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A B S T R A C T

This work investigates the role of magnetic field fluctuations as a confound in fMRI. In standard fMRI
experiments with single-shot EPI acquisition at 3 Tesla the uniform and gradient components of the magnetic
field were recorded with NMR field sensors. By principal component analysis it is found that differences of field
evolution between the EPI readouts are explainable by few components relating to slow and within-shot field
dynamics of hardware and physiological origin. The impact of fluctuating field components is studied by
selective data correction and assessment of its influence on image fluctuation and SFNR.

Physiological field fluctuations, attributed to breathing, were found to be small relative to those of hardware
origin. The dominant confounds were hardware-related and attributable to magnet drift and thermal changes.
In raw image time series, field fluctuation caused significant SFNR loss, reflected by a 67% gain upon correction.
Large part of this correction can be accomplished by traditional image realignment, which addresses slow and
spatially uniform field changes. With realignment, explicit field correction increased the SFNR on the order of
6%.

In conclusion, field fluctuations are a relevant confound in fMRI and can be addressed effectively by
retrospective data correction. Based on the physics involved it is anticipated that the advantage of full field
correction increases with field strength, with non-Cartesian readouts, and upon phase-sensitive BOLD analysis.

1. Introduction

Functional MRI of the brain typically relies on time series of MR
image data with suitable weighting, most commonly based on BOLD
(blood-oxygen-level dependent) mechanisms (Bandettini et al., 1992;
Ogawa et al., 1990). Brain activity and connectivity are inferred upon
from the spatiotemporal signal structure of such time series. Any
unrelated signal fluctuations act as confounds that limit the sensitivity
of the technique.

Confounds in fMRI are of diverse origin (Murphy et al., 2013). In
task-based studies all brain activity unrelated to the task is effectively a
confound and its manifestation in fMRI data is often comprised in the
notion of physiological noise. Confounds of physiological nature also
include signal fluctuations due to respiration or heart rate variation
(Chang et al., 2009; Birn et al., 2006; Chang and Glover, 2009), blood

vessel pulsation (Mandeep et al., 1999), pulsatile blood flow and the
associated subtle bulk motion of the head, as well as any other head
motion (Power et al., 2012).

Further MR image fluctuations arise from imperfections of the
instrumentation used and the electromagnetic fields involved.
Regarding radiofrequency, the net gains of transmit and receive chains
immediately affect the signal level of resulting data. Confounding gain
changes can arise, e.g., from power amplifier fluctuations, instability of
supply voltages, or changes in coil loading due to motion. Baseline and
gradient magnetic fields, ranging from DC to few tens of kHz, fluctuate
mostly due to imperfections of magnet and gradient hardware.
However, low-frequency field perturbations also arise from the mag-
netic susceptibility of the subject in conjunction with physiological
mechanisms, particularly with breathing (Pfeuffer et al., 2002; Raj
et al., 2000; Van de Moortele et al., 2002) and, potentially, cardiovas-
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cular action (Gross et al., 2016; Pruessmann et al., 2011).
The present work focuses on this latter class of confounds related to

magnetic field perturbations up to the audio-frequency range.
Alterations of field strength change the Larmor frequency of nuclear
spins and thus their phase accrual after excitation. Yet spin phase is
also the carrier of spatial encoding in MRI. Therefore, field perturba-
tions change how MR signal is depicted in resulting images. When the
underlying field errors fluctuate over fMRI time series so do the
depiction errors, which then act as confounds.

The form and magnitude of depiction errors caused by a given field
perturbation depend strongly on the encoding strategy. The most
common fMRI readout by far is single-shot 2D echo-planar imaging
(EPI), which combines high spatiotemporal resolution with high SNR
efficiency, relative robustness against motion, and sharper time assign-
ment than segmented approaches (Bandettini et al., 1992; Mansfield,
1977). For considering the effects of field perturbation in single-shot
EPI it is useful to distinguish slow field changes that are approximately
static over each single-shot experiment (of typically several tens of ms)
and higher-frequency field errors that vary within shots.

Slow field changes arise chiefly from magnet drift, temperature
change of magnetised parts (Busch et al., 2014; Foerster et al., 2005),
particularly of passive shims, and breathing (Pfeuffer et al., 2002; Raj
et al., 2000; Van de Moortele et al., 2002; Windischberger et al., 2002).
In single-shot EPI such slow-changing field offsets result primarily in
image distortion by shifting image contents in the phase-encoding
direction, by a distance proportional to the local field offset. To a
smaller degree they also cause ghosting and blurring due to incon-
sistency of phase increments along odd and even k-space lines (Hennel,
1997). They strongly perturb the image phase, which however concerns
fMRI only upon phase-sensitive data analysis (Calhoun et al., 2002;
Rowe, 2005; Rowe and Logan, 2004), which is rarely performed to-
date. Slow field fluctuations are commonly addressed by two strategies.
At the acquisition stage, navigator readouts added to the sequence
serve to constantly re-determine the global B0 (Foerster et al., 2005;
Hu and Kim, 1994; Pfeuffer et al., 2002; Splitthoff et al., 2007; Versluis
et al., 2010; Ward et al., 2002) or, using a receiver array, a higher-order
field model (Splitthoff and Zaitsev, 2009) for data correction. At the
image processing stage, varying distortion is partly addressed by co-
registration (Andersson et al., 2003, 2001; Ashburner and Friston,
2007; Frackowiak et al., 1995), which is limited, however, to field
offsets whose spatial structure matches the distortion model used.

Higher-frequency fields that vary significantly during EPI readouts
are almost exclusively driven by gradient operation, with potential
contributions from active shimming when performed dynamically
(Duerst et al., 2015; Sengupta et al., 2011; van Gelderen et al.,
2007). Hardware trade-offs and imperfections give rise to a range of
typical errors in these field components. Most prominent among these
are the general low-pass behavior of gradient and shim chains, delays,
eddy currents, mechanical vibrations, and gain drifts. In single-shot
EPI they result in a variety of artifacts, most prominently in ghosting
but also in blurring, shearing, and other distortion. When these
mechanisms vary over time the related artifacts fluctuate in time series
and again become confounds to fMRI. Gradient system imperfection is
traditionally addressed by waveform pre-distortion (pre-emphasis)
and, for EPI, by data correction based on calibration. The standard
calibration approach is to perform additional EPI readouts without
phase-encoding blips. Correction settings are then derived from the
inconsistencies of the echo train, capturing reproducible imperfections
of the frequency-encoding gradient. Such calibration can be performed
on a per-scan basis as well as, to sense system changes during a scan,
on a per-shot basis by adding calibration echoes at the beginning of
each actual EPI readout (Bruder et al., 1992; Hinks et al., 2006;
Schmitt et al., 1998).

