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When negotiating changeable real-world environments, humans face 
a set of learning problems involving different forms of uncertainty, 
in which the weighting of new evidence and prior expectations must 
be dynamically adjusted. Imagine opening your sock drawer and 
finding a pineapple inside. How surprised should you be? Under 
normal circumstances, you would expect to see socks, but if your 
four-year-old niece is visiting, you might adjust your expectations 
to suit a more volatile environment, thereby lessening any surprise. 
However, overestimating how volatile your bedroom is may result 
in compromised learning of the association between the cue (sock 
drawer) and outcome (socks) in the first place. In other words,  
aberrant representation of volatility may impair the dynamic  
formation of appropriate prior expectations, thereby rendering both 
the pineapple and the socks mildly surprising. Bayesian theories of 
perception in people with ASD (although we abide by the terminology  
of the Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5), we wish to acknowledge that the term ‘autistic 
person’ is preferred by many people on the spectrum)1 propose that 
reduced weighting of prior expectations relative to sensory inputs 
leads to the perceptual atypicalities associated with the condition2–7; 
however, no studies to date have actually quantified the learning  
dynamics by which sensory expectations are formed in ASD.  
Here we sought to empirically address whether volatility learning is 
compromised in ASD6,7.

Computationally, the amount of weight given to a surprising event 
is determined by its precision (inverse variance, proportional to 
learning rate α), with α determining the rate of integration over past 
events to predict future outcomes. Although computational studies 
of decision-making regarding rewards and punishments have shown 

that participants adapt their rate of learning about action–outcome 
contingencies in response to changes in environmental volatility8–10, 
these models do not fit individual differences in volatility learning. 
However, knowing whether to disregard an unexpected outcome 
or to take it seriously (i.e., whether to adopt a high or low learn-
ing rate about cue–outcome probabilities) depends on the preci-
sion of one’s beliefs about environmental change (i.e., whether one 
adopts a high or low learning rate regarding volatility). The recent 
application of hierarchical learning models has allowed for the  
quantification of individual learning about both probabilistic relation-
ships and how these relationships change over time (volatility)11–14, 
but no studies have applied these models to understand learning about 
uncertainty in ASD.

In a state in which uncertainty about one’s beliefs is high (for exam-
ple, in volatile conditions), top-down prior expectations should be 
suppressed relative to new bottom-up sensory evidence, to promote 
new learning about the current environmental context15. With their 
broad distribution and extensive connectivity, neuromodulatory sys-
tems are ideally positioned to facilitate the widespread changes in 
neural gain necessary to support such a function16. Noradrenaline 
(NA), in particular, is thought to signal contextual change, thus lead-
ing to enhanced bottom-up, thalamocortical transmission of sensory 
information17–19. Recent neurocomputational accounts of autism have 
proposed that aberrant signaling of volatility may result in pathologi-
cal neural gain consistent with the cognitive and perceptual profile of 
autism, such as enhanced perceptual functioning, sensory overload 
and context insensitivity4–6,20.

Here, we tested these computational and neurobiological hypothe-
ses by examining how adults with ASD responded to experimentally 
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manipulated changes in their sensory expectations that indepen-
dently assessed changes in the category of a stimulus, the informa-
tiveness of a cue predicting its appearance and changes in these 
associations over time. To do so, we used a hierarchical Bayesian 
model that allowed us to characterize each participant’s learning 
‘fingerprint’, specifically the simultaneous learning about multiple 
different sources of environmental uncertainty11. We hypothesized 
that adults with ASD would show reduced behavioral and neuro-
physiological responses in statistical contrasts of ‘unexpected’ (UE) 
and ‘expected’ (E) trials based on the experimental ‘ground truth’ 
(for example, reduced surprise when surprise would be expected 
for neurotypical (NT) individuals). This hypothesis is in line with 
results of previous studies showing a decreased distinction between 
repeated and novel stimuli in ASD21–23. However, we hypothesized 
that computational modeling of the actual learning process for each 
individual would demonstrate an increased tendency to represent 
and respond to environmental volatility in ASD, thus compromising  
learning about probabilistic relationships in the environment. 
Accordingly, we hypothesized that adults with ASD would show 
increased sensitivity of the pupil dilatory response to computational 
metrics of prediction error, which estimate when each individual 
is actually surprised.

RESULTS
We used a modified version of a common probabilistic associative 
learning task24 to test the effects of learned expectations and sensory 
noise on behavior (reaction times (RT), error rates) and indices of 
phasic NA function (pupillometry)25 in adults with ASD (n = 24) 
and age- and intelligence quotient (IQ)-matched NT adults (n = 25) 
(Online Methods).

Participants performed binary classification of images as either 
faces or houses, and images had high, medium or no noise added.  
A tone preceding each image was highly, weakly or not predictive of a 
given outcome, and these image–tone associations changed across time 
(Fig. 1), such that trials could be categorized as E, UE or neutral (N).  
This process created a ground-truth structure in the environment 
that participants had to implicitly learn. In contrast to reinforcement-
learning26,27, implicit-motor-learning28 and serial-reaction-time29 
tasks that have examined sensitivity to probability manipulations in 
ASD, this task addresses perceptual associative learning and explicitly  
manipulated three different forms of uncertainty (categorical sensory  
uncertainty, probabilistic uncertainty and environmental uncertainty).  
When a participant received an unexpected outcome, the outcome 
might have reflected a probabilistically aberrant event, or it might have 
signaled that the environmental context had changed. To quantify  
individual learning about these different forms of uncertainty, RTs 
were modeled with a Bayesian belief-update scheme11 (Online 
Methods). The model implied each participant’s beliefs about these 
quantities, as reflected in the sequence of cue–outcome associations 
received by each participant and their trial-by-trial responses and 
response times.

Behavior
First, we examined behavioral responses, and E and UE trials were 
categorized according to the ground truth.

Reaction times. Reaction times (RTs) were subjected to a 3 × 3 
mixed ANOVA with within-subject factors of expectedness (E, N 
and UE), noise (high, medium or none) and a between-participant 
factor of group (ASD and NT). There was a significant main effect 
of expectedness (F(2,94) = 25.48, P < 0.001) and noise (F(2,94) = 

13.60, P < 0.001), thus indicating that RTs were slower for UE and 
high-noise stimuli relative to E and low-noise stimuli. A significant 
main effect of group (F(1,47) = 4.83, P = 0.03) indicated that, in  
general, the participants with ASD were slower to respond than the 
NT participants. Crucially, only the expectedness × group interaction 
was significant in this analysis (F(2,94) = 4.47, P = 0.014; Fig. 2a). 
The noise × group (F(2,94) = 0.06, P = 0.94), noise × expectedness 
(F(4,188) = 0.47, P = 0.76) and expectedness × noise × group interac-
tions were not significant (F(4,188) = 1.31, P = 0.28). These results 
suggested that for both groups, increasing sensory noise resulted 
in slower RT (Supplementary Fig. 1), but adults with ASD showed 
reduced modulation of RT as a function of learned expectations.  
This result was consistent with a decreased influence of prior infor-
mation on perception and action in ASD2, although future studies 
should explore how learned expectations affect perceiving structure 
in true noise or 50/50 composite images in which reliance on prior 
beliefs should be greater.

The results were unchanged when the identical analysis was carried 
out on log reaction times (Supplementary Table 1).

