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One of the central problems of modern psychiatry is its purely
symptom-based nosology. Current diagnostic schemes, such
as the DSM or ICD, define diseases as collections of clinical
symptoms and signs; this conveys reliability to diagnoses, but
also creates heterogeneous patient groups. This heterogene-
ity, in turn, complicates treatment predictions in clinical
practice and hinders research that aims at identifying disease
mechanisms in individual patients. As a consequence, the
conventional disease classifications have been increasingly
criticized, and the field is searching for alternatives that are
grounded in a more fundamental understanding of the under-
lying disease processes (1).

The key challenge for creating a pathophysiologically
informed diagnosis and treatment scheme is dealing with the
complexity of the brain and its interactions with its surround-
ings (including both the body and the external world). While
different subfields of neuroscience focus on molecular
mechanisms, cellular processes, neuronal circuits, or beha-
vior, there is still a large explanatory gap between these levels
of investigation and a lacking connection to clinical symptom
expression.

Computational models have been promoted as one of the
most promising tools to close this gap, as they allow for
spanning multiple levels of description (1,2). The spectrum of
models and their application is wide: algorithmic models, such
as reinforcement learning methods, and Bayesian models
have provided explanations for basic computational pro-
cesses, such as learning, decision making, and perception,
and allowed for linking these basic computations to their
manifestation in behavior or brain activity. At the other end of
the spectrum, generative models of neuroimaging data and
biophysically informed neuronal network models operate on a
mesoscopic level, linking neuronal population activity to large-
scale brain activity measurements and clinical pathologies (3).

In their two-part article series in this issue of Biologi-
cal Psychiatry: Cognitive Neuroscience and Neuroimaging,
Roberts et al. (4,5) stress the importance of one class of
modeling approaches—stochastic dynamic models (SDMs)—
for clinical applications. SDMs rest on stochastic differential
equations (SDEs) to describe the evolution of a system that
has both deterministic and stochastic components. In the
brain, stochastic changes in the current state of the system
(state noise) may arise, for example, from sensory channel
noise, random fluctuations in microscopic states, or irregular
discharges from brainstem nuclei. In the presence of both
intrinsic dynamics and noise, SDMs are ideally suited to
describe how a specific state of the brain, represented by a
set of variables such as neuronal firing rate, membrane
potential, or ion channel conductance, evolves over time.
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In particular, SDMs can be extremely powerful in describing
phenomena in which 1) state changes such as a rapid increase
or decrease in neuronal firing rates are driven by stochastic
processes or 2) the state noise itself contains relevant
information. The most striking examples of the former are
multistability and bifurcations. In the case of multistability,
multiple states coexist toward which the dynamics gravitate
(attractors). Stochastic processes can then drive the system to
jump back and forth between these attractor states. Noise-
induced alternations between multistable states have been
used to explain, for example, the ictal and interictal durations
of epileptic seizures (6), abnormal sleep patterns, or working
memory deficits (5). Noise plays a similarly important role in
the vicinity of bifurcations, where a small change in the
parameters can cause a sudden change in attractor states
and thus induce an abrupt qualitative change in the system’s
behavior. The influence of noise becomes prominent at the
transition point when the current attractor becomes unstable.
There it manifests itself in an increase in variance and correlation
that results in slow, high-amplitude fluctuations, called critical
slowing. Signatures of critical slowing could serve as early
predictors of an upcoming state transition (7), which makes
them attractive in the clinical context. In a recent model for
depression, for instance, temporal autocorrelation, variance, and
fluctuation patterns of emotions akin to critical slowing were
related to an increased probability of an upcoming transition
between a normal state and a depressed state (8). In general,
bifurcations have been related to a broad spectrum of clinical
and nonclinical phenomena: the onset and duration patterns of
epileptic seizures, mood fluctuations in melancholia, and bipolar
disorder or sleep-wake transitions (5). In addition, even if the
noise is not directly driving a rapid change in the dynamics, the
state noise itself can contain relevant information that yields
additional features of potential clinical relevance: 1) noise can
capture dynamics that are otherwise not explicitly modeled or
plays a role in determining which neuronal activity patterns
become excessively strong attractors (9); 2) different noise
sources, e.g., intrinsic state noise and measurement noise, can
be disentangled and separately dealt with; and finally, 3) noise
can represent uncertainty, which has become a core feature in
many current models of perception and decision making (10).

