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Abstract—Since its inception, the Kalman filter, which 

represents the optimal estimator for linear, Gaussian state space 
models, has been adopted for a wide array of practical applications 
due to its efficient, recursive formulation. At the same time, the 
field of nonlinear time series analysis has produced powerful 
methods for filtering time series with deterministic dynamics. 
These nonlinear filters differ significantly from linear filters, 
because they transform the time series via delay embedding and 
exploiting geometric features in delay space. However, they are not 
capable of operating recursively like the Kalman filter. In this 
paper, we propose a state space filter based on the delay 
embedding principle, but capable of online estimation. This is 
achieved by formulating the nonlinear delay space filter as a state 
estimation problem, which can be solved using the extended 
Kalman filter. In order for this reformulation to work, it is 
necessary to approximate the dynamics of the time series. For this 
purpose, we use a feed-forward neural network. By embedding the 
neural network weights in the Kalman filter state, we are able to 
simultaneously estimate the hidden dynamics of the time series 
and perform online state space filtering. We present preliminary 
performance estimates of our online state space filtering approach 
obtained from tests with artificial biomedical time series. 

Index Terms— Kalman filter; artificial neural network; state 
space filtering; delay embedding 

I. INTRODUCTION 
In 1960, a paper published by R.E. Kalman led to the 

development of what is today known as the Kalman filter (KF), 
the optimal estimator for linear, Gaussian state space models [1]. 
Due to its computational efficiency and applicability to a wide 
range of applications, the KF enjoyed enormous success. 

About one decade later, the work of Lorenz, Ruelle and 
Takens on strange attractors set off a wave of interest in the field 
of nonlinear dynamics and chaos, which eventually culminated 
in the creation of a wide array of techniques for nonlinear time 
series analysis [2], including methods for nonlinear noise 
reduction in delay space [3]. 

This parallel development of efficient linear filters with 
widespread adoption in technical domains on one side and 
powerful nonlinear filters with unique properties on the other 
side continues until the present day [2]. In this paper, we attempt 
to combine the advantages from both fields with the aim of 
developing an efficient, online state space filtering method for 
biomedical time series. 

Building on the concepts of delay embedding and delay 
space, we reformulate the nonlinear filtering problem as 
nonlinear state estimation, which allows us to apply the extended 
Kalman filter (EKF) for efficient, online state estimation. In 
order to bridge the delay embedding idea with the EKF 
formalism, we make use of artificial neural networks as a 
flexible regression method. This provides us with an algorithm 
which performs online state space filtering and simultaneously 
models the dynamics of the time series. 

This paper is organized as follows. In section II, we first 
introduce the three topics of nonlinear filtering, extended 
Kalman filter and artificial neural networks. Due to space 
constraints, we will restrict ourselves to a basic introduction and 
provide pointers to the literature. Then, we describe the details 
of our state space filtering framework and highlight the 
differences between our approach and related work. Section III 
presents experimental results obtained with our state space 
filtering framework. Finally, we close with a conclusion and 
summary in section IV. 

II. METHODS 
 In this section, we describe our approach to online state 

space filtering. First, basic introductions are provided for 
nonlinear filtering, extended Kalman filters and neural 
networks, which form the fundamental building blocks of our 
state space filtering framework introduced thereafter. A 
discussion of the differences between our approach and related 
work concludes this section. 
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A. Nonlinear Filtering 
Time series generated from deterministic systems have the 

property that future samples can be predicted from past samples: 

 
This characteristic, which Takens formally described in his 
famous delay embedding theorem [4], has been exploited by 
several groups to derive nonlinear noise reduction schemes [3]. 

These nonlinear filtering methods are based on the 
observation that as a consequence of , delay vectors of a 
deterministic time series lie on a low-dimensional manifold. 
Therefore, by identifying this low-dimensional manifold, any 
perturbation to the time series, e.g. due to measurement noise, 
can be corrected in delay space by projecting the perturbed delay 
vectors back onto the manifold. This approach results in a 
nonlinear filter which differs significantly from linear filters 
based on Fourier theory (see [2] for an in-depth discussion). 

