduced, with permission,
from Frissle et al. (2016b) (top), as well as regions that were activated when stimuli were presented in the right (bottom, left) or left visual field (bottom, right). Results are thresholded
at a voxel-level threshold of p < 0.05 (FWE-corrected). (B) Two alternative models for explaining effective connectivity in the core face perception network. Both models assumed the
same endogenous connectivity (A matrix) — that is, intra-hemispheric feedforward connections from V1 to OFA and from OFA to FFA in both hemispheres, as well as reciprocal inter-
hemispheric connections among the face-sensitive homotopic regions. Additionally, both models assumed driving inputs (C matrix) to the four face-sensitive regions (i.e., OFA and FFA,
each in both hemispheres) by the processing of faces (FP). Critically, model A (top) and model B (bottom) differed in their driving inputs to left and right V1. While model A was
biologically plausible by assuming that stimuli in the left (LVF) and right visual field (RVF) modulated activity in the contralateral V1, model B assumed these driving inputs to be
swapped. (C) Group level parameter estimates for the endogenous and driving input connectivity of model A as estimated using rDCM (left) and VBL (right). Results are remarkably
consistent across the two methods. The strength of each connection is displayed in terms of the mean coupling parameter (in [Hz]). Significant (p < 0.05, Bonferroni-corrected)
connections are shown in full color; connections significant at an uncorrected threshold (p < 0.05) are shown in faded colors. L=left hemisphere; R=right hemisphere; A=anterior;
P=posterior; LVF=left visual field; RVF=right visual field.

respectively. Additionally, and in line with the well-established role of
bilateral OFA and FFA in face processing, we found excitatory face-
specific driving influences on activity in all four regions of the core face
perception network. With regard to the endogenous connectivity, we
found excitatory connections both within each hemisphere and be-
tween homotopic face-sensitive regions in both hemispheres, suggest-
ing inter-hemispheric integration within the core face perception
network — in line with previous observations from functional
(Davies-Thompson and Andrews, 2012) and effective connectivity
studies (Frissle et al., 2016c).

In an additional analysis step, we assessed the effective connectivity

in the same model (i.e., model A) using DCM10 (as implemented in
SPMS8, version R4290) in order to compare results from rDCM and
VBL qualitatively. Note that a quantitative match of parameter
estimates by rDCM and VBL cannot be expected since the generative
models of these two frameworks are quite different. Three major
differences are worth reiterating: First, while the hemodynamic model
in classical DCM is nonlinear and contains region-specific parameters,
rDCM models the hemodynamic response as a fixed, linear convolution
of neuronal states. Second, rDCM uses a mean field approximation (or
partial independence assumption) that ignores potential dependencies
amongst parameters affecting different regions. Third, in contrast to
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Fig. 6. Parameter recovery of rDCM in terms of the root mean squared error (RMSE) and the number of sign errors (SE) for the large (whole-brain) network. (A) Endogenous
connectivity architecture (A matrix) among the 66 brain regions from the Hagmann parcellation. Endogenous connectivity was restricted to the most pronounced edges of the human
structural connectome by only selecting those connections for which an average inter-regional fiber density larger than 0.06 has been reported in Hagmann et al. (2008). Additionally,
two block input regressors u; and u,, mimicking the effect of visual stimulation in the right and the left visual field, were assumed to modulate neuronal activity in left and right cuneus
(primary visual cortex), respectively. The brain network was visualized with the BrainNet Viewer (Xia et al., 2013), which is available as open-source software for download (http://www.
nitrc.org/projects/bnv/) (left). An actual “observation” of the endogenous connectivity, generated by sampling connection strengths from the prior density on the endogenous
parameters (right). A complete list of the anatomical labels of the 66 parcels can be found in the Supplementary Table S1. (B) The RMSE and (C) the number of sign errors are shown
for various combinations of the signal-to-noise ratio (SNR) and the repetition time (TR) of the synthetic fMRI data. The various settings of SNR (i.e., 1, 3, 5, 10, and 100) are shown
along the x-axis of each subplot. The different TR settings are illustrated by the differently colored curves and were as follows: 2 s (blue), 1 s (red), 0.5 s (green), 0.25 s (grey), and 0.1 s
(black). (D) Number of sign errors (SE) for the different SNR and TR settings when restricting the analysis to parameter estimates that showed a non-negligible effect size (i.e., the 95%
Bayesian credible interval of the posterior not containing zero). For these parameters, the number of SE was considerably reduced, suggesting that the sign of an endogenous influences

