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A B S T R A C T

Physiological noise originating in cardiovascular and respiratory processes is a substantial confound in BOLD
fMRI. When unaccounted for it reduces the temporal SNR and causes error in inferred brain activity and
connectivity. Physiology correction typically relies on auxiliary measurements with peripheral devices such as
ECG, pulse oximeters, and breathing belts. These require direct skin contact or at least a tight fit, impairing
subject comfort and adding to the setup time. In this work, we explore a touch-free alternative for physiology
recording, using magnetic detection with NMR field probes. Placed close to the chest such probes offer high
sensitivity to cardiovascular and respiratory dynamics without mechanical contact. This is demonstrated by
physiology regression in a typical fMRI scenario at 7 T, including validation against standard devices. The study
confirms essentially equivalent performance of noise models based on conventional recordings and on field
probes. It is shown that the field probes may be positioned in the subject's back such that they could be readily
integrated in the patient table.

Introduction

Physiological noise is a primary limitation of BOLD fMRI. It enters
fMRI time series via a number of effects that modulate image contents.
The main drivers of confounding physiological signal fluctuations are
cardiovascular and respiratory processes. When unaccounted for,
physiological noise can severely affect temporal signal-to-noise ratios,
reduce sensitivity to the effects of interest and cause false positives as
well as negatives (Hutton et al., 2011; Murphy et al., 2013).

Methods for identifying and accounting for physiological noise can
be divided into two categories: techniques that exploit the inherent
spatio-temporal structure of physiological signal fluctuations (e.g.,
independent component analysis (Beckmann and Smith, 2004;
Perlbarg et al., 2007)), and voxel-wise noise modeling based on
concurrent recordings of the heartbeat and respiration (e.g.
RETROICOR (Glover et al., 2000)). Cardiac and respiratory activity
are typically sensed with MR-compatible electrocardiography (ECG) or
pulse oximetry and breathing belts, respectively. Whilst conceptually
simple and widely available in commercial MRI setups, the use of these
devices has drawbacks. They require direct skin contact (ECG, oxime-
try) or a tight fit (breathing belt) and can thus impair the comfort of

subjects. Mounting them adds to the scan preparation time, which is
most relevant for clinical exams. Pulse oximetry and ECG are prone to
degrading signal quality up to complete failure due to detaching
electrodes and alteration of the oximeter's fit upon motion, e.g., in
paradigms that involve motor tasks, or perspiration. Furthermore pulse
oximetry is susceptible to perfusion changes in the fingertip, particu-
larly when the device fits very tightly. ECG signals, on the other hand,
are compromised by RF and gradient field interaction and, at high field,
by magneto-hemodynamic effects (Tenforde, 2005).

In this work, we explore an alternative mechanism of tracking
physiological activity during fMRI studies. Magnetic field measurement
with 1H NMR probes (De Zanche et al., 2008) has been shown to offer
significant sensitivity to cardiac activity (Gross et al., 2016) and respiration
(Vannesjo, 2011; Boer et al., 2012; Vannesjo et al., 2015) in high magnetic
fields. Due to its natural magnetic susceptibility the whole body is
magnetized by a background field and each small volume of tissue
generates a magnetic field in its surroundings. Therefore, when placed
close to the heart, field probes sense changes in the local tissue distribution
upon respiratory chest motion and cardiac action, and associated blood
flow (Maniewski et al., 1988). Mediated by magnetic fields, this sensing
mechanism does not require mechanical contact.
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We hypothesize that magnetic sensing with NMR probes permits
physiological noise modeling and fMRI de-noising. A key added
challenge of field recording during fMRI lies in the presence of massive
radiofrequency and gradient fields involved in the imaging procedure.
The former is overcome by switching to fluorine-based field sensors
(Pruessmann and De Zanche, 2007; Barmet et al., 2011). Gradient
contamination is addressed by a post-processing strategy that exploits
differences in time scale between gradient operation, physiological
dynamics, and hardware drifts. Not requiring any mechanical contact
with the subject, magnetic physiology sensing may lend itself to
integration into scanner tables. To explore this potential we investigate
different field probe configurations with the chief goal of achieving
robust recordings with sensors positioned only in the back of the
subject. For performance assessment, magnetic physiology recording is
compared with conventional physiology monitoring in terms of var-
iance explained in resting-state fMRI, using an extended RETROICOR
approach (Glover et al., 2000; Brooks et al., 2008; Harvey et al., 2008).

