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Influence of vmPFC on dmPFC Predicts Valence-Guided
Belief Formation

Bojana Kuzmanovic,' “Lionel Rigoux,'2 and “Marc Tittgemeyer!
'Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany, and ?Translational Neuromodeling
Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 8032 Zurich, Switzerland

When updating beliefs about their future prospects, people tend to disregard bad news. By combining fMRI with computational and
dynamic causal modeling, we identified neurocircuitry mechanisms underlying this optimism bias to test for valence-guided belief
formation. In each trial of the fMRI task, participants (n = 24, 10 male) estimated the base rate (eBR) and their risks of experiencing
negative future events, were confronted with the actual BR, and finally had the opportunity to update their initial self-related risk
estimate. We demonstrated an optimism bias by revealing greater belief updates in response to good over bad news (i.e., learning that the
actual BR is lower or higher than expected) while controlling for confounds (estimation error and personal relevance of the new infor-
mation). Updating was favorable when the final belief about risks improved (or atleast did not worsen) relative to the initial risk estimate.
This valence of updating was encoded by the ventromedial prefrontal cortex (vmPFC) associated with the valuation of rewards. Within the
updating circuit, the vmPFC filtered the incoming signal in a valence-dependent manner and influenced the dorsomedial prefrontal
cortex (dmPFC). Both the valence-encoding activity in the vmPFC and its influence on the dmPFC predicted individual magnitudes of the
optimism bias. Our results indicate that updating was biased by the motivation to maximize desirable beliefs, mediated by the influence
of the valuation system on further cognitive processing. Therefore, although it provides the very basis for human reasoning, belief
formation is essentially distorted to promote desired conclusions.
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The question of whether human reasoning is biased by desires and goals is crucial for everyday social, professional, and economic
decisions. How much our belief formation is influenced by what we want to believe is, however, still debated. Our study confirms
that belief updates are indeed optimistically biased. Critically, the bias depends on the recruitment of the brain valuation system
and the influence of this system on neural regions involved in reasoning. These neurocircuit interactions support the notion
that the motivation to maximize pleasant beliefs reinforces those cognitive processes that are most likely to yield the desired

conclusion. j

ignificance Statement

value, which is why people tend to be motivated to maintain such
beliefs (Sharot and Garrett, 2016). In turn, the motivation to
maximize pleasant beliefs has been hypothesized to reinforce
those cognitive processes that are most likely to yield a desired

Introduction

Not only extrinsic rewards such as tasty food, but also internal
processes such as desirable beliefs or positive emotions, are ex-
pected to evoke pleasant states. Believing that one is attractive and

intelligent (Eil and Rao, 2011; Korn et al., 2012) or that one’s
future will be bright (Sharot et al., 2011) has a positive subjective
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conclusion (Kunda, 1990; Hughes and Zaki, 2015).

However, motivational influences on reasoning have been
controversially debated (Kunda, 1990; Shah et al., 2016; Garrett
and Sharot, 2017; Kuzmanovic and Rigoux, 2017). How can we
prove whether specific conclusions are reinforced by desires
when these processes are hidden from direct observation and can
operate outside of awareness (Tesser, 2000)? One way is to iden-
tify systematic, valence-dependent biases in information integra-
tion. For instance, when participants were given new information
relevant to their current belief, they were more likely to incorpo-
rate good than bad news (e.g., indicating a lower versus higher
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risk than initially expected) to update their belief (Sharot et al.,
2011; Kuzmanovic et al., 2016a). Circumventing self-report, such
asymmetric updating provides an individual index of the opti-
mism bias by exploiting actual belief formation behavior.

Another difficulty is that no reward has a fix subjective value,
neither the extrinsic nor the intrinsic ones. Tasty food, for in-
stance, is more pleasant during a hungry state. This is directly
reflected in the activity of brain regions encoding the reward
value such as the ventromedial prefrontal cortex (vmPFC) (Bar-
tra et al., 2013; Chase et al., 2015): neurons in the vmPFC that
fired in response to tasty food during a hungry state no longer
showed this response after satiety (Grabenhorst and Rolls, 2011).
Likewise, desirable beliefs may be more pleasant after threatening
a person’s self-worth (Roese and Olson, 2007; Rudman et al.,
2007). Indeed, the magnitude of the optimism bias substantially
varied across the participants (Sharot et al., 2011; Kuzmanovic
and Rigoux, 2017). We assume that the belief updating should be
biased only in the subjects who indeed assign a positive value to
avoiding threatening and enhancing desirable beliefs. This allows
us to infer the current value of a specific reward (favorable beliefs)
from the reinforcement of the behavior leading to this reward
(updating biased toward favorable beliefs).

The present study aims to demonstrate that desirable beliefs
have an incentive salience and therefore can guide updates by
influencing ongoing cognitive processing. To this end, neural
circuits of belief updating were identified by using an established
fMRI paradigm. Recently (Kuzmanovic et al., 2016a), we have
shown that the vmPFC encoded the positive value of favorable
self-related (but nor other-related) belief updates, indicating that
the brain transforms beliefs into the same common value scale as
classical rewards. Further, we isolated cognitive components and
formally controlled for confounds using computational model-
ing to validate conclusions about valence-dependent update be-
havior (Kuzmanovic and Rigoux, 2017). Based on this previous
work and the central role of the vmPFC in value encoding (Bartra
etal., 2013; Chase et al., 2015), we hypothesized that the positive
value of favorable updating would be encoded by the vmPFC.
Moreover, we expected that only those individuals who showed
an optimism bias would have a strong neural response to favor-
able updating. Finally, we used dynamic causal modeling to in-
vestigate mechanisms underlying valence-dependent updating.
We hypothesized that the contexts of favorable and unfavorable
updating would modulate coupling among regions recruited
during updating and that the identified valuation system would
influence other regions involved in belief formation. Our results
provide evidence for a motivationally biased belief formation that
is mediated by the value encoding in the vmPFC and the influ-
ence of the vmPFC on the dorsomedial PFC (dmPFC).

Materials and Methods

Participants

Forty subjects were recruited from the institute’s subject database. A total
of four participants were excluded because of problems with task perfor-
mance. Two participants recognized that the base rates (BRs) were ma-
nipulated and one individual did not update estimates in 84% of trials
(mean of the included sample = 30.09%, SD = 16.13; exclusion thresh-
old = 66.67%). Last, one participant updated estimates away from the
presented BR in 18% of trials, indicating problems with task understand-
ing (mean of the included sample = 2.66%, SD = 4.12; exclusion thresh-
old = 15%). Data from another 12 participants were excluded due to
excessive head movement in the MR scanner that exceeded a threshold of
1.5 framewise displacement (Power et al., 2012). This was necessary to
account for increased sensitivity to motion-related artifacts in multiband
acquisition for functional imaging (see below for acquisition parame-
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ters). Therefore, in total, 24 subjects were included into the analysis (10
male, mean age = 27.38, SD = 5.15). Adding the 12 subjects with exces-
sive motion to the sample of 24 subjects revealed the same behavioral
results (see “Task performance” section in the Results).

Experimental design

The experiment was conducted during the acquisition of fMRI scans
using Presentation 18.1 (Neurobehavioral Systems) and consisted of 80
trials with 80 different adverse life events (e.g., cancer or car theft). Par-
ticipants began each trial with estimating the BR of an adverse life event
(eBR) (see Fig. 1). Next, they were asked to estimate their own likelihood
of experiencing the life event in their lifetime (first estimate, E1) and were
subsequently presented with the actual BR. Subjects were instructed that
the BR refers to the probability of the respective event occurring to per-
sons of the same sex and age, living in the same sociocultural environ-
ment, as determined by the German Federal Statistical Office
(Statistisches Bundesamt). At the end of each trial, participants had to
reestimate their own risk (second estimate, E2).

