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A B S T R A C T

The development of whole-brain models that can infer effective (directed) connection strengths from fMRI data
represents a central challenge for computational neuroimaging. A recently introduced generative model of fMRI
data, regression dynamic causal modeling (rDCM), moves towards this goal as it scales gracefully to very large
networks. However, large-scale networks with thousands of connections are difficult to interpret; additionally,
one typically lacks information (data points per free parameter) for precise estimation of all model parameters.

This paper introduces sparsity constraints to the variational Bayesian framework of rDCM as a solution to these
problems in the domain of task-based fMRI. This sparse rDCM approach enables highly efficient effective con-
nectivity analyses in whole-brain networks and does not require a priori assumptions about the network's con-
nectivity structure but prunes fully (all-to-all) connected networks as part of model inversion. Following the
derivation of the variational Bayesian update equations for sparse rDCM, we use both simulated and empirical
data to assess the face validity of the model. In particular, we show that it is feasible to infer effective connection
strengths from fMRI data using a network with more than 100 regions and 10,000 connections. This demonstrates
the feasibility of whole-brain inference on effective connectivity from fMRI data – in single subjects and with a
run-time below 1min when using parallelized code. We anticipate that sparse rDCM may find useful application
in connectomics and clinical neuromodeling – for example, for phenotyping individual patients in terms of whole-
brain network structure.
Introduction

The human brain comprises multiple levels of organization, with
cognitive functions arising from the interplay of functional specialization
and integration (Sporns, 2013; Tononi et al., 1994). With the advent of
non-invasive neuroimaging techniques, such as functional magnetic
resonance imaging (fMRI), researchers have begun to systematically
study these fundamental properties of human brain organization. While
early neuroimaging studies focused on localizing cognitive processes to
specific brain regions, contemporary studies are commonly concerned
with functional integration of these regions; this requires analyzing brain
connectivity (Smith, 2012). In addition to analyses of structural
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(anatomical) connections, assessments of functional connectivity (sta-
tistical dependencies between network nodes) play a major role. Partic-
ularly, functional connectivity has been used frequently for studying the
functional organization of large (whole-brain) networks both in tasks and
in the “resting state” (i.e., unconstrained cognition in the absence of
external perturbations). Various methods have been proposed (for a
comprehensive review, see Karahanoglu and Van De Ville, 2017),
ranging from conventional correlation or coherence analyses which as-
sume stationarity (Fox et al., 2005) to sliding-window correlation ana-
lyses that can capture dynamic fluctuations in functional connectivity
(Chang and Glover, 2010). Recently, more sophisticated methods have
been introduced to characterize brain organization such as (sparsely
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coupled) Hidden Markov models (HMM; Bolton et al., 2018; Kar-
ahanoglu and Van De Ville, 2015; Vidaurre et al., 2017), and approaches
from statistical mechanics that rely on entropy maximization (Ashourvan
et al., 2017). Other functional connectivity methods have focused on
sparsity (Bielczyk et al., 2018; Eavani et al., 2015; Ryali et al., 2012),
including generative models that can exploit anatomical information
(Hinne et al., 2014). While functional connectivity affords valuable in-
sights into the dynamics of brain networks both in health and disease
(Buckner et al., 2013; Bullmore and Sporns, 2009; Fornito et al., 2015), it
provides undirected measures of coupling (Friston, 2011), without an
explicit model of the system of interest (Stephan, 2004). By contrast,
effective connectivity refers to directed interactions among neuronal
populations and rests on a model describing both dynamics within the
(neuronal) system and how activity of local network nodes is transformed
into observations (Friston, 2011; Valdes-Sosa et al., 2011).

Estimates of effective connectivity typically derive from a generative
model that provides a forward mapping from hidden (latent) neuronal
circuit dynamics to observable brain signals (Friston et al., 2013). While
different models of effective connectivity have been proposed (for a
comprehensive summary, see Valdes-Sosa et al., 2011), to our knowl-
edge, none has so far enabled estimates of connection-specific strengths
for networks derived from typical whole-brain parcellation schemes with
more than 100 nodes (Glasser et al., 2016; Tzourio-Mazoyer et al., 2002).
For instance, biophysical network models (BNMs) combine mean-field
models of local neuronal dynamics with anatomical data on long-range
connections, capturing many structural and physiological details of
whole-brain networks (Deco et al., 2013a; Jirsa et al., 2016). However,
the complexity of these models has made parameter estimation compu-
tationally extremely challenging. Consequently, applications have typi-
cally focused on simulations under fixed parameters (Deco et al., 2013a;
Honey et al., 2007) or on simplified models that allow for the estimation
of a global scaling parameter (Deco et al., 2013b, 2014a, 2014b). Only
recently has a novel variant of BNMs been proposed in which brain dy-
namics during the “resting state” are described by an Ornstein-Uhlenbeck
process and which provided maximum likelihood estimates of directed
connection strengths in networks comprising up to 68 regions (Gilson
et al., 2016, 2017; Rolls et al., 2018; Senden et al., 2018). Additionally,
other variants of connectivity analyses have been proposed that might
potentially enable the investigation of larger networks (Ambrogioni
et al., 2017; Prando et al., 2017).

In contrast, dynamic causal modeling (DCM) uses a Bayesian frame-
work to compute the posterior distribution over effective connectivity
parameters. DCM was originally devised for fMRI (Friston et al., 2003)
and later extended to other modalities like M/EEG (David et al., 2006).
Critically, in order to render model inversion computationally feasible, a
central limitation of DCM (for review, see Daunizeau et al., 2011) is that
models are restricted to relatively small networks, on the order of 10
regions. Consequently, in its classical formulation, DCM cannot accom-
modate whole-brain networks. Recently, cross-spectral DCM (Friston
et al., 2014a) has been combined with an approach to constrain the
effective number of parameters (Seghier and Friston, 2013) to invert
networks comprising 36 brain regions (Razi et al., 2017).

Regression DCM (rDCM) has recently been introduced as a novel
variant of DCM for fMRI that has promising potential for the application
to large (whole-brain) neural networks (Fr€assle et al., 2017). In brief,
rDCM converts the numerically costly problem of estimating coupling
parameters in differential equations (of a linear DCM in the time domain)
into an efficiently solvable Bayesian linear regression in the frequency
domain. Under some generic assumptions, analytic variational Bayesian
update equations can be derived for the model parameters and hyper-
parameters (i.e., noise precision), enabling computationally highly effi-
cient model inversion. The current implementation of rDCM is designed
to work with experimentally controlled perturbations (the driving inputs
in a linear DCM) and hence task fMRI (although it can, in principle, also
be applied to “resting state” data, see Discussion). rDCM scales gracefully
(polynomially, as opposed to exponentially) with the number of nodes
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(with the inversion of a covariance matrix being the computationally
most expensive operation), and previous simulations demonstrated that
it can be applied to networks that are (at least) one order of magnitude
larger than the ones afforded in classical DCM implementations (Fr€assle
et al., 2017). In particular, we showed that rDCM can accurately estimate
effective connectivity in a network comprising 66 brain regions and 300
free (neuronal) connectivity parameters, based on a realistic human
structural connectome (Hagmann et al., 2008).

However, for such large-scale networks, the number of model pa-
rameters quickly outweighs the number of acquired data points, a sta-
tistical problem known as the “large-p-small-n” scenario (Buhlmann and
van de Geer, 2011). In this situation, precise inference of parameters may
no longer be feasible (a common rule of thumb suggests that ten data
points per free parameter are required; Penny and Roberts, 1999).
Furthermore, even when enough data points are available, large-scale
effective connectivity patterns are difficult to interpret due to the vast
amount of parameters. A principled solution to both problems rests on
regularized or sparse regression methods that introduce some form of
penalty on the number of parameters. Established sparse regression
methods in the field of statistics include LASSO (Tibshirani, 1996), elastic
net regularization (Zou and Hastie, 2005), or Spike-and-Slab priors for
Bayesian linear regression (Hernandez-Lobato et al., 2013). All these
methods implicitly assume that only few predictors convey useful in-
formation for explaining the measured data, whereas all others are
negligible and should be excluded from the model – thus, effectively
reducing the dimensionality of the problem. For models of functional
integration, this assumption seems tenable, given that functional char-
acteristics (e.g., small-world) and economics (metabolic costs of main-
taining long-range myelinated axons) imply a non-trivial degree of
sparsity in whole-brain networks (Bullmore and Sporns, 2009; K€otter and
Stephan, 2003; Sporns et al., 2000; Sporns and Zwi, 2004).

In this paper, we augment the original rDCM framework with sparsity
constraints to enable automatic “pruning” of fully connected networks to
the most essential connections. In brief, this sparse rDCM rests on intro-
ducing binary indicator variables that are embedded into the likelihood
function of the generative model and mediate feature selection as part of
model inversion. This yields the posterior density over model parameters
under a parsimonious representation of the whole-brain graph.

In what follows, we first introduce the theoretical foundation of
sparse rDCM and outline how sparsity constraints can be embedded into
the original framework. We then derive variational Bayesian update
equations for the neuronal connectivity, noise precision, and binary in-
dicator variables. We subsequently use simulations to demonstrate the
face validity of sparse rDCM for effective connectivity analyses in a large
network, comprising up to 66 brain regions and 300 (known) parameters.
For this, we evaluate the accuracy of the framework to recover the data-
generating network architecture (i.e., the “true” sparse effective con-
nectivity pattern). For these simulations, we used network architectures
of varying complexity and biological realisms, starting with a relatively
simple model (grid-like DCM) which allows for easy visualization of the
performance of sparse rDCM. We then turned to models (small-world
DCMs) based on the S50 network structure tested in Smith et al. (2011)
that, as highlighted by those authors, captures the small-world charac-
teristics of the brain. Finally, we tested a biologically more plausible
network architecture (connectome-based DCM) derived from a
whole-brain atlas and the structural human connectome provided by the
diffusion-weighted imaging work by Hagmann et al. (2008), which has
been frequently used in previous studies on large-scale models of effec-
tive connectivity (e.g., Deco et al., 2014a, 2014b, 2013b; Gilson et al.,
2017; Honey et al., 2009; Ponce-Alvarez et al., 2015a, 2015b). We then
proceed to empirical fMRI datasets in order to demonstrate the practical
utility of sparse rDCM. First, we focus on small networks (of typical size
for conventional DCM analyses) and established fMRI datasets (Büchel
and Friston, 1997; Schofield et al., 2012), and compare sparse rDCM
solutions to those obtained by classical DCM. These datasets were chosen
because they (i) have been extensively studied with other methods of
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connectivity (“attention-to-motion” dataset), or (ii) are associated with a
known ground truth in terms of the group membership of subjects, i.e.,
stroke patients and healthy controls (“aphasia” dataset). Finally, we
provide a proof-of-principle that sparse rDCM enables whole-brain
inference of effective connectivity from fMRI data, using a
single-subject dataset from a hand movement paradigm. The choice of
this dataset was motivated by the simple and robust nature of the task,
and the extensive knowledge available on the cerebral network sup-
porting visually paced hand movements (e.g., Ledberg et al., 2007; Riz-
zolatti and Luppino, 2001). Here, we used a whole-brain parcellation
scheme with more than 100 regions, resulting in more than 10,000
connections that span the entire cortex and cerebellum.

Methods and materials

Dynamic causal modeling

Dynamic causal modeling (DCM; Friston et al., 2003) is a generative
modeling framework for inferring hidden (latent) neuronal states from
measured neuroimaging data. For fMRI, DCM describes the dynamics in
neuronal activity in brain regions as a function of the effective (i.e.,
directed) connectivity among neuronal populations:

dx
dt

¼
 
Aþ

Xm
j¼1

ujBðjÞ
!
xþ Cu (1)

where A denotes network connectivity in the absence of experimental
manipulations (endogenous connectivity), B represents perturbations of
the endogenous connectivity (modulatory influences) by experimental
manipulations uj (e.g., sensory stimulation, task demands), and C de-
scribes how these experimental manipulations directly influence
neuronal activity (driving inputs). This neuronal model is coupled to a
hemodynamic forward model that maps neuronal dynamics to observed
BOLD signal time series (Buxton et al., 1998; Friston et al., 2000; Stephan
et al., 2007). Inversion of this generative model rests on a variational
Bayesian approach under the Laplace approximation (VBL), i.e., posterior
densities over model parameters and hyperparameters are assumed to
have a Gaussian form (Bishop, 2006; Friston et al., 2007). Comprehen-
sive reviews of DCM for fMRI can be found elsewhere (Daunizeau et al.,
2011; Friston et al., 2013).