Navigators and calibration echoes have in common that they rely on
NMR signal from the head for field observations. Alternatively, field
measurements can also be performed with external NMR sensors,

which permit field recording concurrently with image readouts (Barmet
et al., 2010, 2009, 2008; De Zanche et al., 2008; Wilm et al., 2011).
With this approach, the evolution of B0 and gradient fields can be
captured without requiring additional time or reproducibility of field
behavior. Unlike EPI calibration it does not rely on intrinsic repeti-
tiveness of gradient waveforms, permitting field error correction also
for, e.g., variable-density EPI and spiral scanning (Kasper et al., 2014;
Vannesjo et al., 2016a).

The diversity of types and sources of field perturbations prompts
the question which mechanisms dominate in fMRI time series and how
large the associated confounds are. Given the different options for
addressing field errors it is also important which spatial terms need to
be accounted for and at which temporal resolution. A recent study
targeted these questions for hardware-related perturbations, perform-
ing fMRI scans in a phantom with field monitoring by external sensors
(Kasper et al., 2015). In this study relevant variability over time series
was observed in both the uniform and gradient field components,
exhibiting slow as well as within-shot dynamics. It resulted in image
fluctuations ranging between 1% and 10%, depending on spatial order,
yet permitted effective retrospective correction using field recordings.

Based on these findings, the goal of the present contribution is to
establish how they translate to fMRI in vivo. Specifically, it aims to
explore the structure and magnitude of additional field fluctuations of
physiological origin, the severity of related image fluctuations, and
whether field recording and retrospective correction are equally
effective in the in vivo scenario.

2. Methods

Investigation of field fluctuations and their impact on standard
fMRI was performed in vivo at 3 Tesla, using the following study
design:

• Acquisition of 2D EPI time series in vivo with concurrent field
monitoring.

• Extraction of prominent fluctuations of the background field and
EPI trajectories using principal component analysis (PCA).

• Spectral separation of physiological field fluctuations from hard-
ware-related perturbations.

• Analysis of image fluctuations caused by field fluctuations of
different spatial order and origin.

• Isolation of field-mediated effects from other fluctuations, using
simulation.

• Quantification of BOLD sensitivity gained by retrospective field
correction.

2.1. Setup

We used the same hardware setup as described in the preceding
phantom study (Kasper et al., 2015) to facilitate comparison between
phantom and in vivo results. Image data was acquired on a Philips
Achieva 3 T system, using an 8-channel head coil array. Field monitor-
ing was performed with an array of 12 transmit/receive field probes
(Barmet et al., 2009, 2008; De Zanche et al., 2008) based on 19F NMR
for operation concurrent with imaging readouts (Barmet et al., 2010;
Wilm et al., 2011). The probe array was mounted on the inside of the
head coil as illustrated in Wilm et al. (2015).

2.2. Subjects and imaging protocol

We carried out a total of 18 fMRI sessions, including four healthy
subjects (BMI 19–25, two female) after written informed consent and
with approval by the local ethics committee. All but one of the subjects
underwent three sessions, successively on one day. One subject (subject
1) underwent the three-session protocol repeatedly on three days to
examine within-subject variability.
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Each session consisted of 405 scans of which the first 5 were
excluded to ensure image acquisition in a steady state, yielding a
duration of 20 min per session. The imaging sessions were interleaved
with equally long physiological monitoring sessions (20 min) during
which field monitoring continued but no imaging was performed. The
physiology-only sessions served to study physiological fields in the
absence of gradient operation and to include periods of hardware cool-
down as typically occurs between sessions or during the arrival of a new
subject. After the second imaging session, the participants left the
scanner for a 20-min break. Thus, repositioning and reshimming were
performed before the third imaging session.

All fMRI sessions used a 2D single-shot EPI sequence in oblique-
transverse orientation with an AP tilt of −20°, with the following
parameters: TR 3 s, TE 35 ms, EPI readout duration 41.6 ms, 24 Hz
BW/pixel, fundamental frequency of the EPI readout waveform
1034 Hz, phase encoding direction anterior-posterior, receiver band-
width 375 kHz, voxel size 2.6×2.6×2.5 mm3, FOV 220×220×47.5 mm,
10 slices with 2.5 mm inter-slice gap. Except for the slight slice tilt the
sequence parameters were chosen identical to those used in the
phantom study to allow direct comparison. During fMRI the subjects
performed a social learning experiment (Diaconescu et al., 2016;
Diaconescu et al., 2014) to ensure typical experimental conditions.
For the physiology-only sessions, subjects were instructed to keep still
and relax. Throughout, the cardiac cycle and respiration were recorded
using electrocardiography (ECG) and a breathing belt.

2.3. Concurrent field monitoring and image reconstruction

The signal phase time courses of the field probes were preprocessed
as described in Barmet et al., (2008), and expanded into second-order
spherical harmonics comprising a total of 9 spatial terms. The zeroth-
order term, k t( )0 , reflects phase accrued due to global field, i.e. the
spatially uniform B0. The first-order terms, k t k t( )=( ( )1 , k t( )2 , k t( ))3 ,
reflect phase accrual of first order in space according to the common k-
space formalism. After rotation and translation into the 2D slice
geometry, k t( )p and k t( )m represent the first-order components in the
phase-encoding and measurement directions. They form the 2D EPI
trajectory and are jointly referred to as k t( )mp in the following.