Subtracting the RTs to E outcomes from the RTs to UE outcomes 
provided a low-level index of ‘surprise’, which was significantly greater 
than zero in both groups (ASD, t(23) = 4.66, P < 0.001; NT, t(24) = 7.25, 
P < 0.001) but was attenuated in the ASD group relative to the NT group 
(t(47) = 3.51, P = 0.001; Fig. 2b). These results suggested less distinction 
between UE and E outcomes in ASD, though this effect was conditioned 
upon adequate learning of the ground truth.

To ensure that the group difference in UE – E RT persisted over and 
above participants’ mean ‘baseline’ RT and error rates, we conducted a 
linear regression to predict UE – E RT with group (ASD and NT), mean 
RT and mean errors as predictors. This model was significant overall 
(F(3,48) = 5.58, P = 0.002), and the only significant predictor of the UE 
– E RT difference was group (t = −2.87, P = 0.008). Mean RT (t = −1.08. 
P = 0.28) and mean error (t = 1.06, P = 0.29) were not significant predic-
tors. Importantly, this analysis demonstrated that the diminished effects 
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of behavioral surprise in participants with ASD persisted even when 
the variance associated with general response speeds and accuracy was 
included in the model.

Additional analyses confirmed that this key finding of group 
differences in UE – E RTs remained present when control analy-
ses accounted for the effects of the speed–accuracy trade-off 
(Supplementary Fig. 2) and general group differences in caution 
of responding (Supplementary Fig. 3). We do, however, recognize 
that the slower overall responses (and higher accuracy) in the ASD 
group may indicate a tendency to manage uncertainty with increased 
response thresholds, which could be tested with drift diffusion mod-
els30,31 in future studies in which error rates are higher by design.

Error rates. The same analysis as above was conducted for error rates. 
There was a significant main effect of expectedness (F(1.5,70.5) = 11.71,  
P < 0.001) and a significant group × expectedness interaction (F(2,94) = 6.34,  
P = 0.003), thus indicating that the NT group made more errors in 
UE relative to E trials, whereas the ASD group did not (Fig. 2c).  
The main effect of noise was not significant in this analysis (F(1.7,78.8) 
= 0.08, P = 0.92), and neither were the noise × group (F(2,94) = 0.29,  
P = 0.75), noise × expectedness (F(4,188) = 0.76, P = 0.55) and expect-
edness × noise × group interactions (F(4,188) = 1.28, P = 0.28).

The results were very similar when the identical analysis was car-
ried out on log error rates (Supplementary Table 1).

Subtracting the percentage errors to E outcomes from those to 
UE outcomes provided a low-level index of surprise, which was sig-
nificantly greater than zero in only the NT group (ASD, t(23) = 1.11,  
P = 0.28; NT, t(24) = 3.65, P = 0.001) and was attenuated in the ASD 
group relative to the NT group (t(33.4) = 2.83, P = 0.007; Fig. 2d).

Relation to symptoms. To explore the relationship between behav-
ioral surprise and ASD symptom severity we conducted a multiple 
linear regression predicting the UE – E RT measure with the Autism 
Diagnostic Observation Scale (ADOS-2) communication, social 
reciprocal interaction scores and IQ as predictors. This model was 
significant (F(3,23) = 3.28, P = 0.04), and communication score 
was the only significant predictor (t = −2.57, P = 0.018; Fig. 3). IQ  
(t = 1.45, P = 0.16) and social reciprocal interaction scores (t = 0.95, 
P = 0.35) did not predict behavioral surprise.

A second regression model that also contained baseline RT as a 
predictor narrowly missed the overall significance threshold (F(6,23) 
= 2.41, P = 0.07), and communication score was once again the only 
significant predictor (t = −2.81, P = 0.012). A third regression model, in 
a reduced sample size (Online Methods), additionally included sensory 
sensitivity scores as a predictor of UE – E RT. This model was not sig-
nificant (F(4,21) = 1.28, P = 0.32), and the only predictor approaching 
significance was, again, communication score (t = −1.89, P = 0.076).

Communication, as measured by the ADOS-2, predominantly 
weights stereotyped and repetitive speech and conversational reciproc-
ity, which arguably necessitate reflexive behavioral responses to change. 
Future studies should examine the specificity of this link between gen-
eral behavioral adaptations to learned expectations and communica-
tion abilities, especially as measured by different instruments.

Nonclinical replication. Beyond the range of clinical phenotypes seen 
in people diagnosed with ASD, a wider continuum of social-communi-
cative ability is expressed as autistic traits in the general population32. 
Encouragingly, the relationship between our behavioral measure of sur-
prise (UE – E RT) and autistic tendency was replicated in an independ-
ent nonclinical sample (n = 57) of participants characterized according 
to expression of autistic traits (Supplementary Fig. 4). This result not 

only bolsters confidence in our clinical finding but additionally sup-
ports generalization of our findings to the broader autism spectrum in 
the wider population.

Responses to different stimulus types. Finally, control analyses indi-
cated that there were no group differences in response time or accu-
racy across the face and house stimuli (Supplementary Fig. 5).

Computational modeling
To investigate learning about distinct kinds of uncertainty in ASD, 
we adopted a participant-specific Bayesian model to track the role of 
uncertainty on behavior (log RTs). In the hierarchical Gaussian filter 
(HGF)11, beliefs are updated via prediction errors, with dynamic learn-
ing rates (α) at each level (i) influenced by uncertainty about the accu-
racy of current beliefs and environmental volatility (Fig. 4a). In the 
version of the HGF used here (introduced in ref. 33), learning occurs 
simultaneously on three coupled levels of an uncertainty hierarchy 
(x1, x2 and x3). Level 1 (x1) addresses uncertainty about outcomes 
(face or house), level 2 (x2) addresses uncertainty about probabilities 
(cue–outcome contingencies), and level 3 (x3) addresses uncertainty 
about environmental change (volatility). Additional model details can 
be found in Online Methods and Supplementary Table 2.

Model validation. First, to ensure that the HGF performed well 
as a model describing the behavior of our participants, we fit three 
alternative learning models to the data and compared them to the 
HGF with random-effects Bayesian-model selection (BMS). Relative 
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to simple reinforcement-learning (RL) models with fixed (RW) and 
dynamic (SK1) learning rates and a two-level HGF in which volatil-
ity updates were eliminated, the three-level HGF was the best model 
for explaining the data by a considerable margin (Online Methods 
and Supplementary Fig. 6). Importantly, BMS evaluates the relative 
plausibility of competing models in terms of their log evidences by 
quantifying the trade-off between the accuracy (fit) and complexity 
of a model, and it accounts for the possibility that the observed vari-
ability in log model evidence could be due to chance. Additionally, 
the three-level HGF model simulations captured the principal group 
differences in the behavioral effect of expectation on RT (Online 
Methods and Supplementary Fig. 7).

Predicting diagnostic status. A summary of group differences in each 
of the estimated model parameters is presented in Supplementary 
Figure 8. A binary logistic regression model predicting group status 
(ASD = 1, NT = 0), with all eight model parameters as predictors was 
significant (χ2 = 26.83, P = 0.001), and the overall prediction success 
was 81.6% (76% ASD, 88% NT), with cross-validated prediction success  
of 68%. The Wald statistic demonstrated that outcome uncertainty (β2,  
P = 0.043), phasic volatility (β4, P = 0.006) tonic volatility at the third 
level (ω3, P = 0.024) and baseline log RT (β0, P = 0.007) made a significant  
contribution to prediction (Fig. 4b).