Methods

Hardware

All experiments were performed on a Philips 7 T Achieva system
(Philips Healthcare, Best, The Netherlands), using a 32-channel array
for signal reception (NOVA Medical Inc., Wilmington, MA). We used
eight freely positionable NMR field probes to measure the magnetic
field evolution around the subject's chest concurrently with image
encoding. Efficient radiofrequency decoupling between field measure-
ment and MR image acquisition was achieved by using fluorine-based
sensors (hexafluorobenzene, Ø=1.3 mm, T2=1.5 ms) (Pruessmann and
De Zanche, 2007; Barmet et al., 2011; Wilm et al., 2011). To ensure
subject and hardware safety, the field probes were equipped with
suitable RF shields and cable traps. For signal excitation and acquisi-
tion they were connected to a custom-configured stand-alone spectro-
meter (Dietrich et al., 2015). The sensitivity of an NMR field probe
depends on geometric and physico-chemical properties and the ob-
servation time used (De Zanche et al., 2008).

Field probe configuration

Dynamics and magnitudes of physiological magnetic fields depend
on the measurement location with respect to the subject (Katila et al.,
1982) and on subject morphology and physiology. To explore signal
variation, we acquired data at different posterior and anterior loca-
tions. In the back, an array of six field probes (P1-P6) was mounted on
the patient table at the level of the heart (Fig. 1). The probes were
aligned in three staggered rows of two probes each, covering a total
area of 9 cm×7.5 cm (foot-head×left-right) in total. The distance to the
subject was about 1 cm. This arrangement remained unchanged
throughout the study.

In anterior position, two field probes (A1 and A2) were suspended
close to the subject's chest using an adjustable mechanical arm. These
probes were repositioned for each subject. They were placed about
1 cm and 4 cm left of the sternum at a level roughly 7 cm inferior to the
clavicle. The distance from the body was adjusted at about 3 cm such
that the chest did not touch the field probes nor the mechanical arm
upon deep breathing.

Performance assessment of the fluorine sensors

We assessed the baseline performance of the fluorine-based sensor
design by physiological field measurements without concurrent image
acquisition. The measurements were performed as described in (De
Zanche et al., 2008), yielding average field values at a rate of 200 Hz.
We achieved a maximum field resolution of 1 nT. For each subject, we
recorded magnetic field time series during short periods of breathhold

and free breathing prior to subsequent imaging experiments.

fMRI data acquisition and pre-processing

We acquired image time series from 17 healthy subjects (8 males, 9
females, body-mass-index 18–29). Written informed consent was
obtained from all participants according to the local ethics regulations.
Subjects were instructed to lie still and breathe freely without
performing any explicit task. We used the following imaging protocol:
single-shot EPI, 1.5 mm in-plane resolution, 1.5 mm slice thickness,
FOV 210x210×60 mm3, slice TR 62.5 ms, SENSE factor 4, 150
volumes. The total scan duration was 5 min. Data was reconstructed
using the scanner's built-in functionalities. Image time series were
spatially co-registered and realigned using SPM12 (Wellcome
Department of Imaging Neuroscience, London, http://www.fil.ion.
ucl.ac.uk/spm/). Three datasets were excluded due to head motion
exceeding 1 mm in any direction (Beissner et al., 2010; Gullick and
Wolford, 2013). Concurrent to image acquisition, heart rate and
breathing were recorded using the MR system's finger-tip pulse-
oximeter (PO) and pneumatic breathing-belt (BB), respectively.