Image reconstruction was accomplished in three steps. First, each
receiver coil signal was demodulated by the global phase k t( )0 and the
first-order component orthogonal to the imaging slice, scaled by the
slice offset. Second, per-coil reconstruction was performed by applying
the Moore-Penrose inverse of the encoding matrix

k rE i t= exp( ( )⋅ )mp τ ρ (1)

which has one row τ per sampling point in time and one column ρ per
voxel location in the slice plane. Inversion and matrix-vector multi-
plication were carried out jointly using conjugate-gradient iteration
(Pruessmann et al., 2001) with gridding operations for efficient non-
Cartesian Fourier transform (Beatty et al., 2005; Jackson et al., 1991;
Pruessmann et al., 2001). Third, a compound array image was obtained
by root-sum-of-squares combination. Image reconstruction and pro-
cessing were implemented in MATLAB (R2013a, The MathWorks, Inc.,
Natick, Massachusetts, United States).

2.4. Analysis of field fluctuations

2.4.1. Principal component analysis of phase coefficients
PCA (Pearson, 1901) of the phase coefficients k t( )0 , k t( )m , and k t( )p

was performed in the same way as described in the preceding study
(Kasper et al., 2015). PCA determines subspaces that best capture the
variance of the given data and was achieved by eigendecomposition of
the covariance matrix

∑COV
N

k t k t k t k t= 1
−1

( ( ) − ( ))⋅( ( ′) − ( ′)),τ τ
l

n

N

l n τ l τ l n τ l τ, ′
=1

, ,
(2)

where n is the scan number,l m p= 0, , , and the bar indicates the mean
over all scans of one subject, i.e., N=9×400 or N=3×400, respectively.

The principal components (PC), given by the eigenvectors of the
covariance matrix, are orthogonal and ranked by the magnitude of the
associated eigenvalues, which reflect the amount of variance captured.
Each PC represents a characteristic fluctuation around the mean time
course of the respective phase coefficient. How much a given PC
contributes at any given time is assessed by computing the projection
of k t( )l onto that PC. Time series of PCA projections reflect variation in
the presence of field fluctuation patterns over sessions, days and
subjects.

2.4.2. Spectral separation of physiological and hardware-related
field fluctuations

Separation of hardware-related and physiological field fluctuations
was based on the frequency content of their PCA projections in
conjunction with ECG and breathing belt recordings. First, we esti-
mated the spectral density of the PCA projections by computing the
discrete Fourier transform of the projections per session and averaging
their amplitude spectra across sessions (Bartlett, 1948). Based on the
physiological recordings we categorized projection content between
0.15 Hz and 1.2 Hz as physiological fluctuations. To select physiologi-
cal projection contents, denoted by projPhys, we designed a correspond-
ing Butterworth bandpass filter using the Signal Processing Toolbox in
Matlab (The MathWorks, Inc., Natick, Massachusetts, United States),
damping frequencies below 0.1 Hz and above 1.4 Hz by at least 15 dB.

The hardware-related content in each projection, projHW , was
computed as the difference between the original projection and the
physiological projection content. On this basis, phase coefficients
containing only hardware-related fluctuations, k t( )l HW

n
,
( ) , were gener-

ated by subtracting the physiological projections times the correspond-
ing principal components from the measured phase coefficients:

⎛
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where c counts the principal components and Nc, the number of
components included, which was chosen such as to capture at least
99% of variance in subject 1.

Similarly, phase coefficients containing only physiological field
fluctuations, k t( )l Phys

n
,
( ) , were constructed:
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2.5. Reconstruction schemes

Image reconstruction was performed repeatedly, varying the field
monitoring information included (Table 1). Reconstruction using all
concurrent field monitoring information throughout served as a
reference. To investigate the impact of field fluctuations of different
spatial order and origin we used a 2×2 factorial design of reconstruc-
tion schemes, in each of which knowledge of one type of fluctuations, k0
or kmp of physiological or hardware origin, was neglected. For example,
to consider physiological fluctuations in k0, the concurrently monitored
phase coefficients of kmp were used for reconstruction while the
preceding demodulation was performed using only k HW0, , i.e., the
hardware-related part of k0 fluctuations. In this way, encoding errors
by physiological k0 fluctuations were allowed to propagate into the
image time series. For the three other types of fluctuation reconstruc-
tion schemes were created in an analogous manner (Table 1). To study
the combined impact of all field fluctuations we employed a field-
averaged scheme using the respective session mean of k0 and kmp for
reconstruction. In this case all field fluctuations propagated into the
image time series while stable field imperfections, such as reproducible
eddy current effects, were corrected for, similarly to per-session EPI
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calibration.
Reconstructed image time series were further processed in two

forms, once unaltered and once after additional rigid-body image co-
registration (“realignment”) as an alternate means of addressing slow
global field changes in EPI. Realignment was performed with SPM 12
(Wellcome Trust Centre for Neuroimaging, London, UK, http://www.
fil.ion.ucl.ac.uk/spm/).

2.6. Simulations

To assess field-mediated image fluctuations separately from other
mechanisms such as radiofrequency fluctuations and physiological
noise we generated synthetic raw data afflicted by field fluctuation
only. This was achieved by forward calculation of signal encoding with
the concurrently measured phase coefficients k0 and kmp for all sessions
performed with subject 1. The underlying numerical phantom was
created from the data of session 1 by reconstruction on the basis of
concurrent monitoring, averaging over time, and removal of back-
ground noise and non-brain tissue. Image reconstruction from the
synthetic data followed the same schemes as described earlier (see
Table 1).

2.7. Statistical analysis of image fluctuations

We studied the impact of field fluctuations on BOLD sensitivity by
calculating the voxel-wise signal-to-fluctuation-noise ratio (SFNR)
(Welvaert and Rosseel, 2013) resulting from the different reconstruc-
tion schemes as

r
r

r
SFNR

img
SD img

( ) =
( )

( ( ))ρ
ρ

ρ (5)

where the mean and the standard deviation (SD) of each image
intensity value rimg( )ρ are taken over the N=390 scans of a session
(omitting the first and last 5 scans for lead-in and -out of the filters that
separate physiological and hardware-related components). Since the
same data entered all reconstruction schemes, SFNR differences purely
reflect effects of field fluctuations and their correction.

