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Abstract Using simple mathematical models of choice be-
havior, we present a Bayesian adaptive algorithm to assess
measures of impulsive and risky decision making.
Practically, these measures are characterized by discounting
rates and are used to classify individuals or population groups,
to distinguish unhealthy behavior, and to predict developmen-
tal courses. However, a constant demand for improved tools to
assess these constructs remains unanswered. The algorithm is
based on trial-by-trial observations. At each step, a choice is
made between immediate (certain) and delayed (risky) op-
tions. Then the current parameter estimates are updated by
the likelihood of observing the choice, and the next offers
are provided from the indifference point, so that they will
acquire the most informative data based on the current param-
eter estimates. The procedure continues for a certain number
of trials in order to reach a stable estimation. The algorithm is
discussed in detail for the delay discounting case, and results
from decision making under risk for gains, losses, and mixed
prospects are also provided. Simulated experiments using

prescribed parameter values were performed to justify the al-
gorithm in terms of the reproducibility of its parameters for
individual assessments, and to test the reliability of the esti-
mation procedure in a group-level analysis. The algorithmwas
implemented as an experimental battery to measure temporal
and probability discounting rates together with loss aversion,
and was tested on a healthy participant sample.

Keywords Delay discounting . Risk seeking . Intertemporal
choice . Loss aversion . Bayesian estimation

Decision making is inseparable from daily life. Animals, in-
cluding humans, frequently make choices between alternative
options, both consciously and unknowingly. With respect to
consequences, these choices are usually considered from nor-
mative and descriptive perspectives in many disciplines, in-
cluding economics, social sciences, and psychology. The ra-
tionality of choices is addressed through normative aspects. In
contrast, descriptive analysis investigates decisions as prefer-
ences, regardless of whether they are logical, beneficial, or
harmful (Burns & Bechara, 2007; Kahneman & Tversky,
1984).

In many circumstances, the outcomes of the available op-
tions are subject to uncertainties such as delay and/or risk,
which decrease the value of the choices in comparison to
choices with immediate outcomes. Within a behavioral eco-
nomic framework, this devaluation of reward is referred to as
discounting (Ainslie, 1975). Decision-making theories, in-
cluding expected utility theory (Von Neumann &
Morgenstern, 1944), prospect theory (Kahneman & Tversky,
1979; Tversky & Kahneman, 1992), and reinforcement learn-
ing theories (Sutton & Barto, 1998), are based on the principal
assumption that all dimensions of an option are integrated into
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a single measure called the subjective value of a choice, which
is parameterized by the rate of discounting.

The first step to develop a mathematical model to describe
behavior in an experimental setting of discounting is to eval-
uate different options on the basis of the available information,
such as the type of a reward and the associated uncertainties.
In a simple setting of temporal discounting, the rational can-
didate would be the exponential decay function, V = Ae–ko

D,
where the subjective value V of an outcome of amount A,
delivered after a delay D, diminishes exponentially according
to the discounting rate ko. Early studies in economics mostly
employed this function to evaluate different options (Ainslie,
1975). Nevertheless, humans tend to deviate systematically
from this value function (Doyle, 2013; Green, Fry, &
Myerson, 1994; Madden & Johnson, 2010; Rachlin, Raineri,
& Cross, 1991; Simpson & Vuchinich, 2000). Consequently,
the most common value function in behavioral psychology
seems to be Mazur’s model (Mazur, 1987),

V ¼ A
1þ koD

: ð1Þ

This equation states that the subjective value of a delayed
reinforcer declines hyperbolically according to the
discounting rate ko > 0. Moreover, with a transformation of
the probability to the odds against winning, θ = (1 – p)/p, the
same hyperbolic discounting function has been used to de-
scribe the declining subjective values of probabilistic out-
comes (Rachlin et al., 1991):

V ¼ A
1þ koθ

: ð2Þ

To describe choice behavior for individuals or groups of
individuals, the discount rate ko is usually inferred by
assessing several indifference points at separate delays.
Fitting Eq. 1 or 2 then gives the best estimate of the
discounting rate. Normalized indifference points have also
been used tomeasure discounting rates, employing not a value
function but the area under the indifference curve (Myerson,
Green, & Warusawitharana, 2001).