The critical behavioral measure was the size of the update, the differ-
ence between E1 and E2. Subjects were expected to update their first risk
estimate after being confronted with a BR different from the one they
initially assumed. This difference between eBR and BR indicated the
estimation error (EE) where EE = |eBR — BR|. In half of the trials, BR was
desirable (better than expected, i.e., eBR > BR; good news, GOOD), and
in the other half, BR was undesirable (worse than expected, i.e., eBR <
BR; bad news, BAD). We expected participants to change their risk esti-
mates on average toward the new information. That is, upon an actual BR
that is lower than expected, participants should decrease their risk esti-
mates. Conversely, upon an actual BR that is higher than expected, par-
ticipants should increase their risk estimates. Indeed, updates toward the
direction opposed to the new information were very rare (M = 2.66%,
SD = 4.12). This is also reflected in the desirability-dependent compu-
tation of updates that ensures that positive values indicate an update toward
the new information equally for GOOD and BAD (see Table 1). Valence-
dependent bias in updating was present when GOOD and BAD trials
yielded different updates (i.e., mean update;oop > mean updatey,,
indicates an optimism bias).

Participants were free to report a probability anywhere between 1%
and 99%. Starting from 50% in eBR, they selected the desired probability
by using two buttons to increase or decrease the number displayed on the
screen (see Fig. 1, green font in eBR, E1, and E2) and a third button to
confirm the selected choice. Subjects were instructed to use both hands.
In the first half of the experiment, they used the right hand for selecting
the percentage number and the left hand for confirming it and, in the
second half, the other way around (order counterbalanced across sub-
jects). In E1, the starting number equaled the one selected in eBR and, in
E2, the starting number corresponded to the one selected in E1.

For eBR, El, and E2, the response display was activated after a 2 s
interval. Subjects were instructed to use the first 2 s to think about their
estimate and then had a maximum of 10 s to respond (see Table 1 for
mean reaction times). BR was presented for 2 s. The intervals within and
between the trials consisted of a fixation cross and were jittered (Mum-
ford et al., 2015): the three interstimulus intervals within the trial (be-
tween eBRand E1, El and BR, and BR and E2) ranged between 2375 and
4625 ms, with a mean of 3500 ms, and the intertrial intervals ranged
between 4875 and 7125 ms, with a mean of 6000 ms. The average task
duration was 48 min (SD = 2.45).

GOOD and BAD trials were rendered comparable with respect to the
following: (1) number of trials, (2) mean size of EE, and (3) range of
actual BRs. Furthermore, the assignment of stimuli to the two conditions
(GOOD and BAD), the different EE sizes, and the order of trials were
randomized anew for each subject. This was accomplished by manipu-
lating the BR unbeknownst to subjects. To generate a desirable BR, a
number between 1 and 25 was subtracted from the eBR and, to generate
an undesirable BR, a number between 1 and 25 was added to the eBR. In
addition, BRs were capped between 1% and 90% because BRs exceeding
this range are likely to appear implausible.

However, this manipulation of BR was sometimes constrained by sub-
jects’ responses. For instance, when the eBR was close to or above 90%,



7998 - J. Neurosci., September 12, 2018 - 38(37):7996 — 8010

trials that were scheduled to generate bad news could not be realized (e.g.,
when eBR was 90%, no greater BR could be generated because BRs were
capped between 1% and 90%). Instead, a number lower than 90% was
presented (a random number between 85% and 90%), generating good
news. This reversal of the scheduled trial valence (M = 1.30, SD = 2.20)
can be made responsible for the condition-wise differences in number of
trials (the reversal occurred only in BAD trials, thereby decreasing the
number of realized BAD trials and increasing the number of realized
GOOD trials) and eBR and E1 (only BAD trials with high eBRs were
possible candidates for such a reversal and eBR and E1 were highly cor-
related, as one would expect, see Fig. 2 E, F). Supporting this assumption,
number of trials and eBR differed between the conditions only in subjects
with reversals (and/or EE = 0; a1y = 2.68,p = 0.022, eBR, 14, = 6.86,
p < 0.001), but not in subjects without such irregularities (¢,,, = 0.32,
p = 0.755,eBR, t,,, = 2.06, p = 0.064). We nevertheless achieved satis-
factory balanced distributions of number of trials, eBR, E1, and EE be-
tween conditions (e.g., on average 78.17 of 80 trials could be realized, and
the mean difference between GOOD and BAD was 1.75 trials; see Table
1). Additional details on the experimental design and the BR manipula-
tion algorithm have been described previously (Kuzmanovic and Rigoux,
2017).

Before the experiment, all participants received written instructions
and completed six practice trials with stimulus events not used in the
experiment. In a final debriefing after the experiment, a funneled proce-
dure was used to ensure that subjects did not suspect the manipulation of
the BRs or the purpose of the study. All procedures were in accordance
with the World Medical Association Declaration of Helsinki and were
approved by the local ethics committee of the Medical Faculty of the
University of Cologne, Germany (15-255).

Acquisition parameters

The MRI data were acquired by using a Magnetom Trio Prisma ‘™ 3T
whole-body scanner and a 64-channel head coil (Siemens AG Medical
Solutions). During the update experiment, fMRI data were acquired in
one session with a slice accelerated multiband echoplanar imaging se-
quence (Xu et al., 2013) covering the whole brain (TR = 1050 ms, TE =
37.40 ms, field of view = 212 X 212 X 144 mm >, voxel size = 2 X 2 X 2
mm?, 72 oblique axial slices, multiband acceleration factor 6). In addi-
tion, we acquired two images with reversed phase encoding directions
(anterior—posterior or posterior—anterior) for the purpose of estimating
and correcting the susceptibility-induced distortion using topup (TR
8240 ms, TE 69 ms, field of view 212 X 212 X 144 mm?, voxel size 2 X
2 X 2mm?, 72 oblique axial slices). High-resolution T1-weighted images
were obtained from the institute’s subject database (MDEFT, TR 1930
ms, TE 5.80 ms, field of view 256 X 256 X 160 mm?, voxel size 1 X 1 X
1.25mm?>, 128 sagittal slices, or MPRAGE, TR 2300 ms, TE 2.32 ms, field
of view 256 X 256 X 192 mm?, voxel size 0.9 X 0.9 X 0.9 mm?, 213
sagittal slices).

Statistical analyses

Analysis of task performance

Before analyses, the following trials were excluded: trials with missing
responses (M = 0.83, SD = 1.01), trials with EE = 0 (e.g., when eBR was
1% in a GOOD trial, BR was also 1%; M = 0.88, SD = 1.26), and outliers
(trials in which the update exceeded 4 SDs of the subjects’ mean; M =
0.13, SD = 0.34). For each subject, trials were divided into two condi-
tions: good news (GOOD; BR < eBR) and bad news (BAD; BR > eBR).
Optimism bias was assessed by comparing updates in GOOD trials with
those in BAD trials (mean update;,op — mean updatey, ). Note that,
on average, participants were expected to decrease their risk estimates after
good news and to increase their risk estimates after bad news. Therefore, for
both update;, o and updatey o), positive values indicate an update to-
ward the new information (see Table 1 for statistics of task variables; also
see Fig. 2A). Furthermore, for each participant, we conducted a linear
regression to predict his or her updates on each trial using valence of news
(GOOD vs BAD) while including eBR, El, and EE as covariates (all
measures z-scored within subject). For repeated measures, the SD of the
paired differences was used as a standardizer for Cohen’s d (Cumming,
2014).

Kuzmanovic et al. ® Neurocircuits of Valence-Guided Belief Formation

In addition, we performed computational modeling of belief updat-
ing. The model-based approach allows to formally control for fluctua-
tions in trialwise eBR, E1, and EE across conditions and to simulate
unbiased updating based on observed trial-wise EE and personal rele-
vance (PR). Building on previous work (Kuzmanovic and Rigoux, 2017),
the model of belief updating was formalized as follows:

Update = LR * EE * PR,
LR¢oop = Alpha + Asymmetry
LRy,p = Alpha — Asymmetry

This model relies on the generic form of reinforcement learning, in which
update is proportional to the EE (equivalent to prediction error). In
addition, EE is weighted by the learning rate (LR), which indicates the
general tendency of each subject to update their beliefs in response to the
EE. To test for the optimism bias (asymmetric learning), LR was esti-
mated separately for good and bad news (see also Palminteri et al., 2017;
Lefebvre et al., 2017) and therefore has two components. The general
component, alpha («), indicates the tendency to learn from errors inde-
pendently of the valence of news. o equal 1 indicates that update is exactly
equal to EE, while a smaller than 1 indicates updates smaller than EE.
Asymmetry (A) = 0 indicates equal learning rates for GOOD and BAD,
whereas A different from zero indicates that the resulting learning rates
systematically differ for GOOD and BAD (e.g., A > zero indicates lower
learning rates and thus smaller updates for BAD than for GOOD).