SFNR gains associated with correction of field fluctuations were
quantified by comparing reconstruction schemes #2–#6 with the
reference scheme #1 in terms of average SFNR. For example, the
relative SFNR gain when correcting physiological fluctuation in k0
reads

SFNR
SFNR SFNR

SFNR
Δ =

−
⋅100 %,Concurrent Monitoring k Phys

k Phys

,

,

0

0 (6)

where the brackets indicate averaging over all voxels in a given region
of interest (ROI). Five ROIs were defined based on the tissue-

segmented (Ashburner and Friston, 2005) mean image: whole-brain
gray matter, frontal gray matter, occipital gray matter, white matter,
and gray/white matter boundaries to study the impact of small
displacements.

In occipital gray matter, SFNR gains were also studied on a per-
voxel basis. For this purpose we slightly smoothed the underlying
SFNR maps (Gaussian kernel, FWHM voxel size= 1.5⋅ ) to account for
subtle geometric differences due to different levels of field correction.

To investigate possible differences in SFNR gains across sessions,
we estimated the correlation coefficient for mean SFNR gain and the
SD of heart rate and respiration across sessions. To assess the impact of
movement, we correlated the mean SFNR gain with the SD of the
realignment parameters for translation and rotation.

3. Results

3.1. Characterization of field fluctuations

This section reports the field fluctuations observed with subject 1
who performed the experiment repeatedly on three different days. The
field recordings obtained with the other subjects were similar, both
qualitatively and quantitatively, particularly the dominant features of
the principal components, the amounts of explained variance (99 ±
2%), and the temporal evolution of PCA projections.

For all phase coefficients, 99% or more of the variance across scans
was explained by at most two principal components (Fig. 1, left
column). For k0, the first principal component (PC 1) explained
99.996% of the variance over all 9 sessions. For kp, PC 1 explained
99.7%. For km, i.e., first-order phase in the readout direction, the first
and second principal components explained 94.2% and 4.6% of the
variance.

Each of the found PCs exhibits a subset of three distinct features: (i)
a linear increment, (ii) an oscillating component at the fundamental
frequency of the EPI readout of approximately 1 kHz, and (iii)
amplitude modulation of that oscillation at about 10 Hz. The linear
increment, which occurs in the first PC of each spatial term, corre-
sponds to a field that is static on the time scale of the EPI readout and
thus reflects a slow field change. The oscillation at the EPI frequency is
present in all PCs of the gradient fields and the modulation at 10 Hz
was found in both PCs of the gradient in the measurement direction,
km. Notably, these PC features correspond closely to those found in the
previous phantom study (Kasper et al., 2015), in which the 10-Hz
modulation was attributed to thermal change in mechanical resonance
behavior. The PCs of the sessions without image acquisition exhibited
linear increments as well, but no oscillations. This indicates that field
fluctuations of physiological origin are slow on the time scale of the EPI
readouts and that the presence of the subject does not significantly
alter gradient and magnet behavior.

The projections of the PCs (Fig. 1, central column) show the change
in amplitude of these typical fluctuation patterns over sessions and
days. The within-session dynamics were broadly reproducible between
sessions and days, apart from offsets reflecting varying initial condi-
tions such as system temperature and shim settings. For the PCs
dominated by linear increments the projections reflect the respective
slope and thus the magnitude of the underlying field change. A
projection change of 1 unit translates into a field change of approxi-
mately 4 Hz ( π1rad/41.6ms≈24/2 Hz). Hence the observed projection
changes represent field fluctuations of 31 Hz in k0, 50 Hz/m in kp and
15 Hz/m in km within session.

The projection dynamics exhibit three main features within-ses-
sion: approximately linear drifts, saturating drifts akin to exponential
behavior, and faster periodic oscillations with a 4–5 s cycle length
(≈0.25 Hz) (Fig. 1, right column). Linear drift dominates the projection
of PC 1 in k0 and km. It is continuous between sessions 1 and 2 of each
day but starts with an offset in session 3 due to repositioning and
reshimming. The saturating drift is prevalent in the projections of

Table 1
Reconstruction Schemes (n – index of scan within session, t – sampling time within
readout, overbar – average over all scans of one session). Scheme #1 uses all field
information available, schemes #2–#5 ignore the indicated type of field fluctuation.
Scheme #6 ignores all field fluctuations.

Reconstruction Schemes Phase Coefficients Used

k0 kmp

1 Full Field Correction (Concurrent
Monitoring)

k t( )n
0
( ) k t( )mp

n( )

2 Hardware-related Fluctuations, k0 k t( )Phys
n

0,
( ) k t( )mp

n( )

3 Hardware-related Fluctuations, kmp k t( )n
0
( ) k t( )mp Phys

n
,

( )

4 Physiological Fluctuations, k0 k t( )HW
n

0,
( ) k t( )mp

n( )

5 Physiological Fluctuations, kmp k t( )n
0
( ) k t( )mp HW

n
,

( )

6 Field-Averaged k t( )0 k t( )mp

S. Bollmann et al. NeuroImage 154 (2017) 92–105

95

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


Fig. 1. Principal Component Analysis (PCA) of field fluctuations of subject 1 (9 sessions on 3 different days). (Left) First principal component (PC) for global phase (k0) and phase-

encoding (kp) phase coefficients. First and second PC for frequency-encoding k( m) phase coefficient. Most PCs exhibit a linear drift k k k( , , )m p0 and oscillation at the fundamental EPI

readout frequency (k k, )m p . (Center) Corresponding projections on the PCs. (Right) Zoomed projections. A periodic oscillation (4–5 s cycle) is visible in all PCA projections. Based on

comparison with breathing-belt recordings it is attributed to breathing (see also Fig. 2).
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Fig. 2. Disentangling physiological and hardware-related field fluctuations in the PCA projections. (Left) Amplitude spectrum of the projections of PC 1 for k0 and kp and PC 1 and PC 2

for km, compared with breathing-belt and ECG recordings. All projections share the distinct breathing peak at about 0.25 Hz. (Right) Remaining fluctuations in the PCA projections after

removal of the physiological frequencies, reflecting hardware-related fluctuations. The unchanged projections are depicted in gray for comparison, and the lead-in time of the filter is
indicated.
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PC 1 for kp and PC 2 for km. Oscillation at about 0.25 Hz is present in all
projections of k0, kp and km (Fig. 1, right column), reaching amplitudes
of 2.5%, 15% and 25% of the respective projection range for the
dominant first PCs, corresponding to field fluctuations of 0.8 Hz, 8 Hz/
m and 4 Hz/m, respectively.