Although a range of more complex mathematical models
have been tried (Doyle, 2013), the simple hyperbolic function
has been widely used to model experimental data for various
incentives, real or hypothetical, as well as positive or negative
outcomes (Baker, Johnson, & Bickel, 2003; Johnson &
Bickel, 2002; Petry, 2003). Typically, economists assess
discounting by simply asking participants directly for their
indifference value (Loewenstein, 1988), whereas the most
common method in neuroscience and psychology is the
binary-choice method (Mazur, 1987), employing a titration
procedure through which the indifference point is inferred
from a series of choices. Such procedures have been

implemented with either a set of fixed, predefined choices
(Madden, Petry, Badger, & Bickel, 1997) or, more commonly,
using adjustments of amount or delay based on the individ-
ual’s choices (Loewenstein, 1988; Madden et al., 1997;
Rachlin et al., 1991). Adjusting-amount procedures have been
used mostly in studies with human subjects, whereas animal
research has used delay adjustments in addition. As compared
to nonadaptive methods, adjustment procedures have been
found to have no effect on the processes that underlie
discounting (Green, Myerson, Shah, Estle, & Holt, 2007;
Holt, Green, & Myerson, 2012). Because they are based on
mapping a set of indifference points, these tasks require a large
number of choice trials, which can be time-consuming, and
thus limiting in certain applications (Smith & Hantula, 2008).
Recently, a hierarchical Bayesian model was developed to
assess the temporal discounting rate (Vincent, 2016), and a
five-trial adjusting-delay task has been shown to quickly mea-
sure discount rates in humans (Koffarnus & Bickel, 2014).
Nonetheless, the latter approach does not allow controlling
for unsystematic or illogical data.

Research investigating aberrant decision-making patterns
within several mental disorders, such as drug abuse, is grow-
ing constantly. In particular, delay discounting, as a proposed
transdisease process, demands further investigation, including
directing interventions toward changing individuals’
discounting rates (Bickel, Jarmolowicz, Mueller, Koffarnus,
& Gatchalian, 2012; Koffarnus, Jarmolowicz, Mueller, &
Bickel, 2013). Furthermore, due to the partial overlap but also
the evident differences between delayed and probabilistic
choice behavior, the advantage of similar experimental proce-
dures for different facets of decision making has been empha-
sized (Green & Myerson, 2004). Increased delay-discounting
rates are seen in chronic users of alcohol and other drugs
(Bjork, Hommer, Grant, & Danube, 2004; Dom, D’haene,
Hulstijn, & Sabbe, 2006; MacKillop et al., 2011; Mitchell,
Fields, D’Esposito, & Boettiger, 2005; Petry, 2003), and
higher rates of risk taking are seen in pathological gamblers
(Madden, Petry, & Johnson, 2009). Impulsive and risky deci-
sion making has also been linked to such clinically relevant
constructs as treatment outcomes (Blanco et al., 2009;
Krishnan-Sarin et al., 2007; MacKillop & Kahler, 2009;
Petry, 2012; Stanger et al., 2012). Therefore, it has become
increasingly desirable to measure choice behavior in a variety
of contexts with improved, precise, and consistent methods,
which may further our understanding of the mechanisms un-
derlying value-based decision making, and thus potentially
advance clinical care for people suffering mental disorders
related to such behaviors.

Individuals may behave differently when they make deci-
sions based on values.More sensitive participants may change
their preferences sharply on the basis of small differences,
whereas others may be neutral to the same changes. This can
also be interpreted as a degree of consistency: A consistent
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choice policy gives a higher probability of choosing the option
with the higher value. It has been shown that different samples
behave differently in terms of consistency, which has been
estimated by using the softmax function (Eq. 3 below) in
maximum likelihood models (Hare, Hakimi, & Rangel,
2014; Yechiam, Busemeyer, Stout, & Bechara, 2005), or by
constructing receiver operating characteristic curves for the
sets of choices by individual participants (Ripke et al., 2012).

In the present study, we developed a mathematical frame-
work for an isochronous amount and delay/risk adjusting pro-
cedure based on a Bayesian estimation approach (Garvert,
Moutoussis, Kurth-Nelson, Behrens, & Dolan, 2015).
Employing simulations and a sample of healthy participants,
we show the robust and efficient estimation of the parameters
of interest. The algorithm is presented and discussed in detail
for the case of delay discounting. The adaptation of the math-
ematical framework for assessing probability discounting and
loss aversion is straightforward and is omitted for the sake of
brevity. Taken together, we here present a novel adaptive ap-
proach to measure different facets of value-based decision
making, including choice consistency.

Mathematical framework

In this section, we provide a detailed discussion of the math-
ematical modeling and parameter estimation algorithm for the
delay discounting case. Themain idea is to employ a Bayesian
approach to improve our initial assumptions about the value of
the discounting parameter trial-by-trial by using the choices
that an agent—for example, a person—makes between a
smaller immediate and a larger delayed monetary reward.
We used the hyperbolic discounting function, Eq. 1, for eval-
uating the subjective value of the delayed offers.