EE is also weighted by the PR (corresponds to “relative personal
knowledge” in Kuzmanovic and Rigoux, 2017). PR indicates the differ-
ence between eBR and E1 relative to the maximal possible difference in
each trial (see Table 1 for the exact equation). Recently, we have demon-
strated that the computational model of belief updating that weighted EE
with PR was superior to the model without any consideration of PR
(Kuzmanovic and Rigoux, 2017). This shows that the more people felt
detached from the reference population, the more irrelevant BRs became
for their updates of risk estimates (e.g., if I do not have a car, I will not
consider the BR of car theft). PR ranged from 0 to 1, with PR = 1 when a
subject perceives her risk to be equal to those of the average person
(eBR = EI; see Fig. 1 for an example) and PR = 0 when the perceived
difference (eBR vs E1) is maximal. Therefore, EE weighted by PR indi-
cates a subjective error (SE), where the impact of the EE on update is also
determined by the PR of the new information.

Using the VBA toolbox (Daunizeau et al., 2014), we implemented
competing models and tested which of these best accounted for the ob-
served update behavior. To test whether o was different from 1 and
whether A was different from 0, we generated all possible variations of the
update equation by switching the parameters « and A on (by letting the
parameter free) or off (by fixing the parameter’s prior variance to zero).
Therefore, four models (@A, a, A, @; a and A indicate that the respective
parameter was let free) were estimated for each subject. Note that, by
setting A to 0 (i.e., models o and @), we specified the null hypothesis that
learning is unbiased. In the alternative hypothesis (i.e., models @A and
A), A was estimated for each participant. Model estimations yielded a
posterior distribution across the parameters and an approximation to the
evidence of the model. The approximated model evidence reflects the
goodness of fit penalized for the complexity. We used the free-energy
approximation that has been shown to be superior to other approxima-
tions such as AIC or BIC (Penny, 2012). Model evidence of all subjects
and all tested models was then entered in a random effects Bayesian
model comparison. For each model, this procedure estimates the follow-
ing: (1) the probability of each subject to be best described by the respec-
tive model (model attributions), (2) the frequency in the population
(estimated model frequency, Ef), and (3) the protected exceedance prob-
ability ( pxp), which is the probability that the model predominates in the
population above and beyond chance (see Rigoux et al., 2014 for more
details).

fMRI analyses
Before analysis, the first 10 volumes were discarded to allow for magnetic
saturation. First, functional images were corrected for motion and dis-
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tortion using the FSL (version 5.0.9) tools MCFLIRT and topup (Ander-
sson et al., 2003; Smith et al., 2004). All further analysis steps including
DCM were conducted using SPM12 (Wellcome Trust Centre for Neuro-
imaging, London) implemented in MATLAB R2014b (The Math-
Works). The T1 image was normalized to the Montreal Neurological
Institute (MNI) reference space using the unified segmentation approach
and the ensuing deformation parameters were applied to (previously
coregistered) functional images. Finally, functional images were
smoothed using an 8 full-width-half-maximum Gaussian kernel.

Statistical analyses were conducted in the framework of a general lin-
ear model (GLM). At the single-subject level, conditions were modeled
using a boxcar reference vector convolved with the canonical hemody-
namic response function and its time derivative. The following events
were modeled on separate regressors: eBR, E1, BR, E2, responses, and
rest. The duration of eBR, E1, BR, and E2 was always set to 2 s, as for
events with responses (all except of BR) the response display was acti-
vated only after 2 s. Responses for all events were modeled on one regres-
sor (duration from the onset of the response event to the confirmation
button press, which was also the beginning of the next interstimulus-
interval). The instruction to switch hands after the first half of trials and
the excluded trials (missing responses, EE = 0, and outliers; see “Analysis
of task performance” section), if present, were modeled on the “rest”
regressor. Motion parameters and a matrix with motion outlier volumes
(identified using the tool fsl_motion_outlier at a threshold of 4 SD of
intensity differences between subsequent volumes; Power et al., 2012)
were included as multiple regressors of no interest. Low-frequency signal
drifts were filtered using a cutoff of 128 s. At the group level, flexible
factorial design and a significance threshold of p < 0.05, FWE corrected
at the peak level with an extent threshold of 20 voxels were used. For the
covariate analyses, we applied the same statistical threshold, but a lower
extent threshold of 10 voxels.

Error tracking. We identified brain regions that encoded the errors
experienced during the BR event. At that time, subjects were confronted
with a different actual BR than the one they have estimated (i.e., the
difference between eBR and BR). To obtain the effects separately for
GOOD and BAD, we split the BR trials into BR;oop and BRy,p, and
tested for parametric modulation (PM) by subjective error (SE = EE *
PR, see “Analysis of task performance” section). We focused on this
subjective error processing because it was more relevant for the subsequent
belief updating than the general error (i.e., EE; Kuzmanovic and Rigoux,
2017). The resulting nine regressors (eBR, E1, BR;oop, PM_errorgoops
BRy o> PM_errory s, E2, responses, and rest) were only weakly correlated
(7 averaged across subjects were between —0.29 and 0.14), indicating effi-
cient parameter estimation. At the single-subject level, two contrast images
were computed relative to the implicit baseline (PM_errorgoop and
PM_errorg, ) and entered into group-level analysis. At the group level,
we identified those regions that exhibited increasing or decreasing acti-
vation with increasing subjective error in both GOOD and BAD trials
(global conjunction). Furthermore, we explored differences between
PM_errorgoop and PM_errorg, , and reported global conjunction re-
sults for significant results to clarify whether the difference related to
different magnitudes of the same modulation effect (e.g., the positive
correlation between BOLD and error was stronger in BAD than in
GOOD) or to modulation effects of opposite direction (e.g., the correla-
tion between BOLD and error was positive in BAD, but negative in
GOOD). To be able to illustrate group effects of different sizes of error on
the BOLD signal, we also computed a GLM that models three sizes of
error (small, mid, and large) on three separate regressors separately for
GOOD and BAD (see Fig. 34, line chart). Small, mid, and large categories
were generated by dividing the sorted array of values into three subarrays
that did not share same values and were maximally similar with respect to
the number of elements (this procedure was the same for errors and
update’; see below). Finally, we tested whether the extent of error track-
ing correlated with the learning rate component a across subjects by
conducting a covariate analysis with one contrast per subject (average
effect of PM_errorgoop and PM_errorg,p).

Valence of updating. To identify brain regions that encoded the valence
of updating, we focused on the E2 event because at that time subjects
were deciding upon updating their initial belief. E2 trials were split into
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E2600p and E2; ,p trials so that effects could be examined separately for
GOOD and BAD. According to the valence of updating schematically
shown in Figure 3B (gray box), we tested for the positive correlation
between the BOLD-signal and update in GOOD trials and for the nega-
tive correlation in BAD trials. To identify these opposed effects, we ap-
plied parametric modulation of E25450p and E25,p, respectively, by
update size. The advantage of the PM procedure is that it allowed us to
adjust the effect of update for EE, PR, and other potential confounds
(e.g., by including three orthogonalized parameters in the following or-
der: PR, EE, update; Mumford et al., 2015). The resulting 13 regressors
(eBR, El, BR, E2600 PM_PRioons PM_EEo00, PM_updatecoops
E25ap> PM_PRy A, PM_EEg ., PM_update,p,, responses, and rest)
were only weakly correlated (7 averaged across subjects were between
—0.29 and 0.03), indicating efficient parameter estimation. The only
exception was the negative correlation between BR and response (7 =
—0.49), which occurred because BR was the only event in the trial that
was never associated with a subsequent motor response. Six contrast
images were computed relative to the implicit baseline (PM_PR, PM_EE,
and PM_update, separately for GOOD and BAD) and entered into
group-level analysis. At the group level, we identified those regions that
exhibited both increasing activation with increasing updates in GOOD tri-
als, as well as increasing activation with decreasing updates in BAD trials,
specified by the difference contrast (PM_update;op > PM_updateg,p).
In addition, we reported global conjunction results to clarify whether the
difference related to different magnitudes of the same modulation effect
(e.g., the positive correlation between BOLD and update was stronger in
GOOD than in BAD) or to modulation effects of opposite direction (e.g.,
the correlation between BOLD and update was positive in GOOD, but
negative in BAD). Moreover, we tested whether the magnitude of the
favorable updating effect correlated with the optimism bias across sub-
jects by conducting a covariate analysis with one contrast per subject
(PM_update;oop > PM_updateg, ).