(i.e., inhibitory vs. excitatory) could be adequately recovered for parameters of large effect size. L=left hemisphere; R=right hemisphere; A=anterior; P=posterior; LVF=left visual field;
RVF=right visual field.

the log-normal prior on noise variance in classical DCM, rDCM uses a tory. One difference between VBL and rDCM parameter estimates
Gamma prior on noise precision. These differences in likelihood concerned the inter-hemispheric connections among bilateral FFA,
functions and priors between rDCM and VBL translate into quantita- which were inhibitory for VBL. These inhibitory effects, however, did
tively different posterior estimates (see Eq. (15)). not reach significance for the connection from right to left FFA (t(;9)=-

Qualitatively, however, parameter estimates by VBL were very 1.43, p=0.17), and only at an uncorrected statistical threshold for the

similar to rDCM (Fig. 5C, right). In brief, all six driving inputs were connection from left to right FFA (t(19)=-2.79, p=0.01).
excitatory (although this was not significant for the face-specific driving
input to left FFA when correcting for multiple comparisons). Similarly,
the intra-hemispheric forward connections in both hemispheres and
the inter-hemispheric connections among bilateral OFA were excita-

Bayesian model selection
In order to evaluate the Bayesian model selection (BMS) perfor-
mance of rDCM in an empirical setting, we constructed a second model

Table 1

Computational burden of rDCM and VBL quantified in terms of the approximate run-times (in s) required for estimating a single linear DCM (i.e., model 1-5, here labelled as m1-mb5,
respectively) under various settings of the repetition time (TR) of the synthetic fMRI data. Note that run-times are reported exemplarily for a realistic signal-to-noise ratio (SNR) of 3.
Run-times are given as the mean + standard deviation of the 20 simulations, as well as the range.

Computational burden (s)

TR=2s TR=1s TR=0.5s TR=0.25s TR=0.1s
Mean+std  Range Mean + std Range Mean =+ std Range Mean + std Range Mean =+ std Range
rDCM ml 020+0.12 0.14-0.72 0.20+0.12 0.14-0.69 0.23+0.13 0.17-0.79 0.24+0.12 0.19-0.74 0.37£0.41 0.26-2.10
m2 0.18+0.11 0.13-0.63 0.19+0.10 0.14-0.62 0.21+£0.12 0.15-0.72 0.26 +0.12 0.20-0.78 0.37+£0.37 0.26-1.94
m3 0.16+0.11 0.11-0.62 0.16 + 0.09 0.12-0.53 0.18+0.11 0.13-0.62 0.20+0.10 0.15-0.62 0.33+£0.32 0.23-1.70
m4 0.18+0.11 0.12-0.62 0.19+0.10 0.14-0.61 0.21+£0.12 0.15-0.74 0.27+0.14 0.20-0.85 0.37+£0.38 0.26-1.98
m5 0.19:0.11 0.12-0.67 0.20+0.11 0.15-0.68 0.23+£0.14 0.17-0.82 0.27+0.13 0.20-0.81 0.38 £+ 0.40 0.26-2.08

VBL ml  1157+477  830-2498 3589 +1153  2432-5448  7932+1169  6303-9986 17704 £1124  16484-19143 43633 +3904  40449-51119
m2 1970+£563  893-2452 3566 + 597 2380-4048 7811 +939 6859-10349 14804 + 760 14229-16357 37322 +£2367  35248-41464
m3  1592+436 1075-2294 3497 + 567 2507-4209 7228 +444 6715-7935 13741 + 801 13198-16924 35738 £3265  32106-43923
m4 1177 +£277  987-2283 2649 + 469 2214-4295 6654 + 693 5946-8289 14301 +£1265  13387-18147 33791 +1838  32455-37599
m5  819+55 733-920 2166 + 161 1930-2574 5725 + 560 5217-7184 13691 £1165  12422-15907 32014 +1934  30354-35322
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(model B; Fig. 5B, bottom) and inverted this model under rDCM and
VBL, respectively. Importantly, in this alternative model, the visual
baseline driving inputs were permuted compared to the original model
(model A). In contradiction to neuroanatomy, model B thus proposed
that visual stimuli presented in the periphery entered ipsilateral V1
(i.e., LVF influenced left V1, RVF influenced right V1). Hence, we
expected both rDCM and VBL to select model A as the winning model.