In what follows, xd represents the amount of the delayed
offer associated with a delay of d units, and the subjective
value is shown as Vd. Similarly, xi and Vi are the immediate
offer and its subjective value, respectively. The subjective val-
ue of the immediate offer is trivially the value of the offer
itself—that is, Vi = xi. The offers vary between r1 and r2,
measured in a currency unit, and the delays are chosen from
the setD = {d1, d2,…, d7}, in days. Now suppose that ai and ad
are the actions of choosing the immediate and delayed offers,
respectively, and let Q(ai) and Q(ad) be the values of taking
the corresponding actions (Sutton & Barto, 1998).
Furthermore, we assume that the likelihood of choosing be-
tween the two offers follows a softmax probability function
with an inverse temperature parameter, βo > 0, as

P ai ko;βojð Þ ¼ exp βoQ aið Þð Þ
exp βoQ aið Þð Þ þ exp βoQ adð Þð Þ ; ð3Þ

and hence, P(ad | ko, βo) = 1 – P(ai | ko, βo).

Large values of β in Eq. 3 represent consistent choices—
that is, a high probability of taking the most valuable action—
whereas small values reveal some inconsistency.

Both parameters, ko and βo, are nonnegative. Therefore we
expected them to be positively skewed—that is, approximate-
ly lognormal (Lovric, 2010). To take advantage of close-to-
normal distributions, we transformed the parameters to the
natural-logarithmic scale and defined k = ln(ko) and β =
ln(βo). For estimation purposes, we discretized the parameter
space over an equally spaced 2-D region, R, such that –8 ≤ k ≤
2 and –5 ≤ β ≤ 5. For simplicity, we assumed that the two
parameters are independent and imposed liberal univariate
priors on the parameters, such that k and β had a Beta and a
uniform distribution, respectively. Under the independence
assumption, one can build a joint probability distribution
P(k, β) serving as a prior for the following Bayesian
framework.

Given the prior distribution, the immediate and delayed
offers were presented to the agent. After observing the choice
at the first trial, we updated the prior using Bayes’s rule,

P k;β ajð Þ ¼ 1

Z
P a k;βjð ÞP k;βð Þ; ð4Þ

where P(k, β) is the joint distribution over the parameters and
P(a | k, β) is the likelihood of observing the action a ∊ {ai, ad},
which is computed using Eq. 3. At every trial t, the posterior
distribution over the parameters, P(k, β | a), was updated by
multiplying the prior by the likelihood of the agent’s action
and then served as the prior for the upcoming trial. Note that 1/
Z, in Eq. 4, is a simple normalization factor over the discrete
domain R. At the end of each trial, the expected values of k

and β were considered the current parameter estimations, k̂ t
and β̂t. Using the current estimates based on the previous
choice, we presented the following offers close to the indiffer-
ence point, where the choices were equally likely, in order to
retrieve the most informative data (Lewi, Butera, & Paninski,
2008; Sebastiani & Wynn, 2000).

At each trial, we therefore intended to provide two offers
with the same subjective values—that is, xi ¼ xd

1þk̂td
, where

these values lay in the offer range. In other words, the condi-
tion

r1≤
r2

1þ k̂ tdi
≤r2−δ; i ¼ 1;⋯; m;

should hold for all feasible delays, where δ is the minimum dif-
ferencebetween the twooffers.Thena feasibledelaywaschosen
randomly, and the next offers were provided such that they dif-
fered at least by δ and had the same subjective values. In extreme
cases inwhich the agent was too patient (or impulsive), even the
minimal possible fractional increment was not feasible for the

longest (or shortest) delay—that is, r2−δð Þ 1þ k̂ tdm
� �
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< r2 or r2 < r1 1þ k̂ td1
� �

. In these cases, amounts very close

to the boundary values of the offer range and either the highest or
the lowest possible delaywere considered as the next options. In
all cases, we chose randomly from the set of feasible delays, if
any, andadjusted for the immediate anddelayedamounts in such
away that the subjectivevaluesofbothofferswere approximate-

ly the same according to the current estimate, k̂ t. The procedure

continuedforacertainnumberof trials,N, and k̂N wasconsidered
the estimated parameter. The risk with adaptive designs is that
individualswill reverse-engineer thedesign.Therefore, to reduce
the chance of an agent learning the pattern, we added random
offers that were distributed throughout all trials.