Field measurement during image acquisition

During actual image acquisition the field dynamics in the scanner
bore are dominated by the gradient fields used for image encoding.
With amplitudes in the millitesla range, the induced field excursions
are up to five orders of magnitude larger than the physiological field
dynamics of interest that are typically in the range of tens to hundreds
of nanotesla. To recover useful physiological information, the raw field

Fig. 1. Experimental setup and field probe configuration. An array of six NMR field
probes was placed in the back of the subject on the patient table. They were arranged in
three staggered rows of two probes each (bottom right). Two additional field probes were
positioned anterior to the subject's chest using an adjustable mechanical arm (not
shown). They were at a level roughly 7 cm inferior to the clavicle, close to the upper parts
of the heart. Their position was adjusted for each subject.
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data thus requires suitable correction. Confounding gradient fields can
be corrected for by the subtraction of an average gradient contamina-
tion, a principle that is also used for the reduction of gradient artifacts
in simultaneous EEG/fMRI data (Allen et al., 2000). In the present
work, we calculated the average gradient artefact from the recorded
time series itself in a post-processing step. For convenient averaging
over sequence repetitions the acquisition of field data is performed with
the same periodicity, i.e., identically within each slice TR (Fig. 2a). To
this end field measurement was triggered at a fixed time after slice
excitation. Due to relaxation, signal acquisition from NMR probes is
limited to finite time windows interspersed with recovery periods.

Therefore the trigger was followed by a train of field observations.
Based on the probes’ T2 of 1.5 ms the observations were made 2.5 ms in
length each and spaced at 5 ms (Fig. 2a). No field measurement was
performed during the excitation pulse of the imaging sequence because
it corrupts probe signals by RF interference. The gradient contributions
are different for immediately successive measurements, but are re-
peated every slice TR (Fig. 2b and c). Their average contribution can
therefore be computed by averaging over all measurements with the
same timing (indicated by equal colors in the figure). Subtracting these
averages from the respective times series yields a gradient-corrected
time series (Fig. 2d). System heat-up can lead to slow variation of

Fig. 2. Field fitting and gradient removal illustrated with data from a single field probe. a) Field probe acquisitions are triggered by the scanner. For each slice, a train of successive field
measurements is performed at a temporal spacing of 5 ms. b) The image encoding gradients induce field excursions in the mT range. c) They dominate the measured field values and
cover the physiological effects which are up to five orders of magnitude weaker. d) The measured field data is corrected for contamination by encoding gradients by subtracting the mean
values of the time series, determined from all measurements acquired with the same timing within the slice TR (displayed in equal colors). e) Slow thermal drifts are mitigated by
subtracting low-order polynomials from the time series, again for each measurement timing separately. f) All time series are interleaved to yield one single, densely sampled time course.
g) This time course is resampled on a regular temporal grid of 2.5 ms resolution to yield a gradient- and temperature-corrected, regularly sampled field time course for the extraction of
physiological information. h) Finally, the field time course is low-pass filtered to a cut-off frequency of 12 Hz, suppressing high-frequency noise while conserving physiological features
relevant for noise modeling.

S. Gross et al. NeuroImage 154 (2017) 106–114

108



gradient response behavior and to magnet drift (Dietrich et al., 2015;
Kasper et al., 2015; Vannesjo et al., 2013). The field effect of the former
varies along with the gradient waveform and thus differs within the
slice TR. Hence, drift correction (by subtraction of a 3rd-order
polynomial) was applied separately to each of the 12 time series
(Fig. 2e). After this step, all data was interleaved to yield a single,
densely sampled field time course (Fig. 2f). The slight gap due to RF
interference was filled by interpolation (cubic C2 spline) to obtain
regularly sampled data for convenient further processing. The resolu-
tion of the interpolation grid can be chosen arbitrarily and was set here
to 2.5 ms (Fig. 2g). High-frequency noise was then suppressed by low-
pass filtering down to 12 Hz, conserving the relevant physiological
features (Fig. 2h). All signal processing was performed using
Matlab2015 (The MathWorks, Natick, MA).