We used random effects BMS (Stephan et al., 2009a; as implemen-
ted in SPM12, version: R6685) to compare the two alternative models
based on their negative free energies. For both, rDCM and VBL, model
A was the decisive winning model with a protected exceedance
probability of 1.00 in either case (Rigoux et al., 2014). This indicates
that rDCM not only yields BMS results comparable to VBL (with
equally high confidence), but also selects the expected and biologically
more plausible model amongst two competing hypotheses.

Computational burden

We evaluated the run-time of rDCM and VBL for both models A and
B. Again, we would like to highlight that the reported values should be
interpreted in a comparative, not absolute, manner as they depend on
the specific hardware and software settings. Consistent with our
previous observations in the context of simulations, we found model
inversion under rDCM to be on average three orders of magnitude
faster than VBL (Table 2). More precisely, rDCM was highly efficient
taking less than half a second per model, whereas the time required for
model inversion under VBL was on the order of 15 min.

Regression DCM for large-scale networks

Model parameter estimation

In a final step, we used simulations to evaluate the utility of rDCM
for inferring effective connectivity in a large (whole-brain) network. We
chose a network comprising 66 brain regions and 300 free connectivity
parameters (Fig. 6A), where model structure was based on the
structural connectome provided by the diffusion-weighted imaging
work by Hagmann et al. (2008). As above, we computed the root mean
squared error (RMSE) and the number of sign errors (SE) to quantify
the accuracy of parameter recovery.

Consistent with our previous findings from the synthetic and
empirical dataset, we observed a dependence of both the RMSE and
SE on SNR and TR, indicating that parameter estimation improved
with increasing data quality (i.e., higher SNR) and sampling rates (i.e.,
shorter TR). For a realistic setting of fMRI data (TR=1 s, SNR=3), the
RMSE was 0.29 £0.01 (Fig. 6B). In the case of high SNR data
(SNR=100) and ultra-fast data acquisition (TR=0.1 s), the RMSE was
0.09 + 0.02. While the RMSE for this case of “ideal data” is larger than
in the simulations using the much smaller six-region network above,
errors are still in an acceptable range, indicating a promising scalability
of rDCM.

It is worth highlighting that even for “ideal data”, one would not
expect rDCM (nor VBL or any other model inversion method) to exactly

Table 2

Computational burden of rDCM and VBL quantified in terms of the approximate run-
times (in s) required for estimating a single linear DCM (i.e., model A or model B) of the
intra- and inter-hemispheric connectivity in the core face perception network. The run-
times required for inverting the model are given as the mean + standard deviation of the
20 subjects, as well as the range.

Computational burden (s)

Mean =+ std Range
rDCM Model A 0.24+0.03 0.21-0.28
Model B 0.26 + 0.04 0.21-0.32
VBL Model A 827.3+£233.4 519.7-1422.2
Model B 973.3+371.7 491.6-1706.3
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recover the “true” parameter values that were used to simulate the data.
This is because Bayesian methods optimize the posterior rather than
the likelihood, and the influence of the prior exerts a bias on model
parameter recovery whenever the prior mean does not coincide exactly
with the parameter values used for data generation. This can produce
counterintuitive results: even when both prior and likelihood have
means of the same sign, parameter dependencies (which arise from the
mathematical form of the likelihood function) can lead to a posterior
mean of the opposite sign (see Supplementary Fig. S1 for a graphical
visualization). For pronounced parameter interdependencies (which
are unavoidable in large-scale models with hundreds of free para-
meters), this sign flipping can occur even when prior mean and data
mean (likelihood) are identical, provided their means are not too far
away from zero.

Given these considerations, it was unsurprising to find that rDCM
of the whole-brain model suffered from considerably more sign errors
than the small six-region DCMs described above (Fig. 6C). Again, this
was a function of SNR and TR: While only 4.0+ 1.9 sign errors
occurred for high quality data (TR=0.1s, SNR=100), we observed
45.7 + 4.6 sign errors in more realistic settings (TR=1s, SNR=3),
corresponding to an error rate of 15.2 + 1.5%.