The same framework is valid for the concepts of probability
discounting and loss aversion.WeusedEq. 2, analogous toEq. 1
for delay discounting, to evaluate the probability discounting of
gains and losses in corresponding tasks. Finally,

V ¼ 1

2
G−λLð Þ ð5Þ

wasusedtoevaluatemixedprospectsandtoestimateabehavioral
measureof lossaversion,λ.Equation5hasasimple linearformin
which loss aversion is the ratio of the contribution of the loss
magnitude, L, to the contribution of the gain magnitude, G, to
the participant’s decisions (Frydman, Camerer, Bossaerts, &
Rangel, 2011; Tom, Fox, Trepel, & Poldrack, 2007).

Simulations

Once the mathematical model was built, we produced large
number of simulated data to examine the estimation procedure
in the following situations. First, we assumed that the choices
were made with the prescribed parameters of the model. As an
example, Fig. 1 shows how the prior distributions changed
over the course of the estimation procedure for a decision-
maker behaving according to k = –2 and β = 1.5. We depict
five starting, middle, and final trials, which, based on the data
from Table 1, show improving estimations across trials.

For the case of consistent behavior, we performed simula-
tions for every k = –5.5, –5,…, –0.5, with a fixed value of β =
1.5. The estimated parameters are shown in Fig. 2a for k = –4,
–3, –1 on a trial-by-trial basis. Figure S1 shows boxplots for
all values of k. The values of k were reproduced well, and the
accuracy of the estimations is supported by the small errors,
represented by the low standard deviations. However, the es-
timations of β resulted in higher standard deviations, which is
an indication of a suboptimal estimation (see Fig. 2b). Then,
simulations for a fixed discounting rate, k = –3, and different β
= –4.5, –3.5,…, 4.5 showed that k was estimated more accu-
rately with higher values of β (Fig. 2c, Fig. S2). We

demonstrate the trial-by-trial changes across the estimation
procedures to emphasize the convergence of the algorithm.

To investigate the reliability of the procedure, we assumed
a sample of normally distributed parameters such that k ~ N(–
3, 1) and β ~N(0.5, 2). Data sets of 50 trials were simulated for
random pairs from these distributions, and the resulting data
are shown in Fig. 3a. The correlations between the initial (true
scores) and estimated parameters were .98 for k and .95 for β,
which are depicted in Fig. 3b.

Simulations with appropriate settings of priors and initial
offers were also performed for probability discounting and
mixed-gambles models (see Fig. 4 ). For the probabili-
ty discounting rates, we restricted the domain to the logarith-
mic scale such that –3 ≤ ko ≤ 3, given the fact that a ko of 1—
that is, k = 0—is considered a baseline at which the subjective
value corresponds to the expected value, and any value of ko
different from zero is considered to be an indicator of risk seek-
ing or risk aversive behavior. The loss aversion parameter was
set to 0 ≤ λ ≤ 4 without a transformation to the logarithmic
scale. The reason was that any value of λ beyond this range
was infeasible with our offer range, and any transformation
could result in a change of direction of any potential skewness.
The consistency parameter had the same range as before, –5 ≤
β ≤ 5. Predefined values of the discounting and loss aversion
parameters were reliably recovered. As before, the consisten-
cy parameter was reproduced with less precision.

Comparison to standard methods

To compare our approach to standard methods, we chose a
value-adjusting method as a representative of a class of titra-
tion procedures that adjust the amount by half of the difference
between the delayed and immediate offers depending on the
previous choice (Ripke et al., 2012). Assuming consistent
choices, after a certain number of trials this method will locate
the indifference point for a given delay. Finally, the hyperbolic
function was fit to indifference points of several delays to
estimate the discounting rate.

To make the comparison more reliable in terms of control-
ling for accuracy, the offer ranges, and similar initial assump-
tions, we simplified the question of estimating the discounting
rate to finding the indifference points for certain discounting
rates, immediate amounts, and delays. In other words, given a
discounting rate of k, an immediate amount of xi, and a delay
of d days, we aimed to locate the indifference point—that is, to
find the delayed amount xd such that xd = xi(1 + kd).We further
assumed that the choices were made using Eq. 3 with fixed
values of β.