Interestingly, these significant predictors predominantly per-
tained to the third level of the HGF, i.e., learning about environ-
mental volatility. ω3 can be understood as capturing ‘metavolatility’ 
(i.e., the tonic volatility of the phasic volatility, and the higher values 
in the ASD group indicated a belief in a world in which instabil-
ity itself is instable (Supplementary Fig. 8). β4 captures the modu-
lation of log RT in response to phasic volatility; here, the smaller 
(negative) values in the NT group (Supplementary Fig. 8) indicated  
that when beliefs about volatility increased, participants became more 
attentive and responded faster. In contrast, the larger (positive) values 
in the ASD group (Supplementary Fig. 8) indicated that increased 
beliefs about volatility led to a slower reaction time. In general, these 
findings indicated difficulties in representing and responding to 
environmental change in ASD, specifically an increased tendency to 
expect the unexpected.

Learning-rate update in response to volatility. From the HGF, we 
inferred the trialwise rate of learning about two different sources of 
information: probabilistic outcomes (α2) and the rate of learning 
about environmental change (α3). When the environment is vola-
tile, people should give more weight to recent sensory outcomes in 
building expectations about what they will see next (for example, 
adopt a high α); in contrast, they should give information from 
the distant past more weight when the environment is stable (for 
example, adopt a low α)8,9. To test the hypothesis that individuals 
with ASD have difficulties in flexibly updating their rate of learning 
(i.e., precision weighting) in response to environmental change, we 
examined the change (∆) in α2 (probability) and α3 (environment) 
when switching from stable (violet in Fig. 1) to volatile (green in 
Fig. 1) periods of the task. We compared the change in α2 and α3 
between these two periods, across the groups. This analysis revealed 
a trend toward a main effect of group (F(1,47) = 0.26, P = 0.061), 
a significant main effect of α type (F(1,47) = 6.07, P = 0.017) and 
crucially an α type × group interaction (F(1,47) = 9.80), P = 0.003). 
Follow-up with independent-sample t tests revealed that the ASD 
group did not update α2 as much as the NT group (t(47) = −2.37,  
P = 0.02), whereas the ASD group updated α3 more than the NT 
group (t(47) = 3.16, P = 0.03; Fig. 4c).

Average learning rates. To examine learning overall, we calculated 
average values for α2 and α3 for each participant. This analysis 
revealed no main effect of α type (F(1,47) = 2.61, P = 0.11), no main 
effect of group (F(1,47) = 2.01, P = 0.16) and no group × α type  
interaction (F(1,47) = 2.54, P = 0.12), thus suggesting that, in general, 
both groups were able to learn this task equally well.

Predicting learning-rate update from tonic volatility. Finally, because 
the HGF estimation does not fit α2 and α3 directly, we ran two linear 
regression models separately predicting ∆α2 and ∆α3 to determine which 
of the two ω parameters drove these differences in learning rate. In each 
case, the model was significant (∆α2, F(2,48) = 68.94, P < 0.001, R2 = 0.75; 
∆α3, F(2,48) = 102.53, P < 0.001, R2 = 0.82). The results indicated that 
∆α2 was positively predicted by ω2 (t = 2.72, P = 0.009), thus suggesting 
that a tendency to believe that cue–outcome associations were unstable 
was associated with a larger update in ∆α2 when switching from stable 
to volatile phases of the task. Interestingly, ω3 negatively predicted ∆α2  
(t = −8.89, P > 0.001), thus indicating that a tendency to believe that  
instability was unstable drove a smaller update in α2 in response to vola-
tility. This result was consistent with our finding that the participants 
with ASD, who tended to have smaller ∆α2 (Fig. 4c), showed reduced 
behavioral surprise (Fig. 2b) and also larger ‘metavolatility’ estimates 
(Fig. 4b). For the model predicting ∆α3, both of the ω parameters were 
significant positive predictors (ω2, t = 7.88, P < 0.001; ω3, t = 14.24,  
P < 0.001). For the participants with ASD, who, on average, showed larger 
∆α3, this result was consistent with a tendency toward beliefs in the insta-
bility of both cue–outcome associations and instability itself.

Pupillometry
Predictive coding descriptions of ASD depart from normative Bayesian 
theories in that they make explicit predictions about the neurobio-
logical basis of precision, namely the action of neuromodulators 
such as NA, which control the gain on cortical responses (prediction 
errors)3,4,6. Increased NA signaling in ASD has been suggested by 
elevated blood plasma levels34 and increased arousal, i.e., heart rate 
variability35, but no studies have examined phasic NA function in the 
context of learning about uncertainty in ASD. To do so, we acquired 
concurrent pupillometry in a reduced subset of the sample (Online 
Methods). The phasic pupil response to surprising outcomes (ground 
truth contrast of UE – E trials) revealed a significant increase in pupil 
size in NT participants (Fig. 5a), which was consistent with findings 
from many previous studies25. In agreement with the behavioral data 
(Fig. 2b,d), the ASD group did not show this distinction between UE 
and E trials (Fig. 5a). This pattern mirrored previous findings in the 
domains of electrophysiology (reduced mismatch negativity in ASD 
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and smaller P300 (refs. 36,37), and blood oxygen level–dependent 
imaging (reduced functional magnetic resonance imaging repetition 
suppression in ASD21,23)) but in the novel domain of pupillometry. 
However, this notion of surprise is conditioned upon adequate learning  
of the ground truth, and our computational analysis indicated that 
participants with ASD and the NT participants showed a dissociation 
in how they estimated volatility and adapted their learning rates in 
response to the changeability of the environment (Fig. 4b,c).

Computational pupillometry analysis. The HGF provided a 
nuanced and individualized trial-by-trial learning fingerprint and 
provided better characterization when participants were actually 
surprised as a function their personal learning process, namely 
‘high-level’ precision-weighted prediction errors (PEs) about 
changes in cue–outcome contingency (ε3). Here, the learning rate 
α3 depended on the precision weight on the PE and was propor-
tional to the update of environmental volatility (Online Methods). 
As such, ε3 is a model-based measure of high-level surprise that 
is formally related to the dynamic learning about environmental 
change, in which we observed group differences (Fig. 4c). Applying 
multiple regression across every trial and every time point in the 
pupil time trace, we found a sustained positive relationship between 

pupil size and precision-weighted PEs (ε3) in the participants with 
ASD (Fig. 5b), and this relationship was significantly different from 
that in the NT group and from zero. Furthermore, these strong 
effects persisted when we controlled for the UE – E ground-truth 
contrast, trialwise differences in fixation compliance, mean RT 
and outcome image type (face/house), all of which were included 
in the model as covariates (Online Methods). Additional analyses 
revealed that the volatility learning rate (α3) and the probability 
learning rate (α2) were not encoded in the pupil response in either 
group (Supplementary Fig. 9; analysis examining the relationship 
between precision-weighted PEs in specific (volatile/stable) phases 
of the experiment in Supplementary Fig. 10).