As illustrated by Supplementary Fig. S1, the likelihood of sign
flipping having occurred is smaller for parameters whose posterior
mean deviates strongly from zero. In a second analysis, we therefore
restricted the evaluation of the sign errors to those connections for
which zero was not within the 95% Bayesian credible interval of the
posterior density. In this way, we asked whether estimates of connec-
tions that provided sufficiently large evidence for an effect could be
trusted (in terms of revealing the correct direction of influence). When
focusing on these connections, sign errors were considerably reduced
(Fig. 6D). Specifically, even for (relatively) slow image acquisitions and
noisy data (TR=2s; SNR=1), the number of sign errors was in an
acceptable range (19.5 + 5.1, corresponding to an error rate of 6.5 +
1.7%). For more realistic image acquisition and SNR settings (TR=1 s;
SNR=3), the number of sign errors reduced to 12.4 + 3.3 (error rate of
4.1 +1.1%). Ultimately, when approaching ideal data (TR=0.1s;
SNR=100), hardly any sign error was observed (2.2 + 1.1, correspond-
ing to an error rate of 0.7 +0.4%). This suggests that parameter
estimates representing a non-trivial effect size (i.e., the 95% Bayesian
credible interval not containing zero) correctly indicate the direction of
influences, rendering rDCM a meaningful tool for inferring effective
connectivity patterns in large (whole-brain) networks.

Computational burden

We evaluated the run-time of rDCM for the whole-brain DCM for
all possible combinations of SNR and TR. Again, the reported values
should be interpreted in a qualitative, not absolute, manner as they
depend on the specific hardware and software settings. We found
model inversion to be extremely efficient even for such a large number
of brain regions and free parameters. More specifically, estimation of
the model using rDCM took on average 2—3 s (Table 3), suggesting that
our approach scales easily with the number of brain regions (data
points) and, thus, makes inference on the effective connectivity in large
(whole-brain) networks computationally feasible.

Discussion

In this paper, we have introduced regression DCM (rDCM) for
functional magnetic resonance imaging (fMRI) data as a novel variant
of DCM that enables computationally highly efficient analyses of
effective connectivity in large-scale brain networks. This development
rests on reformulating a linear DCM in the time domain as a special
case of Bayesian linear regression (Bishop, 2006) in the frequency
domain, together with a highly efficient VB inference scheme. Using
synthetic and empirical data, we first demonstrated the face validity of
rDCM for small six-region networks before providing a simulation-
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Table 3
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Computational burden of rDCM quantified in terms of the approximate run-times (in s) required for estimating the large (whole-brain) DCM consisting of 66 brain regions, with a
realistic human structural connectome and 300 free parameters. Run-times are shown for various combinations of the signal-to-noise ratio (SNR) and the repetition time (TR) of the
synthetic fMRI data. The run-times required for inverting the model are given as the mean + standard deviation of the 20 simulations, as well as the range.

SNR Computational burden (s)

TR=2s TR=1s TR=0.5s TR=0.25s TR=0.1s

Mean =+ std Range Mean =+ std Range Mean + std Range Mean + std Range Mean =+ std Range
1 1.7+0.3 1.2-2.3 1.8+0.4 1.3-2.7 1.4+0.2 1.1-1.7 1.8+0.3 1.2-2.4 3.1+0.2 2.8-3.4
3 1.6 £0.4 1.1-2.7 1.7+0.6 1.2-3.1 1.4+0.3 1.1-1.8 1.7+0.3 1.4-2.4 3.2+£0.2 2.8-3.5
5 1.6 +0.4 1.2-2.8 1.8+0.4 1.4-3.0 1.4+0.2 1.1-1.9 1.8+0.4 1.3-2.5 32102 2.9-3.7
10 1.7+0.4 1.2-2.6 24+0.3 1.9-3.0 1.5+0.2 1.2-1.7 1.8+0.3 1.3-2.4 3.0+£0.3 2.8-3.9
100 1.8+0.4 1.5-2.6 2.0+0.3 1.5-2.9 1.5+0.1 1.3-1.7 1.6 +0.2 1.3-2.0 3.2+0.3 2.8-3.8

based proof-of-principle for using rDCM to infer effective connectivity
in a large network consisting of 66 brain regions, with a realistic human
structural connectome and 300 free parameters to be estimated.