We conducted the comparison in three different settings
with increasing complexity. (1) For a single immediate
amount xi = 10, single delay d = 30, and consistent choices
with β = 1.5, we looked at the number of iterations each
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algorithm needed to locate the indifference point for k ∊ {–6, –
5.9, ⋅ ⋅ ⋅, 1} (see Fig. 5a). Although the performance of both
methods overlaps for small values of k, for stronger
discounting one needs to provide larger delayed values, which
makes the amount-adjusting method inefficient. (2) The num-
ber of iterations was observed for multiple immediate amounts

xi ∊ {5, 10, 15, 20}, multiple delays d = {10, 30, 60, 120,
180}, and consistent choices with β = 1.5 for k ∊ {–6, –5.9, ⋅ ⋅
⋅, 1}. Our approach exhibited more stable performance in this
case, too (Fig. 5b). (3) Starting with an immediate amount of xi
= 10 for multiple delays d = {10, 30, 60, 120, 180}, and
allowing 50 trials in total, we applied both methods to

Fig. 1 Simulation, on a logarithmic scale. From left to right, the pictures show the five starting, middle, and final trials for a simulation with k = –2 and β
= 1.5. The final distribution is narrower over k than over β

Table 1 First and last five trials of a simulation with k = –2 and β = 1.5

Trial Accepted Offer Rejected Offer
k̂ t

SD
β̂t

SD

Amount Delay Amount Delay

1 12 0 14 3 –2.06 2.84 –0.09 8.18

2 18 0 49 14 –1.20 1.76 0.43 8.01

3 46 31 4 0 –1.78 1.35 0.26 8.23

4 4 0 49 180 –1.64 0.78 0.97 6.90

5 41 14 11 0 –1.98 0.69 –0.70 5.73

… … .… … … … …

46 40 14 13 0 –1.95 0.0009 1.11 0.22

47 6 0 11 7 –1.95 0.0007 1.17 0.22

48 44 31 6 0 –1.95 0.0006 1.18 0.22

49 23 14 8 0 –1.96 0.0009 1.03 0.22

50 37 31 7 0 –1.96 0.0011 0.98 0.21
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reproduce discounting rates of k ∊ {–6, –5.9, ⋅ ⋅ ⋅, 1}. For every
k, we conducted 1,000 simulations with β ~ N(0, 2) (Fig. 5c).
The median estimated k using our approach (Fig. 5c, top)
closely tracked the true values (black line), and the 5th and
95th percentiles (dotted lines) were evenly distributed for dif-
ferent k values. In contrast, the amount-adjusting procedure
performed somewhat less well in terms of the medians and
skewed residuals (Fig. 5c, bottom).

For the first twocases,weappliedeachalgorithm10,000 times
for every k value and randomcombinations of xi and d.We termi-
nated thealgorithmeitheruponreaching the indifferencepoint, up
to an absolute error of .05, or after 200 trials if the results did not
converge. The delayed offer at the first trial for bothmethodswas
set to twice the amount of the true indifference point, 2xi(1 + kd).
Thealgorithmshadno restrictionon the amounts theycouldoffer.
To avoid any bias, we used a flat prior on k for our algorithm.

Wealso compared the twomethodsusingempirical data that
were collected using a delay discounting task from an early
implementationof thealgorithm,with slightlydifferent settings
ofpriors, parameter domains, andoffer range.We invited a total
of 88 participants from a follow-up study to Ripke et al. (2012)
to perform the adaptive task in addition to the main task of the
study. The standard task was a 50-trial amount-adjusting task
designed to assess indifference points for delays of 10, 30, 60,
120, and 180 days. The temporal discounting rates for the stan-
dard method were computed by fitting the hyperbolic value

function, Eq. 1, to these indifference points. The resulting esti-
mates of the delay discounting rates from the twomethodswere
highly correlated, r = .66, p < .001, as is shown in Fig. 6a.

Furthermore,weappliedour algorithm—that is, the sequential
Bayesianupdate—to thedata from the standardmethod.Thedata
compriseda total of50choicesbetweendelayedoffers anda fixed
immediate offer. The iterative procedure ran through all trials and
updated the estimations on the basis of the trial-by-trial likelihood
of the choices. The resulting discounting rates were correlated to
theresults fromthestandardmethod,r=.99,p<.001,as isgivenin
Fig. 6b, which shows that our approach gave almost the same
results as fitting to the indifference points. This introduces a new
and computationally easy way of estimating discounting rates in
data from standard methods, and it could also serve as a proof of
validity for our approach: Assuming that the classical method
measures a construct, our algorithm does so to the same degree.

The battery

The adaptive procedure for binary choice presentation was
employed to develop a task battery for the measurement of dif-
ferent facets of impulsive and risky decision making, with four
independent tasks: delay discounting (DD), probability
discounting for gains (PDG), probability discounting for losses
(PDL), andmixed gambles (MG) (see Fig. 7).