Finally, we conducted two additional GLMs with categorical designs
that split all trials into three sizes of update (small, mid, and large) sepa-
rately for GOOD and BAD. To approximate the adjustment for EE
within the modulation by update, we subtracted EE from update at each
trial (update’ = update — EE). That way, we controlled for the general
effect that updates tend to be larger after larger EE, which may confound
with the valence effect. Note that dividing update by EE would not be
optimal because all trials with an update equal zero (M = 30.09%, SD =
16.13) would have yielded zero as well regardless of EE. This would not be
appropriate because meaningful differences between zero updates in re-
sponse to EEs of different sizes (e.g., EE = 2 and EE = 20) would have
been concealed. For each subject, the numbers of trials across the three
categories of updates were kept as similar as possible (numbers of trials
did not differ; GOOD: M = 13.32, SD = 0.85, F, 9, = 0.58, p = 0.560;
BAD: M = 12.74, SD = 1.02, F 5 9, = 0.09, p = 0.913).

First, we used a GLM that modeled the three categories of update sizes
separately for GOOD and BAD (six regressors) to illustrate group effects
of different sizes of updates on the BOLD signal (see Fig. 3B, line chart).
Second, we used another categorical GLM as a basis for the DCM analysis
because the categorical levels can be more easily interpreted as inducing
contextual modulatory effects in DCM than parametric variables
(Stephan etal., 2010). According to the valence of updating schematically
shown in Figure 3B (gray box), this GLM collapsed the different update
sizes into three valence categories corresponding to unfavorable (small-
Goop and largey i, updates, U), mid (mid updates, M), and favorable
(large;oop and smally o, updates, F) updating (Fig. 3C). Three contrast
images were computed relative to the implicit baseline (E2,, ¢ yorable>
E2, 0 and E2¢ o .11) and entered into group-level analysis. At the group
level, we tested for brain regions that exhibited greater activation for
favorable updates than for unfavorable updates (E2¢, o .bie = E2unfavorable)-
In addition, we identified those regions that were activated during up-
dating independent of the valence (i.e., conjunction of all three levels of
E2).

DCM analyses
DCM represents a hypothesis-led approach to understand neural circuits
underlying observed brain responses (Friston, 2011). We used DCM to
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Outline and examples of experimental trials. Each experimental trial consisted of four succeeding events. With respect to a specific adverse life event (e.g., suffering from cancer),

subjects had to estimate the BR (eBR) and their own risk (E1). They were then presented with the actual BR and had the opportunity to estimate their own risk again (E2). After identical eBR and E1,
the upper progression of the hypothetical trial example shows a BR lower than expected indicating good news, whereas the lower progression shows a BR higher than expected indicating bad news.
EEs corresponded to the difference between the eBR and the actual BR and the update corresponded to the difference between the first and the second self-risk estimate. Note that, in both trial
examples, the EEis 10 and the update is 8. For eBR, E1, and E2, subjects were instructed to use response buttons to adjust the displayed number to match their estimate as soon as the number font
changed to green (after 2 s). Interstimulus intervals between eBR, E1, and E2, as well as intertrial intervals after E2, were jittered and consisted of a fixation cross (not shown here).

estimate and infer causal interactions among brain regions involved in
belief updating (i.e., during the E2 event). To this end, competing models
with different intrinsic coupling between regions and different task-
dependent modulations of these couplings were specified. Each model
corresponded to a specific hypothesis about how observed data were
caused and Bayesian model selection was used to quantify the evidence
for one model over another (Friston, 2011). Model inversion provided
estimates of the model evidence and the corresponding effective connec-
tivity. We tested whether the context of favorable and unfavorable up-
dating modulated the coupling between distributed brain responses and
whether value-coding regions exerted influence on other regions associ-
ated with cognitive processing.

First, we selected the nodes for the DCM based on the group results
revealed by the simplified categorical GLM with three categories of va-
lence of updates (unfavorable, mid, and favorable). The time series were
extracted by computing the principal eigenvariate from 4-mm-diameter
spheres (33 voxels) centered on the peak coordinates and adjusted for the
effect of interest (F-contrast across the three categories of updates and the
respective time derivatives).

Second, we specified competing models varying in their endogenous
coupling and valence-dependent modulatory effects and inverted each
model for every subject. Given that every brain region is connected re-
ciprocally (Friston, 2011), the coupling in all models was cyclic; that is, all
forward connections were accompanied by respective backward connec-
tions. We used a random-effects Bayesian model comparison to infer the
optimal model structure by selecting the model with the best balance
between accuracy and complexity.

Third, following the model selection, we performed a random-effects
analysis of parameter estimates derived from the selected model using
one-sample ¢ tests (Stephan et al., 2010). Additionally, we tested for
correlations between parameter estimates and the optimism bias. For the

sake of completeness, we report correlations between the two bias mea-
sures (optimism bias and A) and all model parameters in Table 4. Bon-
ferroni correction was used to control for multiple comparisons:
significance thresholds were adjusted for 7 tests for the matrix A param-
eters (p < 0.007) and 2 tests for the expected correlations (p < 0.025).

Results

Task performance

In the belief update task, subjects were asked to reconsider their
risk estimates after being confronted with either good news (BRs
of the risks were lower than initially expected) or bad news (BRs
were higher than initially expected; Fig. 1). To assess valence-
biased belief updating, we first tested whether subjects were more
likely to take into account good news (GOOD) rather than bad
news (BAD). Indeed, belief updates (the difference between the
self-related risk estimates before and after being presented with
the actual BR) following good news were significantly larger than
the updates after bad news (t,5, = 2.12, p = 0.045, paired ¢ test,
d = 0.43; Fig. 2A, see Table 1 for the summary of all task vari-
ables). Furthermore, linear regression analyses revealed that up-
dates were larger in GOOD than in BAD trials even after
controlling for trial-wise EE (t,5, = 3.03, p = 0.006, d = 0.62, or
for eBR, E1, and EE, t,3) = 2.55, p = 0.018, d = 0.52, one-sample
t tests). Therefore, these results indicate that belief updates were
optimistically biased.

To implement an even more precise control for potential con-
founds and to further inform the fMRI analyses, we applied com-
putational modeling. We tested whether the learning from actual
BRs was asymmetric (different for GOOD and BAD, indicated by
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Figure2. Task performance and computational modeling. 4, Bars show subjects’ updates, that were significantly larger after good news (GOOD) than after bad news (BAD). White dots represent
simulations of updates by the “biased” computational model that assumes asymmetric learning rates for good and bad news (A, two free parameters, « and A). Gray dots indicate simulated
updates resulting from the “unbiased” model that assumes identical learning rates for good and bad news (c, one free parameter, «). The simulated unbiased updates provide a normative
benchmark for rational updating with learning rates estimated for each subject under consideration of her or his exact trial history. Error bars indicate SEs. B, Bayesian model comparison confirmed
that the biased model «A best predicted subjects’ updates. Model frequencies show that the majority of subjects were best described by the oA model above and beyond chance (red dashed line).
Error bars indicate the posterior variance. C, Learning rates extracted from the winning model «cA were significantly higher after good than bad news. Error bars indicate SEs. D, Optimism bias
(updategqqp — updategy,p) and A (estimated for each subject by the model ocA) were significantly correlated (dots represent single subjects). E, F, Correlations between task variables separately for

trials with good news (E) and those with bad news (F). *p << 0.05, **p < 0.01.