While DCM has proven useful for studying the functional integration
in small networks (in the order of 10 regions), the model does not scale to
large (whole-brain) networks for several reasons: First, evaluating the
likelihood function of DCMs requires one to integrate the differential
equations in both the neuronal (Eq. (1)) and the hemodynamic model.
This integration is computationally costly, especially for long time series.
Second, since classical DCM treats the data as a region� time-series
vector, the error covariance matrix can become prohibitively large with
increasing numbers of regions.
Regression DCM

Regression DCM (rDCM)was recently introduced as a novel variant of
DCM for fMRI to address this bottleneck (Fr€assle et al., 2017). The
approach rests on several modifications of the original DCM framework.
In brief, these include (i) translating state and observation equations from
time to frequency domain, (ii) linearizing the hemodynamic forward
model, (iii) a mean field assumption across regions (i.e., independence of
connectivity parameters targeting different regions), and (iv) specifying
conjugate priors to enable analytic update equations. We only briefly
outline these steps here; for details, see Fr€assle et al. (2017).

The neuronal state equation of rDCM corresponds to a linear DCM:

dx
dt

¼ Axþ Cu (2)
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Using the differential property of the Fourier transform and a fixed
hemodynamic convolution kernel h with additive Gaussian noise as for-
ward model, one obtains an algebraic equation in the frequency domain:

�
e2πi

m
N � 1

� by
T
¼ Aby þ Cbhbu þ υ (3)

Here, y denotes the measured BOLD signal, N is the number of data
points, T is the time interval between subsequent points, m is a vector of
frequency indices, υ is the observation noise, and the hat symbol (̂)
represents the discrete Fourier transform (DFT). In Eq. (3), the observa-
tion noise υ has a complicated form that motivates a mean field
approximation across regions; this assumes that the approximate poste-
rior factorizes into sets of connections entering different nodes. Under
conjugate priors, namely a Gaussian prior on the neuronal connectivity
parameters and a Gamma prior on the noise precision, rDCM can then be
formalized as a Bayesian linear regression model:

pðY jθ; τ;XÞ ¼
YR
r¼1

N
�
Yr ;Xθr ; τ�1

r IN�N

�
Yr ¼ ðe2πimN � 1

� byr
T

X ¼ �by1;by2;…;byR; bhbu1; bhbu2;…; bhbuK

�
θr ¼ ½ar;1; ar;2;…; ar;R; cr;1; cr;2;…; cr;K �

(4)

Here, Yr is the signal in region r that is explained as a linear mixture of
afferent connections from other regions and direct (driving) inputs of
unspecified origin, yr is the measured regional BOLD signal, X is the
design matrix (i.e., a set of regressors or explanatory inputs), uk is the kth

experimental input, θr represents the parameter vector comprising all
connections and inputs targeting region r, τr denotes the noise precision
parameter for region r, and IN�N is the identity matrix. Note that the
model in Eq. (4) factorizes across regions due to the mean field approx-
imation mentioned above. This implies that variational (Bayesian) up-
date equations for the sufficient statistics of the posterior density can be
derived for each region separately. The final iterative update scheme for
rDCM then takes the form:

Σθjy ¼
 
ατjy
βτjy

XTX þ Σ�1
0

!�1

μθjy ¼ Σθjy

 
ατjy
βτjy

XTY þ Σ�1
0 μ0

!

ατjy ¼ α0 þ N
2

βτjy ¼ β0 þ
1
2

�
Y � Xμθjy

�T�
Y � Xμθjy

�
þ 1
2
tr
�
XTXΣθjy

�
(5)

Where tr represents the trace of a matrix. In Eq. (5), μθjy and Σθjy denote
the posterior mean and covariance of the Gaussian distribution over
(neuronal) connectivity parameters, respectively. Similarly, ατjy and βτjy
represent the posterior shape and rate parameters of the Gamma distri-
bution on noise precision, respectively. The update equations in Eq. (5)
are mutually dependent on each other; hence, the optimal posterior
distributions must be obtained by iterating over these update equations
until convergence.

Furthermore, one can derive an expression for the negative (varia-
tional) free energy (Friston et al., 2007), which represents a lower-bound
approximation to the log model evidence (i.e., the probability of the data
given the model). The negative free energy provides a trade-off between
the accuracy and complexity of a model, and serves as a principled metric
for testing competing hypotheses (models) of the network architecture by
means of Bayesian model comparison (Penny, 2012; Stephan et al.,
2009a). A comprehensive derivation of the rDCM framework can be
found elsewhere (Fr€assle et al., 2017; Lomakina, 2016).
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In summary, rDCM can be seen as transforming a linear DCM in the
time domain into a Bayesian linear regression model in the frequency
domain. The advantage of this reformulation is that the likelihood
function takes an algebraic form and no longer requires time-consuming
integration. Furthermore, a consequence of the mean field approxima-
tion is that model inversion can take place one region at a time. Together
with the analytic variational Bayesian update equations, this yields a
dramatic increase in computational efficiency compared to classical DCM
implementations. As the compute time scales polynomially with the
number of regions and the dimensionality of the error covariance matrix
for each region is fixed (independent of the number of regions), rDCM is
capable, in principle, of analyzing very large networks.

Sparse regression DCM

In this section, we augment the standard rDCM approach described
above with sparsity constraints. This sparse rDCM rests on introducing an
additional set of binary random variables ζ that encode network struc-
ture. This effectively renders model inversion equivalent to pruning a full
(all-to-all connected) network to a degree of optimal sparsity (that min-
imizes variational free energy, see below).

In sparse rDCM, for each region r, we define a diagonal matrix Zr of
these binary indicator variables as follows

Zði;jÞ
r ¼

�
ζi; if i ¼ j
0; otherwise

(6)

Where ζi 2 f0; 1g. While there are several ways how these region-wise
indicator matrices could be embedded into the probabilistic model of
rDCM (for a comprehensive treatment of different possibilities, see
Lomakina, 2016), a natural way is to cast Zr as a feature selector in the
likelihood function. Hence, extending the likelihood of rDCM specified in
Eq. (4), the (Bayesian) sparse linear regression takes the form:

pðY jθ; τ;XÞ ¼
YR
r¼1

N
�
Yr ;XZrθr ; τ�1

r IN�N

�
Yr ¼ ðe2πimN � 1

� byr
T

X ¼ �by1;by2;…;byR; bhbu1; bhbu2;…; bhbuK

�
θr ¼ ½ar;1; ar;2;…; ar;R; cr;1; cr;2;…; cr;K �
Zr ¼ diag

��
ξr;1; ξr;2;…; ξr;R; ξr;Rþ1;…; ξr;RþK

��
(7)

where each binary indicator variable ζi relates to a specific connectivity
parameter i in a fully connected linear model and equals 1 if the
connection is present – and thus contributes to explaining the measured
BOLD data – and 0 if the connection is not involved in generating the
observed data.

Generative model of sparse regression DCM

In order to turn the sparse linear regression model in Eq. (7) into a full
generative model, we specify prior distributions over parameters,
hyperparameters and binary indicator variables. In line with Fr€assle et al.
(2017), we used a Gaussian prior on the neuronal connectivity parame-
ters θ and a (conjugate) Gamma prior on the precision of the measure-
ment noise τ. Furthermore, we assumed a Bernoulli prior on the binary
indicator variables ζi. The prior densities then take the following form:

pðθÞ ¼ N ðθ; μ0;Σ0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞDjΣ0j

q exp


� 1
2
ðθ � μ0ÞTΣ�1

0 ðθ � μ0Þ
�

pðτÞ ¼ Gammaðτ; α0; β0Þ ¼
βα00

Γðα0Þτ
α0�1
i expð�β0τÞ

pðζiÞ ¼ Bern
�
ζi; p

i
0

� ¼ �pi0�ζi�1� pi0
�1�ζi

(8)
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Where D is the number of afferent connections and direct (driving) inputs
entering the region, μ0 and Σ0 are the mean and covariance of the
Gaussian prior on (neuronal) connectivity parameters, α0 and β0 are the
shape and rate parameters of the Gamma prior on noise precision, Γ is the
Gamma function (Bishop, 2006), and pi0 is the parameter of the Bernoulli
prior of the binary indicator variable for connectivity parameter i.

Intuitively, the pi0 encode the a priori knowledge or belief about the
connectivity pattern's degree of sparseness. In this initial work, we
assume that the a priori probability of a connection being present is
identical for all connections (but see the Discussion for potential ways
of informing individual prior probabilities), with the exception of the
inhibitory self-connections (i.e., diagonal entries of the A matrix),
whose existence was enforced by setting pi0 ¼ 1. In simulations shown
below, we systematically varied pi0 to evaluate the impact of this
choice on the accuracy of sparse rDCM. We propose a principled
approach to optimizing pi0 for empirical datasets (where the “true”
degree of network sparsity is unknown) that performs model inversion
for different pi0 values and selects the one that yields the highest
negative free energy.

In this paper, the prior densities over connectivity parameters and
noise precision were defined as in Fr€assle et al. (2017). Specifically, we
used the standard neuronal priors from DCM10 as implemented in the
Statistical Parametric Mapping software package SPM8 (version R4290;
www.fil.ion.ucl.ac.uk/spm). Additionally, we used α0 ¼ 2 and β0 ¼ 1 as
the shape and rate parameter of the Gamma distribution on noise pre-
cision, respectively.

Since sparse rDCM rests on the same generative model as the original
rDCM framework, the model also factorizes across regions. Hence, the
posterior distribution over model parameters for a single region r and for
the entire model, respectively, takes the following form:

pðθr ; τr ; ζr jYr ;XÞ∝pðYr jX; θr ; τr ;ZrÞpðθrÞpðτrÞ
YD
i¼1

p
�
ζr;i
�

pðθ; τ; ζjX;YÞ∝
YR
r¼1

pðYr jX; θr; τr; ZrÞ
YR
r¼1

 
pðθrÞpðτrÞ

YD
i¼1

p
�
ζr;i
�! (9)

Since there is no closed-form analytical solution for the posterior
distribution, Eq. (9) cannot be solved exactly and one needs to resort to
approximate inference. Here, we derive a variational Bayesian scheme
for model inversion, which yields estimates of three quantities simulta-
neously: (i) an approximation to the posterior density over neuronal
connectivity and noise precision parameters, (ii) a lower-bound
approximation to the log model evidence, and (iii) a posterior belief
about the sparsity of the network.

Variational Bayes for sparse regression DCM

This section presents the variational Bayesian update equations for
the sufficient statistics of the variational (approximate) posterior dis-
tribution qðθ; τ; ζjX;YÞ. To facilitate derivation of update equations for
finding the optimal q, we assume a mean field approximation to the
variational density. As already expressed in Eq. (4), this mean field
approximation assumes independence across connection sets targeting
different regions; additionally, it assumes mutual independence of
parameters, hyperparameters and binary indicator variables. The
approximate posterior for a single region r then takes the form:

qðθr ; τr ; ζrjYr;XÞ � qðθr jYr ;XÞqðτr jYr;XÞ
YD
i¼1

q
�
ζr;ijYr ;X

�
(10)

Under this factorization, one can derive the variational update
equations by making use of the fundamental principle from variational
calculus (Bishop, 2006):

ln qðϑiÞ ¼ hln pðϑ; yÞiqðϑ\iÞ (11)

http://www.fil.ion.ucl.ac.uk/spm
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where ϑ denotes all model parameters. Eq. (11) states that the logarithm
of the approximate marginal posterior over a particular set of model
parameters i is given by the expected energy of the system (i.e., log joint)
under the variational distributions over all other sets of parameters.

In the following, we present the variational update equations for the
different parameter classes in sparse rDCM (neuronal connectivity, noise
precision, and binary indicator variables). A detailed derivation of these
equations is provided in the Appendix (A.1-A.7). Importantly, under the
meanfield approximation of sparse rDCM, optimization can be performed
for each region independently. Hence, we restrict the update equations to
a single region (and drop the subscript r to keep the notation uncluttered).

Update equation of θ

lnq*ðθjY ;XÞ ¼ hlnpðθ;τ;ζ;Y jXÞiqðτ; ζÞ

¼ �1
2
θT
 
ατjy
βτjy

�
PζjyXTXPζjyþðXTXÞ ∘

�
Pζjy�P2

ζjy
��

þΣ�1
0

!
θ

þθT
 
ατjy
βτjy

PζjyXTYþΣ�1
0 μ0

!
þc

(12)

Here, all terms independent of θ were absorbed into the constant term c.
Additionally, we have made use of hτiqðτÞ ¼ ατjy

βτjy
and hZiqðζÞ ¼ Pζjy , with

h�iq denoting the expected value with respect to the variational density
qðτÞ and qðζÞ, respectively. A detailed derivation is given in Eq. (A.1) in
the Appendix. Comparing Eq. (12) to the logarithm of the multivariate
normal distribution, one can derive the update equations for the suffi-
cient statistics of the variational density over (neuronal) connectivity
parameters qðθjX;YÞ. The respective expressions for the posterior mean
and covariance are summarized in the final iterative update scheme in
Eq. (15).