Fig. 2 Simulation, on a logarithmic scale. The blue lines in each panel,
sampled from 2,000 simulations, show the trial-by-trial values of the
estimation procedure for the first (left) and last (right) trials, and red lines
are the prescribed values. For consistent behavior, the stability of the

results is visually apparent and is supported by low variances. (a)
Different values of k are precisely estimated over 50 trials, assuming
consistent choice behavior with β = 1.5. (b) Estimates of β now have
bigger variances. (c) Higher values of β result in better estimates of k
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During each task, participants are supposed to choose one of
the two offers presented simultaneously for 5 s on a computer
screen. The time limit was set in light of the average response
times fromprevious assessments. For each trial, the participant’s
choice is highlighted with a frame before presenting the next
offer. Presenting theoutcomes of gambles during the experiment
and the time interval of each trial, as well as the number of trials,
are all optional and canbe set initially. In general, participants are
informed by instructions before each task that at the end of the
experiment one trial per task will be selected randomly from
among their choices and credited toward their compensation.
However, these instructions are integrated into the battery and
can be modified on the basis of alternative task designs. The
temporal delays in DD are set to 3, 7, 14, 31, 61, 180, and 365
days. For PDG and PDL, gambles are played with five possible
probability values: 2/3, 1/2, 1/3, 1/4, and 1/5. The task length for
DD,PDL, andPDG is 50 trials, andmonetary gains/losses range
from €3 to €50. For MG, 50 trials are performed, presenting
amounts of€1–€40 for gains and€5–€20 for losses. The number
of trials, 50, was chosen according to data acquired by previous
implementations of the algorithm, so as to end up with stable
estimates. At the beginning of theMG task, participants receive

€10 as Bhouse money.^ During all tasks, offers are randomly
assigned to presentation on the left or the right of the screen.

Theexperiments, including instructions, binarychoices, and
outcomes, were initially implemented using MATLAB,
Release 2010a (The MathWorks, Inc., Natick, MA) and
Psychtoolbox 3.0.10, based on the Psychophysics Toolbox ex-
tensions (Brainard, 1997; Pelli, 1997), and are now available
under GNU Octave. The initial settings of the tasks, including
reward types and ranges, temporal delays, probabilities for
gains and losses, and gambling, together with the instructions
and payment schemes, are easily accessible through the source
code. This enables an end user to modify the layout and initial
settings on the basis of different hypotheses and requirements.

Piloting

We piloted the battery on a sample of 26 (15 female, 11
male) healthy adults with a mean age of 26.2 years (SD =
7.8). The participants were recruited through flyers dis-
tributed around the university campus and neighborhood,
and they were paid a fixed amount of money for

Fig. 3 Simulation, on a logarithmic scale. (a) Distribution of the true and
estimated values of k and β. The initial parameters were chosen from
normal distributions as k ~ N(–3, 1) and β ~ N(0.5, 2). We found no
significant differences between the true and estimated values, as shown

by the Kolmogorov–Smirnov test. (b) Correlations between the true and
estimated values are used as a measure of reliability, which here are .98
and .95 for k and β, respectively
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compensation. Participants completed the battery within
19 min, on average, of which the estimation procedure
required 13 min (i.e., 6 min for the instructions). The
estimated parameters are shown in Fig. 8a as boxplots,
and the summary statistics for the sample are presented
in Table 2. To test the convergence of the estimation pro-
cedure, we calculated the absolute difference between the

estimated value of each parameter on any trial, k̂ t β̂t

� �
,

and the final estimation, k̂ β̂
� �

. The median of this error

term was then depicted for all participants, together with
the 75th percentile and maximum values. Figure 9 shows
a decreasing pattern that can roughly be interpreted as the
convergence of the procedure. Regarding the distributions
of the parameters, the Kolmogorov–Smirnov test rejected
the normality null hypothesis for DD, PDG, and MG at α
= .05 in our sample. Therefore, we used Spearman’s rank
correlation coefficient to look for any associations be-
tween the parameters, which is summarized in Table 3.

Previous studies have shown a negative correlation be-
tween the probability discounting rates for gains and losses
(Shead & Hodgins, 2009; Takahashi, Takagishi, Nishinaka,
Makino, & Fukui, 2014). Nevertheless, we observed no cor-
relation, Spearman’s ρ = –.0003, though a linear trend was

present, as is shown in Fig. 8b, and a post-hoc analysis re-
vealed a power of .35 for our sample size to detect a correla-
tion of –.25 with α = .05. Furthermore, the probabili-
ty discounting rates for gains and losses in our sample did
not show any significant differences in terms of means and
medians. For mixed gambles, the resulting distribution was in
line with the literature, although we endowed the participants
with money in advance and used different framings (including
zero values). Such differences in the presentation and/or con-
text of instruction have been shown to affect choice behavior
(Ert & Erev, 2008; Kahneman & Tversky, 1979; Silberberg,
Murray, Christensen, & Asano, 1988; Thaler & Johnson,
1990). Moreover, we observed significant associations be-
tween probability discounting for gains and both loss aversion
and temporal discounting, ρ = –.41, p < .05, and ρ = .47, p <
.05, respectively. We also observed a nonsignificant associa-
tion between loss aversion and probability discounting for
losses, ρ = –.37, p = .061.