Pupillometry control analyses. Given the possibility that people with 
ASD might look at face stimuli differently from people without ASD38, 
the stimulus duration was purposefully made short (150 ms) to prevent 
saccades. Nonetheless, to ensure that there were no differences between 
the groups in fixation compliance across the stimulus types (faces and 
houses), we conducted a repeated-measures ANOVA on the mean 
absolute deviation (MAD) from fixation (in degrees of visual angle) 
across outcome image type (face and house) with a between-subject 
factor of group. All main effects and interactions in this analysis were 
nonsignificant (Supplementary Table 1).

To examine group differences in tonic pupil size (thought to be a 
measure of general noradrenergic tone39), we compared the average of 
the z-scored pupil measurement across all trials with an independent- 
samples t test. The results demonstrated no group differences in tonic 
pupil size in this sample (t(23) = 0.36, P = 0.72).

Finally, control analyses revealed that there were no group dif-
ferences in fixation compliance across conditions (Supplementary  
Fig. 11) or the relationship between pupil size and simple behavior, 
such as trialwise RT (Supplementary Fig. 12). Raw pupil traces for 
each group are shown in Supplementary Figure 13.

DISCUSSION
In this study, behavioral (RT/error rates) and pupillometric results 
based on the experimental ground truth converged on the finding  
of a decreased distinction between unexpected and expected 
outcomes in ASD (Figs. 2 and 5a), in agreement with the results 
of many previous studies across a range of methods reporting 
decreased surprise in ASD21,23,36,37. Crucially, however, this  
low-level notion of E and UE trials assumed optimal or at least 
adequate learning of the ground truth. However, the statistical 
regularities that underlie the sensory world and shape expectations 
are changeable, and humans must learn about different kinds of 
uncertainty to adaptively adjust the weighting of prior expectations 
and sensory inputs. Knowing whether to disregard an unexpected 
outcome or to take it seriously (i.e., whether to adopt a high or 
low learning rate about cue–outcome probabilities (α2)) depends 
on the precision of one’s beliefs about environmental change 
(i.e., whether a high or low learning rate about volatility (α3) is 
adopted). The present data extend previous work by specifically 
demonstrating that overestimating volatility in the face of environ-
mental change—at the expense of learning about probabilistically 
aberrant events—characterizes the behavior of adults with ASD 
during perceptual inference (Fig. 4c).

Furthermore, computational pupillometry analyses indicated 
heightened encoding of trialwise surprise in phasic noradrenergic 
responses in ASD (Fig. 5b). Thus, under the assumption that pupil 
size is an index of NA release from the locus coruleus40, these results 
suggested increased phasic neuromodulatory signaling in ASD. NA 
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is believed to change cortical gain in response to surprise, specifically  
salient events indicating that the global context has changed (cf. 
‘unexpected uncertainty’15,25). Here, our computational pupillom-
etric analysis indicated a strong relationship between noradrenergic 
responsivity and precision-weighted prediction errors in partici-
pants with ASD. In agreement with our other model-based results  
(Fig. 4b,c), these findings again supported over-reactivity to environ-
mental change in ASD, but in the context of physiological measures 
that index phasic neuromodulatory function. The NA system’s sign-
aling more high-level surprise in ASD may suggest atypical cortical 
gain during sensory processing, thus resulting in a state of dispro-
portionate receptiveness to sensory inputs. Aberrant phasic NA (i.e., 
precision on prediction errors4,6) may alter the signal-to-noise ratio 
of cortical responses41,42, broaden the tuning functions of sensory 
responses and subsequently improve discrimination behavior43. Thus, 
aberrant NA function may offer a neurobiological perspective on the 
profile of sensory-processing strengths and weakness experienced by 
people on the spectrum.

Importantly, these findings provide preliminary empirical evidence 
for neurobiologically informed Bayesian accounts of autism that 
emphasize aberrant representation of volatility and consequently inap-
propriate setting of gain (precision) on cortical responses (prediction 
errors)4,6 under conditions of uncertainty. A recent pharmacological 
study using the HGF has indicated that noradrenaline antagonism 
selectively impairs volatility learning13, in agreement with the raised 
pupillometric response to surprise about volatility reported here in 
the adults with ASD (Fig. 5b). We hypothesize that the noradrenergic 
locus coruleus and its coupling with the anterior cingulate cortex 
(ACC)8,10 ratifies estimated volatility and that the downstream gain 
modulations act on the precision of cortical responses that are behav-
iorally relevant to the task at hand. Atypical social prediction error 
processing in the gyral surface of the ACC has recently been reported 
in autism44, but whether differences in processing in the ACC region 
extend to nonsocial tasks with explicit computational models and 
manipulations of volatility remains to be seen. Carefully designed 
neuroimaging and neuropharmacology studies will be necessary to 
link these (presumed) noradrenergic effects, and the mathematical 
anatomy of uncertainty11, to hierarchical processing in the brain12. 

Additionally, although we emphasize the role of noradrenaline here, 
we also acknowledge the likely importance of its direct precursor, 
dopamine, and the complementary relationship with acetylcholine 
and the signaling of expected uncertainty15. All three of these neuro-
modulators are likely candidates in the neurobiological mechanisms 
underlying responses to environmental change in ASD.

From a Bayesian perspective, the simplest way in which persistent 
overweighting of all sensory inputs (relative to prior expectations) 
might occur would be a generally larger outcome α, reflecting chronic 
and inflexible overweighting of recent, relative to past, sensory his-
tory. Such an explanation is implied by conservative interpretations 
of nonhierarchical Bayesian accounts of ASD2 and predictive process-
ing accounts that emphasize ‘uniform’ inflexibly high precision in 
sensory processing3. However, by logical extension, beyond a single 
ambiguous sensory event, all Bayesian accounts suggest that dynamic 
learning about structural regularities (i.e., the formation of priors) 
is probably compromised in ASD2–7. Under the aberrant precision 
account of ASD, problems with processing volatility under condi-
tions of sensory ambiguity are hypothesized to underlie the difficul-
ties faced by people on the spectrum4–6. For this reason, we designed a 
task to capture behavior under orthogonal manipulations of expecta-
tions and sensory noise and built a model equipped with the ability 
to reveal learning about volatility.

The recent proposal that nonhierarchical reinforcement-learning 
models can directly address predictive coding theories of ASD3 is per-
haps too simplistic, not least because predictive coding is largely regarded 
as a neural-process theory, and therefore behavioral or modeling results 
in the absence of a proxy for brain function can only speak to such an 
account but are not truly able to test it. Motivated by these claims, a rela-
tively recent study has found no differences in learning-rate malleability 
in autistic children during a reward-learning task modeled with a delta 
learning rule45. Notably, however, that study found no group differences 
in simple behavior in that task. Here, we made a specific behavioral pre-
diction on the basis of previous research (reduced surprise in ASD) and 
a specific computational prediction to explain this behavior (aberrant 
learning about volatility). We therefore designed a model sufficiently 
complex to address simultaneous hierarchical learning. Using Bayesian-
model comparison, we found (Supplementary Fig. 6) that the simplest 
learning model (similar to that used previously in the context of reward 
learning45) performs most poorly in explaining participant behavior. 
Nonetheless, if it is the case that learning in the face of volatility is com-
promised in adults with autism (as reported here under conditions of 
sensory noise) but not children (as indicated previously in the context 
of reward learning45), this would be an important discovery. It will be 
crucial for future studies to use the same computational models and 
behavioral paradigms in adults and children to inform understanding of 
how autism affects cognition across the lifespan, especially because some 
features of the disorder can become more severe with age46.