Update equation of τ
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Here, ∘ denotes the element-wise product of two matrices. All terms in-
dependent of τ were absorbed into the constant term c. Additionally, we
made use of hθiqðθÞ ¼ μθjy , with h�iqðθÞ denoting the expected value with
respect to the variational density qðθÞ. A detailed derivation is given in
Eq. (A.2) in the Appendix. Comparing Eq. (13) to the logarithm of the
Gamma distribution, one can derive update equations for the sufficient
statistics of the variational density over noise precision qðτjX;YÞ. Again,
the respective expressions for the posterior shape and rate parameters are
summarized in the final iterative scheme in Eq. (15).

Update equation of ζi
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Here, all terms independent of ζi were absorbed into the constant term
c. Note that we made use of the fact that hζjiqð ζ\iÞ is a constant with

respect to ζi for all terms j 6¼ i. Additionally, we have set υ ¼ XTY and
W ¼ XTX to ease readability. A detailed derivation is given in Eqs.
(A.3)-(A.4) in the Appendix. Comparing Eq. (14) to the logarithm of the
Bernoulli distribution, one can derive update equations for the sufficient
statistic of the approximate posterior density over indicator variables
qðζijX;YÞ.

Final iterative scheme:
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From Eq. (15), we see that the update equations for the sufficient
statistics of qðθjX; YÞ, qðτjX;YÞ and qðζijX;YÞ are mutually dependent
on each other; hence, the optimal posterior distribution must be ob-
tained by iterating over these update equations until convergence. In
the current version of sparse rDCM, the iterative scheme proceeds
until the change in τ falls below a critical threshold (i.e., 10�10) or the
number of iterations exceeds a pre-specified upper limit (i.e., 500
iterations).

Negative free energy for sparse regression DCM

Having derived the variational Bayesian update equations for the
posterior densities, we now provide an expression for the negative free
energy. The negative free energy can be cast as the sum of the expected
energy of the system (log joint) under the variational density q and the
entropy of q (Bishop, 2006; Friston et al., 2007):

F ¼ hln pðθ; τ; ζ; Y jXÞiqðθ;τ;ζÞ � hln qðθ; τ; ζjY ;XÞiqðθ;τ;ζÞ
¼ hln pðY jθ; τ; ζ;XÞiqðθ;τ;ζÞ þ hln pðθÞiqðθÞ � hln qðθÞiqðθÞ þ hln pðτÞiqðτÞ

�hln qðτÞiqðτÞ þ
XD
i¼1

�
hln pðζiÞiqðζiÞ � hln qðζiÞiqðζiÞ

�
(16)

In the following, we present the expressions for the individual com-
ponents of the negative free energy for a single region (see Lomakina,
2016):
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Expectation of the likelihood
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Here, Ψ is the digamma function and all other variables are defined as
above.

Expectation of the prior on θ:
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Expectation of the prior on τ:

hln qðτÞiqðτÞ ¼ hGammaðτ; α0; β0ÞiqðτÞ
¼ α0 ln β0 � ln Γðα0Þ þ ðα0 � 1Þ
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Expectation of the prior on ζi:
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Entropy of θ:
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Entropy of τ:
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Entropy of ζi:
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A detailed derivation of the above equations is presented in Eqs.
(A.5)-(A.11) in the Appendix. The negative free energy for each indi-
vidual region is obtained by summing Eqs. 17–23. Summing over all
regions of the model then yields the negative free energy for the complete
model.

Classifying connections after model inversion

In contrast to classical DCM, our approach not only provides the
posterior density over connectivity and hemodynamic parameters but
also a posterior belief (a Bernoulli distribution parameterized by piζjy)

about whether a connection i exists. For the interpretation of sparse
rDCM results, this raises the question when to classify a connection as
present or absent, given piζjy . Here, we base this decision on the posterior

odds ratio
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piζ¼1jy
pi

¼ piζ¼1jy
1� pi

(24)

ζ¼0jy ζ¼1jy

and take a ratio larger than 10 (corresponding to >90.9% posterior
probability of presence) as decisive evidence for a connection being
present. Conversely, if the ratio is below 0.1 (corresponding to >90.9%
posterior probability of absence), we consider this as decisive evidence in
favor of pruning connection i from the model. For posterior odds ratios
that fall in between these boundaries, decisions are less clear. In this
“grey area”, classifying a connection as present or absent essentially boils
down to whether one wishes to maximize sensitivity or specificity. This
resembles the situation in classical (frequentist) hypothesis testing where
the significance threshold dictates sensitivity and specificity of a null
hypothesis test.

For any given connection, the posterior odds ratio not only depends
on the data, but also on the choice of the Bernoulli prior pðζiÞ; the latter is
parameterized by pi0, the prior probability of connection i being present.
Below, we report simulation results that demonstrate how the choice of
pi0 and the SNR of the data impact on sensitivity and specificity of our
method. In order to choose pi0 in a principled manner and ensure an
adequate level of sparsity in rDCM, we use a standard procedure for
choosing hyperparameters in a Bayesian setting. This is known in the
statistics literature as maximum likelihood II estimation or empirical
Bayes (Berger, 1985; Gelman et al., 2004; Murphy, 2012). This procedure
rests on maximizing the log marginal likelihood (log model evidence)
that is obtained by integrating over the model parameters (Bishop,
2006). In other words, the optimal value of the sparsity hyperparameter
pi0 maximizes the log model evidence (which, in this work, is approxi-
mated by the negative free energy).

Furthermore, to illustrate the impact of the above (uniform) decision
rule on the sensitivity and specificity of our model, we compared both
options – that is, interpreting all connections with “grey area” values for
piζjy as either present or absent, respectively.

Computational complexity

Inspection of the variational Bayesian update equations of sparse
rDCM (Eq. (15)) reveals that the computationally most expensive oper-
ation is the matrix inversion for computing the posterior covariance
matrix Σθjy . Efficient algorithms, such as the Coppersmith-Winograd al-
gorithm (Coppersmith and Winograd, 1990) or the Optimized CW-like
algorithm (Davie and Stothers, 2013) allow matrix inversion with
complexity Oðn2:4Þ, where n is the number of columns/rows of a square
matrix. For sparse rDCM, n ¼ Rþ K with R representing the number of
regions and K the number of driving inputs. We can assume n � R since
the number of driving inputs is typically much smaller than the number
of regions. The update equations in Eq. (15) apply for a single region and
thus have to be repeated for all regions to obtain the posterior densities
for the complete model. Consequently, the complexity of sparse rDCM for
the inversion of a fully (all-to-all) connected model is approximately
Oðn3:4Þ. It is worth pointing out that the optimal posterior distribution for
each region is obtained by iterating over the variational Bayesian update
equations in Eq. (15) until convergence. However, since our imple-
mentation of sparse rDCM sets a fixed upper limit on the number of it-
erations, this enters only as a constant factor into the complexity analysis
and therefore does not show up in the O-notation.

Based on this complexity analysis, one can provide a rough estimate
of the run-time of sparse rDCM for a model with a far higher number of
regions than examined in this paper. For example, assuming that model
inversion runs in parallel on 16 cores (as in our current implementation),
sparse rDCM would take approximately 36 h to infer the effective con-
nectivity in a network comprising 1000 brain regions. This compares
favorably to other large-scale models, such as the 36-region spectral DCM
by Razi et al. (2017) for which the authors reported 24 h of runtime on a
high-performance cluster.
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Synthetic data

To demonstrate the face validity of sparse rDCM, we performed sys-
tematic simulation studies to assess how recovery of known network
architecture in large (whole-brain) networks depends on the signal-to-
noise ratio (SNR) of synthetic fMRI data and the choice of prior proba-
bility pi0 (the parameter of the Bernoulli prior on binary indicator vari-
ables). For comparison and completeness, we also provide simulations
for small neural networks (of the typical size for conventional DCM an-
alyses) in the Supplementary Material.

Here, we constructed four different linear DCMs. First, a grid-like DCM
comprising 66 brain regions was constructed, where each network node
was connected to its direct neighbors – thus, four connections entered
any given brain region (Fig. 1A). While the systematic structure of the
grid-like DCMmakes it easy to visualize the scalability of sparse rDCM to
large networks, the model lacks typical network characteristics of the
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human brain, for instance, with regard to small-world architecture, node
degree, path length, centrality of nodes, or modularity (Bullmore and
Sporns, 2009). Two additional small-world DCMs, comprising 50 brain
regions, were therefore created based on the simulation study by Smith
et al. (2011). Specifically, we used their S50 network which consists of 10
local sub-networks (each comprising 5 nodes connected in a ring –

although not with cyclic directionality of influences) that were connected
via one long-range connection to model the small-world architecture of
the human brain (Fig. 1B). Notably, the S50 model assumes only unidi-
rectional connections among network nodes and thus neglects reciprocal
interactions which are known to play an important role for functional
integration (e.g., forward and backward connections in cortical hierar-
chies; Felleman and Van Essen, 1991; Zeki and Shipp, 1988). We there-
fore created an additional variant of the S50 model that replaced all
unidirectional with reciprocal connections (Supplementary Figure S1).
Finally, to further increase the biological realism of the synthetic DCMs, a
Fig. 1. Connectivity architecture of the large-scale
networks used for simulations. (A) Grid-like DCM,
comprising 66 network nodes, where each node is
connected only to its direct neighbors, yielding merely
four connections entering any given region (left). An
actual instance of the effective connectivity structure,
generated by sampling connection strengths from the
prior density on the A matrix parameters (right). (B)
The respective illustrations for the original small-
world DCM, comprising 50 network nodes, which
was initially introduced as the S50 model in Smith
et al. (2011). This model consists of 10 local
sub-networks (each comprising 5 nodes connected in a
ring via unidirectional links – although not with cyclic
directionality of influences) that were connected via
one long-range connection to mimic the small-world
architecture of the human brain. (C) The respective
illustrations for the connectome-based DCM,
comprising 66 network nodes, whose structure was
based on a real human structural connectome given by
Hagmann et al. (2008). Specifically, connections were
restricted to the most pronounced structural links by
only selecting those connections for which an average
inter-regional fiber density larger than 0.06 has been
reported. The brain network was visualized using the
BrainNet Viewer (Xia et al., 2013), which is freely
available for download (http://www.nitrc.org/
projects/bnv/).

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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66-regions DCM was constructed based on a whole-brain atlas and the
human connectome provided by the diffusion-weighted imaging work by
Hagmann et al. (2008). For the endogenous connectivity structure (A
matrix) of this connectome-based DCM, all connections from the matrix of
average inter-regional fiber densities with a weight larger than 0.06 were
included (Fig. 1C). This threshold was chosen to ensure that the system
remained stable (i.e., satisfied the Lyapunov stability criterion) under
random sampling from the prior density.

For all models, block input regressors were then used as driving in-
puts to half of the brain regions to ensure that the effect of experimental
manipulations was pronounced in all network nodes. In total, this
resulted in 327 (grid-like DCM), 136 and 197 (original and reciprocal
small-world DCM, respectively), and 345 (connectome-based DCM) non-
zero model parameters (A- and C-parameters).

For all models, we then systematically evaluated the accuracy of
sparse rDCM to recover the true network architecture as a function of the
SNR of fMRI data and the prior probability pi0. We simulated synthetic
BOLD signal time series under various settings of the SNR (1, 3, 5, 10, and
100) and a fixed TR¼ 0.5s. For each of the two models and each SNR
setting, we generated 20 different sets of BOLD signal time series (syn-
thetic “subjects”) by sampling the “true” (data-generating) parameter
values from the prior distribution over connections (A matrix) and
driving input (C matrix) parameters. Synthetic DCMs were then evalu-
ated as follows: sparse rDCM initially assumed a fully connected network
– that is, all brain regions were linked by reciprocal connections. This
yielded a total of 4356 and 2500 free connectivity parameters (including
those of self-connections) for the 66-region and 50-region networks,
respectively, to be estimated. Model inversion was performed under
various settings of the prior probability pi0 (0.05–0.95, with step size of
0.05) for all connections, except for the inhibitory self-connections; the
existence of the latter was enforced by setting pi0 ¼ 1. Furthermore, to
focus our examination of model inversion on the connectivity, driving
inputs were fixed to the true target regions by setting pi0 to 1 for the true
driving input parameters, and to 0 for all other entries of the C matrix. In
other words, the pattern of driving inputs was assumed to be known a
priori, whereas connections had to be inferred from the data by auto-
matically pruning the fully connected A matrix.
Empirical data: small networks

In a next step, we applied sparse rDCM to empirical fMRI data. First,
we restricted our analyses to small networks to evaluate the utility of the
approach for models that are of typical size for conventional DCM ana-
lyses. We used two previously published fMRI datasets: First, the
“attention-to-motion” dataset, which has been employed to introduce
various methodological developments, including structural equation
models (SEM; Büchel and Friston, 1997; Penny et al., 2004b) and several
variants of DCM for fMRI (Friston et al., 2003, 2014a; Li et al., 2011;
Marreiros et al., 2008; Penny et al., 2004b; Stephan et al., 2008). Second,
a dataset of stroke patients with aphasia, which has been used for
model-based classification by generative embedding (Brodersen et al.,
2011). In what follows, we briefly summarize the most relevant infor-
mation for both datasets – details can be found elsewhere (attention--
to-motion: Büchel and Friston, 1997; aphasia: Brodersen et al., 2011;
Schofield et al., 2012).