We next examined the reproducibility of β in the low value
range using simulations. Specifically, we conducted simula-
tions for the delay discounting case using samples of the initial
parameters distributed according to Table 1 [1,000 simulations
with k ~ N(–5.24, 2) and β ~ N(–1.35, 1.32)]. The estimated
parameters had significant correlations of .92 and .86 for k and

Fig. 4 Transfer of the mathematical framework to the concepts of
probability discounting and loss aversion, with k and β on a logarithmic
scale. (a–c) Simulations of parameter estimates for probability
discounting for gains, probability discounting for losses, and mixed

gambles, respectively, based on different values of k and λ but
assuming consistent behavior, β = 1.5. Every picture represents one
simulation, and ten out of 2,000 runs are depicted. The dashed red lines
are the original values of the parameters
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β, respectively. Hence, in simulations the reproducibility ap-
peared acceptable, even at the lower end of the parameter
range.

Discussion

In this study, we developed and implemented a novel adaptive
algorithm to measure different metrics related to impulsive
and risky decision making, such as the temporal and probabil-
ity discounting rates and loss aversion.

Themainadvantageof thisapproach is its isochronousadap-
tivenature,which aimsatproviding themost informativeoffers
at each trial on the basis of the choices that have been made
earlier. Theoretically, this should allow for a very efficient in-
ference of behavioral parameters. Accordingly, we showed
through simulations and analysis of participant samples that
model parameters converge in a few initial trials, both in simu-
lations and in the course of tasks for real experiments. This
provides stable estimates and can differentiate between partic-
ipants, assuming that the hyperbolic and linear value functions,
Eqs. 1, 2, and 5, capture the behavior to an acceptable degree.

The temporal discounting rates obtained with computerized
adjusting-amount procedures (Reynolds, Richards, Horn, &
Karraker, 2004; Richards, Zhang, Mitchell, & Wit, 1999;
Ripke et al., 2012) or the Monetary Choice Questionnaire
(Kirby, Petry, & Bickel, 1999; Koff & Lucas, 2011) vary in
terms of their summary statistics between different studies re-
ported in the literature. This makes the results from different
studies incomparable with regard to the values. Nevertheless,
we showed a correlation of r = .66 between our approach and a
standard amount-adjustingprocedure for the sameparticipants,
which seems to be acceptable in terms of test–retest reliability,
considering that the two tasks had different settings of amounts
and delays (Beck & Triplett, 2009; Craig, Maxfield, Stein,
Renda, &Madden, 2014; Kirby, 2009).

Moreover, we showed through simulations that our ap-
proach outperforms a standard amount-adjusting method spe-
cifically for the higher values of delay discounting rates.
Recent advances (Koffarnus & Bickel, 2014; Yoon &
Chapman, 2016) have introduced methods to estimate
discounting parameters with very few trials (five and ten, re-
spectively, for Koffarnus & Bickel and Yoon & Chapman).
Bothmethods are theoretically variants of titration procedures.

Fig. 5 Comparison of our approach to the classical amount-adjusting
method, on a logarithmic scale. (a) Number of iterations to find the in-
difference point with an immediate amount of 10 and a delay of 30, for k
varying from –6 to 1. The solid and dashed lines show the median and
75th percentile of the numbers of iterations for our algorithm (blue) and
the amount-adjusting method (red). For smaller ks both methods showed
similar performance, whereas for bigger values of k our algorithm ex-
hibits better results in terms of reaching the indifference point faster. (b)

The difference between the two methods is more pronounced when we
addmore immediate and delay values. (c) Simulations of the twomethods
for the same range of k as in panels a and b. The estimated values are
shown on the vertical axes. Black solid lines are ideal scenarios in which
the estimated and initial values coincide. Colored solid and dotted lines
depict the median and the 5th and 95th percentiles, which show higher
precision for our approach
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Such extremely brief tasks are advantageous because they
save time, but due to theoretical considerations we assume
that this might come at the cost of precision. Future research
might therefore compare these very short task variants with
our algorithm by utilizing simulations and participant
samples.

The algorithm was also used to reestimate the discounting
rates for data that were acquired by nonadaptive methods. The
initial estimates and reestimates were nearly identical (r = .99).