Our initial simulations using a six-region network (a typical size of
conventional DCMs) indicated that, as expected, the accuracy of rDCM
— with regard to both parameter estimation and model comparison —
varies as a function of the signal-to-noise ratio (SNR) and the
repetition time (TR) of fMRI data. Overall, our results demonstrated
reasonable performance with regard to parameter recovery and model
selection accuracy but also highlighted the importance of sufficiently
high SNR (3 or higher) and fast data acquisition (TR < 2 s) for veridical
inference. In situations where these conditions are not met (e.g., for
subcortical regions with inherently low SNR), the current formulation
of rDCM might not give reliable results. Our simulations suggest that
the early version of rDCM reported in this paper is particularly
promising when exploiting sophisticated scanner hardware and/or
acquisition sequences that boost SNR and reduce TR. Fortunately,
the development trends in fMRI move in the required direction. For
example, high-field MRI (7T and beyond) allows for considerably
higher SNRs (Duyn, 2012; Redpath, 1998) and 7 T MR scanners are
now becoming widely available. Similarly, the application of ultra-fast
inverse imaging and multiband EPI techniques enable very high
sampling rates (with TRs far below one second) with whole-brain
coverage (Lin et al., 2012; Moeller et al., 2010; Xu et al., 2013).
Alternatively, even conventional data acquisition focused on regions of
interest and using only a few slices enables TRs with only a few
hundred milliseconds (for a previous DCM example, see Kasess et al.,
2008). Taking advantage of such methodological advancements may
help to further exploit the full potential of rDCM for inferring effective
connectivity from fMRI data. However, whether the benefits of short
TRs for rDCM translate from simulations to real world datasets needs
to be examined by empirical validation studies; for example, by testing
whether the accuracy of connectivity-based decoding of diagnostic
status (cf. Brodersen et al., 2011) is improved by short TRs.

Having established the validity of rDCM for six-region networks, we
then provided a proof-of-principle that rDCM is suitable for inferring
effective connectivity in a whole-brain network comprising 66 nodes, with
connectivity according to the human structural connectome reported in
Hagmann et al. (2008) and 300 free parameters to estimate. These analyses
suggested that rDCM can adequately recover connectivity parameters in
large networks whose size is an order of magnitude larger than currently
established DCM applications. Importantly, our run-time analyses suggest,
that the approach scales easily and can be applied to much larger networks,
provided that enough data are available. Specifically, run-time analyses did
not indicate a significant increase in computation time when increasing the
number of data points. Even for the shortest TR, corresponding to roughly
13,500 data points (per brain region), run-time was still only on the order
of 2—3 s. The striking efficiency of rDCM rests on the fact that — due to the
algebraic form of the likelihood function in the frequency domain — the
computationally most expensive operation on each iteration is essentially
the inversion of an NxN covariance matrix (whereas, in VBL, it is the
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computation of an NxN Hessian, in addition to integrating the state
equation).

These findings suggest that rDCM has promising potential for the
exploration of effective connectivity patterns in large (whole-brain)
networks. We presently see four main application domains. First, given
the computational efficiency of rDCM - which only requires few
seconds for the inversion of whole-brain DCMs including an estimate
of the negative free energy as an approximation to the log model
evidence — it may serve as a useful tool for network discovery (Biswal
et al., 2010; Friston et al., 2011). Second, it may enable the application
of graph theoretical approaches to effective connectivity patterns from
large networks, which have so far been restricted to structural and
functional connectivity (for a comprehensive review, see Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). Extending graph theory to
effective connectivity estimates in networks of non-trivial size opens up
exciting new possibilities for studying the functional integration of the
human brain. Specifically, given the inherently directed network of the
human brain, graph-theoretical measure such as small-worldness,
node degree, path length, centrality of nodes, or modularity will only
provide an accurate view on the network topology underlying brain
dynamics when accommodating the directionality of edges. Third,
regardless of whether brain-wide effective connectivity estimates are
used by themselves or undergo further (e.g., graph-theoretical) proces-
sing, rDCM may serve useful for computational phenotyping of patients
with diseases for which global dysconnectivity is suspected, such as
schizophrenia (Bullmore et al., 1997; Friston and Frith, 1995;
Pettersson-Yeo et al., 2011; Stephan et al., 2006). Finally, due to its
high computational efficiency, rDCM would be ideally suited for
initializing the starting values of the VBL algorithm for standard
DCM analyses of effective connectivity. This could be achieved by
running rDCM repeatedly from multiple starting points (either defined
as a grid in parameter space or randomly chosen) and using the model
with the highest evidence to provide a starting point for subsequent
VBL under conventional DCM. This might not only considerably speed
up model inversion under the current DCM framework but potentially
also prevent the algorithm from getting stuck in local extrema, against
which local optimization schemes like VBL are vulnerable (Daunizeau
et al., 2011a).