Table 1. Task variables

M(SD)

Parameter Good news Bad news p Source

Number of trials 39.96 (1.45) 38.21(2.38) 0.024

Estimated base rate (eBR) 49.74 (12.67) 45.92 (12.30) 0.000 Participants’ response

First estimate (ET) 42.64 (11.10) 37.85(10.49) 0.000 Participants’ response

Presented base rate (BR) 36.35 (12.57) 59.76 (12.22) 0.000 Base rate algorithm

Estimation error (EE) 13.39(0.95) 13.84 (0.57) 0.001 EE = |eBR — BR|

Second estimate (E2) 35.12(10.86) 44.55(11.26) 0.000 Participants’ response

Update 7.51(2.58) 6.70 (2.20) 0.045 Updateggop = ET — E2, Updateg,, = E2 — E1

Personal relevance (PR) 0.70 (0.12) 0.69 (0.13) 0.287 forE1 <<eBR:PR =1 — ((eBR — E1)/(eBR — 1))
forE1 > €BR: PR =1 — ((E1 — eBR)/(99 — €BR))
forE1 = eBR:PR=1

RT eBR (s) 5.19 (0.84) 5.11(0.80) 0.192 Participants’ response

RTE1(s) 3.25(0.91) 3.30 (0.90) 0.461 Participants’ response

RTE2 (s) 2.70(0.62) 2.56 (0.61) 0.018 Participants’ response

All measures (except for number of trials) were recorded or computed for each trial and were then averaged separately for the conditions GOOD and BAD and separately for each participant. Positive update values indicated updates toward
the BR and negative values updates away from the BR (<<3% of the trials). PR: 1 indicates equal risk perception for the average and oneself and 0 indicates maximally different risk perception for the average and oneself; note that PR
corresponds to “relative personal knowledge” in Kuzmanovic and Rigoux, 2017. RT, Reaction time. p-values refer to paired two-tailed paired ¢ test with n = 24.

the parameter A) while taking into account the EE, the PR of the
new information, and the general tendency to learn from new
information (learning rate component «). Here, the EE was an
important confound because larger errors generally tend to trig-
ger larger updates. Also, when the new information is not re-
garded as personally relevant, updating of related beliefs tends to
be reduced.

Bayesian model comparison of four competing models (A,
a, A, and @) provided additional support for the optimism bias.
It revealed that the «A model, which estimated both « and its A
separately for each subject, predicted subjects’ behavior signifi-
cantly better than all other model versions (a, « fitted, A fixed to

0; A, afixed to 1, A fitted; or @, e fixed to 1 and A fixed to 0), Ef =
0.87, pxp = 0.994 (Fig. 2B). A was significantly larger than zero
(M = 0.05,SD = 0.07, t(,35, = 3.59, p = 0.002, one-sample  test,
d = 0.73), showing that participants’ learning rates were higher in
response to good news than to bad news (LRgoop: M = 0.79,
SD = 0.19, LRgzp: M = 0.70, SD = 0.18; Fig. 2C). Furthermore,
a was significantly smaller than 1 (M = 0.74, SD = 0.18, t(,5, =
—7.18, p < 0.001, one-sample ¢ test, d = 4.26), showing that
updates were on average smaller than the EEs. Finally, the opti-
mism bias (derived from the observed task performance, mean
update;oop — mean updateg,,) and the A parameter (derived
by the winning model @A) were significantly correlated (r = 0.79,
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p < 0.001; Fig. 2D). Although expected, the close relationship
between these two bias measures also confirmed that the poten-
tial confounding variables (EE, PR) had no systematic influence
in our task. Therefore, we can rule out that “seemingly optimistic
updating” was induced by a differential consideration of EEs due
to varying PR (Shah et al., 2016). Quite the contrary, the opti-
mism bias was even stronger after taking EE and PR into account.
Therefore, it is likely that earlier studies demonstrating the opti-
mism bias, but lacking the enhanced experimental or formal
computational control (Sharot et al., 2011, 2012; Garrett et al.,
2014; Korn et al., 2014; Kuzmanovic et al., 2015, 2016a,b), are
also not affected by these potential confounds. Furthermore, cor-
relations between the different task variables, computed sepa-
rately for trials with good news and bad news and then averaged
across subjects (Fig. 2 E, F), show that EE and updates correlated
only very weakly with eBR, BR, E1, and E2 (7 ranging from —0.15
to 0.30). This is particularly important because it demonstrates
that we succeeded in manipulating the desirability of EE indepen-
dently of prior beliefs (i.e., the size of risk estimates eBR and E1).
Furthermore, it shows that the valence of updates was indepen-
dent of the size of the estimated risks (eBR, E1) or the presented
BRs. Together, these findings provide a strong support for the
notion that the difference in updating indeed reflected a valence-
dependent consideration of the new information.

Moreover, we assessed the updates that were simulated by the
winning model aA assuming asymmetric learning rates and by
the unbiased model « given the trial-by-trial PR and EE. The
updates simulated by the model aA corresponded well to the
actually observed updates Mgoop = 7.59, SD = 2.43; Mg,p =
6.49, SD = 2.09, see white dots in Fig. 2A) and were larger in
GOOD than in BAD trials (.5, = 3.85, p = 0.001, paired ¢ test,
d = 0.79). In contrast, the updates simulated by the unbiased
model « did not differ across GOOD and BAD trial Mgoop =
7.06,SD = 2.21; My, = 7.02, SD = 2.20, f55) = 0.22, p = 0.830,
paired f test, d = 0.04; see gray dots in Fig. 2A). This comparison
proves that subjects’ asymmetric updating represents a true bias
attributable to the different valence of the new information (good
and bad news) and cannot be explained by any variations of other
trial-by-trial variables (i.e., PR or EE; Shah et al., 2016; Kuz-
manovic and Rigoux, 2017).

Furthermore, we compared floor and ceiling effects across
GOOD and BAD and showed that controlling for these effects
even enhanced the optimism bias effect. Floor and ceiling effects
could occur if the size of the possible update was limited by the
response scale (probabilities from 1% to 99%). For example, in a
GOOD trial, given an EE = 5 (e.g., eBR = 10%, BR = 5%) and an
E1 = 3%, a subject would have only a limited space on the re-
sponse scale to make an update toward a lower risk estimate
(from E1 = 3% to the end of the response scale of 1%). Critically,
this possible update should be at least as large as the size of the EE
to enable unconstrained updating. This is rather conservative
because the general learning rate component a was significantly
smaller than 1 and because EEs were also weighted by PR that
ranged between 0 and 1. To test for floor and ceiling effects, we
computed the size of possible update relative to EE for each trial
(updspace-EEgoop = (E1-1) — EE; updspace-EEg,, = (99-
El) — EE). Updspace-EE was lower in GOOD than in BAD,
tos) = —4.50, p < 0.001 (Mgoop = 28.24, SD = 11.03; My, =
47.31, SD = 10.51). Furthermore, the number of constrained
update spaces (updspace-EE < 0) was higher in GOOD than in
BAD, £, = 5.08, p < 0.001 (Mgoop = 6.17, SD = 5.45; My, =
0.58, SD = 0.77). Repeating the analyses after excluding the trials
with a constrained update space revealed an even stronger opti-
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mism bias effect (¢,3) = 3.54, p = 0.002, paired t test, d = 0.72,
Mgoop = 8.20, SD = 2.64; Mg, p = 6.80, SD = 2.23), also when
controlling for trialwise EE (.3, = 4.67, p < 0.001, d = 0.95, or
for eBR, El and EE, t(,5, = 4.10, p < 0.001, d = 0.84, one-sample
t tests). Computational modeling analyses were not affected by
the exclusion of trials with constrained updating due to formal
consideration of the PR: A derived from the A model (Ef = 0.86,
pxp = 0.991) was significantly larger than zero (35, = 3.50, p =
0.002, one-sample ¢ test, d = 0.72). Together, these tests show
that the optimism bias effect was even underestimated because of
greater floor effects in GOOD trials.