Similar global features of linear and saturating drifts were found in
the preceding phantom study (Kasper et al., 2015), indicating their
origin in the instrumentation used. Oscillations at frequencies on the
order of 0.25 Hz were absent in the phantom experiment but promi-
nent in the physiology-only monitoring sessions in the present work
(see Supplementary figure S1). They are thus of physiological origin
and, based on their frequency, apparently caused by breathing. This is
confirmed by comparing the spectra of the projections (Fig. 2, left
column) with those of the conventional physiology recordings. The
peak at 0.25 Hz and a first harmonic are shared with the breathing belt
spectrum. In contrast, no trace of the ECG spectrum is apparent in any
of the PCA projections. The right-hand column Fig. 2 illustrates band-
pass filtering of the PCA projections to separate physiological and
hardware-related fluctuations as described in Section 2.4.2.

3.2. Image reconstruction with full field correction

We present the session statistics (mean, SD, SFNR) of one
realigned EPI time series (subject 1/day 1/session 1) reconstructed
with full field correction (scheme #1), which were representative
for all sessions and subjects. The mean images exhibited no visible
ghosting or blurring independent of the slice position (Fig. 3, left).
Static B0 inhomogeneity caused common distortions and mild
dropouts in inferior slices. The SD images (Fig. 3, center) reveal
fluctuations below 2.5% of maximum image intensity for the
majority of voxels, with highest values in CSF-bearing regions,
particularly in the ventricles and the subarachnoid space. Slight N/
2 ghosting is discernible here, reflecting ghosting that fluctuates
over time, and an SD increase in frontal regions of the inferior slice,
i.e., in the presence of B0 inhomogeneity. The SFNR images (Fig. 3,
right) show rather uniform SFNR across the imaging volume, with
significant drops only in CSF, inferior-frontal and medial regions,
at a mean SFNR of about 50 in the brain.

Fig. 3. Summary statistics after realignment of EPI session 1, day 1, subject 1, reconstructed with full field correction. (Left) Mean images over 390 scans of an inferior, central and
superior slice (top to bottom). (Center) Voxel-wise standard deviation (SD) of the same session (scaling in percent maximum intensity of the mean image). (Right) Signal-to-fluctuation-
noise ratio (SFNR), ratio of corresponding mean and SD images.
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3.3. Characterization of field-induced image fluctuations

To study the impact of different field fluctuations on image
fluctuations, we compared SD images of the reference reconstruction
(Fig. 3) with SD images of reconstructions with only partial field
correction (Table 1). Given the observed similarity of session statistics
between slices, we focus on a central slice (5) in the following.

When omitting correction for physiological field fluctuations no
difference to the reference SD map is visible in the measured data
(Fig. 4AB). The effects of physiological field fluctuation are thus subtle
and masked by other confounds, such as BOLD fluctuations and CSF
dynamics. The magnitude of the physiological field effects is evident,
however, from corresponding SD maps generated from the simulated
data with all but field fluctuations suppressed. As shown in Fig. 5AB,
they are on the order of 0.2% (k0) and 0.1% (kmp) maximum image
intensity. Fluctuations in k0, causing jittering image shifts, are mani-
fested in enhanced SD at tissue boundaries (Fig. 5AC). The physiolo-
gical fluctuations in kmp give rise to similar effects, yet of increasing
magnitude towards the periphery in the phase encoding direction,
which reflects jittering image scaling in that dimension (Fig. 5B).

Omitting correction for hardware-related field fluctuations (Fig. 4CD)
the SD increases strongly for k0 fluctuations (Fig. 4C) and moderately due
to kmp fluctuations (Fig. 4D). The complementary analysis based on
simulation revealed field-related SD on the order of 5% due to k0
fluctuations, again predominantly at tissue boundaries (Fig. 5C). First-
order fluctuations (kmp) caused SD up to 0.6%, most prominently in the
form of delay-type N/2 ghosting yet also at tissue boundaries due to jitter
of scaling in the phase-encoding direction (Fig. 5D).

3.4. Impact of field correction on SFNR

The relative impact of different field fluctuations on SFNR followed

their ranking in SD contributions, with higher SFNR gains when
correcting for hardware-related compared to physiological fluctuations,
and for k0 compared to kmp (Fig. 6, Table 2, Fig. S2). For example,
correcting for hardware-related k0 fluctuations in gray matter resulted
in 66.7% SFNR gain and thus afforded nearly all of the 70.1% gain of
full field compared to field-averaged correction.

However, SFNR gains within ROIs varied considerably (Fig. 6, each
boxplot representing distribution over voxels). For example, SFNR gain
correcting for physiological fluctuations in k0 was small on average
(0.4%), but exceeded 1% in a quarter of the occipital gray matter voxels
for subject 1 (Fig. 6, top left).

Moreover, SFNR gains exhibited intra- and inter-subject variability
(Fig. 6, 1 boxplot per session, 1 color range per subject), and more so
for kmp than k0. Non-field sources of physiological noise, i.e., subject
motion and, to a lesser degree, cardiac and respiratory characteristics,
contributed to this variability. Mean SFNR gain, taken over all sessions
and reconstruction schemes, correlated negatively with SD of realign-
ment parameters (translation −0.62, rotation −0.67), heart rate (HR,
−0.36) and respiratory volume per time (RVT, −0.27). However,
intrinsic correlation between motion and HR (0.50) or motion and
RVT (0.37) precluded a unique attribution of their impact.

We further studied the effect of realignment on SD images and
SFNR for the full field reconstruction and the field-averaged recon-
struction (Fig. 7, see also Fig. 6 vs S2 for other reconstruction
schemes). Before realignment, the fluctuation levels in the SD images
were much higher in the field-averaged reconstruction compared to full
field correction (Fig. 7A), in particular at tissue boundaries, indicative
of shifts. Consequently, very marked differences in SFNR between
field-averaged reconstruction and full field correction were apparent in
all sessions and subjects, with a median SFNR improvement between
40% (white matter) and 105% (occipital gray matter) (Fig. 7B, top,
boxplots representing distribution over 18 sessions).