So far, there has only been one study that extended DCM for fMRI
to larger networks (Seghier and Friston, 2013). This approach used
functional connectivity measures to provide prior constraints that
bounded the effective number of free parameters by essentially
replacing the number of nodes with a (lower) number of modes (the
principal components of the functional connectivity matrix). Seghier
and Friston (2013) described their approach by an application to a
network consisting of 20 regions, and it remains to be tested whether
this approach also generalizes to a larger number of network nodes as
required for whole-brain connectomics under commonly used parcella-
tion schemes (e.g., Deco et al., 2013b; Hagmann et al., 2008; Honey
et al., 2009).

Investigating connectivity in large-scale networks by means of
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mathematical models has been addressed from a different methodolo-
gical angle using biophysical network models (BNM; Deco et al., 2013a,
2013b; Honey et al., 2007, 2009; Sanz-Leon et al., 2015; Woolrich and
Stephan, 2013). BNMs of fMRI data typically consist of up to 10°
network nodes, where each node is represented by a neural mass or
mean-field model of local neuronal populations. Nodes are linked by
long-range connections which are typically based on anatomical
knowledge from human diffusion-weighted imaging data or from tract
tracing studies in the macaque monkey. The resulting network
dynamics are then fed into an observation model to predict fMRI data.
The complexity of BNMs, however, has so far prevented estimating the
strengths of individual connections. Existing applications have typically
focused on simulations under fixed parameters (Deco et al., 2013a;
Honey et al., 2007) or used a simplified model allowing for the
estimation of a global scaling parameter (Deco et al., 2013b).
Critically, such a single parameter has an indiscriminative effect on
all connections, which cannot capture the selective changes in subsets
of long-range connections evoked by cognitive processes. The ability of
rDCM to estimate the strengths of individual connections in large-scale
networks may represent a starting point for further convergence
between DCMs and BNMs, as has been predicted repeatedly in the
recent past (Deco and Kringelbach, 2014; Stephan et al., 2015).

Notably, whole-brain connectivity analyses face a number of
potential pitfalls and challenges, regardless whether structural, func-
tional or effective connectivity measures are obtained (Fornito et al.,
2013; Kelly et al., 2012). Among others, this includes the correct
identification of nodes and edges, the highly complex and dynamic
structure of noise in fMRI, and the development of rigorous statistical
frameworks for the analysis of whole-brain graphs. For instance,
macroscopic criteria for parcellating the brain into functionally mean-
ingful and biologically valid nodes are only just emerging (Glasser
et al., 2016). Valid node identification is critical for accurate mapping
of inter-regional connectivity (Smith et al., 2011) and ill-defined nodes
can have profound impact on the inferred organization of the brain as,
for instance, derived from graph-theoretical measures (Fornito et al.,
2010). Similarly, statistical frameworks need to be refined to address
key challenges in the analysis of whole-brain connectomes — including
the multiple comparison problem, graph thresholding, and the inter-
pretation of topological measures (Fornito et al., 2013). A systematic
and thorough assessment of these issues will therefore be of major
importance for whole-brain connectivity analyses in the near future.

We would like to emphasize that the current implementation of
rDCM only represents a starting point of development and is subject to
three major limitations when compared to the original DCM framework.
First, due to the replacement of the hemodynamic forward model with a
fixed hemodynamic response function, rDCM does not presently capture
the variability in the BOLD signal across brain regions and individuals
(Aguirre et al., 1998; Handwerker et al., 2004). Critically, accounting for
the inter-regional variability is crucial to avoid confounds when inferring
effective connectivity from fMRI data (David et al., 2008; Valdes-Sosa
et al., 2011). In forthcoming work, we will improve rDCM by replacing
the fixed HRF with a basis set of hemodynamic response functions (i.e., a
canonical HRF, and its temporal and dispersion derivatives; Friston
et al., 1998), which can capture variations in the latency and duration of
hemodynamic responses. This basis set is almost identical to the
principal components of variation with respect to the hemodynamic
model used in DCM, conferring biophysical validity to the set (Friston
et al.,, 2000). An alternative approach to account for inter-regional
variability in hemodynamic responses would be to use a linearized
version of the hemodynamic model in DCM as described in previous
work (Stephan et al., 2007).