We also examined the behavioral results after adding the 12
subjects with excessive motion to the sample of 24 subjects. These
analyses yielded the same results as those with n = 24. Belief
updates following good news were significantly larger than the
updates after bad news (35, = 3.18, p = 0.003, paired ¢ test, d =
0.53) and A was significantly larger than zero (t55, = 4.35, p <
0.001, one-sample t test, d = 0.73). Finally, the postexperimental
debriefing revealed that none of the included subjects suspected
that the purpose of the task was to assess difference in belief
updating depending on the valence of the new information. At
the end of the debriefing, we carefully explained the purpose of
the study as well as the manipulation of the BRs in a standardized
written form. Following this information, only one subject re-
ported that he was aware of the good news—bad news effect dur-
ing the own task performance. Furthermore, two subjects
reported that they had no concerns with respect to the presented
BRs during the task, the majority (17) reported that they were
surprised by some of the presented BRs, but did not doubt their
validity, five subjects doubted that single surprising BRs were
really valid and none of the included subjects reported having
realized that the BRs were manipulated.

fMRI results

Error tracking during BR

Updating beliefs about self-related risks was triggered by errone-
ous expectations regarding the respective BRs. To investigate this
crucial process, we identified brain regions that tracked the errors
experienced upon the presentation of the actual BRs. PM analysis
revealed that error tracking recruited the anterior cingulate cor-
tex (ACC), the inferior frontal gyrus (IFG), the anterior insula,
the middle orbital gyrus, and the dorsolateral prefrontal cortex
(dIPFG; Fig. 3A, Table 2, contrast 1b). In these regions, the activ-
ity increased with decreasing error size (negative correlation be-
tween BOLD and error) for both conditions GOOD and BAD
(for an example, see the line chart in Fig. 3A for the average
activity in dIPFC across three sizes of error). This negative corre-
lation seems unexpected because brain regions such as the ACC
and the anterior insula have been associated with error process-
ing, novelty, and task difficulty (Wessel et al., 2012; Klein et al.,
2013; Shenhav et al., 2014; Kolling et al., 2016; Bastin et al., 2017;
Fouragnan et al., 2017) and thus were expected to increase activ-
ity with increasing error size. However, a seminal study on belief
updating has also demonstrated negative correlation between EE
size and activity in the IFG, which was moreover predictive of
trait optimism (Sharot et al., 2011). Therefore, it may be neces-
sary to reconsider the meaning of different outcomes in the
specific context of the present experiment because contexts de-
termine the reference point for values of options (Palminteri et
al., 2015). Subjects’ task and their “default option” was to revisit
their prior beliefs due to new challenging information. Therefore,
in the majority of trials, subjects indeed were confronted with
BRs that markedly differed from what they expected and they
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Figure3.  Brain regions encoding errors and the valence of belief updating. A, When being confronted with the actual BR, errors in BR estimation (weighted by the PR) were tracked by the ACC,
the IFG, the anterior insula, the middle orbital gyrus and the dIPFC. The line chart shows that the activity in the dIPFC (representative of all clusters) increased with decreasing error size (parametric
modulation by error, negative correlation). Of all the involved regions, only in the dIPFC did the magnitude of the error tracking correlate with the general learning rate component c (see scatter
plot). Therefore, subjects with a stronger error tracking in the dIPFCalso more strongly adjusted their initial beliefs in response to errors. B, During the second risk estimation, the activity in the vmPFC
encoded the valence of updating, adjusted for EE and PR. The gray box schematically illustrates the opposed valences of increasing updates after good and bad news (in this example, eBR = E1). After
good news, large updates are favorable because they ultimately change beliefs toward lower risk estimates and small updates are unfavorable because they let the opportunity to improve risk
estimates pass by. In contrast, after bad news, large updates are unfavorable because they ultimately change beliefs toward higher risk estimates and small updates are favorable because they
prevent worsening of risk estimates. Resulting valences are summarized in the table below: unfavorable (U), mid (M), and favorable (F) updates. The line chart shows that the activity in the vmPFC
tracked the positive valence because it increased with increasing update sizes after good news but decreased with increasing update sizes after bad news. The scatter plot shows that subjects with
a stronger optimism bias also demonstrated a greater tracking of favorable updating in the vmPFC. In A and B, the line charts and the scatter plots were not used for statistical inference (which was
performed in parametric modulation and covariate analyses within the SPM framework); they are shown solely for illustrative purposes. €, After demonstrating the valence effect with the more
precise parametric modulation analysis presented in B, a simplified analysis of updating was conducted as a basis for DCM. Here, all trials were assigned to three valence categories: those with
unfavorable (U), mid (M), and favorable (F) updates (adjusted for EE). Conjunction across these three categories revealed a distributed network involved in general updating, overlapping with the
error tracking effect in the dIPFC. Comparing trials with favorable and unfavorable updates revealed the differential recruitment of the vymPFCand the dmPFC during updating. The line charts show
contrast estimates in the dIPFC, vmPFC, and dmPFC, respectively.

updated their belief. Relative to this, encountering trials with a
small error increases the difficulty of the decision whether to
update beliefs (“Is the actual BR different enough than expected,
and is this difference relevant enough to drive an update of my
own risk?”). Given the high accuracy of subjects’ BR estima-
tions in such trials, the alternative course of action to refrain

from updating becomes increasingly valuable. We therefore specu-
late that increased activity in this network relates to enhanced initial
comparison process that informs subsequent decisions about updat-
ing while maintaining behavioral flexibility (Kolling et al., 2016).
Furthermore, of all these error-tracking regions, only the activity
in dIPFC correlated with the learning rate component « (covariate
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Table 2. Error coding during base rate presentation and its relation to the learning rate component alpha

Cluster Peak
size pFWE—cnrr T X y z
(1) Parametric modulation of BR;oqp and BRg,, by error
(a) Conjunction: PM_error, and PM_errorg,, positive correlation
No significant results
(b) Conjunction: PM_errorg,, and PM_errorg,,, negative correlation
Anterior cingulate cortex 63 0.000 5.18 10 34 20
Inferior frontal gyrus (p. triangularis) 45 0.001 4.09 46 44 0
Anterior insula 37 0.001 4.05 28 22 6
Middle orbital gyrus 30 0.002 4.00 16 50 -2
dIPFC €OV -Alpha 32 0.004 3.81 40 40 28
(c) PM_errorqop = PM_errorg,,
No significant results
(d) PM_error > PM_errorgqqp
Cerebellum 48 0.001 6.90 —18 =76 —46
Middle occipital gyrus 83 0.005 6.17 —34 —84 28
Superior parietal lobule 47 0.006 6.15 24 —56 48
Conjunction: PM_errorg,, positive correlation and PM_error oy, negative correlation
Inferior occipital gyrus 22 0.001 4.16 40 —84 -10
(2) Covariate analysis of error coding with alpha (masked with contrast 1b)
dIPFC 12 0.008 4.46 40 38 30

Error = EE * PR, based on the computational modeling of task performance. For significant differences between PM_errorg,, and PM_errorg,, , we report global conjunction results to clarify whether the difference relates to different
magnitudes of the same modulation effect (e.g., the positive correlation between BOLD and error was stronger in BAD than in GOOD) or to modulation effects of opposite direction (e.g., the correlation between BOLD and error was positive
in BAD, but negative in GOD). “Y~"P"? indicates that in this cluster the magnitude of the error tracking correlated with the learning rate component alpha across subjects (covariate analysis). Peak coordinates refer to the MNI space.

analysis masked with the conjunction contrast PM_errorsoop and
PM_errorg,p, negative correlation; Table 2, contrast 2). Betas
indicating the strength of the linear relationship between error
and BOLD were extracted for each subject (PM analysis, at the
peak [40 38 30], averaged across PM_error;oop and PM_error-
sap) and plotted against « for illustrative purposes (scatter plotin
Fig. 3A). Even when conducting the covariate analysis for the
whole brain, an overlapping dIPFC cluster had the strongest cor-
relation with « (peak at [38 30 38], T = 5.66, 257 voxels), albeit at
amore liberal significance threshold (p < 0.05, FWE-corrected at
the cluster level).

Valence of updating

The main aim of the fMRI analysis was to identify brain regions
that encoded the valence of updating. The valence of updating
was defined based on how much the second estimation resulted
in either favorable or unfavorable risk estimates relative to the
first estimation (see Fig. 3B, gray box, for an illustration). Note
that, in GOOD trials, initial risk estimates were expected to de-
crease toward the actual BR that was lower than expected. Con-
versely, in BAD trials, risk estimates were expected to increase
toward the actual BR that was higher than expected. Therefore,
for GOOD trials, we assume that large updates would be experi-
enced as favorable, because they result in lower final risk esti-
mates. In contrast, for BAD trials, we assume that small (or zero)
updates would be experienced as favorable, because they prevent
an increase of final risk estimates. Therefore, we expected a pos-
itive correlation between the BOLD-signal and update in GOOD
trials, and a negative correlation in BAD trials.

The parametric modulation analysis revealed that activity in
the vmPFC had exactly this pattern (Fig. 3B, Table 3, contrast la),
indicating that this region tracked favorable updating. The cor-
relation between the BOLD signal in the vimPFC and update was
greater in trials with good news than in trials with bad news (i.e.,
PM_updategoop > PM_updateg,p,). The conjunction contrast
(i.e., PM_updategoops positive correlation and PM_updateg,py,
negative correlation) confirmed that this effect implied contrary
modulation effects for GOOD and BAD (positive correlation in
GOOD and negative correlation in BAD; see the line chart in Fig.