Fig. 4. SD images of measured EPI time series (subject 1, day 1, session 1) resulting from different reconstruction schemes (equal scaling, in percent maximum intensity of the mean
image). (A, B) Physiological fluctuations in k0 and kmp do not induce discernible alterations of the SD distribution relative to full field correction (Fig. 3). (C) Hardware-related

fluctuations in k0 increase SD values, primarily at tissue boundaries. (D) Hardware-related fluctuations in kmp increase the SD via the fluctuating ghosting artifact.
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After realignment, SD levels in the field-averaged reconstruction
were considerably reduced, while SD in full field correction appeared
unaffected by realignment. Overall, a moderate SFNR gain prevailed
when using full field correction, pronounced in occipital gray matter
(5–15%, median 12%) and N/2 ghosting sites, but negligible in white
matter.

4. Discussion

4.1. Field fluctuations in in vivo EPI time series

The reported experiments confirm that field fluctuations of physio-
logical origin are present in the head during fMRI studies. Breathing
was identified as the cause of field perturbations of both 0th and 1st
order in space. The perturbing fields were found to be on the order of
1 Hz and 10 Hz/m, respectively, at the employed field strength of 3 T.
In single-shot EPI time series such perturbations cause jittering shifts
and scaling of reconstructed images. With typical sequence parameters
these jitters gave rise to subtle fluctuation of brain image intensities on
the order of per mills of the maximum signal value. The related impact
on the SFNR was small in the presence of larger image fluctuations of
different origin. Field fluctuations of cardiovascular origin and related
image fluctuations were not observed. Magnetic fields due to suscept-
ibility effects of the beating heart have previously been recorded (Gross
et al., 2016; Pruessmann et al., 2011), however closer to the heart and
at higher field (7 T). The present study suggests that at 3 T long-range
fields of cardiovascular origin can likely be neglected in the head while
those caused by breathing are present and do influence fMRI.

Field fluctuations of hardware origin were found to closely match
the findings of the preceding phantom study. This indicates that the
presence of a subject does not significantly alter drifts and other
dynamics of magnetic field emanating from the magnet, gradients, and

other parts of the instrumentation, as may be expected. Hardware-
related field fluctuations were present in both 0th and 1st spatial order
at magnitudes up to 31 Hz and 50 Hz/m, respectively. PCA and PCA
projections revealed slow fluctuations that were virtually static over
EPI readouts as well as recurring fast components whose amplitude
varied along EPI series.

These findings are in line with studies conducted by other
researchers and on different MR systems. Breathing-related field
fluctuations of about 1 Hz in amplitude have previously been reported
for 3 T (Henry et al., 1999) and proportionally larger effects (2–5 Hz)
have been observed at 7 T (Duerst et al., 2015, 2016; Pfeuffer et al.,
2002; Van de Moortele et al., 2002). Main field drifts of 1–3 Hz/min
due to heating were found in fMRI and diffusion studies using 3 T and
7 T systems from different vendors (Alhamud et al., 2016; Duerst et al.,
2015; Henry et al., 1999; Liu et al., 2001). Cool-down after SSFP
sequences led to thermal drift on the same order of magnitude in a
multi-center comparison (El-Sharkawy et al., 2006). Thermal modula-
tion of ghosting in EPI, caused by changes in the mechanical behavior
of gradient tubes, was previously observed in (Giannelli et al., 2010).
In Foerster et al., (2005), mechanical resonances were additionally
shown to influence the rate of main field drift. Change in the main
magnetic field over long periods of time was assessed at 135 Hz/year in
one study (Friedman and Glover, 2006).

4.2. SFNR impact of field fluctuations in vivo

4.2.1. Hardware-related field fluctuations
The impact of field fluctuations on image time-series varied

between different spatial terms and origins (Figs. 6 and S2, Table 2).
Hardware-related fluctuations dominated over their physiological
counterparts, and k0 over kmp. The largest effect was that of hard-
ware-related fluctuation in k0, resulting in a mean SFNR gain of 67%

Fig. 5. SD of reconstructions from simulated data perturbed by measured field fluctuations only (scaling in percent maximum intensity of the mean image). (A) Physiological
fluctuations in k0 cause SD up to 0.2%, by jittering image shifts. (B) Physiological fluctuations in kmp cause SD up to 0.1% by jittering image scaling. (C) Hardware-related k0 fluctuations

cause SD up to 5% by image shifts. (D) Hardware-related kmp fluctuations cause N/2 ghosting and image scaling effects, with SD up to 0.6%.
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upon correction (in gray matter regions, before realignment).
Correction of hardware-related fluctuations in kmp resulted in only
minor SFNR gain on the order of 1%. Relative to the previous phantom
study, the impact of hardware-related fluctuations on the SFNR was
comparable for k0 and slightly reduced for kmp.

Realignment corrected for a significant part of the image fluctua-
tions induced by k0 fluctuations due to their manifestation as image
shifts in EPI (Table 2). However, a relevant fraction of the SFNR loss
was not recovered by realignment. Full field correction further in-
creased the SFNR by 6% on average in cortical gray matter.

Fig. 6. SFNR gain in occipital gray matter per session for all subjects after realignment. Boxplots illustrate the distribution of SFNR gain over voxels within ROI (vertical line=median;
box=25/75 percentile; whisker=up to one and a half times the interquantile range from the box; plus=outliers). The SFNR difference is taken with respect to the full field correction, and
scaled relative to the SFNR in the respective reconstruction scheme. Correcting for physiological fluctuations in k0 or kmp results in a moderate SFNR gain of 1–2%. Correcting for

hardware fluctuations yields higher SFNR gains of up to 40% in k0, and up to 3% in kmp.
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4.2.2. Physiological field fluctuations
SFNR gains from correction for physiological field fluctuations were

small at well below 1% on average in gray matter regions, reaching
voxel-wise peak values up to 4% (Fig. 6). This finding reflects the
presence of dominant other causes of image fluctuations and contrasts
with previous reports of physiological field effects causing up to 67%
increase in time series standard deviation (Pfeuffer et al., 2002). Our
results are rather in line with previous observations at 3 T
(Windischberger et al., 2002). A minor part of the discrepancy to 7 T
studies may be attributed to the scaling of susceptibility effects with B0

(Van de Moortele et al., 2002). The magnitude of breathing effects also
depends significantly on the physique of the subject and on breathing
patterns (Duerst et al., 2015; Van de Moortele et al., 2002). Interaction
has also been reported between slice orientation and distance to
moving tissue (Van de Moortele et al., 2002). Along these dimensions,
the position of our transverse oblique imaging slab centered close to
the anterior commissure seems to be an intermediate parameter
choice.