Attention to motion
The “attention-to-motion” fMRI data are from a single subject in a

visual attention study. The experiment included four conditions: (i) fix-
ation only, (ii) presentation of stationary dots (static) (iii) passive
observation of dots moving radially (i.e., away from the center), at a fixed
speed (passive), and (iv) attention to non-existent changes in the speed of
the radially moving dots (attention). The order of the conditions
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alternated between fixation and visual stimulation (i.e., static, passive, or
attention). In all conditions, the subject had to fixate the center of the
screen and no overt responses were required.

A total of 360 functional images were acquired on a 2-T MR scanner
(SiemensMagnetomVISION) using a T2*-weighted gradient echo-planar-
imaging (EPI) sequence (TR¼ 3220ms, TE¼ 40ms, 32 axial slices, voxel
size 3� 3� 3mm3). fMRI data were analyzed using a first-level General
Linear Model (GLM; Friston et al., 1995) with the following three re-
gressors: (i) “photic” (static þ passive þ attention), (ii) “motion”
(passive þ attention), and (iii) “attention”. Consistent with previous
analyses of the same dataset, three regions of interest (ROIs) were
defined, representing primary visual cortex (V1), motion-sensitive area
V5, and attention-sensitive superior parietal cortex (SPC). From these
ROIs, BOLD signal time series were extracted as the principal eigen-
variate, which then entered effective connectivity analyses.

For the sparse rDCM analyses, we assumed a fully connected network
– that is, all three regions were connected reciprocally. Driving inputs
were specified as follows: (i) photic input elicited activity in V1, (ii)
motion input drove activity in V5, and (iii) attention input targeted SPC.
Model inversion using sparse rDCM then pruned the fully connected
network to a sparser representation.

Aphasia
Twenty-six right-handed subjects with normal hearing abilities and

no history of neurological disease (12 female, mean age: 54.1 years, age
range: 26–72 years), and eleven patients with moderate aphasia due to
left-hemisphere stroke (1 female, mean age: 66.1 years, age range: 45–90
years) participated in an auditory fMRI paradigm. The patients' aphasia
profile was based on the Comprehensive Aphasia Test (CAT; Swinburn
et al., 2004). All subjects listened to auditory stimuli consisting of word
pairs either presented in normal (forward) or time-reversed sequence.
While time-reversed stimuli contained the same (low-level) characteris-
tics as normal speech stimuli (e.g., speaker identity, spectral complexity),
they were incomprehensible and served as control condition. To ensure
engagement throughout the experiment, subjects were assigned an
incidental task, asking them to report the gender of the speaker for each
stimulus via button press.

For each subject, a total of 488 functional images were acquired on a
1.5-T MR scanner (Siemens Sonata) using a T2*-weighted EPI sequence
(TR ¼ 3150 ms, TE ¼ 50 ms, 35 axial slices, voxel size 3 � 3 � 2 mm3,
inter-slice gap 1mm). For each subject, BOLD activations were then
analyzed by means of a first-level GLM (Friston et al., 1995) with the
following regressors: (i) all auditory events (i.e., normal and
time-reversed speech), and (ii) intelligibility (i.e., normal vs.
time-reversed speech) as a parametric modulation. From the “all audi-
tory” contrast based on the first regressor, six regions of interest (ROIs),
representing key components in the auditory hierarchy, were defined –

namely, bilateral medial geniculate body (MGB), Heschl's gyrus (HG),
and planum temporale (PT). Hence, the DCMs concerned processing of
acoustic stimuli per se, not differentiating between normal and
time-reversed speech. Importantly, lesions in the aphasic patients were
located outside the neural network underlying speech processing and
thus did not affect the regions included in the DCM analysis (Brodersen
et al., 2011; Schofield et al., 2012). From the individual ROIs, time series
were extracted as the principal eigenvariate.

For the sparse rDCM analyses, we assumed that all six regions of in-
terest (i.e., MGB, HG, and PT, each in both hemispheres) were fully
connected via reciprocal connections and that the driving input (auditory
stimulation) elicited activity in all six regions. Starting from these full A
and C matrices, sparse rDCM was used to prune network structure. The
ensuing posterior means from each subject were used to create a gener-
ative score space for a discriminative classifier. Within this generative
score space, a linear kernel, representing the inner product kðxi;xjÞ ¼ hxi;
xji, was used to compare two instances (subjects). A support vector
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machine (SVM) was then used for classification (LIBLINEAR; Fan et al.,
2008). In order to pinpoint which DCM parameters enabled discrimina-
tion between healthy controls and aphasic patients, we used an l1-regu-
larizer for the SVM. This entails sparse solutions by using only a minimal
subset of data features for classification and thus fosters a straightforward
analysis of the most discriminative connectivity and driving input pa-
rameters. Classification performance was evaluated by means of a
leave-one-out cross-validation procedure similar to the one described in
Brodersen et al. (2011).

Empirical data: whole-brain DCM

In a final analysis, we road-tested the utility of sparse rDCM for
inferring the sparse effective connectivity pattern in a realistic whole-
brain network based on empirical data. For this, we used a single-
subject dataset from an fMRI study with a simple task that activates a
well-known network, thus allowing us to assess the plausibility of the
sparse whole-brain connectivity pattern provided by our method.

The fMRI data were acquired using a block design, asking subjects to
perform visually synchronized whole-hand fist closings with either their
left or right hand. At the beginning of each block, an arrow informed
subjects which hand to use in the upcoming block. The arrow then started
to blink at a rate of 1.25 Hz for 16 s, dictating the rhythm of subjects'
hand movements (i.e., 20 fist closings per block). Subsequent blocks were
interleaved with a resting period of the same length where subjects did
not perform hand movements and kept visual fixation. The experiment
consisted of two separate sessions and each session comprised only hand
movements of the same condition (i.e., left or right). This renders the
present dataset a particularly suitable candidate for testing the current
implementation of sparse rDCM since no modulatory influences are
necessary. In this proof of concept, we analyzed data from the left-hand
movement session of a single representative healthy subject (a compre-
hensive analysis of the whole-brain effective connectivity for the entire
group dataset will be presented in future work, Fr€assle et al., in
preparation).

A total of 230 functional images were acquired on a 7-T MR scanner
(Philips Achieva) using a T2*-weighted EPI sequence (TR¼ 2000ms,
TE¼ 25ms, 36 axial slices, voxel size 1.77� 1.77� 3mm3). fMRI data
were analyzed using a first-level GLM (Friston et al., 1995) with a re-
gressor encoding left-hand fist closing movements. We used the Auto-
mated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) as
a whole-brain parcellation scheme to define anatomical regions for
subsequent effective connectivity analyses. This resulted in 104 regions
from which BOLD signal time series were extracted as the principal
eigenvariate (after removing signal mean and correcting for head
movements), which then entered sparse rDCM analyses.

We assumed a fully connected network, with all 104 regions coupled
to each other via reciprocal connections. Additionally, the driving input
(representing visually cued left-hand fist closing movements) was
allowed to elicit activity in all regions. In other words, we assumed full A
and C matrices, yielding more than 10,000 free parameters to be esti-
mated. Starting from this fully connected network, sparse rDCMwas then
used to automatically prune both connections and driving inputs, leading
to a sparse whole-brain effective connectivity pattern during left-hand
movements.

Results

Synthetic data

First, we tested how accurately sparse rDCM could recover a known
network architecture for large (whole-brain) models under various set-
tings of SNR and the prior probability pi0, the parameter of the Bernoulli
prior on binary indicator variables (for an analysis of the face validity for
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small networks, see Supplementary Material). We evaluated the sensi-
tivity and specificity of identifying the known network architecture (i.e.,
the connections that were present in the data-generating model). As
explained in the Methods, the decision of whether a given connection
existed was based on the posterior odds ratio, using thresholds >10
and< 0.1 for declaring a connection as present or absent, respectively.
For all other connections, with posterior odds ratios in a “grey zone”
between 10 and 0.1, we applied a uniform decision rule, either inter-
preting these connections as present (which increases sensitivity) or as
absent (which increases specificity).

Grid-like DCM
We constructed a grid-like network where each network node was

coupled to its direct neighbors (Fig. 1A). This resulted in a regular con-
nectivity pattern with four afferent connections for any given brain re-
gion. We deliberately chose such a rather simple network architecture as
a starting point in order to allow for easy visualization of the performance
of sparse rDCM. It is worth reiterating that sparse rDCM analyses initially
assume that all regions are reciprocally connected – hence, this particular
model with its 66 areas contained 4356 free connectivity parameters that
were to be estimated.

Supplementary Figure S2 shows sensitivity and specificity of sparse
rDCM for the grid-like DCM as a function of SNR and pi0. Panels A and B
differ in the decision rule, i.e., connections with posterior odds ratios in a
“grey zone” between 10 and 0.1 (see Methods) were either interpreted as
present (Supplementary Figure S2A and Supplementary Table S1) or
absent (Supplementary Figure S2B and Supplementary Table S2). In both
panels, the expected dependency of sensitivity and specificity on SNR can
be seen clearly when pi0 is close to the true degree of sparseness of the
grid-like DCM (approx. 0.07). For this value of pi0 the decision rule did
not matter much: For very high SNR (SNR¼ 100), sparse rDCM showed
very high sensitivity (0.91� 0.03; Supplementary Figure S2A-B, top) and
near-perfect specificity (0.97� 0.02; Supplementary Figure S2A-B, bot-
tom). For more realistic data quality (SNR¼ 3), the sensitivity was
reduced (0.58� 0.04; Supplementary Figure S2A-B, top), while the
specificity remained close to perfect (0.99� 0.003; Supplementary
Figure S2A-B, bottom). For challenging scenarios with low signal-to-
noise (SNR¼ 1), sparse rDCM frequently failed to detect the true con-
nectivity parameters and provided an overly conservative explanation of
the fMRI data by pruning most connections from the model and ac-
counting for task-related variability in BOLD signals by adjusting the
weights of the driving inputs (for which the prior probability pi0 was set to
1).

As pi0 was increased to intermediate values, the decision rule for “grey
zone” connections exerted a more pronounced effect on the performance
of sparse rDCM. This is because, in this intermediate regime, individual
connections tended to have posterior probabilities piζjy close to 0.5.

Hence, depending on whether these connections were classified as pre-
sent or absent, sparse rDCM yielded either dense (sensitive; Supple-
mentary Figure S2A) or sparse (specific; Supplementary Figure S2B)
solutions, respectively.

When pi0 moved close to 1, the known effective connectivity pattern
was identified with perfect sensitivity while specificity dropped to 0. In
other words, in this case model inversion trivially resulted in a full graph
where all connections were inferred to be present (regardless of SNR).

The simulations above illustrate that the performance of sparse rDCM
for the grid-like DCM depends on how well the assumed sparsity (i.e., the
hyperparameter pi0) matches the actual sparsity of the network. As
highlighted above (see Methods), a principled way of selecting the
optimal pi0 is to choose the hyperparameter such that the log model ev-
idence is maximized (maximum likelihood II or empirical Bayes; Berger,
1985; Gelman et al., 2004; Murphy, 2012). Here, we approximated the
log evidence by the negative free energy (F) and compared its values
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obtained under different pi0 settings by evaluating the sum of log evi-
dences across the “synthetic” subjects (i.e., a fixed-effects analysis; Ste-
phan et al., 2009a). Across all SNR levels, BMS assigned the highest
posterior model probability to pi0 values that were close to the true
sparseness of the network (Supplementary Figure S2C). Notably, it is also
these pi0 values that were optimal with regard to the trade-off between
sensitivity and specificity for recovering the data-generating effective
connectivity pattern. This suggests that in a first step of empirical sparse
rDCM analyses, pi0 can be determined by inverting the model under
different possible pi0 values (using a suitably defined grid in the range
0..1) and performing BMS.

Small-world DCMs
In subsequent simulations, we created two additional whole-brain

models (small-world DCMs) that derived from the most complex (S50)
model from Smith et al. (2011), which captures the small-world archi-
tecture of the human brain. First, we used the original S50 model that
assumes unidirectional connections among network nodes (Fig. 1B).
Second, we replaced all unidirectional influences with bidirectional
connections to account for the typically reciprocal nature of functional
integration in the human brain (Supplementary Figure S1). The degree of
sparseness of the original and reciprocal small-world DCM were approx.
0.05 and 0.07, respectively.