Extraction of physiological components

Decomposition of the physiological signals into cardiac and re-
spiratory components is based on the assumption that the two
components occupy substantially different spectral bands and can thus
be separated by frequency-selective filtering. For each dataset, the
respective frequency bands were chosen according to the average heart
rate extracted from the data. Typical values were [0.04–0.62 Hz] and
[0.72–12 Hz] for the respiratory and cardiac contributions, respec-
tively, at an average heart rate of 66 bpm.

For robust extraction we utilized the signals from the six posterior
field probes (P1-P6) jointly. The six gradient-corrected signals were
subject to principal component analysis (PCA). The resulting principal
components were then analyzed in terms of the prominence2 of their
spectral peaks. For both the cardiac and the respiratory frequency band
the principal component with the most prominent peak was identified
and subject to band-pass filtering. The so-obtained separated cardiac
and respiratory signals are hereafter referred to as probe array.

To explore the potential of a single-channel device, all field probe
data, including the signals from the anterior field probes A1 & A2, were
also processed on a per-probe basis. In per-probe processing the
gradient-corrected field evolution of each probe channel alone formed
the basis of extracting the two physiological components by bandpass
filtering (referred to as A1& A2 and P1-P6). All signal processing was
implemented in Matlab and is fully automatic with no need for
operator intervention.

Noise regressors and statistical analysis

The physiological signals were used to generate nuisance regressors
according to a modified RETROICOR model (Glover et al., 2000;
Harvey et al., 2008). Among the large variety of possible specific
models we chose an example that makes rich use of the physiological
readouts and has been shown to work particularly well in a challenging
area, namely the brainstem (Harvey et al., 2008). The model includes:

i) 3C: six (0th – 2nd harmonic sine and cosine terms) cardiac phase
regressors, reflecting changes in voxel intensity due to the heart
beat (Glover et al., 2000)

ii) 4R: eight (0th – 3rd harmonic sine and cosine terms) histogram-
equalized respiratory phase regressors, reflecting voxel intensity
variations due to respiration (Glover et al., 2000)

iii) 1X: four first-order multiplicative interaction regressors, account-
ing for low-frequency modulations of the cardiac cycle by respira-
tion, e.g., respiratory-sinus arrhythmia (Brooks et al., 2008;
Harvey et al., 2008).

The set of regressors was complemented by 6 motion regressors
(1M) derived from the image realignment parameters (3 translational
and 3 rotational degrees of freedom), adding up to the full model
consisting of 24 individual dynamic regressors (3C4R1X1M). The
physiological regressors were computed on a per-volume basis in line
with common current practice, referenced to the acquisition time of the
first slice (ascending slice order). Cardiac and respiratory phase
extraction and regressor generation was performed using the PhysIO
Toolbox ((Kasper et al., 2017), translationalneuromodeling.org/tapas).

In total, we created 10 different physiological noise models
(Table 1): one derived from the multiple-channel posterior signals
(probe array), a total of 8 models derived from the individual signals of
each field probe channel (P1-P6, A1-A2) and one reference model
derived from data acquired by pulse oximetry in combination with the
breathing belt (PO&BB).

Physiological noise in the MR image time series was identified by
fitting each model separately to the re-aligned image data using a
general linear model (GLM). Image data was not smoothed prior to
regression analysis such as to retain the high spatial resolution of the
raw images. For each model we defined the following three contrasts:

i) cardiac: containing all cardiac regressors (3C),
ii) respiration: containing all respiratory regressors (4R),
iii) all phys: containing all physiological regressors, including the

interaction regressors (3C4R1X),

and computed the respective F-maps (uncorrected, significance
threshold p < 0.001). Model regression and statistical analysis were
performed using SPM12.