4.2.3. Co-factors and other sources of fluctuations
The relative impact of different noise sources on the SFNR in vivo

depends strongly on the ROI. Signal variation due to field-induced
voxel shifts is pronounced in ROIs comprising tissue edges (Pfeuffer
et al., 2002). Basic detection sensitivity depends on the distance from
the detector array and intrinsic signal fluctuation is elevated by
pulsation near vessels or ventricles. As a consequence, field correction
benefited the SFNR less in frontal compared to occipital areas, which
differ in distance from the detector, and in CSF. In addition, we
observed strong correlation between head motion and SFNR gain by
field correction, which reflects a sustained need for motion correction.
This marks an important difference from the preceding phantom study,
in which field-induced image fluctuations dominated throughout.

In the head we observed no magnetic fields of cardiovascular origin
and only small respiratory fields of limited impact on the SFNR (0.2%).
However, physiological noise correction based on peripheral recordings
(Glover et al., 2000; Salimi-Khorshidi et al., 2014) consistently
improves the SFNR in the high percent range (Murphy et al., 2013).
Hence, the majority of breathing and cardiovascular image dynamics
must be mediated by physics other than long-range magnetic field such

as vessel pulsation, bulk motion, and the magnetic susceptibility of
blood. The spatial structure of physiological noise also differs greatly
from field-related noise. For the data considered here this is illustrated
by RETROICOR correction (Glover et al., 2000; Harvey et al., 2008;
Kasper et al., 2017) in Fig. S3 (Supplementary material). RETROICOR
yielded essentially the same spatial structure and magnitude of SFNR
gains with and without field correction, reflecting the small relative
amplitude of the long-range field effects.

4.3. Implications for the correction of field fluctuations

In this work, field observations were performed with external NMR
probes to capture fluctuations concurrently with actual EPI readouts
and at full temporal resolution. This recent approach, combined with
image reconstruction based on the field recordings, proved readily
feasible in vivo and offered flexibility in studying different spatial field
terms and time scales.

In current fMRI practice, field correction is performed by a choice
of established methods as surveyed in the introduction, which shall be
briefly reviewed in light of the findings of this work. Physiological
fluctuations, occurring in all spatial terms, yet slow relative to EPI
readouts, can be addressed by all of the established means, i.e. by
calibration echo trains, navigators, and co-registration. For the latter,
however, breathing fluctuations pose challenges. The length of breath-
ing cycles is on the same scale as typical volume repetition times.
Therefore co-registration of whole 3D stacks, as commonly done today,
will not eliminate the breathing confounds. Moreover, jittering image
scaling as observed in this work is not covered by rigid-body co-
registration. To address breathing field effects co-registration should
thus be performed on a per-slice basis and with at least an affine
distortion model.

Of the established approaches only calibration echo trains permit
accounting for within-shot field dynamics, as induced by hardware
imperfections. To address fluctuations in these dynamics the calibra-
tion must be performed on a per-scan basis. This is straightforward in
terms of sequence design and has no hardware implications. However,
per-scan re-calibration requires a palpable acquisition time overhead
and calibration echoes without phase encoding capture only repeated
imperfections of the frequency-encoding gradient. They miss phase-

Table 2
SFNR gains by full field correction compared to different reconstruction schemes with partial correction. Mean SFNR evaluated in 5 different ROIs (A) without and (B) after image
realignment. For each ROI-averaged SFNR gain, the mean ± standard deviation are reported over all 18 sessions and subjects. Highest SFNR gain is found for field-averaged
reconstruction and hardware-related fluctuations in k0 with and without realignment. SFNR gain in gray matter is higher than in white matter; values for gray/white matter border are in
between.

(A) SFNR Gains by Full Field Correction without image realignment

Hardware Physiological Field-Averaged

k0 kmp k0 kmp k0 & kmp

Gray Matter 66.7 ± 16.0% 0.9 ± 1.1% 0.3 ± 0.2% 0.1 ± 0.1% 70.1 ± 17.2%
White Matter 38.5 ± 10.3% 0.6 ± 0.5% 0.2 ± 0.1% 0.0 ± 0.0% 41.5 ± 10.7%
Gray/White Matter - Border 56.5 ± 13.1% 0.7 ± 0.6% 0.3 ± 0.2% 0.1 ± 0.1% 59.4 ± 14.1%
Frontal Lobe Gray Matter 51.8 ± 11.6% 0.4 ± 1.4% 0.2 ± 0.1% 0.0 ± 0.1% 53.5 ± 13.4%
Occipital Lobe Gray Matter 111.8 ± 40.6% 2.5 ± 3.2% 0.4 ± 0.3% 0.3 ± 0.3% 112.5 ± 33.9%

(B) SFNR Gains by Full Field Correction after image realignment

Hardware Physiological Field-Averaged

k0 kmp k0 & kmp kmp k0 & kmp

Gray Matter 7.2 ± 4.5% 0.9 ± 1.2% 0.3 ± 0.2% 0.1 ± 0.1% 6.0 ± 3.9%
White Matter 1.7 ± 2.2% 0.6 ± 0.6% 0.2 ± 0.1% 0.0 ± 0.0% 0.7 ± 2.3%
Gray/White Matter - Border 3.8 ± 3.0% 0.8 ± 0.8% 0.3 ± 0.2% 0.1 ± 0.1% 2.7 ± 2.7%
Frontal Lobe Gray Matter 8.0 ± 5.4% 0.8 ± 1.0% 0.3 ± 0.1% −0.1 ± 0.1% 7.0 ± 4.6%
Occipital Lobe Gray Matter 15.7 ± 9.3% 1.6 ± 2.2% 0.4 ± 0.3% 0.3 ± 0.3% 12.3 ± 7.5%
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encoding errors and transient superposition behavior of all but very
short-lived eddy currents.