In brief, across all settings, the results for the original small-world
DCM (Fig. 2 and Supplementary Tables S3-S4) and the reciprocal
small-world DCM (Fig. 3 and Supplementary Tables S5-S6) were similar
to (and overall better than) the grid-like DCM. Figs. 2 and 3 again show
sensitivity and specificity as a function of SNR and pi0, with panels A and
B differing in the decision rule (see Methods). As for the grid-like DCM,
we observed the expected dependence on SNR and pi0. When pi0 was close
to the true degree of sparseness, the decision rule did not matter. For this
setting, sparse rDCM showed high sensitivity (0.88� 0.04; Fig. 2A–B,
top) and near-perfect specificity (0.99� 0.01; Fig. 2A–B, bottom) for the
original small-world DCM for the case of realistic data quality (SNR ¼ 3).
For the reciprocal small-world DCM, sensitivity was slightly decreased
but remained reasonably high (0.73� 0.07; Fig. 3A–B, top), and speci-
ficity was still close to perfect (0.98� 0.01; Fig. 3A–B, bottom).

As for the grid-like DCM, we tested whether the negative free energy
would recover the known pi0 of the small-world DCMs. Fixed-effects BMS
selected – with posterior model probabilities equal to 1 – pi0 values that
were close to the true degree of sparseness of the effective connectivity
pattern of the original (Fig. 2C) and reciprocal small-world DCM
(Fig. 3C). Again, it was also these pi0 values that were optimal with regard
to the trade-off between sensitivity and specificity of sparse rDCM.

Finally, at the request of one reviewer, we compared the performance
of sparse rDCM for the original small-world S50 network from Smith
et al. (2011) to three other methods that infer directed interactions in
large-scale brain networks from fMRI data: Multivariate Granger cau-
sality (MVGC; Goebel et al., 2003; Roebroeck et al., 2005; Seth, 2010),
(ii) Fast Adjacency Skewness (FASK; Sanchez-Romero et al., 2018), and
(iii) Fast Greedy Equivalence Search (FGES; Chickering, 2003; Ramsey
et al., 2017; Ramsey et al., 2010). In brief, for most settings, sparse rDCM
showed comparable or better sensitivity than these approaches. One
exception was the low SNR case (SNR¼ 1), where MVGC showed
significantly higher sensitivity. For higher SNR values (SNR� 3), sparse
rDCM outperformed all other methods in terms of sensitivity, when it was
allowed to estimate driving inputs (Supplementary Figure S11A, top);
when it was not allowed to account for driving inputs, sparse rDCM
performed equivalently to MVGC and superior to FGES and FASK (Sup-
plementary Figure S11B, top). Specificity was relatively similar across
methods, with a small advantage for sparse rDCM at low SNR (Supple-
mentary Figure S11A-B, bottom). For a detailed description of how data
were simulated and analyzed, please see the Supplementary Material.
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Connectome-based DCM
The grid-like DCM lacks biological realism in that it does not capture

typical network characteristics of the human brain (Bullmore and Sporns,
2009). The S50 variants represent an improvement as they reflect
small-world topology; yet, they do not fully capture the anisotropic and
irregular structure of the brain's connectivity. In a next simulation, we
therefore created a whole-brain model using the structural connectome
based on the diffusion-weighted imaging work by Hagmann et al. (2008)
(Fig. 1C). This connectome-based DCM captures more closely the func-
tional organization of the human brain since it derives from a biologically
plausible whole-brain structural network. The connectome-based DCM
had a near-identical degree of sparsity (approx. 0.07) as the grid-like
DCM.

In brief, across all settings, the results for the connectome-based DCM
(Fig. 4 and Supplementary Tables S7-S8) were again similar to the grid-
like and small-world DCMs. Most notably, as before, when pi0 was close to
the true degree of sparseness, the decision rule did not matter, sensitivity
(0.46� 0.04; Fig. 4A–B, top) was considerably lower than specificity
(0.99� 0.003; Fig. 4A–B, bottom) for the case of realistic data quality
(SNR¼ 3), and the expected dependence on SNR was clearly visible.

As for the other DCMs, we tested whether the negative free energy
could recover the known pi0 of the connectome-based DCM. Again, fixed-
effects BMS selected pi0 values that were close to the true degree of
sparseness of the effective connectivity pattern with posterior model
probabilities equal to 1 (Fig. 4C) and resulted in an optimal trade-off
between sensitivity and specificity of sparse rDCM.

Estimation of connectivity and driving input architecture
In the above simulations, driving inputs were fixed to the true target

regions by setting the sparsity hyperparameter pi0 to 1 for the true driving
input parameters and to 0 for all other entries of the C matrix, in order to
focus our examination of model inversion on the network connectivity (A
matrix). In a final simulation, we tested the accuracy of sparse rDCM for a
scenario where the driving inputs were no longer fixed, but where the pi0
of the driving input parameters was also varied from 0.05 to 0.95 (with
step size of 0.05). In other words, this simulation assessed whether
connections and driving inputs can be inferred simultaneously from the
data by automatically pruning the full A and C matrices. For this, we re-
used the synthetic data from the original small-world DCM, which cor-
responds to the S50 model in Smith et al. (2011) and captures
small-world architecture as seen in the human brain (Fig. 1B).

In brief, across all settings, the driving input architecture for the
original small-world DCM could be reliably recovered, without notably
compromising the accuracy of identifying the connectivity structure
(Supplementary Figure S3 and Supplementary Tables S9-S11), as
compared to the results obtained under fixed driving inputs (cf. Fig. 2).
Supplementary Figure S3 again shows sensitivity and specificity as a
function of SNR and pi0. Note that only the results for the “sensitive”
decision rule (see Methods) are shown here, because the decision rule
again did not matter when pi0 was close to the true degree of sparseness of
the original small-world DCM.

For the pi0 that was optimal in terms of the highest negative free en-
ergy, sparse rDCM showed reasonably high sensitivity for identifying the
connectivity architecture (0.69� 0.05; Supplementary Figure S3A, top)
and high sensitivity for the driving inputs (0.90� 0.07; Supplementary
Figure S3B, top) for the case of realistic data quality (SNR¼ 3). Speci-
ficity remained close to perfect for identifying both the connectivity
(0.99� 0.01; Supplementary Figure S3A, bottom) and the driving inputs
(0.99� 0.01; Supplementary Figure S3B, bottom).

Overall, these simulation results for the grid-like, small-world and
connectome-based DCMs suggest that sparse rDCM is a suitable, albeit
conservative, tool for inferring sparse whole-brain effective connectivity
patterns from fMRI data. Under an appropriately chosen pi0 (as can be



Fig. 2. Model architecture recovery of sparse rDCM in terms of the sensitivity and specificity for the original small-world DCM. (A) Sensitivity (top) and specificity
(bottom) of identifying the true (data-generating) connections of the original small-world DCM, classifying a connection as present when its posterior odds ratio fell
within the “grey zone” between 10 and 0.1 (see Methods). Sensitivity and specificity are shown along the z-axis as surface plots for various combinations of the signal-
to-noise ratio (SNR) of the simulated fMRI data and the parameter pi0 of the Bernoulli prior on binary indicator variables. The various SNR settings (1, 3, 5, 10, and
100) are shown along the x-axis of each subplot. The different pi0 settings (0.05–0.95, with step size of 0.05) are shown along the y-axis of each subplot. The same plot
is shown in (B) when classifying a connection as absent when its posterior odds ratio fell within the “grey zone” between 10 and 0.1 (see Methods). (C) Fixed effects
Bayesian model selection results for the various SNR settings based on the negative free energy. The posterior model probabilities for all combinations of SNR and pi0
settings are shown. See Fig. 1B for a visualization of the network structure of the original small-world DCM.
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achieved by model selection), sensitivity of sparse rDCM was only
moderate for realistic SNRs, but yielded close to perfect specificity, with
hardly any false positives occurring. This suggests that not all effective
connections may be identified by sparse rDCM; those connections that
are detected, however, likely represent real effects. Our simulations
further highlight the importance of SNR-boosting measures, such as
optimized experimental designs, careful correction for physiological
noise and head movements, specific scanner hardware (e.g., high-field
MRI or magnetic field sensing; Bollmann et al., 2017) and/or opti-
mized acquisition sequences (e.g., matched-filter acquisition; Kasper
et al., 2014).

Computational burden
To illustrate the computational efficiency of sparse rDCM, we

computed the run-times for the grid-like, small-world and connectome-
based DCMs. We evaluated the run-times for all different settings of
SNR, under a fixed TR of 0.5s. Notably, the reported run-times are only
meant to provide a rough indication and depend on the computer
hardware and software settings used. Here, each model was inverted on a
single processor core (without parallelization) on the Euler cluster at ETH
Zurich (for details, see https://scicomp.ethz.ch/wiki/Euler). Model
inversion under sparse rDCM was highly efficient, taking between 2 and
13min for the 50-regions small-world DCMs and between 4 and 18min
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for the 66-regions grid-like and connectome-based DCMs (across the
different SNR settings).

Empirical data: small networks

“Attention to motion” dataset
In a next step, we applied sparse rDCM to the “attention-to-motion”

dataset (Büchel and Friston, 1997). We chose to use this dataset because
it has been extensively studied with other methods of connectivity,
including structural equation modeling (SEM; Büchel and Friston, 1997;
Penny et al., 2004b), autoregressive models (Harrison et al., 2003), and
different variants of DCM for fMRI (Friston et al., 2003, 2014a; Li et al.,
2011; Marreiros et al., 2008; Penny et al., 2004b; Stephan et al., 2008).
Here, sparse rDCM was used to invert a fully connected model (Fig. 5A).
Reciprocal connections between V1 and SPC were pruned from the
model, whereas all other connectivity and driving input parameter esti-
mates had non-negligible values (Fig. 5B).

To test whether the automatic removal of V1-SPC connections was
plausible, we tested whether the sparser model provided a more
convincing explanation of the fMRI data than the full model. We inverted
both the full and the sparser model (without V1-SPC connections) using
the default VBL implementation in DCM10 (as implemented in SPM8,
version R4290) and used the negative free energy for BMS (Penny et al.,

https://scicomp.ethz.ch/wiki/Euler


Fig. 3. Model architecture recovery of sparse rDCM in terms of the sensitivity and specificity for the reciprocal small-world DCM. (A) Sensitivity (top) and specificity
(bottom) of identifying the true (data-generating) connections of the reciprocal small-world DCM, classifying a connection as present when its posterior odds ratio fell
within the “grey zone” between 10 and 0.1 (see Methods). Sensitivity and specificity are shown along the z-axis as surface plots for various combinations of the signal-
to-noise ratio (SNR) of the simulated fMRI data and the parameter pi0 of the Bernoulli prior on binary indicator variables. The various SNR settings (1, 3, 5, 10, and
100) are shown along the x-axis of each subplot. The different pi0 settings (0.05–0.95, with step size of 0.05) are shown along the y-axis of each subplot. The same plot
is shown in (B) when classifying a connection as absent when its posterior odds ratio fell within the “grey zone” between 10 and 0.1 (see Methods). (C) Fixed effects
Bayesian model selection results for the various SNR settings based on the negative free energy. The posterior model probabilities for all combinations of SNR and pi0
settings are shown. See Supplementary Figure S1 for a visualization of the network structure of the reciprocal small-world DCM.

2 The balanced accuracies for sparse rDCM and classical DCM are not identical
because sparse rDCM misclassified a patient as a healthy control, whereas in
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2004a; Stephan et al., 2009a). We found the sparsemodel to be decisively
superior, with a posterior model probability of 0.96. This indicates that
the reciprocal connections between V1 and SPC were correctly removed
by sparse rDCM.

For the sparse (winning) model we compared the posterior parameter
estimates from VBL (Fig. 5B, right) and sparse rDCM (Fig. 5B, left). The
two inversion schemes yielded qualitatively identical effective connec-
tivity patterns (with regard to their excitatory or inhibitory nature) but
differed quantitatively. Specifically, parameter estimates deviated less
strongly from their prior mean (zero) for sparse rDCM as compared to
VBL. Similarly, sparse rDCM yielded slightly less accurate fits (Fig. 5C) as
indicated by the coefficient of determination R2 between predicted and
measured BOLD signal (sparse rDCM: 0.65, VBL: 0.70). These quantita-
tive differences are to be expected given the differences between the
underlying generative models of the two frameworks (see Discussion).

Aphasia dataset
Furthermore, we applied sparse rDCM to a dataset from a passive

auditory listening task (Schofield et al., 2012), which had previously
been used to introduce generative embedding to neuroimaging (Bro-
dersen et al., 2011). We chose this dataset because it is associated with a
known ground truth in terms of group membership (i.e., stroke patients
with aphasia and healthy controls) which we can challenge our method
to detect. This represents an important evaluation of predictive validity,
particularly because we can test whether connectivity estimates by our
516
method perform better than conventional functional connectivity mea-
sures. Here, we adopted a similar generative embedding approach as in
Brodersen et al. (2011) to evaluate the practical utility of sparse rDCM,
testing whether the posterior parameter estimates could differentiate
healthy controls from patients with moderate aphasia. To this end, sparse
rDCM was used to invert the fully connected model (Fig. 6A) for each
subject separately, resulting in sparse effective connectivity architectures
and (approximate) posterior densities over model parameters. The indi-
vidual MAP estimates then entered an l1-regularized linear SVM, for
which classification performance was assessed by means of leave-one-out
cross-validation to obtain the posterior distribution of the balanced ac-
curacy (Brodersen et al., 2010). Sparse rDCM achieved almost perfect
classification performance with a balanced accuracy of 95% (p< 0.001),
assigning 36 out of the 37 subjects to the correct disease/health state.
This is only marginally below the balanced accuracy obtained using
classical DCM (98%) as reported in Brodersen et al. (2011).2 Further-
more, we compared the predictive accuracy of sparse rDCM with a more
conventional classification approach operating on measures of functional
connectivity (i.e., Pearson correlation coefficient). Functional connec-
tivity measures also achieved a reasonable classification performance
(balanced accuracy: 78%, p< 0.001). This classification result, however,
Brodersen et al. (2010) a healthy control was misclassified as a patient.