Model comparison

The performance of physiological noise models derived from data
acquired with field probes was compared to that obtained from pulse-
oximeter (PO) and breathing-belt (BB) recordings by means of addi-
tional regression models. These complementary noise models
(3C4R1X3C’4R’1X’1M) contained all regressors of one field probe
model (3C4R1X) together with all regressors derived from the pulse
oximeter and the breathing belt (3C’4R’1X’), complemented by the
motion regressors (1M). Overall, we created nine (probe array, P1-P6,
A1-A2) complementary models for each subject.

For each of these nine models we defined the following two
contrasts:

i) added by probe / probe array: containing all physiological
regressors (all phys) derived from field probe data (3C4R1X)

ii) added by PO&BB: containing all physiological regressors (all
phys) derived from the pulse oximeter and breathing belt
(3C’4R’1X’)

and calculated the according F-maps (uncorrected, significance
threshold p < 0.001).

The F-value calculated with respect to a given contrast compares
the explanatory power of the full model with the explanatory power of a

Table 1
Models used for physiology regression.

Model name Input data

probe array principal components of field probes P1-P6
P1, …, P6 posterior field probe P1, …, P6
A1,A2 anterior field probe A1 or A2
PO& BB combined data from fingertip pulse oximeter (PO) and

breathing belt (BB)

2 The prominence of a peak is a measure of its height and position relative to other
peaks. It is defined as the maximum vertical distance between the peak and the lowest
level of the signal before the signal rises to a value exceeding the height of the peak.
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submodel that lacks the regressors specified by the name of the
contrast. Voxels identified in one of the added by […] contrasts are
those for which the two noise models differ significantly (p < 0.001).
For example, for a voxel highlighted in an added by PO&BB map the
physiological noise model derived from the reference devices explains
significantly more variance than the model derived from the field probe
data. Conversely, an essentially empty added by probe or added by
probe array map indicates that the field probe model did not miss any
variance explained by the reference model (PO&BB).

Results

Physiology tracking performance in the absence of gradient fields

Physiological field signals recorded in the absence of gradient fields
during a breathhold and free breathing are shown in Fig. 3. Both the
cardiac and respiratory contributions are clearly visible in all channels,
confirming adequate sensitivity of the newly devised fluorine sensors.
As expected, the recordings vary substantially with probe position. The
anterior channels (A1 &A2) depict cardiac dynamics with a high level
of detail and peak-to-peak amplitudes exceeding 300 nT during breath-
hold and up to 150 nT during free breathing. The amplitude difference
is likely caused by particular positioning of the heart relative to the

sensors during fully inhaled breathhold. In the posterior probes (P1-
P6) the cardiac signals are less pronounced at 60 nT to 100 nT. Their
overall temporal behavior correlates strongly with the probe position in
the feet-head direction. The dynamics of the respiratory field contribu-
tion are similar in all channels. Amplitudes range from 200 nT to
900 nT and similarly exhibit a distinct dependence on the probe
position in the feet-head direction. The data is unfiltered. It exhibits
an RMS magnetic noise floor of 2–6 nT.

Physiology tracking during image acquisition

Physiological signals acquired during fMRI acquisition are shown in
Fig. 4. The correction scheme successfully removed the dominant
gradient fields, revealing the physiological field contributions. The
quality of the physiological traces of the individual channels is
generally inferior to the data acquired without concurrent imaging.
This is mostly due to broadband magnetic field noise of 15 to 25 nT
generated by the gradient hardware while unblanked. PCA of the
posterior signals successfully extracts and separates cardiac and
respiratory components (probe array). It notably improves the ob-
servation of cardiac action relative to the underlying single-channel
signals (P1-P6). The extracted physiological traces show a high degree
of consistency with the reference pulse-oximeter (PO) and breathing
belt (BB) signals. Supplementary Fig. S1a and b show a direct
comparison between the physiological signals of three subjects re-
corded with the reference devices and the probe array and a correlation
analysis of the corresponding extracted physiological phases.