Conclusion
The surprise that you might experience after finding a pineapple in 
your sock drawer depends on the strength of your prior expectation 
to see socks. The results of this study suggest that adults with autism 
show a tendency to overestimate the volatility of the sensory environ-
ment, at the expense of learning to build stable expectations that lead 
to adaptive surprise. In other words, adults with autism may be mildly 
surprised by both the pineapple and the socks. Heightened encoding 
of prediction errors in pupil-size measures is consistent with neurobio-
logically focused Bayesian accounts of autism that emphasize neural- 
gain impairments due to aberrant neuromodulatory funcion4–6. The 
distinct but complementary results provided by the ground truth and 
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Figure 5 Pupillometry results. (a) Plot in which the solid yellow line 
shows the cluster of time points when the UE – E group difference was 
significantly positive in the NT participants, and the black solid line shows 
when the difference for NT participants was significantly greater than that 
of participants with ASD (2,000 permutations; familywise error (FEW)  
α = 0.05, two tailed). (b) Plot in which the blue solid line indicates when 
participants with ASD showed a significant pupil response to precision-
weighted prediction errors (ε3) that was greater than zero, and the black 
solid line shows when this pupil response was significantly different in 
ASD compared with NT participants (2,000 permutations; FWE α = 0.05, 
two tailed). NT, n = 14; ASD, n = 11. The x axis represents time since 
outcome. Shaded area indicates s.e.m. (across participants) for the beta 
at each time point. AU, arbitrary units.
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computational levels of analysis in our study indicate the utility of 
computational approaches in improving understanding of neurode-
velopmental and psychiatric conditions with the aim of influencing 
clinical practice47–49. This study provides insights into the behavioral,  
algorithmic and physiological mechanisms that underlie learning 
about, and responses to, environmental change in ASD. Different 
patterns of learning may emerge when the environment is more or 
less changeable, when expectations are formed explicitly or when  
outcomes are not incidental but are instead tied to reward and/or social 
evaluation10,50. It will be important for future research to address these 
domains and to test volatility learning in larger cohorts and people 
with different intellectual abilities across the autism spectrum.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. 29 adults with ASD and 26 NT volunteers came to the UCL 
Institute of Cognitive Neuroscience during a testing day involving different 
researchers. Two adults with ASD did not complete this test, owing to time 
constraints or an inability to tolerate the sounds and/or to focus adequately 
on the test. After data examination, participants with more than 20% over-
all errors or mean reaction times (RTs) >2 s.d. from their respective group-
mean RT were excluded from subsequent analysis to ensure the validity 
of the Bayesian modeling, thus yielding 24 participants in the ASD group  
(18 males and 6 females; mean age, 35.5 years; age range, 20–61 years) and 
25 participants in the NT group (16 males and 9 females; mean age, 36 years; 
age range, 19–62 years). The ASD and NT groups were matched according to 
age (t(47) = 0.54, P = 0.87).

Participants with ASD had previously been diagnosed by an independent clini-
cian, according to the DSM-IV51 or ICD-10 criteria52 (19 with Asperger syndrome; 
3 with autistic disorder; 1 with high-functioning autism; and 1 with atypical autism). 
The Wechsler Adult Intelligence Scale (WAIS, third edition, UK) had previously 
been administered to assess IQ53, and participants were matched on the basis of 
full-scale scores (ASD mean, 117; ASD range, 80–142; NT mean, 120; NT range, 
99–145; t(47) = −0.93, P = 0.36). The Autism Diagnostic Observation Schedule 
(second edition)54 assessment was completed by a qualified administrator to assess 
symptom severity in the participants with ASD. The mean ADOS total score was 
9.9 (range 4–19). The mean scores for the communication and reciprocal social 
interaction subscores were 3.3 (range, 0–7) and 6.6 (range, 4–12), respectively.

An additional 57 NT volunteers were studied as part of a replication of our 
key behavioral results (25 males and 32 females; mean age, 27.1 years; age range, 
19–50 years) and additionally completed the Autism Spectrum Quotient (AQ) 
questionnaire, a 50-item self-reported measure of autism traits32,55. The mean AQ 
score was 18.43 (median, 17; range, 5–45). All participants had normal or cor-
rected-to-normal vision and provided written informed consent. We performed 
a median split on the data, such that participants were divided into high-AQ  
(n = 26) and low-AQ (n = 31) groups. The AQ score was significantly higher in the 
high-AQ group (mean, 27; s.d., 6.4; range, 18–45) relative to the low-AQ group 
(mean, 11.5; s.d., 3.4; range, 5–17; t(55) = 11.28, P < 0.001). The distribution 
of scores in the low-AQ group was almost exclusively below the mean range of 
neurotypical scores reported in a recent meta-analysis of 73 studies administering 
the AQ56. Importantly there was considerable overlap between the scores in the 
high-AQ group and the range reported, on average, for those with a diagnosis of 
ASD56, even though these participants do not present with any clinical need.

No randomization was used to assign subjects or conditions. All participants 
provided written informed consent and were compensated financially for their 
time and travel expenses. The study was approved by the UCL Graduate School 
Ethics Committee (4357/001).

Stimuli. Auditory cues were either 330-Hz or 660-Hz pure tones generated in 
MATLAB R2012b (Mathworks) and presented with the Cogent toolbox (http://
www.vislab.ucl.ac.uk/cogent_graphics.php/), via Sennheiser HD 201 headphones. 
Outcome images were either faces or houses. These stimuli were grayscale and 
comprised six different face identities (three male and female) or six different 
images of houses, masked by an ellipse and luminance matched with the SHINE 
toolbox57. Either medium or high Gaussian noise, with a mean of zero and a 
variance of 0.05 and 0.1, respectively, was added to outcome images by using 
the image processing toolbox (MATLAB R2012b). Example stimuli can be see 
in Figure 1. The face in this image shows the likeness of author R.P.L. The actual 
stimuli used in the experiment were taken from the Nim Stim Face Identity Set 
(http://www.macbrain.org/resources.htm).

Procedure. Participants sat on a chair with their heads in a chin rest at a viewing 
distance of 80 cm. An example trial can be seen in Figure 1. Each trial began 
with the 300-ms presentation of a pure tone that was either high or low in pitch. 
After 200 ms, either a face or a house image was presented for 150 ms, to prevent 
saccades. The participants were told simply to respond to the image and indicate 
whether it was a face or a house (via left/right button press), and to be ‘as fast and 
accurate as possible, trying to respond on every trial’. A variable response time 
of 1,500–1,800 ms followed the image, such that trials lasted 1,950–2,250 ms.  
Participants were instructed that the tone preceding each image was probabil-
istically associated with the likelihood of seeing a face or house and that these 

probabilities would change over time. The probabilistic associations between 
the tones and the outcomes were highly predictive (P = 0.84), weakly predictive  
(P = 0.16) or nonpredictive (P = 0.5), and changed pseudorandomly across trials 
in blocks of 12, 36 or 72 trials (Fig. 1). All participants completed 456 trials over 
eight miniblocks with optional periods of rest between.

To ensure that participants’ responses were not biased by learned expectations 
about the relative frequencies of the visual stimuli, the task was designed such that 
the marginal probabilities of faces and houses were identical at any point in time 
(Fig. 1), and each block contained equal numbers of randomly intermixed high- 
and low-tone trials. As with designs of previous studies12,24, our design ensured 
that the a priori probability of a face (or house) occurring was always 50% in any 
given trial, before the tone was presented. Thus, any expectations about the visual 
stimulus could depend on only the preceding tone. Additionally, and uniquely to 
this study, equal numbers of high-, medium- and no-noise stimuli appeared in 
each of 12, 36 or 72 blocks of trials and across each cue type.