Fig. 4. Model architecture recovery of sparse rDCM in terms of the sensitivity and specificity for the connectome-based DCM. (A) Sensitivity (top) and specificity
(bottom) of identifying the true (data-generating) connections of the connectome-based DCM, classifying a connection as present when its posterior odds ratio fell
within the “grey zone” between 10 and 0.1 (see Methods). Sensitivity and specificity are shown along the z-axis as surface plots for various combinations of the signal-
to-noise ratio (SNR) of the simulated fMRI data and the parameter pi0 of the Bernoulli prior on binary indicator variables. The various SNR settings (1, 3, 5, 10, and
100) are shown along the x-axis of each subplot. The different pi0 settings (0.05–0.95, with step size of 0.05) are shown along the y-axis of each subplot. The same plot
is shown in (B) when classifying a connection as absent when its posterior odds ratio fell within the “grey zone” between 10 and 0.1 (see Methods). (C) Fixed effects
Bayesian model selection results for the various SNR settings based on the negative free energy. The posterior model probabilities for all combinations of SNR and pi0
settings are shown. See Fig. 1C for a visualization of the network structure of the connectome-based DCM.
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was significantly worse than the 95% balanced accuracy achieved by
sparse rDCM (paired-sample Wald test, p¼ 0.008).

In order to identify the connection and driving input parameters that
jointly discriminated healthy controls and aphasic patients, we counted
in how many cross-validation folds each feature was selected. We found
that sparse sets of 5–10 (out of 42) model parameters consistently served
as support vectors. The parameters that acted as support vectors in at
least one cross-validation fold are displayed in Fig. 6B, showing some
overlap with the results reported by Brodersen et al. (2011), where pri-
marily connections mediating information transfer from the right to the
left hemisphere were identified as discriminative features. When
restricting our analysis to those parameters that were selected in more
than 95% of the cross-validation folds we found only five model pa-
rameters. These comprised the auditory driving inputs to left and right
PT, the auditory driving input to right HG, the inhibitory self-connection
of right HG, as well as the inter-hemispheric endogenous connection
from right MBG to left MGB.

Whole-brain analyses: hand movement fMRI data

Sparse effective connectivity
In a final step, we applied sparse rDCM to an fMRI dataset from a hand

movement paradigm acquired at high magnetic field strength (7 T).
Using data from a single subject performing visually paced (fist closing)
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movements with the left hand, we inferred a sparse representation of the
whole-brain effective connectivity pattern. We chose to use this partic-
ular dataset for two reasons: (i) the data derive from an extremely simple
task and the cerebral network supporting visually paced hand move-
ments is well known (e.g., Ledberg et al., 2007; Rizzolatti and Luppino,
2001; Witt et al., 2008), and (ii) high SNR afforded by 7 T should facil-
itate network inference in this initial proof-of-concept analysis.

As expected, visually synchronized left-hand movements activated a
widespread cortical network comprising the primary motor area (M1),
premotor cortex (PMC), supplementary motor area (SMA), and the cer-
ebellum (Fig. 7A). For each of 104 brain regions spanning the entire
cortex and cerebellum in the AAL atlas (Tzourio-Mazoyer et al., 2002),
we extracted the principal eigenvariate of BOLD signal time series. Sparse
rDCM was used to prune the fully connected whole-brain model, which
contained over 10,000 free connectivity parameters.

Model inversion resulted in a sparse graph with less than 10% of the
possible connections and inputs. That is, only 940 non-negligible con-
nections and driving inputs remained, whereas all other parameters were
pruned from the model. Importantly, the inferred connectivity (Fig. 7B,
left) and driving input patterns (Fig. 7B, right) were biologically plau-
sible: during left-hand movements, we found strong excitatory driving
inputs to left and right precentral cortex, bilateral SMA, and left cere-
bellum (Fig. 7B, right), all representing key components of the motor
network mediating hand movements (Witt et al., 2008). Additionally,



Fig. 5. Effective connectivity in a visual-attention network as assessed with sparse rDCM for the attention-to-motion fMRI dataset. (A) Effective connectivity structure
serving as the starting point of sparse rDCM analyses. The model comprised primary visual areas V1 and V5, and superior parietal cortex (SPC). A full endogenous
connectivity matrix (A matrix) was assumed initially. (B) Parameter estimates for the endogenous connectivity and driving inputs as estimated using sparse rDCM
(left). Furthermore, parameter estimates are shown for VBL when using the sparse model structure suggested by sparse rDCM (right). Results are qualitatively consistent
across the two methods. The coupling strength of each connection is displayed in [Hz]. Connections with a large effect size (i.e., posterior probability> 0.95 that
parameter estimates were different from zero) are shown in full color; connections with moderate effect sizes (i.e., posterior probability< 0.95) are shown in faded
colors. (C) Measured (grey) and predicted BOLD signal time series for sparse rDCM (red) and VBL (blue) in V1 (top), V5 (middle), and SPC (bottom).
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driving inputs activated the cuneus and other occipital regions, consis-
tent with the visual pacing of fist closings. Furthermore, excitatory
driving inputs targeted regions in the postcentral gyrus and parietal
cortex, regions activated by the somatosensory and proprioceptive as-
pects of the task and essential for visuomotor integration (Andersen,
1997; Culham and Kanwisher, 2001; Grefkes et al., 2004). Finally, we
found driving inputs to regions in the frontal lobe of the right hemisphere
(middle frontal gyrus and pars opercularis of the inferior frontal gyrus)
that potentially engaged in top-down control and executive functioning,
also representing key ingredients of visuomotor abilities (Fuster, 2003;
Ledberg et al., 2007).

With regard to the endogenous connectivity (Fig. 7B, left), sparse rDCM
revealed a prominent cluster of excitatory connections among bilateral
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pre- and postcentral gyrus and parietal regions. This was expected, given
that these represent key cortical regions for the motor and somatosensory
aspects of the task. We further observed strong excitatory influences from
the left and right SMA to regions in the pre- and postcentral gyrus,
consistent with the prominent role of SMA in initiating hand movements
(e.g., Grefkes et al., 2008). Additionally, the ipsilateral (left) cerebellum
exhibited pronounced excitatory connections with the contralateral
(right) precentral gyrus, whereas the influence from ipsilateral cerebellum
onto the ipsilateral precentral gyrus was inhibitory. Consistent with the
visual pacing of hand movements, sparse rDCM revealed excitatory con-
nections from the cuneus and other occipital regions to the motor areas
mentioned above, indicating that visual information was sent via forward
connections to regions involved inmotor processes. Finally, frontal regions



Fig. 6. Generative embedding to differentiate healthy subjects from moderately aphasic patients using sparse rDCM for the aphasia fMRI dataset (Schofield et al.,
2012). (A) Effective connectivity structure serving as the starting point for the sparse rDCM analyses. The model comprised medial geniculate body (MGB), Heschl's
gyrus (HG), and planum temporale (PT), each in both hemispheres. A full endogenous connectivity matrix (A matrix) was assumed initially. Additionally, the driving
input representing auditory stimulation was assumed to elicit activity in all six regions. (B) All connectivity and driving input parameters that were discriminative
between healthy controls and aphasic patients in the sense that they served as support vectors in at least one cross-validation fold (left). Frequency of how often a
particular parameter was selected during cross validation to discriminate between the two groups.
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exerted excitatory influences onto the motor network, possibly indicating
top-down control required to adhere to task instructions (e.g., motor
performance in synchrony with the visual cue).

An alternative graphical representation of the connectivity pattern
is given by the connectogram, a circular representation of in-
terdependencies among brain regions used frequently for visualization
of connectomes (Irimia et al., 2012). This illustrates nicely the sparsity
of the effective connectivity pattern detected by sparse rDCM
(Fig. 7C). Regions in the frontal, parietal, and occipital lobe as well as
the cerebellum exhibited abundant connections consistent with visu-
ally synchronized left-hand movements. By contrast, regions in the
cingulate cortex, temporal lobe, and basal ganglia were substantially
less involved. Furthermore, brain regions in the right hemisphere
showed a higher node degree (i.e., total number of incoming and
outgoing connections) than in the left hemisphere, consistent with the
established contralateral hemispheric lateralization of unimanual hand
movements (Roland and Zilles, 1996).

Finally, it can also be informative to inspect connectivity patterns
when projected onto the whole-brain volume (Fig. 7D). Again, it is
apparent that brain regions in the right hemisphere were more
strongly connected than left-hemispheric regions. The edges of the
connectivity graph in this representation are directed and signed,
where excitatory and inhibitory influences are colored in green and
red, respectively. We did not visualize connection strengths to keep
the graphical representation uncluttered. Having said this, it is worth
reiterating that the edges obtained from sparse rDCM are not only
directed and signed, but also weighted (see Fig. 7B, left) – thus
providing a full characterization of interactions within the whole-brain
network.

Comparison with functional connectivity
We again compared the effective connectivity pattern obtained

using sparse rDCM with a conventional measure of functional con-
nectivity. For this, we computed the Pearson correlation coefficients
among the BOLD signal time series of the 104 brain regions defined by
the AAL atlas. In order to match the sparsity of the functional con-
nectivity matrix with that of effective connectivity inferred by sparse
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rDCM, we thresholded the functional connectivity matrix such that
only the 9.3% strongest connections (in absolute terms) were kept.
This threshold represented precisely the degree of sparseness of the
effective connectivity pattern obtained with sparse rDCM. Similar to
sparse rDCM, thresholded functional connectivity revealed connec-
tions among motor regions (precentral, SMA, cerebellum), visual re-
gions (cuneus, occipital), regions associated with the somatosensory
and proprioceptive aspects of the task (postcentral, parietal), and
frontal regions engaging in top-down control.

To quantify the similarity between functional and effective con-
nectivity profiles, we binarized the two matrices and computed the
association between these two binary matrices in terms of the simple
matching coefficient (SMC; Dunn and Everitt, 1982). The SMC mea-
sures the proportion of pairs where the values of both matrices agree
and ranges from 0 to 1; here, its value was 0.89. To test whether this
was significantly different from chance, we generated a null distribu-
tion by computing the SMC for 100,000 randomly sampled functional
connectivity matrices (Pearson correlation coefficients were sampled
from a uniform distribution between �1 and 1), thresholded under the
same criterion. Under this null distribution, the above value was
highly unlikely (p< 0.001), suggesting that functional and effective
connectivity profiles were more similar than what one would expect
by chance. In summary, in this analysis, functional connectivity ana-
lyses and sparse rDCM yielded similar and biologically plausible
connectivity profiles.

Computational burden
Concerning the computational efficiency of our method, running

model inversion on a single processor core (without parallelization) on
the Euler cluster at ETH Zurich, sparse rDCM took 624 s to infer the
whole-brain effective connectivity pattern in this dataset for a single
pi0 value. This should only be treated as a rough indication, as run-
times will depend on the specific hardware used. Notably, when par-
allelizing the code (by exploiting the fact that the VB equations apply
to each region separately) and using 16 processor cores on the Euler
cluster of ETH Zurich, this run-time could be reduced to 55 s.