Second, in its current implementation, rDCM ignores possible
interdependencies between connections that affect different regions.
This is because we assumed the measurement noise to be an indepen-
dent random vector with noise precision 7 and neglected its depen-
dency on the endogenous connectivity parameters. We will improve
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this approximation by introducing appropriate covariance components
(similar to standard approaches to non-sphericity correction in con-
ventional GLM analyses; Friston et al, 2002) and augment our
inference scheme to estimate these additional hyperparameters.

Third, rDCM is restricted to linear models (i.e., DCMs that include
an A and C matrix) and thus cannot account for modulatory influences
by experimental manipulations (B matrix). A bilinear extension to the
rDCM approach is challenging in that the bilinear term of the neuronal
state equation in the time domain induces a convolution of the
experimental input and the noise term in the frequency domain. This
leads to a non-trivial structure of the error covariance matrix.
Addressing these three major limitations in forthcoming extensions
will further improve the utility of rDCM for inferring effective
connectivity among neuronal populations from fMRI data.

Apart from addressing the limitations mentioned above, there are
two further important extensions that we will present in forthcoming
work. First, while the present model is designed to work with
experimentally controlled perturbations (the driving inputs in rDCM)
and hence task-related fMRI, it is possible to extend the model to
describe the “resting state”, i.e., unconstrained cognition in the absence
of external pertubations. A second important advance concerns the
introduction of sparsity constraints to our approach (see Lomakina,
2016). This sparse rDCM (srDCM; Frissle et al., in preparation) is of
likely importance for the analysis of large-scale networks — both
because a complete description of larger networks complicates inter-
pretability, but also because the available measurements may not offer
sufficient information (i.e., number of data points per parameter) to
allow for precise estimation of all connectivity parameters. The
formulation of rDCM as a linear regression problem makes this
extension of rDCM straightforward, as we can exploit well-established
methods for sparse linear regression and feature selection such as
LASSO (Tibshirani, 1996), elastic net regularization (Zou and Hastie,
2005), or Spike-and-Slab priors for Bayesian linear regression
(Hernandez-Lobato et al., 2013). The ensuing automatic pruning of
connections could be further informed by including information about
the strength or likelihood of anatomical connections (cf. anatomically
informed priors in DCM; Stephan et al., 2009b). These methods all
implement some form of sparsity hyperpriors on the parameters; either
implicitly or explicitly. An alternative to these bespoke models of
sparsity would be to use Bayesian model reduction (Friston et al.,
2016) where parameters are removed (and thus connectivity graphs are
reduced) using an efficient scoring of models. In our context, this may
represent an efficient alternative way to introduce sparsity — based
upon the posterior densities furnished by rDCM. In summary, aug-
menting the current rDCM approach with the ability to impose sparsity
constraints may result in a powerful tool for automatic “pruning” of
whole-brain graphs to the most essential connections.

Finally, we would like to emphasize that the analysis of effective
connectivity in whole-brain networks will not only prove valuable for
studying the neural basis of cognitive processes in the healthy human
brain, but may also contribute to a deeper understanding of patho-
physiology of psychiatric and neurological disorders. A translational
neuromodeling approach to neuroimaging data has potential for
establishing novel diagnostic and predictive tools, enabling the emer-
gence of Computational Psychiatry and Computational Neurology
(Deco and Kringelbach, 2014; Friston et al., 2014b; Huys et al.,
2011; Maia and Frank, 2011; Montague et al., 2012; Stephan and
Mathys, 2014; Stephan et al., 2015). Here, one important goal concerns
the stratification of patients from heterogeneous spectrum diseases
into mechanistically more well-defined subgroups that have predictive
validity for individual treatment responses. Despite some encouraging
first successes of insights into heterogeneous spectrum diseases based
on connectivity inferred from fMRI data (e.g., Anticevic et al., 2015;
Brodersen et al., 2014; Dima et al., 2009; Yang et al., 2014),
considerable challenges remain that have so far prevented the success-
ful transition to clinical applications (Stephan et al., 2015). The
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computational approach introduced in this paper may serve useful in
this regard since rDCM represents a step towards a practical and
computationally extremely efficient approach to obtaining directed
estimates of individual connections in networks of non-trivial size,
rendering computational phenotyping of whole-brain dynamics a
feasible endeavour.

Software note

A MATLAB implementation of the rDCM approach introduced in
this paper will be made available as open source code in a future release

of the TAPAS Toolbox (www.translationalneuromodeling.org/
software).
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