Although, these nonlinear filters were designed for strictly 
deterministic time series, practical experience has shown that 
they can be successfully applied to time series generated by 
biophysical systems such as ECG [5], Ballistocardiography [6] 
or speech [7]. 

B. The Extended Kalman Filter 
The Kalman filter was originally designed as the optimal 

estimator for the hidden state of a linear, Gaussian state space 
model [1]. However, many practical applications are best 
modelled using nonlinear evolution and observation equations 
of the form: 

 

where  denotes the system evolution equation,  the 
observation equation,  the system noise and  the measurement 
noise. One possibility would be to derive a linear approximation 
to the nonlinear state space model such that it becomes possible 
to apply the Kalman filter again. This procedure is known as the 
extended Kalman filter (EKF) [8] and the linear approximation 
typically consists of a Taylor expansion: 

 

where  and  denote the Jacobian 
matrices of  and  evaluated at the current state estimate 

. Based on this approximation, the EKF time update 
equations are given by: 

 

and the measurement update equations by: 

 

Here,  denotes the Kalman gain,  the new state estimate 
and  the state covariance.  and  denote the covariance 
matrices of system and measurement noise, respectively. 

For a more detailed introduction to Kalman filtering and a 
derivation of the update equations provided above, we refer the 
interested reader to [8]. 

C. Artificial Neural Networks 
Neural networks originated from mathematical models of 

biological information processing. However, for the purpose of 
signal processing, they can be viewed as very flexible models 
for function approximation. One common form of artificial 
neural networks is given by the so called feed-forward neural 
network (FNN), which consists of input , output  and 
hidden units . The hidden units in a FNN obtain activations by 
applying a nonlinear activation function to a weighted sum of 
input units, while each output unit calculates a weighted sum 
over hidden unit activations. This process can be described by 
the following set of equations: 

 

where  denotes the weights associated with the ith hidden 
unit and  the weights associated with the output unit. 
Furthermore,  is the vector comprising all weights, while  is 
a vector comprising all hidden unit activations :  

 

In our example, the nonlinear activation function is given by the 
hyperbolic tangent, but other choices are possible. 

During training of the network, an important quantity is the 
derivative of the FNN output with respect to the weights, which 
for an FNN described by the equations above is given by: 

 

The numerical values of the derivative can also be obtained 
recursively using error backpropagation, which is a popular 
algorithm for FNN training. A more detailed introduction to 
neural networks and the backpropagation algorithm is provided 
in [9]. 

In addition to the weight derivatives given above, our state 
space filtering approach also requires the derivative of the FNN 
output with respect to the input, which is given by: 

 

D. Online State Space Filtering 
Having introduced the fundamental building blocks, we now 

describe the main contribution of this paper. 



 

Based on the ideas behind nonlinear filtering, one can 
attempt noise reduction by treating the delay vectors of a time 
series as the state of an EKF, with  from  as the state 
evolution equation. However, in practice one often faces two 
problems. First, the exact form of  might be unknown. 
Second, in order to predict the next sample using , past 
samples of the noise free time series  are needed as input. But 
in general, only noisy observations  are available. 

A solution to the first problem is to approximate  with 
an FNN , where the weights can be learned online by 
embedding them into the EKF state. The second problem can be 
tackled by not taking the FNN input from the observed time 
series directly, but from the EKF state estimate instead. Thus, 
the EKF state consists of the concatenation of delay embedded 
time series vector  and FNN weights , with system equations 
given by: 

 

Here, superscripts refer to the time step, while subscripts 
index the position in the state vector. The variable  denotes the 
system noise. The observation function is simply given by the 
first element of the state corrupted by measurement noise : 

 
 Here, we assume that both system and measurement 
noise terms are white and Gaussian. In order to apply the EKF, 
we need to calculate the Jacobians of the state evolution and 
observation functions, which are given by: 

 

Here,  denotes the  identity matrix, where 
 is the length of the delay vector . Similarly,  denotes the 

 identity matrix, where  is the length of the weight 
vector . Additionally,  and  denote the 
derivatives of the FNN output with respect to input and weights 
given in  and , respectively. The zeros denote zero 
matrices of appropriate size. 