Fig. 7. Whole-brain sparse effective connectivity pattern underlying left-hand movements as assessed with sparse rDCM for an empirical fMRI dataset. (A) BOLD
activation pattern of a single representative healthy subject showing regions that were activated during visually synchronized whole-hand fist closing movements
with the left hand. Results are thresholded at p< 0.05 (FWE peak-level corrected). For the given BOLD activation pattern, the Automated Anatomical Labeling
atlas (AAL; Tzourio-Mazoyer et al., 2002) was used as a whole-brain parcellation scheme. Region-wise BOLD signal time series were extracted as principal
eigenvariates and entered effective connectivity analyses using sparse rDCM. (B) Posterior parameter estimates for connections (left) and driving inputs (right). (C)
Estimated connectivity matrix graphically rendered as a connectogram. The labels on the outermost ring show the anatomical lobe for each of the nodes: frontal,
cingulate, temporal, occipital, parietal, basal ganglia, and cerebellum. For each brain region defined by the AAL atlas, an abbreviation and color is defined. Inside
the parcellation ring, the concentric circle represents the node degree (i.e., total number of incoming and outgoing connections) for each brain region. Finally, in
the inner part of the connectogram, non-negligible connection strengths are displayed as edges, with the (absolute) connection strength being represented by the
opacity of the line. The connectogram was created using Circos (Krzywinski et al., 2009), publicly available for download (http://www.circos.ca/software/). (D)
Estimated connectivity matrix projected into the whole-brain volume. The size of each node represents the node degree for each brain region, whereas the node
color indicates the lobe it belongs to: frontal (dark blue), cingulate (light blue), temporal (cyan), occipital (green), parietal (yellow), basal ganglia (orange), and
cerebellum (red). Note that edges in this graphical representation are directed and differentiate between inhibitory (red) and excitatory (green) connections.
Information on coupling strength of connections is not accounted for in order to keep the representation simple. The brain network was visualized using the
BrainNet Viewer (Xia et al., 2013), also freely available for download (http://www.nitrc.org/projects/bnv/). L¼ left hemisphere; R¼ right hemisphere;
A¼ anterior; P¼ posterior.
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Discussion

In this paper, we introduced a novel extension to the rDCM frame-
work which enables automatic pruning of fully (all-to-all) connected
whole-brain graphs. This pruning rests on binary indicator variables that
are embedded into the likelihood function and act as a feature selector.
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Using simulations, we first demonstrated the face validity of sparse rDCM
for large (whole-brain) networks comprising up to 66 brain regions and
300 neuronal connectivity parameters. We then demonstrated the prac-
tical utility of sparse rDCM using empirical fMRI datasets. In particular,
we demonstrated for the first time that sparse effective connectivity
patterns can be inferred, with connection-specific estimates, in a whole-

http://www.circos.ca/software/
http://www.nitrc.org/projects/bnv/
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brain model with more than 100 regions and 10,000 connections – and
within minutes of compute time on standard hardware.

Our simulations indicated that, as expected, the accuracy of sparse
rDCM was dependent on the SNR of the data and the parameter pi0 of the
Bernoulli prior on binary indicator variables. For pi0 settings close to the
true degree of sparseness of the effective connectivity pattern, sparse
rDCM identified the data-generating network architecture reasonably
well. More precisely, while the sensitivity of sparse rDCMwas only low to
moderate in the case of an SNR of 3, the specificity of the approach was
close to perfect with hardly any false positives occurring (regardless of
SNR). For challenging noise settings (SNR¼ 1), sparse rDCM frequently
failed to identify existing connections. Hence, for scenarios where the
fMRI data is subject to inherently low SNR (e.g., subcortical regions), the
current implementation of sparse rDCM likely shows poor sensitivity.
This is not too surprising, considering that the initial version of sparse
rDCM reported in this paper is based on the original rDCM imple-
mentation, which itself suffers from these limitations (Fr€assle et al.,
2017). Furthermore, enforcing sparsity has an intrinsic tendency to fa-
voring specificity at the expense of sensitivity. Overall, our simulation
results suggest a tendency of our method towards conservativeness:
while not all effective connections may be identified due to low sensi-
tivity, the high specificity implies that detected connections likely
represent real effects.

Our simulations also illustrate that the negative free energy (as a
bound approximation to the log evidence) can recover the known pi0 of
the large-scale DCMs. Specifically, pi0 values selected according to the
largest negative free energy were identical or close to the true degree of
sparseness of the effective connectivity pattern and resulted in an optimal
trade-off between sensitivity and specificity of sparse rDCM. For appli-
cations of sparse rDCM to empirical data in practice, this suggests a
simple procedure for determining an optimal pi0: inverting the model
under different possible pi0 values (using a suitably defined grid in the
range 0..1) and selecting the value with the highest negative free energy.
In a group setting, this can be done using random or fixed effects BMS
procedures (see Stephan et al., 2009a).

We anticipate that advances in scanner hardware and sequences,
which enable higher signal-to-noise ratios, will help boost the sensitivity
of sparse rDCM. For example, high magnetic field strengths (Duyn, 2012;
Redpath, 1998) boost SNR levels considerably. Recently developed
magnetic field sensing techniques can further improve SNR by account-
ing for confounds due to magnetic field fluctuations (Barmet et al., 2008;
Bollmann et al., 2017). Additionally, fast image acquisition has previ-
ously been identified as a key factor for improving the accuracy of rDCM
(Fr€assle et al., 2017). Hence, recent methodological developments such
as ultra-fast imaging (Stirnberg et al., 2017) andmultiband EPI sequences
(Moeller et al., 2010; Xu et al., 2013) are likely to become important as
they make the acquisitions of whole-brain fMRI data at sub-second TRs
feasible. Finally, improving the generative model of sparse rDCM will
also help to enhance the sensitivity of the approach and thus constitutes a
key target of forthcoming work (see below for potential future extensions
of sparse rDCM).

Even at its current stage, however, our approach has practical
utility, as demonstrated by analyses of three empirical fMRI datasets.
First, we analyzed two small networks that had been the subject of
previous studies using conventional DCM (Büchel and Friston, 1997;
Schofield et al., 2012). Sparse rDCM yielded plausible connectivity
estimates for the “attention-to-motion” dataset that were qualitatively
similar to the results obtained using VBL in classical DCM imple-
mentations. Note that an exact match between sparse rDCM and VBL is
not to be expected because of the differences in the generative models:
(i) the introduction of binary indicator variables to enable automatic
pruning of fully connected graphs, (ii) the use of a fixed HRF instead of
the nonlinear hemodynamic model, (iii) the mean field approximation
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between parameters targeting different regions, and (iv) the use of a
Gamma prior on noise precision instead of the log-normal prior.

For the aphasia dataset, sparse rDCM enabled discrimination of
healthy controls and aphasic patients with high accuracy (95%), com-
parable to the classification results reported previously for classical DCM
(Brodersen et al., 2011). It is worth highlighting that sparse rDCM ach-
ieved this performance without any prior assumptions on the connec-
tivity structure of the network. That is, sparse rDCM started from the fully
connected A and C matrices, which were then automatically pruned
during model inversion, resulting in subject-specific sparse connectivity
“fingerprints” that differentiated the two groups. This is remarkable
considering that the predictive accuracies reported in Brodersen et al.
(2011) rapidly declined when deliberately modifying the connectivity
structure of the DCM used.

In a final step, we applied sparse rDCM to empirical data from a
simple hand movement paradigm acquired at high magnetic field
strength (7 T) and evaluated its utility for inferring whole-brain effective
connectivity from fMRI data. Our analyses yielded plausible connections
and driving input patterns that fit the known cerebral network under-
lying visually triggered motor actions (Ledberg et al., 2007).

Our model is not the only approach towards inferring effective
connectivity in large-scale network models (for reviews, see Deco and
Kringelbach, 2014; Stephan et al., 2015). One of its shortcomings is
that it is not specifically designed to deal with random fluctuations in
BOLD signals in non-task paradigms (although it can be applied to
“resting state” data, see below), something that two recent de-
velopments in particular are designed to do (Gilson et al., 2017; Razi
et al., 2017). Gilson et al. (2017) recently introduced a large-scale
network model in which the dynamics followed an
Ornstein-Uhlenbeck process and which allows for computing directed
connection strengths. This model further differs from ours in that it
does not include a forward model (from neuronal states to fMRI data)
but directly operates on BOLD signals; additionally, it is not a gener-
ative (Bayesian) model but employs maximum likelihood estimation.
This model was applied to fMRI data (using the same 66-area Hag-
mann parcellation as in our simulation study), but its compute time
was not reported. In a second recent study, Razi et al. (2017) used
cross-spectral DCM (Friston et al., 2014a) to invert networks consist-
ing of 36 brain regions based on resting-state fMRI data. The approach
exploits the principal components of the functional connectivity ma-
trix to constrain the prior covariance matrix of the DCM, essentially
reducing the effective number of free parameters by replacing the
number of nodes with a (lower) number of modes (Seghier and Fris-
ton, 2013). While spectral DCM was computationally more efficient
than stochastic DCM (Daunizeau et al., 2009), model inversion of the
36-region network was still computationally very demanding, with
run-times between 21 and 42 h for a single model (i.e., 20 min per
iteration, 64–128 iterations until convergence). It remains to be tested
whether DCMs covering the entire brain remain computationally
feasible for spectral DCM and yield reliable parameter estimates.

Our method compares favorably in terms of computational effi-
ciency. Estimating the effective connectivity of a whole-brain network
with nearly three times as many nodes and 10 times more connections,
the run-time of sparse rDCM was roughly 10min for a single pi0 value
without parallelization and just 1 min when running model inversion
on 16 processor cores in parallel. It is worth highlighting in this
context that the current implementation of sparse rDCM is not opti-
mized for speed. Further acceleration is straightforward by, for
instance, using faster programming languages (e.g., C/Cþþ instead of
MATLAB).

However, as already pointed out in Fr€assle et al. (2017), the cur-
rent implementation of rDCM – and thus also sparse rDCM – only
represents a starting point and is still subject to major limitations,
which will be addressed in forthcoming developments: First, we will
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replace the fixed hemodynamic response function with a more flexible
hemodynamic model, using, for example, a linearized version of the
hemodynamic model in DCM (Friston et al., 2000; Stephan et al.,
2007). Second, extending the linear neuronal model to incorporate
modulatory influences would represent an important methodological
advance, enabling more sophisticated analyses related to task-induced
changes in effective connectivity. Third, in its current form, rDCM can
be applied to the “resting state” (i.e., unconstrained cognition in the
absence of external perturbations) by “switching off” driving inputs
(i.e., setting pi0 to zero). This is possible because the measured data (in
the Fourier domain) feature as predictors in the Bayesian linear
regression model that constitutes the likelihood function in Eq. (4).
However, the model does not explicitly account for endogenous fluc-
tuations in neuronal activity; for example, it has no concept of sto-
chastic “innovations” or similar ways how noise can drive activity
intrinsically. We anticipate that including a mechanism to account for
endogenous fluctuations will constitute an important future step to
further increase the explanatory power of rDCM for “resting state”
fMRI data.

An additional improvement of the generative model of sparse rDCM
becomes apparent when closely inspecting the results from our simula-
tions for the grid-like, small-world and connectome-based DCMs. Spe-
cifically, the overall sensitivity of sparse rDCM was slightly diminished
for the connectome-based model as compared to the other models. This is
likely due to the fact that for the connectome-based DCM, the optimal pi0
is essentially different for each node as brain regions differ in the number
of afferent connections: for example, hubs are more densely connected
while other regions exhibit sparser connectivity profiles (Bullmore and
Sporns, 2009). However, the current implementation of sparse rDCM
assumed identical pi0 for all connections in the model, which is likely to
result in sub-optimal estimates for realistic networks. In future imple-
mentations of sparse rDCM, we will therefore explore the utility of
specifying pi0 for each region – or even individual connections – inde-
pendently. For example, this could be achieved by informing pi0 of each
connection by subject-specific anatomical connectivity measures, as
derived from diffusion-weighted imaging data (cf. anatomically informed
priors in DCM; Stephan et al., 2009b). Alternatively, measures of the
functional connectivity between two nodes (e.g., correlation, spectral
coherence) could be used to inform the prior probabilities pi0 of each
connection – giving rise to an approach not unrelated to the one proposed
by Seghier and Friston (2013). Taking advantage of multimodal neuro-
imaging data in this manner might represent a pragmatic way to increase
the currently low sensitivity of sparse rDCM. In forthcoming work, we
will therefore systematically explore the utility of anatomical and func-
tional connectivity matrices for informing the prior probabilities of the
Bernoulli prior on binary indicator variables.

The simulations and empirical analyses presented in this paper
represent a first step to assess the validity and practical utility of
sparse rDCM. In the simulations (Figs. 2–4, Supplementary Figs. S2,
S6-S9), we varied three parameters of key importance for the model's
performance: signal-to-noise ratio, sparsity assumptions (Bernoulli
prior), and the values of data-generating model parameters. We also
examined the model's performance separately for regions with
different levels of indegree (Supplementary Figures S4-S5). By
contrast, we did not vary TR (as this was assessed in previous work;
Fr€assle et al., 2017). Clearly, more validation work can still be done. In
future work, we would like to assess construct validity in more detail,
comparing the performance of sparse rDCM to other emerging ap-
proaches for inferring whole-brain effective connectivity. In addition,
we hope to conduct further tests of the predictive validity of sparse
rDCM, extending the challenge of predicting independent variables
(e.g., diagnostic status as shown in this paper) from brain connectivity
to larger pharmacological and patient datasets.

Notably, embedding sparsity constraints into rDCM requires that the
sparsity assumptions of the model match the actual sparsity of the
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network. In this paper, we use the log model evidence (as approximated
by the negative free energy) as a principled criterion for selecting an
optimal hyperparameter pi0 that determines the sparsity of the network.
When moving to more fine-grained parcellation schemes than the one
utilized in the present study, new challenges may arise, for instance, with
regard to spurious short-distance connections that originate from the
inherent spatial smoothness of the BOLD signal (Power et al., 2011).
Finally, it remains to be tested in future work whether sparsity con-
straints are equally appropriate for the “resting state” as compared to
task-based paradigms.