Data collection and analysis were not performed blind to the conditions of 
the experiment.

Pupillometry. To ensure fixation and to measure neuromodulatory responses, 
gaze direction and pupil size were measured with an infrared eye tracker 
(Cambridge Research Systems) tracking the left eye at 200 Hz. Calibration 
of the eye tracker was unsuccessful in all participants wearing glasses, and  
the eye tracker suffered a fatal technical failure before testing was completed; 
therefore, eye-tracking data are available for only 14 NT subjects and 11 subjects 
with ASD.

Hierarchical gaussian filter. In the version of the HGF used here (introduced in 
ref. 33), learning occurs simultaneously on three coupled levels of an uncertainty 
hierarchy. The first level of the HGF (x1) constitutes the outcome of any given 
trial (for example, face or house), the second level (x2) represents the probabilistic 
associations between the tones and the outcomes (for example, the probability of 
seeing a house given that a high tone has just been heard), and the third level (x3) 
quantifies the volatility of the probabilities (for example, the changeability of the 
environment). In each trial, the model provides an estimate for each level, before 
the outcome is seen, and the estimate updated accordingly. Predictions at each 
level are represented by a Gaussian distribution, described by its mean m̂i , and 
variance ŝi. The variance ŝi  represents the uncertainty of the estimate at each 
level. Updates of beliefs at each level occur via prediction errors that propagate 
upward and are precision weighted according to the ratio of the uncertainty of 
the level that generated them to the uncertainty of the level being updated. The 
manipulation of perceptual noise (for example, no, medium or high noise) is 
captured trial by trial as a fixed parameter representing the variance of the noise 
on the inputs.

For each participant, the perceptual-model parameters ω2 and ω3, the learn-
ing rates α2 and α3, and the response model parameters (β0,…,4) were estimated 
from the trialwise log RT measures by using variational Bayes, as implemented 
in the HGF toolbox (http://www.translationalneuromodeling.org/tapas/). The 
ω values are the tonic log volatilities at their respective levels, according to the 
generative model 

x s xt t
1 2
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x x xt t t
2 2

1
3 2
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2 21 1( ) ( ): / exp( ) + −( )( )= . Thus, the basic step size of the random walks 

in x2 and x3 is determined without taking into account phasic modulation by 
higher levels of the hierarchy. The learning rate α2 represents, trial by trial, the 
size of the update in µ2 (i.e., the mean of the belief on x2) relative to the size of 
the prediction error δ1, as expressed in terms of the update in predicted outcome 
probabilities m̂i :
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http://www.vislab.ucl.ac.uk/cogent_graphics.php/
http://www.vislab.ucl.ac.uk/cogent_graphics.php/
http://www.macbrain.org/resources.htm
http://www.translationalneuromodeling.org/tapas/
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where m m
1 2

1( ) ( ):t ts= ( )− . The learning rate α3 is the equivalent quantity with 

respect to the size of the update in µ3: 
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Furthermore, α3 is proportional to the precision weight on the prediction  
error e3

( )t :

a p
p3

2

3

( )
( )

( )
t

t

t
∝
  

where p3
( )t  is the posterior precision (inverse variance) at the third level, and 

p2
( )t  is the precision (inverse variance) of the prediction at the second level. 

Accordingly, e3
( )t is the precision-weighted prediction error at the second level, 

which serves to update the estimate of log volatility: 
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More details can be found in the supplementary material of ref. 6.

The β values are the coefficients of the response model, which describes how 
beliefs (i.e., the probability distributions on xi, as represented by their sufficient 
statistics µi and σi) are translated into log reaction times. This is a straightforward 
linear model: 
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Here, u(t) is the outcome; u(t) = 1 when the high-tone cue is followed by a face, or 
the low-tone cue is followed by a house, whereas u(t) = 0 in the converse cases. 
Because m1

t( ) is the predicted probability of u t( ) = 1 (and 1 1− ( )m t  of u t( ) = 0), the 
first independent variable is the Shannon surprise associated with the outcome. 
Uncertainty at the outcome level (i.e., the first) is the variance 

ŝ m m1 1 11
t t t( ) ( ) ( )= −





 
 

of the Bernoulli distribution over predicted outcomes. This parameter is the irre-
ducible uncertainty associated with any kind of probabilistic prediction, which is 
referred to as risk in the economics literature. Uncertainty at the second level is 
the posterior variance σ2 of the belief on x2, expressed at the outcome level (hence 
the multiplication with the derivative of s taken at the current mean µ2 of the 
belief on x2; details on this transformation to the first level have been described 
in the supplementary material of ref. 12. This parameter is the informational 
uncertainty, so called because it quantifies the lack of information about the 

quantity (here x2) governing outcome probabilities. Volatility is the exponential 
of the phasic log volatility µ3, which is also expressed at the outcome level.

The choice of these models was hypothesis driven. The reason for choosing 
the HGF as the learning model was twofold. First, because it reflects the hier-
archical nature of changing environments in that it allows for volatility that is 
itself volatile, this model allowed us to test the hypothesis that participants with 
ASD differ from NT participants in how they address a hierarchy of uncertain-
ties and specifically address learning about volatility. The response model was 
chosen because the log RTs followed an approximately Gaussian distribution, 
and a linear model allowed for the straightforward identification of the effects 
of all hypothesized modulating factors.

There were several reasons that we chose to fit reaction time over trialwise 
errors. First, reaction times are a sensitive behavioral-response measure that can 
have a range of values across trials, from fast to slow, and that empirically have 
been shown to vary with the uncertainty of participant responses in both detec-
tion and discrimination experiments58. Second, reaction times have previously 
been used in the application of Bayesian learning models to behavioral tasks 
very similar to ours, so modeling RT here increased the comparability across 
studies24,59. Third, error rates were very low in this study (~3% overall), and 
any logistic model attempting to explain such a small incidence of states coded 
as 1 (relative to 0) would require more trials than were performed in this study 
(increasing as a function of the explanatory variables in the model60). Fourth (and 
most pragmatically), some participants did not make any errors at all, so modeling 
RT maximized the number of participants included in the analysis. Finally, the 
group × probability interaction for percentage errors was not significant in our 
high- and low-AQ replication (Supplementary Fig. 4c,d), and so in modeling RT, 
we modeled the effect most comparable across both experiments in this work.

Sample size. In our NT participants, we sought a conceptual replication of the 
study by Den Ouden et al.24, albeit with a modified design. We calculated a mini-
mum sample size a priori on the basis of the low-probability minus high-probabil-
ity RT difference previously reported (32 ms) and an assumed variance (actual s.d. 
not reported) of the same. This analysis indicated that we would need a minimum 
of 14 participants to achieve 95% power to detect a similar (α = 0.05; two tailed) 
effect in the NT group. Given that initial effect sizes are often inflated61 and that we 
sought power to detect a difference between two groups, we doubled this estimate 
and aimed to test ~28 participants in each group, with some attrition expected.