Furthermore, the medians of the probability discounting rates
in our piloting were very close to zero (log-transformed),
which is theoretically consistent and corresponds to the eval-
uation of the risky option by its expected value. For loss aver-
sion, the medians were comparable to what has been reported
in the literature (Tom et al., 2007).

The described algorithm was used to implement four inde-
pendent measures of value-based decision making as an ex-
perimental package. This shows that the Bayesian framework

Fig. 6 Comparison to an amount-adjusting method. (a) Participants (n =
88) performed a classical amount-adjusting task and an early implemen-
tation of our algorithm for temporal discounting. The two methods

resulted in discounting rates with a significant correlation of r = .66. (b)
A Bayesian estimation for the data from the amount-adjusting task is
highly correlated with the estimates for the curve-fitting method

Fig. 7 Schematic overview of the tasks included in the value-based decision-making battery
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can easily be adapted to assess a range of behavioral concepts
and suggests that future work can be directed toward the de-
velopment of additional tasks. For our test battery, we provide
a graphical user interface that gives access to the model and
runtime variables, as well as task-specific settings such that
one can set the values for every single experiment. This and
the efficient inference of behavior enhance the flexibility to
cover different ranges and commodities of outcomes, even
when time is a limiting factor. Most importantly, behavioral
estimations are immediately available along with other data
such as response times, rendering post-hoc parameter infer-
ence unnecessary.

The adaptiveness of the estimation procedure and the
instruction disclosing that the outcome of a randomly
picked trial will be credited as compensation make our
approach vulnerable to reverse-engineering. For example,
in DD after observing a delayed choice, the algorithm
increases the relative amount of the immediate option
for the next offer. Some participants will deliberately
pick up the delayed option upon learning this pattern
until the immediate offers reach a maximum. To reduce
this effect, we distributed random offers in the course of
the tasks, to make the patterns less obvious. This, how-
ever, decreases the power of the algorithm because of

Fig. 8 Parameters from pilot data, with k and β on a logarithmic scale. (a) Boxplots of temporal and probability discounting rates, loss aversion, and all
consistency parameters. (b) Correlation between the probability discounting rates for gains and losses

Table 2 Participant sample description, with k and β on a logarithmic scale

Median Mean SD Min Max

Gender: ♀ 15, ♂ 11

Age (years) 25 26.23 7.8 20 61

DD k –5.43 –5.24 1.92 –7.94 0.45

β –1.50 –1.35 1.32 –3.36 1.14

PDG k 0.13 0.17 0.82 –2.40 2.54

β –1.67 –1.62 1.05 –3.34 0.90

PDL k 0.17 0.21 0.66 –1.56 1.19

β –2.20 –2.15 1.02 –3.73 0.05

MG λ 1.96 1.95 0.70 0.59 3.97

β –0.93 –1.06 1.36 –3.05 2.61

DD, delay discounting; PDG, probability discounting for gains; PDL, probability discounting for losses; MG, mixed gambles
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added noise and sampling from less informative data. On
the other hand, in exceptional cases of extreme behav-
ior—for example, if a participant tends to take just one
type of offer, such as the immediate ones in delay
discounting—the procedure runs normally, but these
cases could be treated in a different way by allowing
for adaptive offer ranges. However, these instances are
easily detectable by their value and choice behavior and
can be considered for treatment as outliers.

In summary, we developed a new approach for adap-
tive offer presentation in binary choice settings to esti-
mate discounting parameters. We showed that this ap-
proach is quick, reliable, and outperforms the most wide-
ly used classical method. Furthermore, it can be easily

transferred to other concepts of decision making. Our
findings support construct validity under the mathemati-
cal framework and we conclude that the proposed
Bayesian approach is a functional alternative to those
existing in the literature. Thus, our work might advance
the evaluation of decision-making processes in single
studies or in research consortia that need to collect high
numbers of datasets in a flexible and efficient way.
Nevertheless, future studies will be required, in order to
improve the estimation precision of the consistency pa-
rameter, β, as well as to compare with more recent
methods and other complex decision models with more
parameters.
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Fig. 9 Convergence of parameter estimations in the pilot data. The
medians of the absolute differences between the estimation at each trial
and the final estimation for all participants are shown trial by trial by the
black solid lines. The dash–dotted and dotted lines depict the 75th
percentiles and maximum values, respectively. The decreasing pattern

in black lines is a sign of convergence, though the maximum values
show that for a few participants the convergence was poor. The top row
depicts the absolute differences for discounting rates and loss aversion;
the bottom row does so for the consistency parameter

Table 3 Correlations between parameters

DD PDG PDL

PDG –.14

PDL .33 –.0003

MG –.42* .47* –.37+

* p < .05. + p = .061
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