With  and  defined above, we can now apply the EKF 
update equations  and , which provides us with estimates 
of the noise free time series and simultaneously trains the FNN 
weights to predict the time series. To start off the estimation 
process, the delay vector part of the EKF state can be initialized 
with the first  observations, while the FNN weights part of the 
state can be initialized with random values similar to standard 
FNN training procedures. The principle of our online state space 
filtering approach laid out above is illustrated in Fig. 1 in the 
form of a flowchart. 

E. Difference to Existing Approaches 
The work presented in this paper is based on ideas from two 

distinct fields: nonlinear delay space filtering and EKF based 
FNN training. However, several key differences distinguish our 
work from existing approaches in both fields. These differences 
are highlighted in the following. 

Current nonlinear delay space filtering approaches do not 
attempt to explicitly model the dynamics of the time series (cf. 

). Instead, they operate directly on the set of all samples from 
the time series, which implicitly contains all available 
information on the dynamics [2, 3]. This non-parametric 
approach has the advantage of being very flexible, but suffers 
from the drawbacks that (i) it has to store the entire time series 
in memory and (ii) it can only be applied batch-wise or post-hoc 
after completion of data acquisition. In contrast, our approach 
uses a parametric approximation (FNN) to the dynamics of the 
time series, which allows us to apply efficient, online estimation 
techniques (i.e. the EKF), eliminating the need for batch 
processing and reducing the amount of memory required. 

Previous attempts to combine Kalman filters with neural 
networks for time series analysis have either focused on using 
the FNN to approximate the observation function [10, 11] or 
have relied on offline training of the FNN weights [12]. 
Compared to these approaches, our work uses the FNN to model 
the state evolution, while embedding both the delay vector  and 
the FNN weights  into the EKF state. This allows us to achieve 
two goals simultaneously: (i) estimating the noise free time 
series and (ii) capturing the time series dynamics by training the 
FNN weights from noisy observations in an online fashion. 
Although [10-12] solve the first problem, none of these methods 
can achieve both goals simultaneously. 

Another interesting approach is presented in [13], where a 
nonlinear transformation is applied to the state space in order to 
render the state evolution linear and to allow the use of the 
regular Kalman smoother. The parameters of the nonlinear 
transformation are learned with a method called expectation 
maximization, which leads to a multi-pass algorithm. This 
approach differs fundamentally from our work, since we embed 
the nonlinearity into the state evolution equation and use the 
EKF to obtain a single-pass, online algorithm.  

Finally, it is worth noting that the methods proposed in [10-
13] mostly focus on data generated from chaotic time series 
models such as the Lorenz equations [2], while we developed 
our method for application to biomedical time series. In order to 
evaluate its effectiveness in a biosignal processing scenario, we 
tested the state space filter with artificial data generated from a 
biomedical time series model. 

III. RESULTS 
In this section, we present results obtained from preliminary 

performance tests of the state space filter based on simulated 
respiration data. Using artificial data offers two important 
advantages: (i) the ground truth data is available to assess the 
effectiveness of the filter and (ii) the amount of test data is 
virtually unlimited. We used a model for mechanically measured 
respiratory time series to generate 1000s of artificial respiration 
data [6]. White Gaussian noise was added to the original time 



 

series to simulate measurement noise. The noise level was 
chosen, such that the resulting noisy time series had a signal-to-
noise ratio (SNR) of 10dB. A section from the original noise-
free time series and the corresponding section from the noisy 
time series is shown in Fig. 2. 

An FNN with 10 inputs, 10 hidden units and one output (10-
10-1) was chosen to approximate the state evolution equation. 
Applying our state space filter with these settings to the noisy 
time series, an error reduction of 14dB could be observed, which 
corresponds to a reduction in noise variance of 96%. The online 
state space filter, required 181.6s to perform recursive, sample-
by-sample processing of the noisy time series with a length of 
1000s. This is a marked improvement compared to nonlinear 
filters, which have to rely on batch processing to achieve online 
performance [6]. Also, since our filter was implemented in 
Matlab, an additional speed up can be expected when porting the 
code to a more efficient language like C. Figure 2 compares a 
section from the original noise-free time series to the same 
section from the noisy time series before and after filtering. 