Because there is no prior precedent for detecting between-group differences 
in this specific task, we additionally assessed the required sample size to detect 
a medium effect size for a between-subject ANOVA with three levels and a 
between-subject factor of group. The results indicated that a total sample size 
of 48 participants would be necessary to have at least 90% power to detect an 
F-test effect size of 0.25.

For the pupil-size regression, in which it was not possible to calculate power 
a priori, the sample sizes and effect sizes (β values) reported for this particu-
lar analysis were in line with those reported in previous studies using the same  
methods9. Post hoc power calculations indicated that with 11 participants with 
ASD included in the actual analysis, we had 86% power to detect the mean positive 
β (slope = 0.72) that we observed in these participants (α = 0.05; two tailed).

Statistics. Behavioral data. All statistical analyses of behavioral data were per-
formed in MATLAB (Mathworks) and PASW Statistics 22 (SPSS/IBM). For the 
analysis of RTs, responses that were too fast or too slow (<100 or >1,000 ms) were 
excluded, and, including missing responses, there was no significant difference 
between the groups in the overall percentage of missing data (1.9% ASD, 2.3% 
NT, t(47) = 0.45, P = 0.65). To maximize the trial numbers per condition, we col-
lapsed across face/house trials and, for correct trials only, subjected RTs to a mixed 
ANOVA with within-subject factors of expectedness (UE, N and E) and stimulus 
noise (high, medium and no noise), and a between-subject factor of group. We 
also quantified a behavioral measure of surprise, defined as the difference in RT 
between UE and E outcomes, on the basis of the ground truth, and compared this 
measure between the groups by using independent-sample t tests. An equivalent 
analysis was conducted for error rates and log transforms of both these measures. 
Percentage errors were calculated for each condition separately. Data distributions 
were assumed to be normal, but this assumption was not formally tested. When 
assumptions of heterogeneity of covariance were violated, the number of degrees 
of freedom was corrected with the Greenhouse–Geisser approach.
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Eye-tracking data. All statistical analyses of eye-tracking data were performed 
in MATLAB (Mathworks) Only trials in which 80% or more of the samples were  
successfully tracked were included in the analysis. There was no significant difference  
in the mean number of included trials between the groups (mean good trials  
ASD = 298; NT = 261; t(23) = 0.803, P = 0.43). For pupil data, blinks were treated 
with linear interpolation, and the resulting pupil traces were low-pass-filtered and 
smoothed according to the conventions outlined in ref. 62. To explore phasic pupil 
responses for correct trials, traces were baseline corrected to the average response 
during the 500 ms preceding the outcome image. Tonic pupil responses were deter-
mined as the average of the z-scored pupil measurement across all trials. z-scoring 
accounts for individual differences in baseline pupil size and has previously been 
used in the literature63,64. The MAD from fixation (in degrees of visual angle) across 
groups and conditions was used to assess fixation compliance in each trial65.

Regression analyses were conducted to examine the effects of surprise on the 
basis of the ground truth and volatility surprise (ε3, trialwise precision-weighted 
prediction errors) on pupil dilation after outcome presentation. A similar approach 
has been used in recent studies examining the relationship between pupil dilation 
and computational-model parameters that vary across trials9. The postoutcome 
period for each trial was sampled with 370 5-ms bins. Regression analyses were  
conducted for each individual time bin, with HGF estimates of precision-
weighted prediction errors (ε3) and the ground-truth contrast of unexpected (1) 
minus expected (–1) included as regressors of interest, and the trial type (0 = face,  
1 = house), fixation compliance (MAD) and RT for each trial entered as control 
regressors. The resultant time series of β weights (in other words, multiple regres-
sion conducted at every time point) provided estimates of the effects of ground-
truth surprise and volatility surprise on the basis of pupil dilation across all trials.

At the group level, we then conducted t tests for the positive or negative effects 
of the regressors of interest, and the independent-samples difference between 
groups, corrected for multiple comparisons with a cluster-based permutation 
approach at 2,000 permutations (FWE α = 0.05, two tailed)66. This procedure 
allowed us to assess when our surprise metrics were significantly encoded in the 
pupil time series. This approach protected against false positives across correlated 
measurements (i.e., it maximized temporal sensitivity).

Learning-rate data. To test the hypothesis that individuals with ASD have dif-
ficulties in flexibly updating their rate of learning (precision weighting) in response 
to environmental change, we examined the change (∆) in α2 (probability) and α3 
(environment) during switching from stable to volatile periods of the task. We used 
the dynamic α trajectories estimated on the basis of all trials, but specifically inter-
rogated a period of 72 trials (green in Fig. 1) in which the probabilistic association 
between tones and outcomes remained fixed and was followed by a period of 72 
trials (violet in Fig. 1) in which the outcome probabilities switched three times. 
We compared the change in average α2 and α3 between these two periods, across 
the groups. Previous studies have examined learning about how reward probability 
changes in response to volatility in NT volunteers8,10 and also in aversive environ-
ments9. In these studies, the participant responses were fit with a simple delta 
learning rule (i.e., Rescorla–Wagner67) separately in volatile and stable task phases, 
thereby annulling the elegance of the generative-model approach by imposing 
knowledge of the task structure. In contrast, we fit subject RTs across all 456 trials 
by using the HGF, and the two learning rates (α2 and α3) dynamically varied as a 
function of each participant’s inferred beliefs about cue–outcome informativeness 
and changes in these associations over time. Whereas simpler models approximate 
participant outcome probability estimates, assuming that the participants are ‘ideal’ 
Bayesian observers, the HGF addresses what kind of Bayesian observer each par-
ticipant actually is, thus making this method a more sensitive means of capturing 
individual differences in learning about uncertainty (additional information can 
be found in the ‘HGF model validation’ section; comparisons between the HGF 
and simpler reinforcement learning models can be found in Fig. 3c).

Bayesian-model selection. To disambiguate alternative explanations (models) 
for the participants’ behavior, we used BMS. BMS evaluates the relative plausibil-
ity of competing models in terms of their log evidences, quantifying the tradeoff 
between the accuracy (fit) and complexity of a model. Here, we used a recently 
updated random-effect BMS method to account for potential interindividual 
variability in our sample, quantifying the protected posterior probabilities of 
four competing models68. The protected exceedance probabilities quantify the 
probability that any one model is more frequent than the others and also accounts 
for the possibility that the observed variability in (log) model evidences could 
be due to chance68.

Regression analyses. To examine the relationship between the primary behav-
ioral measure of surprise (UE – E RT) and the severity of autism symptoms, we 
conducted a multiple linear regression with ADOS-2 scores for communication 
and reciprocal social interaction, and IQ as predictors. A secondary regression 
model was also conducted in which a sensory sensitivity score (as measured on 
the basis of the adult sensory questionnaire69) was also included as a predictor. 
Sensory scores were available for only 21 of 24 participants with ASD; therefore, 
this analysis was conducted with a reduced sample size. In response to a reviewer 
request, we also conducted a third regression to predict UE – E RT that included 
baseline RT as an additional predictor. Because both communication scores  
(r = −0.421, P = 0.04) and mean RT (r = −0.341, P = 0.017) correlated with the 
UE – E RT difference in the participants with ASD, we created centered versions 
of these variables and their interaction effect in the regression model.