In comparison, the key drawback of field monitoring with external
probes is the need for additional instrumentation. Its chief advantage is
coverage of all spatial field terms simultaneously, at full temporal
resolution, and without sequence overhead. In addition, unlike calibra-
tion echoes concurrent field recording does not require that effects of
interest occur repetitively and is thus equally applicable for other
readout strategies such as spirals (Glover, 2012) and variable-density

EPI (Kasper et al., 2014). Limitations of the signal lifetime of NMR
field probes can be overcome by a continuous implementation using
rapid re-excitation of short-lived sensor samples (Dietrich et al., 2016).

While the present work has been limited to field considerations up
to 1st order in space, higher-order field perturbations can also be
significant, particularly due to breathing (Vannesjo et al., 2015), eddy
currents (Wilm et al., 2011), or dynamic shimming (Vannesjo et al.,
2014). Measurement of higher-order field fluctuations is readily
accomplished with navigators (Splitthoff and Zaitsev, 2009) and, for
full temporal resolution, NMR field probes. However, image recon-
struction with higher-order field correction involves substantially more
computation than 1st-order reconstruction (Wilm et al., 2011) and will
thus be challenging for fMRI time series.

A remaining fundamental limitation of data correction based on
field observations is the requirement that data alterations caused by
field perturbation be mathematically reversible. In single-shot scanning
with small field perturbations this is true to a large degree but not
without exception. In particular, slight slice displacement by field
offsets during excitation cannot be addressed retrospectively. At typical
excitation bandwidths of few kHz and field offsets as observed here,
signal changes due to slice shift may well reach the percent range. A
generic response to this issue is real-time rather than retrospective field
correction, using suitable sensing and immediate actuation of com-
pensation fields (Duerst et al., 2015; van Gelderen et al., 2007).

4.4. Translation to other fMRI scenarios

Field fluctuations and their translation into image fluctuations
depend strongly on a range of sequence aspects, particularly the
readout trajectory and associated artifact behavior, the gradient duty
cycle, and potential parallel imaging acceleration. They also vary
naturally with the hardware and correction strategies used as well as
subject-related factors. Thus, the specific field behavior and image
fluctuations observed in this work cannot be generalized. Instead the
findings are intended to offer guidance regarding the types of effects
encountered in typical fMRI studies at 3 T and, roughly, their orders of
magnitude.

Beyond the common scenario studied here several directions of
development are of particular interest in the context of field fluctua-
tions. One of these is the gradual adoption of higher field strengths of
7 T and beyond for fMRI. Increasing B0 boosts physiological field
fluctuations by increasing the underlying susceptibility effects. FMRI at
ever higher field will thus increasingly suffer from related image
fluctuations. In addition to enhanced breathing effects low-order field
perturbations of cardiovascular origin may eventually become a
relevant confound. On the instrumentation side, stronger susceptibility
effects have prompted efforts to deploy dynamic shimming at high field
(Juchem et al., 2010, Vannesjo et al., 2016b), which will likely be a
source of added hardware-related fluctuations.

A second intriguing direction is broader deployment of readout
strategies other than regular EPI. One long-standing, attractive alter-
native is the use of spiral readouts (Glover, 2012), which are sig-
nificantly faster than EPI for given gradient specifications. Another
example is matched-filter EPI, which offers enhanced SNR efficiency
when spatial filtering is involved in data post-processing (Kasper et al.,
2014). Regarding field fluctuations, each such alternative will give rise
to different hardware-related effects and translate fluctuations into
different artifacts. Importantly, upon deviation from regular EPI,
artifacts arising from slow field fluctuations will no longer amount to
mere shifts and distortions and can thus no longer be addressed by co-
registration. Likewise, the concept of calibration echo trains has no
generalization for trajectories that are not repetitive in themselves.
Thus, of the correction approaches surveyed here the only generally
applicable ones will be those based on navigators, covering slow
fluctuations, and external field probes for full field information.

A third perspective naturally concerned by issues of field stability is

Fig. 7. Comparing full field correction to field-averaged image reconstruction (employ-
ing only the averaged field evolution over the session) for session 1, day 1, subject 1. (A)
SD images before (top) and after (bottom) realignment. (B) SFNR gain for full field
compared to field-averaged correction in different ROIs before (top) and after (bottom)
realignment. The distribution (over sessions and subjects) of the mean SFNR gain is
depicted (vertical line=median; box=25/75 percentile; whisker=up to one and a half
times the interquantile range from the box; plus=outliers).
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phase-based BOLD analysis (Bianciardi et al., 2014, 2009; Hagberg
et al., 2008). Commonly, image processing in fMRI is limited to
magnitude images, discarding the image phase because it is inherently
more sensitive to field fluctuations. It is also more susceptible to
ghosting, which the magnitude operation masks when it occurs out-of-
phase with properly depicted signal (Fig. 5). Nevertheless, due to its
very sensitivity to subtle field changes the phase of fMRI data is also a
carrier of BOLD information. Fully deploying this information requires
particularly accurate fluctuation correction, which would equally
advance derived phase-based contrasts such as functional quantitative
susceptibility (Liu et al., 2015; Ozbay et al., 2016), especially at high
field.

The advanced scenarios discussed in this section all explore ways of
enhancing the performance of fMRI while also boosting challenges
related to field fluctuations, be it in the form of larger field excursions,
greater sensitivity to them, or greater difficulty of correction. This
observation suggests two conclusions. One is that magnetic field
imperfections of various sorts, while of moderate impact in the present
study, will tend to play an increasing role as fMRI advances. The other
conclusion is that the ability to record spatiotemporal field evolution in
the first place is pivotal, should be versatile, and should not interfere
with sequence design, which speaks in favor of dedicated field sensors.

5. Conclusion

According to the results of this work long-range field fluctuations
are a relevant confound in fMRI. Field fluctuations of physiological
origin are predominantly due to breathing and small relative to both
hardware-related field effects and image fluctuations of other physio-
logical causes. In a standard fMRI protocol at 3 T full field correction at
the image reconstruction stage afforded SFNR gains on the order of
67% and 6%, respectively, without and with complementary image
realignment. Based on the presented analysis of fluctuation contribu-
tions the advantage of full field correction is anticipated to increase
with field strength, upon phase-sensitive BOLD analysis, and with non-
Cartesian readouts, for which even slow field fluctuations cannot be
addressed by image realignment.
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