Physiological noise modelling

The regression results of the physiological noise models generated
from the field probe data and the reference model for subject #5 are
shown in Fig. 5. (Supplementary Fig. S1c shows results from two
further subjects. Supplementary Fig. S2 gives an overview of the all
phys results of all 14 datasets included in the study). Both cardiac and
respiratory processes as well as their interaction affect the time series
in the expected anatomical regions (e.g., cardiac in the ventricles and
the insula, respiration at the grey matter-CSF boundaries). The
performance of the individual noise models shows high correlation
with the quality of their input signals (Fig. 4). The model based on the
posterior array (probe array) exhibits excellent qualitative agreement
with the reference model. Both the cardiac and the respiratory noise
components as well as their combined effect (all phys) exhibit large F-
values, indicating a highly significant contribution to the explained
variance.

Similarly, four out of eight single-channel probe models (P3-P5,
A2) correspond closely to the reference models. Models P1, P2, P6 and
A1, on the other hand, underestimated the cardiac noise contribution,
resulting in markedly sparser F-maps.

The quantitative comparison between the conventional and pro-
posed noise models is illustrated in Fig. 6, showing F-maps of the probe
array and PO&BB regressors along with those of the added by
contrasts (again for subject #5, one slice shown). Both added by
contrasts are very sparse, with only 0.9% (added by probe array) and
0.5% (added by PO&BB) of all brain voxels exceeding the threshold of
p < 0.001. Their mean and median F-values are 3.2 and 2.9 for added
by probe array and 3.0 and 2.9 for added by PO&BB, with maximum
F-values of 9.8 and 5.5 respectively. For this subject, the probe array
based regressors thus explained slightly more variance than the
reference model (PO&BB).

An overview of all comparison results is compiled in Fig. 7. It shows
the statistics of the added by PO&BB and the added by probe / probe
array analysis for every volunteer and every set of regressors, including
all eight single-channel models.

In all analyzed datasets the proposed multiple-channel field probe
models (probe array) and the reference models (PO&BB) show a high

Fig. 3. Physiological magnetic field dynamics recorded in the absence of gradient fields
(subject #5). Data was acquired with the field probes positioned as shown in Fig. 1. Note
that the signals are unfiltered and scaled differently in different parts of the figure.
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Fig. 4. Physiological signals acquired with field probes and reference devices for subject #5. The gradient-corrected but unfiltered data (left) exhibits an increased broadband noise level
of 15 to 25 nT. This data corresponds to the processing state g) in Fig. 2. Low-pass filtering removes the high-frequency noise and reveals the physiological field signatures (middle). At
this stage, the data corresponds to the processing state h) in Fig. 2. PCA on the posterior field probe data (P1-P6) successfully pre-separates cardiac and respiratory contributions (top
middle panel, termed probe array). Frequency-selective filtering achieves this separation also for single probes (right).

Fig. 5. Sample transverse slice of the regression results of all models for subject #5. The color scales are equal for all datasets in each row. The overall maximum values and the
respective median values of the whole-brain F-maps are given in the bottom right corner of each map.
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degree of accordance. On average, the voxel counts in either of the two
contrasts differ by less than 0.8% of the total number of brain voxels.
Over all 14 datasets the number of voxels where the PO&BB model
explained significantly more variance than the probe array model
(added by PO&BB contrast) varied between 0.2% and 0.6% of the total
number of brain voxels, with their mean and median F-values ranging
from 2.8 to 3.0 and 2.9 to 3.2, respectively. Conversely, the probe
array model outperformed the reference models (added by probe
array contrast) in 0.3% to 2.2% of all brain voxels with mean and
median F-values ranging from 2.9 to 3.0 and 2.9 to 3.3, respectively.