3B). Moreover, the vmPFC was also the only area in the whole
brain, in which the magnitude of this valence-tracking effect cor-
related with the optimism bias (Table 3, contrasts 2a, 2b). This
relationship to the task performance was illustrated by extracting
betas indicating the strength of the differential linear relationship
between update and BOLD for each subject (PM analysis, at the
peak —6 50 —18, PM_Error;oop > PM_Errorg, ;) and plotting
them against optimism bias (Fig. 3B, scatter plot).

Importantly, by including multiple orthogonalized parame-
ters, we assessed variance that was uniquely explained by different
update sizes above and beyond the effects of other relevant com-
putational components of belief updating such as EE and PR
(Mumford et al., 2015). Moreover, the valence-tracking effect in
the vmPFC was significant even when we controlled for task vari-
ables other than EE and PR. Repeating the parametric modula-
tion analysis while including BR as an additional regressor (four
orthogonalized regressors: BR, PR, EE, update, separately for
GOOD and BAD) yielded the involvement of the same vmPFC
clusters for the three contrasts indicating the valence effect (Table
3, contrast la, including the conjunction, and contrast 2b; signif-
icance threshold as in the main analysis). In addition, including
BR and E2 (five orthogonalized regressors: E2, BR, PR, EE, up-
date, separately for GOOD and BAD) also confirmed the valence-
tracking effect in the vmPFC with respect to all three contrasts
(albeit the contrast 2b at a less stringent significance threshold of
p <0.001, uncorrected, cluster size 216). Therefore, in contrast to
previous studies investigating the rewarding effect of favorable
new information per se (in the context of updating self-evalua-
tions; Korn et al., 2012), the valence effect related to the relative
improvement or worsening of initial beliefs, not to the valence of
final beliefs (E2), the new information (BR), or to other variables
(PR or EE).

Once we had demonstrated the effect of favorable updating
while adjusting for BR, E2, EE, and PR using parametric modu-
lation, we repeated the analysis with a simplified categorical
model. Discrete levels of valence (e.g., unfavorable or favorable)
can then be used in the following DCM analysis to specify con-
textual effects that modulate the intrinsic coupling within the



Kuzmanovic et al. ® Neurocircuits of Valence-Guided Belief Formation

Table 3. Activity during second estimation that was modulated by update size
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Cluster Peak
size pFWE—mrr T X ,V z
(1) Parametric modulation of E2,o,p and E2g,,, by update
(a) PM_updateq, > PM_updateg,,
vmPFC 49 0.000 5.63 —12 44 —16
Conjunction: PM_update__ , positive correlation & PM_updateg,,, negative correlation 0.010 5.40 —6 44 —-20
vmPFC 44 0.000 3.67 -8 46 —18
0.020 335 =10 54 -12
(b) PM_updateg,, > PM_update,qp
No significant results
(c) Conjunction: PM_update_  and PM_updateg,p, positive correlation
No significant results
(d) Conjunction: PM_update,, and PM_updateg,,, negative correlation
Fusiform gyrus (V4) 816 0.000 7.33 28 =72 -8
Lingual gyrus (V1) 0.000 459 6 =72 2
Lingual gyrus (V3) 736 0.000 6.70 -10 —86 —6
Superior occipital gyrus (V3) 0.000 411 —16 —88 18
Superior occipital gyrus 231 0.000 517 22 —80 20
Precentral gyrus 494 0.000 4.54 —32 —18 64
Postcentral gyrus 0.000 434 —42 —26 54
Fusiform gyrus 25 0.010 3.53 24 —46 —14
(2) Covariate analysis of valence coding with optimism bias
(a) Masked with contrast 1a, conjunction
vmPFC 39 0.000 15.59 —6 50 —18
(b) Whole brain
vmPFC 14 0.0M 7.28 -2 48 —18
(3) Three categories of E2: unfavorable, mid, favorable
(a) E2favorable > Ezunfavorable
vmPFCM 27 0.000 5.84 -2 46 -2
Dorsomedial prefrontal cortex 30 0.020 539 —16 44 40
(b) Ezunfavorable > E2favorable
No significant results
(c) Conjunction: all 3 categories of E2
Lingual gyrus (V3) 57571 0.000 24.00 24 —86 —12
Fusiform gyrus 0.000 18.90 —30 —58 —14
Lingual gyrus (V4) 0.000 18.70 —24 —86 —14
Fusiform gyrus 0.000 16.40 32 —50 —18
Inferior parietal lobule 0.000 14.80 —44 —40 48
Inferior parietal lobule 0.000 12.60 50 —34 48
Thalamus 0.000 8.38 20 —30 -2
Middle frontal gyrus 6959 0.000 10.50 42 2 60
Inferior frontal gyrus (p. opercularis) 0.000 9.62 46 10 36
dIPFCP™M 0.000 8.99 44 42 26
dIPFC 1414 0.000 8.46 —28 52 28
dIPFC 0.000 8.21 —40 30 32
Inferior frontal gyrus (p.triangularis) 0.000 7.44 —34 34 24
Thalamus 136 0.000 6.58 -8 —22 8
Posterior cingulate cortex 125 0.000 6.13 =2 —24 28
Precentral gyrus 23 0.010 5.65 34 —28 72

For significant differences between PM_update oo, and PM_updateg,, , we report global conjunction results to clarify whether the difference relates to different magnitudes of the same modulation effect (e.g., the positive correlation
between BOLD and update was stronger in GOOD than in BAD), or to modulation effects of opposite direction (e.g., the correlation between BOLD and update was positive in GOOD, but negative in BAD). Peak coordinates refer to the MNI

space.

update circuit. According to the principle introduced above (and
in the gray box in Fig. 3B), we specified three valence levels (Fig.
3C): unfavorable updating (U, small;oop and largeg o, updates),
mid updating (M, mid updates), and favorable updating (F,
large;oop and smallg,, updates). As a result, we concatenated
the valence of updates across trials with good and bad news. The
simplified categorical analysis revealed similar results as the PM
analysis, demonstrating greater activity in the vmPFC for favor-
able than for unfavorable updates (Fig. 3C, Table 3, contrast 3a).
Moreover, the dmPFC showed a similar pattern of activity as the
vmPFC. In addition, we tested for the conjunction effect across
all three valence categories to identify brain regions that were
generally activated during updating independently of valence. Gen-
eral updating revealed widespread activations including occipital,
parietal, and frontal cortices (Fig. 3C, Table 3, contrast 3c).

Timing of updating
To determine whether the valence effect of updating did manifest
already during the processing of BR, we repeated the parametric
modulation analysis (including PR, EE, and update), but defined
the event BR instead of E2 as the unmodulated regressor. In this
analysis, the contrast PM_updategoop > PM_updatey,, did not
yield any significant effect even when using the vmPFC cluster as
an inclusive mask at a less stringent significance level (p < 0.001,
uncorrected). This indicates that the encoding of the valence of
belief updating by the vmPFC indeed occurred during the period
of update consideration and not already during the reception of
the new information.

This contradicts classical reinforcement tasks where belief up-
dating is expected to occur upon a relevant outcome (e.g., if I
choose the green and not the red square and win money, [ update
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the value of choosing the green square immediately). However,
there is a substantial qualitative difference between classical rein-
forcement tasks and the present task. Estimations of BRs of life
events in a population recruit declarative memory to retrieve
general knowledge and the feedback about the actual BRs indi-
cates how accurate one was. Furthermore, estimating one’s own
risks of experiencing adverse events in the future represents a
more complex cognitive process (including autobiographic and
declarative memory) than deciding whether to choose a green or
a red square in a gambling game. Therefore, it is plausible that
subjects focused on their degree of accuracy at the time point of
feedback and subsequently focused on the meaning of this new
information for their own risk estimate.