While this broad set of applications illustrates the utility of
SDMs, their translation to clinical questions also faces some
significant challenges: SDMs typically focus on microscopic
dynamics, such as the activity pattern of spiking neurons, but
clinical measures are usually acquired at a macroscopic level,
including electroencephalography time series, functional mag-
netic resonance imaging scans, or behavioral and cognitive
assessments. SDMs thus need to bridge the gap between the
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levels of hidden neuronal states and observations. A first step
to achieve this link is to use SDMs for describing mesoscopic
dynamics (neuronal population activity), such as the dynamics
of multiple neurons within a cortical column. A problem for this
approach is model complexity. Trying to use SDEs to account
for the individual behavior of many neurons, one faces an
intractable number of parameters that can, in principle,
produce every possible behavior, resulting in overly precise
models that lack generalizability (overfitting). One solution to
this complexity is to consider the average state of multiple
neurons, a so-called mean field approximation. That is, instead
of representing the dynamics of many individual neurons, one
considers the dynamics of their average state (a population
density perspective). This approximation makes parameter
estimation tractable, even in highly complex systems.

Finally, the goal is to obtain parameter estimates that capture
clinically relevant mechanisms in an individual person or a
group of people, by fitting the model (in a Bayesian context, this
is referred to as model inversion). To that end, a representation
of mesoscopic dynamics has to be mapped onto macroscopic
observations via a measurement function. While measurement
functions that link neuronal activity to electroencephalography
or functional magnetic resonance imaging activity exist and are
widely used, a direct quantitative mapping onto behavior—or
clinical symptoms—is more challenging.

Roberts et al. (4,5) point out that there is a potentially fruitful
way to link neuronal dynamics to a broad spectrum of
behaviors by expressing stochastic neural population activity
in terms of probability distributions (the population density
perspective described above) (4). The primary rationale is the
following: while each state may be subject to individual
stochastic fluctuations, in an ensemble of stochastic processes
some states are more likely to be reached than others. Thus,
one can recast SDEs as probability density functions. The
mathematical formalism of this mapping, adapted from similar
problems in physics, is called the Fokker–Planck equation.
While the mathematical derivation of the Fokker–Planck equa-
tion from an SDE involves some nontrivial math, the link from
SDEs to probability distributions is desirable: many computa-
tional models of macroscopic behavior, such as Bayesian
models of belief updating or models of decision making (e.g.,
drift-diffusion models), use some form of probability distribu-
tions as their building blocks. Using the same mathematical
description for mesoscopic models can link the different levels
and may thus represent one of the most principled and
promising approaches to take stochastic phenomena into
account when addressing neuroscientific and clinical problems.

While the theoretical foundation is promising, in practice,
bridging the gap between multiple levels of description and
observation continues to represent a major challenge in
applying SDMs to clinically relevant questions. It might explain
why most progress has been made in the application of SDMs
to neurological disorders, such as epilepsy or Parkinson’s
disease, where it is easier to adopt an exclusive focus on
physiology. By contrast, the application of SDMs to psychia-
tric disorders is still mainly phenomenological. A critical
challenge for the future is to find Fokker–Planck equation–
based models that unify representations of mesoscopic
activity with computational interpretations (e.g., how variance
of neuronal populations encodes uncertainty in perception)
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and link abnormalities at the neuronal level to both measure-
ments of brain activity and behavior in individual patients. If
this can be achieved, SDMs will turn into an extremely
powerful tool for linking symptoms to the underlying biological
processes. In particular, building this bridge could facilitate
new drug developments and help predict how pharmacologi-
cal actions at the cellular level relate to changes in symptoms.

Roberts et al. (4,5) provide a much-needed overview of the
potential and challenges of the use of SDMs for clinical
applications and outline this exciting but challenging path to
the future. Their articles provide an excellent and important
starting point for future translational neuromodeling research
directed at transforming phenomenological descriptions into
quantitative assessments of neuropsychiatric disorders.
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