The single-channel models vary in performance. For most subjects
several field probes were able to capture the physiology with sufficient
fidelity to allow the generation of adequate single-channel noise models
(less than 1% identified voxels in added by PO&BB contrast). In 8 out
of 14 cases, there was at least one single-probe model that explained
more variance than the reference models. On the other hand, in two
cases, no field probe was sufficiently sensitive by itself and in one case
only one single-channel model reached the threshold of less than 1%
identified voxels in the added by PO&BB contrast. The position
dependence is pronounced. However, no clearly preferable field probe
position can be identified. The analysis also reveals that, although re-
positioned for each subject, the anterior field probes (A1 and A2) did
not perform markedly better than the best posterior field probe.

Discussion

The results of this work indicate that magnetic field sensing around
the chest is a source of rich physiology data available during fMRI
examinations. The acquired readings differ between subjects and
exhibit significant spatial variation. Yet, the joint use of a small array
of field sensors provided robust RETROICOR regressors for fMRI time-
series de-noising. They showed excellent accordance with noise models
generated from standard devices in all 14 subjects included in this
study. Notably, the array approach relied exclusively on sensors placed
in the back of the subjects, indicating that integration in the patient
table is a viable option. Not requiring mechanical contact, field sensing
for physiology tracking also promises to enhance the comfort of
subjects and to reduce setup times.

While sensing with the posterior probe array was robust through-
out, the utility of single sensors was found to vary with position.
Nevertheless, for most subjects at least one sensor was placed such as
to yield an adequate physiological noise model. This suggests that
refined and perhaps adaptive positioning could reduce the number of
sensors needed to just one. Automated field probe positioning could be
performed during scan preparation steps and may account for basic
morphological information such as weight and height.

Towards reliance on single sensors, one limiting factor is magnitude
variation of the cardiac signal components. Low SNR limits the
temporal accuracy of feature detection in physiology time courses
and potentially causes it to miss entire cycles. The SNR issue is
particularly accentuated in some posterior field probe positions, where
the cardiac signal amplitudes are naturally weaker compared to the
anterior field probes (Figs. 3 and 4). Apart from probe position we also
suspect a role of subject physique as reflected by the body-mass-index
(BMI) since cardiac signal amplitudes from subjects with increased
BMI tended to be weaker, up to a factor of 3, compared to other
subjects. We believe the reduced signal magnitude to be a result of
increased distance between the signal source - the heart and its major
vessels - and the field probes due to increased body size. Naturally,
signal magnitudes are expected to also depend on anatomical and
physiological properties of the heart itself.

Relative to field recordings in the absence of gradient operation, a
significant SNR drawback was also found to arise from field noise
generated by the gradient hardware. For efforts to reduce gradient field
noise in the sensor data it is helpful that it is spatially structured
according to its origin in the gradient coils. To a certain degree this
structure has already been exploited by the PCA approach, which will
tend to bin gradient noise components into separate principal compo-
nents due to their particular spatial coherence. Similarly, PCA exploits
the fact that the cardiac and respiratory fields originate in different
physical structures and tend to form different principal components
due to differing spatial footprints. This mechanism inherently alleviates
potential issues upon partial spectral overlap of respiratory and cardiac
signals (Fig. 4).

In some volunteers we observed variation of the cardiac signals with
respiration. We believe this correlation to be caused mainly by
displacements, rotations and deformations of the heart due to respira-
tory motion (McLeish et al., 2002). The magnitude of these effects
varies significantly among individuals and also depends on breathing
depth. For healthy individuals, displacements of up to 2.4 cm have
been reported (McLeish et al., 2002). It seems plausible that such
displacements of the signal source relative to the field probe position
can lead to the observed signal alterations. Further field perturbation
may arise from bulk motion of body parts, which all act as magnetic
sources due to their magnetic susceptibility. For cardiac and respira-
tory regression such motion will only be a confound, however, if it
resides in the same frequency bands while being actually unrelated to
breathing and the heart beat.