In Fig. 3, the time evolution of a subset of the FNN weights 
is shown along with the original noise-free time series. Note how 
the weights go through a period of strong fluctuation 
immediately after initialization of the filter and then transition 
into a more stable phase after about 5s. The onset of the stable 
phase coincides approximately with the completion of the first 
respiration cycle. One interpretation of this observation is that in 
the first phase, the FNN has yet to observe a full respiration 
cycle. Thus, every sample contributes new information to the 
FNN training process, leading to high volatility of the weights. 
With the passage of time and especially after observing one full 
respiration cycle, the information carried by new samples 
become more and more redundant. Hence, the weights begin to 
settle down. However, due to noise and non-stationarity of the 
signal the fluctuations in the FNN weights will never fully die 
out. 

IV. CONCLUSION 
In this paper, we have introduced a novel concept for online 

state space filtering of biomedical time series using extended 
Kalman filter (EKF) augmented with feed-forward neural 
network (FNN). Our approach is based on the same principles 
as the delay space filtering approach of [3]. However, by casting 

delay space filtering into a state estimation framework, the EKF 
can be used to obtain an efficient, online solution to the filtering 
problem.  

At the same time, our framework captures the dynamics of 
the observed time series, by also embedding the FNN weights in 
the EKF state and estimating them from noisy observations. 
Additionally, if the system and measurement noise, as well as 
the distribution of the initial estimates are Gaussian, as is the 
case in most EKF applications, this approach implicitly defines 
shrinking priors [9] on the FNN weights. In effect, our approach 
corresponds to FNN training with noisy samples, which stands 
in contrast to previous attempts to combine Kalman filters (KF) 
with FNN that use the FNN to approximate the observation 
function and only include the weights in the KF state [10]. These 
methods need access to noise free training samples. 

However, the use of FNN also gives rise to a number of 
problems. Due to their nonlinear nature, the error surface of 
FNN is non-convex, making the training procedure susceptible 
to local optima [9]. Recent research on deep neural networks 
suggest that this can be partially mitigated by carefully tuning 
the initialization procedure [14]. Another potential problem lies 
in the high number of parameters of typical FNN. This means 
that (i) a large number of training samples are necessary to train 
these parameters and (ii) convergence might be slow, leading to 
a bad approximation during the initial phase right after starting 
the filtering process. On the one hand, a fairly high number of 
training samples is available with our approach, since the use of 
delay embedding means that the number of training samples 
(corresponding to delay vectors) is approximately equal to the 
number of samples in the original time series. On the other hand, 
this does not mitigate slowness of convergence, as subsequent 
delay vectors are highly correlated [2]. 

 To improve convergence speed and reduce the influence of 
local optima, offline pretraining of the FNN may be considered. 
Although, our algorithm is designed for online application, 
offline pretraining can help to initialize the FNN weights to a 
more favourable starting point than it is possible with the current 
random initialization procedure. In particular, the signals used 
for pretraining could be chosen similar to the signals which the 
algorithm will be applied to. E.g., in the case of respiratory time 
series, the FNN can be pre-trained on sinusoidal time series, 
yielding FNN weights which represent better initial starting 
points than random weights. 

Finally, we would like to note that future work will include 
testing the state space filter on real world biomedical signals and 
exploring which types of biosignals our method can be applied 
to. Given the flexibility of neural networks, we imagine that with 
the right choice of FNN architecture, the state space filter can be 
adapted to many different modalities. Candidate modalities 
include (but are not limited to) PPG, ECG, medical radar or 
Ballistocardiography. 
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Fig. 1: Flowchart illustrating the working principle behind the proposed 

online state space filter 
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Fig. 2: Samples of the simulated time series. Top: original noise-free signal, middle: noisy signal, bottom: restored signal after filtering. 

 
Fig. 3: Top: noise-free signal. Bottom: Time evolution of FNN weight estimates. To avoid cluttering the figure, only a subset of all weights are shown. 
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