To assess the validity of the HGF-model parameters in predicting group status 
(ASD = 1, NT = 0) we conducted binary logistic regression (method = enter) in 
SPSS. The predictor variables in this analysis were the eight free parameters esti-
mated by the HGF, namely the five response-model β values (β0…4 plus decision 
noise (ζ) and the two omega parameters from the perceptual model (ω2 and ω3). 
Additionally, we recreated this analysis in R and used the cv.glm function in the 
boot package to perform leave-one-out cross-validation.

A Life Sciences Reporting Summary for this paper is available.

Code availability. We used the HGF toolbox (http://www.translationalneu-
romodeling.org/hgf-toolbox-v3-0/) for modeling learning. For pupillometry 
analysis, we used modified versions of the freely available preprocessing code 
available at http://www.tqmp.org/RegularArticles/vol10-2/p179/index.html, 
and analysis was conducted with code from the Mass Univariate Toolbox  
(http://openwetware.org/wiki/Mass_Univariate_ERP_Toolbox/). Code to control  
the low-level image properties of the stimuli used in this experiment is available 
at http://www.mapageweb.umontreal.ca/gosselif/SHINE/.

data availability. The data that support the findings of this study are available 
upon reasonable request from the corresponding author, in accordance with 
local ethics rules.
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In the version of this article initially published online, the first sentence of the Online Methods referred to “29 adults with ASD and 26 healthy NT 
volunteers.” To avoid any implication that those with ASD are not healthy, this has been changed to “29 adults with ASD and 26 NT volunteers.” 
Similarly, in the first paragraph of the “Learning-rate data” section, “healthy volunteers” has been changed to “NT volunteers.” In the Life Sciences 
Reporting Summary, “healthy” has been changed to “neurotypical” in the first sentences of items 3 and 12. In the supplementary information 
originally posted online, the legend to Supplementary Figure 4 read “non-clinical healthy volunteers.” This has been changed to “non-clinical 
volunteers.” The errors have been corrected in the PDF and HTML versions of this article.
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    Experimental design
1.   Sample size

Describe how sample size was determined. In our NT participants we sought a conceptual replication of Den Ouden et al. 24, 
albeit with a modified design. We calculated a minimum sample size a priori on the 
basis of the low probability minus high probability RT difference that they report 
(32 ms) and an assumed variance (actual SD not reported) of the same. This 
analysis indicated that we would need a minimum of 14 participants to achieve 
95% power to detect a similar (α = 0.05; 2-tailed) effect in the NT group. Given that 
initial effect sizes are often inflated 61 and that we sought power to detect a 
difference between two groups, we doubled this estimate and aimed to test ~28 
participants in each group with some attrition expected. 
As there is no prior precedent for detecting between-groups differences using this 
specific task, we additionally assessed the required sample size to detect a medium 
effect size for a between-subjects ANOVA with three levels and a between-subjects 
factor of group. This indicated that a total sample size of 48 participants would be 
necessary to have at least 90% power to detect an F-test effect size of 0.25.  
For the pupil size regression, where it was not possible to calculate power a priori, 
the sample sizes and effect sizes (β’s) reported for this particular analysis are in line 
with previous studies employing the same methods9. Post-hoc power calculations 
indicate that with 11 ASD participants included in the actual analysis, we had 86% 
power to detect the mean positive β (slope=0.72) that we observed in these 
participants (α = 0.05; 2-tailed). 

2.   Data exclusions

Describe any data exclusions. Two adults with ASD did not complete this test owing to time constraints or an 
inability to tolerate the sounds and/or focus adequately on the test. Following data 
examination, participants with more than 20% overall errors or mean reaction 
times (RT’s) > 2 standard deviations from their respective group mean RT were 
excluded from subsequent analysis to ensure the validity of the Bayesian modeling

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We replicated our primary behavioral results in a separate group of neurotypical 
volunteers (n=57) characterized according to high and low autistic traits. The 
results of this replication are presented in Supplemental Figure S4.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization was used to assign subjects or conditions. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Data collection and analysis were not performed blind to the conditions of the 
experiment.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

We used the HGF toolbox (http://www.translationalneuromodeling.org/hgf-
toolbox-v3-0/) for modelling learning. For pupillometry analysis we used modified 
versions of the freely available pre-processing code available here (http://
www.tqmp.org/RegularArticles/vol10-2/p179/index.html) and analysis was 
conducted using code after the Mass Univariate Toolbox (http://openwetware.org/
wiki/Mass_Univariate_ERP_Toolbox). Code to control the low level image 
properties of the stimuli used in this experiment is available here: http://
www.mapageweb.umontreal.ca/gosselif/SHINE/. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No research animals were used. 

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

29 adults with autism spectrum disorder (ASD) and 26 neurotypical volunteers 
(NTs) came to the UCL Institute of Cognitive Neuroscience as part of a testing day 
involving different researchers. Two adults with ASD did not complete this test 
owing to time constraints or an inability to tolerate the sounds and/or focus 
adequately on the test. Following data examination, participants with more than 
20% overall errors or mean reaction times (RT’s) > 2 standard deviations from their 
respective group mean RT were excluded from subsequent analysis to ensure the 
validity of the Bayesian modelling. This left 24 participants in the ASD group (18 
males; mean age: 35.5, age range: 20-61) and 25 in the NT group (16 males; mean 
age: 36, age range: 19-62). The ASD and NT groups were matched on age 
(t(47)=0.54, P=0.87).  
ASD participants had previously been diagnosed by an independent clinician, 
according to the DSM-IV51 or ICD-10 criteria52 [19 Asperger Syndrome, 3 Autistic 
Disorder, 1 High Functioning Autism, 1 Atypical Autism]. The Wechsler Adult 
Intelligence Scale (WAIS 3rd edition UK) had previously been administered to 
assess IQ 53 and participants were matched on full-scale scores (ASD mean: 117; 
range: 80-142; NT mean: 120, range: 99-145; t(47)=-0.93, P=0.36) The Autism 
Diagnostic Observation Schedule (2nd edition) 54 assessment was completed by a 
qualified administrator to assess symptom severity in the ASD participants. Mean 
ADOS total score was 9.9 (range 4-19). The mean scores for the communication 
and reciprocal social interaction sub scores were 3.3 (range: 0-7) and 6.6 (range 
4-12), respectively.  
An additional 57 NTs were studied as part of a replication of our key behavioural 
result (25 male, 32 female; mean age: 27.1, age range: 19–50) and additionally 
completed the Autism Spectrum Quotient (AQ) questionnaire; a 50-item self-
report measure of autistic traits 32,55. Mean AQ score was 18.43 (median: 17, 
range: 5-45). All participants had normal or corrected to normal vision and gave 
written informed consent. We performed a median split on the data such that 
participants were divided into high AQ (n=26) and low AQ (n=31) groups. AQ score 
was significantly higher in the in the high AQ group (mean=27, SD=6.4, 
range=18-45), relative to the low AQ group (mean=11.5, SD=3.4, range=5-17; t (55) 
= 11.28, P<0.001). The distribution of scores the low AQ group falls almost 
exclusively below the mean range of neurotypical scores reported in a recent 
meta-analysis of 73 studies administering the AQ 56. Importantly there is 
considerable overlap between the scores in the high AQ group and the range 
reported, on average, in those with a diagnosis of ASD 56 – even though these 
participants do not present with any clinical need.  
No randomisation was used to assign subjects or conditions. All participants 
provided written informed consent and were compensated financially for their 
time and travel expenses. The study was approved by the UCL Graduate School 
Ethics Committee (4357/001) 
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