Physiological signals recorded with field probes have here been
used in the RETROICOR framework. Conceivably, they could also serve

Fig. 6. All phys regression results for the probe array (a) and the PO&BB (c) models for
subject #5. The high degree of accordance is confirmed by the respective added by maps
(b,d) being very sparse, exhibiting only a small number of randomly distributed voxels.
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other strategies of constructing physiology regressors. The field read-
outs mainly reflect cardiovascular and breathing mechanics and may
hence relate to mechanical pathways of cardiac and breathing influence
on signal variation in fMRI. It might thus potentially be useful to
involve signal features other than the cycle length in the construction of
confound regressors. In principle, even bare field traces could be
explored as potential noise regressors. To this end, the field probes
could be moved closer to the head, e.g., close to the carotid arteries
(Gross et al., 2016).

Beyond the construction of physiology regressors, field-sensor
readouts could also serve for triggering and gating as otherwise

performed with traditional physiology signals. To this end, the proces-
sing of sensor signals will need to be advanced from its current
retrospective form to a low-latency, real-time implementation. The
primary calculation of field values and the removal of gradient
contamination (e.g., based on pre-calibration) could be readily per-
formed in the real-time branch of the spectrometer, incurring very little
latency ( < 1 ms). Low-pass filtering will be equally cheap computa-
tionally, albeit associated with the related group delay. Algorithmically,
the most significant step in a real-time implementation will be peak
detection, which however is of the same nature and difficulty for field
readouts as it is for traditional physiology signals.

Fig. 7. Compilation of the voxel statistics of the added by PO&BB and added by probe / probe array analysis for multiple- and single-channel models and for all subjects. For each
contrast, the table reports the percentage of voxels detected in the respective F-maps relative to the total number of brain voxels. At the bottom of the figure, this concept is illustrated in
terms of a Venn diagram. The percent values span a range of 0% to 11%. To facilitate viewing of the data, the results of the single-channel analysis have been colored and re-ordered
according to the performance of the probe-based noise model (added by PO&BB contrast). The same ordering was applied to the added by probe statistics, allowing direct comparison.
The probe channel number is indicated in the upper left corner of each box.
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Based on field measurement, the proposed mode of physiology
tracking could create interesting synergies with other purposes of field
sensing in MRI. Indeed, sensors installed for physiology tracking could
also be employed to instruct real-time shim control (Duerst et al.,
2012; Duerst et al., 2015), B0 update (Boer et al., 2012), or continuous
system characterization (Wilm et al., 2016). Conversely, field monitor-
ing hardware designated for real-time motion correction (Ooi et al.,
2009; Haeberlin et al., 2015) or concurrent trajectory monitoring
(Vannesjo et al., 2015) could also be deployed for physiology tracking.
The specific combination of field-based physiology tracking and pro-
spective motion correction bears the challenge that the latter involves
geometry updates of the imaging sequence. Gradient correction of field
readouts will need to account for the related changes in gradient
waveforms. This could be achieved, for instance, by using an impulse-
response model (Vannesjo et al., 2013) to estimate actual gradient
fields from eventual input waveforms.

A promising, equally touch-free alternative to magnetic detection is
physiology recording by optical means. For example, it has recently
been proposed to use an optical camera system to track skin color
changes and subtle head motion associated with heartbeat and
respiration (Maclaren et al., 2015). This approach addresses many of
the shortcomings of the standard methods and relies on a rapidly
evolving branch of technology. One downside relative to magnetic
sensing is its need for a direct line-of-sight, which imposes geometrical
restrictions on RF instrumentation and other equipment near the
subject's head.

In conclusion, magnetic field sensing is an attractive alternative to
current means of physiology recording for fMRI. It provides physiolo-
gical noise regressors of equal modeling performance and offers the
perspective of full integration and automation. While the presented
data was acquired at 7 T, the method may readily be translated to other
field strengths. However, along with tissue magnetization and the SNR
of NMR probes its effective sensitivity scales strongly with B0. This
makes it a promising approach particularly for fMRI at ever higher field
strengths, which calls for enhanced noise removal to reap intrinsic
sensitivity gains (Brooks et al., 2013).
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