In summary, the findings presented in this study indicate promising
potential of sparse rDCM for estimating effective connectivity patterns in
large (whole-brain) networks by automatically pruning fully connected
graphs to the most essential connections. We conclude by highlighting
two potential future applications of our approach. First, sparse rDCMmay
enable the application of graph-theoretical approaches (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010) to whole-brain effective con-
nectivity patterns. To date, the application of graph-theoretical measures
to human brain data has typically been restricted to the analysis of un-
directed and unweighted graphs (Bullmore and Sporns, 2009). This is
because both structural connectivity (diffusion-weighted imaging) and
functional connectivity methods do not allow one to obtain directed es-
timates. Application of graph theory to whole-brain effective connec-
tivity profiles may provide a more accurate characterization of principles
of functional organization of the human brain, for example, by accom-
modating the functional asymmetries between forward and backward
connections in cortical hierarchies (Felleman and Van Essen, 1991; Zeki
and Shipp, 1988).

Finally, estimates of whole-brain effective connectivity may also
advance our understanding of the pathophysiology of brain disorders –
and thus make important contributions to the emerging fields of
Computational Psychiatry, Computational Neurology and Computa-
tional Psychosomatics (Deco and Kringelbach, 2014; Friston et al.,
2014b; Huys et al., 2016; Maia and Frank, 2011; Montague et al.,
2012; Petzschner et al., 2017; Stephan and Mathys, 2014; Stephan
et al., 2015). Sparse rDCM may become particularly useful in the
context of disorders for which global dysconnectivity has been sug-
gested, such as schizophrenia (Anticevic et al., 2015; Bullmore et al.,
1997; Friston et al., 2016; Friston and Frith, 1995; Stephan et al.,
2006). In these situations, the computational framework introduced in
this paper may deliver global “fingerprints” of aberrant functional
integration, bringing computational phenotyping of whole-brain
effective connectivity patterns in individual patients within reach
(Stephan et al., 2015).

Clearly, as discussedabove, sparse rDCMis in its infancyand still subject
to major limitations that have to be addressed in future developments.
Similarly, the utility of sparse rDCM as a clinically relevant computational
assay remains to be tested using pharmacological and patient datasets. We
hope to follow these lines of research in forthcoming work.
Software note

A MATLAB implementation of the sparse regression dynamic causal
modeling (sparse rDCM) approach introduced in the present paper will
be made available as open source code in a future release of the Trans-
lational Algorithms for Psychiatry-Advancing Science (TAPAS) Toolbox
(www.translationalneuromodeling.org/software).
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Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2018.05.058.

APPENDIX

A.1: Derivation of model parameters

In the following, we outline the derivation of the variational Bayesian update equations for the different parameter classes in sparse rDCM (neuronal
connectivity, noise precision, and binary indicator variables). Importantly, under the mean field approximation of sparse rDCM, optimization can be
performed for each region independently. Hence, we restrict the ensuing derivation of update equations to a single region.
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Here, all terms independent of θ were absorbed into the constant term c. Additionally, we have made use of hτiqðτÞ ¼ ατjy
βτjy

and hZiqðζÞ ¼ Pζjy , with h�iq
denoting the expected value with respect to the variational density qðτÞ and qðζÞ, respectively. Furthermore, we utilized the expression for hZTXTXZiqðζÞ
derived in appendix A.3.
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Here, ∘ denotes the element-wise product of two matrices. All terms independent of τ were absorbed into the constant term c. Additionally, we made use
of hθiqðθÞ ¼ μθjy , with h�iqðθÞ denoting the expected value with respect to the variational density qðθÞ. Furthermore, we utilized the expression for

hθTZTXTXZθiqðθ; ζÞ derived in appendix A.4.

Update equation of ζi:
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Here, all terms independent of ζi were absorbed into the constant term c. Note that we made use of the fact that hζjiqð ζ\iÞ is a constant with respect to ζi
for all terms j 6¼ i. The expression in Eq. (A.3) can be further simplified by making use of the results in the appendices A.5-A.7. The final expression for
the approximate posterior over binary indicator variables then takes the form:
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where we have set υ ¼ XTY and W ¼ XTX.

A.2: Derivation of negative free energy

Having derived the variational Bayesian update equations for the posterior densities, we now derive the expressions for the individual components
of the negative free energy for a single region.

Expectation of the likelihood:
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Expectation of the prior on θ:
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Expectation of the prior on τ:
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Expectation of the prior on ζi:
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ζi ln pi0 þ ð1� ζiÞln

�
1� pi0

�

qðζiÞ

¼ piζjy ln pi0 þ
�
1� piζjy

�
ln
�
1� pi0

�
¼ ln

�
1� pi0

�þ piζjy ln
pi0

1� pi0

(A.8)

Entropy of θ:

�hln qðθÞiqðθÞ ¼ �
D
N
�
θ; μθjy;Σθjy

�E
qðθÞ

¼ D
2
ln 2 π þ 1

2
ln
��Σθjy

��þ 1
2

��
θ � μθjy

�T
Σ�1

θjy
�
θ � μθjy

��
qðθÞ

¼ D
2
ln 2 π þ 1

2
ln
��Σθjy

��þ 1
2

�
μθjy � μθjy

�T
Σ�1

θjy
�
μθjy � μθjy

�
þ 1
2
tr
�
Σ�1

θjyΣθjy
�

¼ D
2
ð1þ ln 2 πÞ þ 1

2
ln
��Σθjy

��
(A.9)

Entropy of τ:

�hln qðτÞiqðτÞ ¼ �
D
Gamma

�
τ; ατjy; βτjy

�E
qðτÞ

¼ �ατjy ln βτjy þ ln Γ
�
ατjy
�� D�ατjy � 1

�
ln τ � βτjyτ

E
qðτÞ

¼ �ατjy ln βτjy þ ln Γ
�
ατjy
�� �ατjy � 1

�hln τiqðτÞ � βτjy
ατjy
βτjy

¼ ατjy � ln βτjy þ ln Γ
�
ατjy
�� �ατjy � 1

�
Ψ
�
ατjy
�

(A.10)

Entropy of ζi:

�hln qðζiÞiqðζiÞ ¼ �
D
lnBern

�
ζi; p

i
ζjy
�E

qðζiÞ
¼ �

D
ζi ln piζjy þ ð1� ζiÞln

�
1� piζjy

�E
qðζiÞ

¼ �piζjy ln piζjy �
�
1� piζjy

�
ln
�
1� piζjy

� (A.11)

A.3 Expression for hZTXTXZiqðζÞ:

First, we define two matrices

G ¼ �ZTXTXZ


qðζÞ ¼

�
ZXTXZ



qðζÞ

H ¼ PT
ζjyX

TXPζjy ¼ PζjyXTXPζjy
(A.12)

where we made used of Pζjy ¼ hZiqðζÞ. Note that the right sides of Eq. (A.12) follow directly from the fact that the diagonal matrix Z is symmetric and

thus ZT ¼ Z. The matrix G is the term we like to compute and we aim to do this by expressing it by making using of matrix H. For this, we examine the
individual elements of each matrix
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Gij ¼ ζiζj
XN

xikxkj ¼ �ζiζj
qðζÞXN xikxkj
*
k¼1

+
qðζÞ k¼1

Hij ¼ piζjyp
j
ζjy
XN
k¼1

xikxkj

(A.13)

where piζjy is the posterior probability of the Bernoulli distribution over connection i.

�
ζiζj


qðζÞ ¼

( hζiiqðζiÞ
�
ζj


qðζjÞ ¼ piζjyp

j
ζjy i 6¼ j�

ζ2i


qðζiÞ ¼ hζiiqðζiÞ ¼ piζjy i ¼ j

(A.14)

which follows from the fact that for any binary variable ξ, we have ξ2 ¼ ξ. Hence, we see that off-diagonal element of G and H are equivalent, whereas
the terms on the diagonal differ. This leads to the following expression for the elements of G:

Gij ¼

8>><>>:
piζjyp

j
ζjy
XN
k¼1

xikxkj ¼ Hij i 6¼ j

piζjy
XN
k¼1

xikxki ¼ Hii þ
XN
k¼1

xikxkj



piζjy �

�
piζjy
�2�

i ¼ j

(A.15)

From Eq. (A.15) we find that the entire matrix G is given by:

�
ZXTXZ



qðζÞ ¼ PζjyXTXPζjy þ ðXTXÞ ∘

�
Pζjy � P2

ζjy
�

(A.16)

where ∘ denotes the element-wise product of two matrices.

A.4 Expression for hθTZTXTXZθiqðθ; ζÞ:

Next, we derive an expression for the term hθTZTXTXZθiqðθ; ζÞ. For this, we first compute the expectation with respect to the approximate distribution
over θ. Due to the quadratic from, this yields

�
θTZTXTXZθ



qðθ; ζÞ ¼

D
μTθjyZ

TXTXZμθjy þ tr
�
ZTXTXZΣθjy

�E
qðζÞ

(A.17)

We can then compute the expectation with respect to qðζÞ and find:�
θTZTXTXZθ



qðθ; ζÞ ¼ μTθjy

�
ZTXTXZ



qðζÞμθjy þ

�
tr
�
ZTXTXZΣθjy

�

qðζÞ

¼ μTθjy
�
ZTXTXZ



qðζÞμθjy þ tr

��
ZTXTXZ



qðζÞΣθjy

�
¼ μTθjy

�
PζjyXTXPζjy þ ðXTXÞ ∘

�
Pζjy � P2

ζjy
��

μθjy

þtr
��

PζjyXTXPζjy þ ðXTXÞ ∘
�
Pζjy � P2

ζjy
��

Σθjy
�

¼ μTθjyPζjyXTXPζjyμθjy þ tr
�
PζjyXTXPζjyΣθjy

�
þμTθjyðXTXÞ ∘

�
Pζjy � P2

ζjy
�
μθjy þ tr

��
ðXTXÞ ∘

�
Pζjy � P2

ζjy
��

Σθjy
�

(A.18)

where we made us of Eq. (A.16) and the fact that the trace is a linear operator and hence, the order of taking the expectation and the trace can be
exchanged.

A.5 Expression for μθjyhZiqð ζ\iÞXTY:

One can show that:

μθjyhZiqð ζ\iÞX
TY ¼ μθjyhZiqð ζ\iÞυ

¼ PD
j¼1

μjθjy
�
ζj


qð ζ\iÞυj

¼ μiθjyζiυi þ
X
j6¼i

μjθjyp
j
ζjyυj

¼ μiθjyζiυi þ c

(A.19)

where υ ¼ XTY.
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A.6 Expression for μTθjyhZXTXZiqð ζ\iÞμθjy:

We re-write all matrices and inner products as sums:

μTθjy
�
ZXTXZ



qð ζ\iÞμθjy ¼ μTθjyhZWZiqð ζ\iÞμθjy ¼

XD
j¼1

XD
k¼1

μjθjyμ
k
θjy
�
ζjζk



qð ζ\iÞWjk (A.20)

where W ¼ XTX. Next, we can inspect Eq. (A.20) for all possible combinations of j and k. This yields the following expressions as a function of ζi:

μjθjyμ
k
θjy
�
ζjζk


qð ζ\iÞWjk ¼

8>>>><>>>>:

�
μiθjy
�2
ζiWii i ¼ j ¼ k

μiθjyμ
k
θjyζip

k
ζjyWik i ¼ j 6¼ k

μiθjyμ
j
θjyζip

j
ζjyWij i ¼ k 6¼ j

constant with respect to ζi i 6¼ j; i 6¼ k

(A.21)

Inserting Eq. (A.21) into Eq. (A.20), we get the final expression

μTθjy
�
ZXTXZ



qð ζ\iÞμθjy ¼ ζi

 �
μiθjy
�2
Wii þ 2μiθjy

X
j 6¼i

μjθjyp
j
ζjyWij

!
þ c (A.22)

where all terms independent of ζi were absorbed into the constant term c.

A.7 Expression for htrðZXTXZΣθjyÞiqð ζ\iÞ:

First, we can write

�
tr
�
ZXTXZΣθjy

�

qð ζ\iÞ ¼ tr

��
ZXTXZΣθjy



qð ζ\iÞ

�
¼ tr

��
ZXTXZ



qð ζ\iÞΣθjy

�
(A.23)

which follows directly from the fact that the trace is a linear operator. We can now use the result from Eq. (A.22) and find the following expression:

�
tr
�
ZXTXZΣθjy

�

qð ζ\iÞ ¼ ζi

 
WiiΣ

ii
θjy þ 2

X
j 6¼i

pjζjyWijΣ
ij
θjy

!
þ c (A.24)

where all terms independent of ζi were absorbed into the constant term c.
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