Several arguments additionally support this notion. First, we
explicitly instructed the subjects to reconsider their risk estimates
during the “update phase” (first 2 s of E2, before the response
buttons were activated; Fig. 1). Second, there was no need to
memorize estimated and actual BRs (or first self-risk estimates)
until the update phase because all preceding values were visible
on the screen at all times (Fig. 1). Third, during the debriefing, a
majority of subjects spontaneously reported that they were
pleased to see that they were often quite accurate in estimating the
BRs. And forth, inspecting the encoding of EEs upon presenting
the actual BRs (i.e., parametric modulation of actual BR presen-
tation by orthogonalized PR and EE) revealed that the activity in
the bilateral ventral striatum was higher the smaller the EEs were
(the more accurate the subjects were) regardless of their PR or
desirability (i.e., for both good news and bad news; left striatum
[—12 14 —6], 68 voxel; right striatum [14 12 —6], 73 voxel; p <
0.05, FWE-corr. at the peak level for the whole brain). The ventral
striatum plays a central role in encoding positive prediction er-
rors (Chase et al., 2015). In the context of a task in which subjects
estimated BRs and were confronted with actual BRs that differed
from their own estimates to a varying extent, greater accuracy
corresponded to positive prediction error. Together with the de-
briefing self-reports, this finding supports the assumption that
subjects focused on the degree of their accuracy during the pre-
sentation of BRs and thus were likely to reconsider their own risks
subsequently at a segregated time point.

DCM results

After identifying the vmPFC as the valuation area in the context
of belief updating, we applied DCM to test competing hypotheses
about its causal role within the update circuit. First, we selected
three nodes for the DCM based on the update-related group
results revealed by the simplified categorical analysis (Fig. 3C,
Table 3, contrasts 3a and 3c¢). The first node was the dIPFC. This
region was involved both in general updating (conjunction across
all update categories; Fig. 3C), as well as in tracking errors in
relevant prior beliefs (regarding BR) that were predictive of indi-
vidual learning rates (Fig. 3A). Therefore, within the network
activated by general updating, we chose the peak nearest to the
learning rate-associated error tracking effect (MNI peak coordi-
nate [44 42 26]). To further ensure that the chosen dIPFC peak
was indeed specifically recruited by updating, we contrasted the
three E2 categories with E1 (second vs first self-risk estimation).
In a separate group-level analysis with four contrast images
(B2 nfavorables E2mid> E2avorabier and E1), we identified those re-
gions that were more activated during updating beliefs about
risks than during forming initial beliefs about risks (i.e.,
B2 ntavorabler E2mia and E2¢ o ne = E1, contrast [1 11 —3]). Note
that E1 and E2 were otherwise comparable with respect to visual
and motor requirements (Fig. 1). This additional analysis con-
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firmed that the dIPFC was significantly activated during belief
updating relative to initial belief formation (p < 0.05, FWE-
corrected at the peak level for the whole brain). Importantly, the
dIPEC cluster overlapped with both the general updating con-
junction effect and the error tracking effect. Given that the dIPFC
is a crucial part of the working memory system for transient
storage and manipulation of information (Eriksson et al., 2015),
this region represents a key candidate for maintaining integrative
information processing generally necessary for belief updating.
We therefore refer to the dIPFC as the valence-independent “up-
date processing” node. The second node was the vmPFC (MNI
peak coordinate [—2 46 —22]). Its activity was greater in re-
sponse to favorable than unfavorable updates and this valence-
coding effect predicted the individual magnitudes of the
optimism bias (Fig. 3B,C), thus forming a “valuation” node.
Finally, we defined the dmPFC as our third node (MNI peak
coordinate [—16 44 40]). This region demonstrated a similar
activity pattern as the vmPFC in the categorical GLM (Fig. 3C),
but, in contrast to vmPFC, it has been associated with cognitive
processes such as social inferences and perspective taking and less
so with reward processing (Bzdok et al., 2013; de la Vega et al.,
2016). Therefore, we will tentatively refer to the dmPFC as the
“cognitive” node.

This simple architecture comprising three nodes allowed us to
compare different models that implied either valence-guided or
non-valence-guided explanations for the observed brain re-
sponses. Valence-guided explanations would be favored if the
vmPFC were the source of both the valence-dependent filtering
of the general update-processing signal and the subsequent influ-
ence on other prefrontal regions. Alternatively, non-valence-
guided explanations would be supported if the vmPFC would
receive a signal that is already modulated in a valence-dependent
manner and have no driving influence on other prefrontal re-
gions. Therefore, adopting a hypothesis driven approach, we lim-
ited our model space to 10 DCMs corresponding to these
competing theories about the neural processing of belief updat-
ing (Fig. 4A). Although we could in principle construct a higher
number of possible models, including more models would
mainly obfuscate our analysis because additional alternative
models would not be realistic (e.g., disconnected nodes) or be
prone to overfitting but unable to provide a conclusive answer to
our research question (e.g., valence modulates all connections).

In all 10 models, the event corresponding to the second risk
estimation (E2, all three categories of updates) was specified as
the exogenous input (Fig. 4A). This input entered the dIPFC
(matrix C in DCM) because this region showed increased activity
during all categories of belief updating (see the line chart in Fig.
3C). The models differed in their endogenous coupling (matrix A
in DCM) such that m1 to m5 assumed a flow of neuronal states
from dIPFC via vimnPFC to dmPFC, whereas in models m6 to m10,
the flow was from dIPFC via dmPFC to vmPFC. Given that we
expected that the vmPFC would influence the dmPFC, models
m6 to m10 represented null-hypotheses assuming the opposite
course of influence. Furthermore, we systematically selected each
of the possible coupling parameters to be the target of the
valence-dependent modulation (matrix B in DCM; unfavorable
updating, U or favorable updating, F). Given that we expected
that favorable and unfavorable updating would differentially
modulate the coupling in the network, m5 and m10 represented
null hypotheses assuming no modulation at all. More specifically,
we hypothesized that valence encoding would manifest through
filtering of the incoming signal by the vmPFC and that the result-
ing differential valuation would further influence dmPFC, as for-
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Neurocircuitry mechanisms underlying optimistic belief updating. 4, Ten different dynamic causal models varying in intrinsic connectivity and contextual modulation (unfavorable and

favorable updating, U and F) were specified. The model space encompassed three brain regions involved in updating: dIPFC, vmPFC, and dmPFC. B, Bayesian model selection revealed that the model
m1 best explained subjects’ BOLD signal above and beyond chance (red dashed line). In this model, the coupling between dIPFCand vmPFCwas differentially modulated by unfavorable and favorable
updating. Therefore, the vmPF( filtered the incoming information in a valence-dependent manner and furthermore influenced the dmPFC. €, Connectivity parameters derived from m1 show that
the coupling between dIPFCand vmPFCtended to be weaker in the context of unfavorable relative to favorable updating. D, Optimism bias correlated with two parameters of m7 (highlighted in red):
differential modulation of the dIPFC-vmPFC connection by favorable versus unfavorable updating (F-U) and the strength of the vmPFC-dmPFC connection (vmPFC::dmPFC). Therefore, subjects with
a stronger optimism bias also demonstrated a greater valence-dependent filtering of incoming information by vmPFC and a greater transmission of this differential signal further to dmPFC.

malized in m1. Alternatively, the valence-dependent modulation
could have affected one of the other couplings (e.g., from dIPFC
to dmPFC as formalized in m6). In these cases, the filtering of the
incoming signal would not be attributed to vmPFC and/or there
would be no primary influence of the vmPFC on dmPFC. All
models except of m5 and m10 were equally complex but differed
with respect to the flow of neuronal states and the coupling,
which was subject to contextual modulation, allowing for
evidence-based hypothesis testing.

Bayesian model comparison confirmed that the model m1
had the greatest evidence, above and beyond chance, Ef = 0.77,
pxp = 0.999 (Fig. 4B). The selected model assumed a cyclic signal
flow from the dIPFC via vimPFC to dmPFC and a valence-
dependent modulation of the coupling from dIPFC to vmPFC.
The low evidence of models without modulations (m5 and m10)
indicates that the valence-dependent modulation of effective
connectivity was indeed necessary to adequately predict subjects’
network activity. Furthermore, of the eight models with modu-
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Table 4. DCM parameter estimates of the model m1 and correlations with
measures of optimism bias

r, optimism
M (SD) p,ttest bias p r,asymmetry p

Matrix A

dl::dl —0.01(0.09) 0.000* —0.19 0361 —0.21 0323

dlzvm —0.06(0.12) 0030 —0.23 0.277  —0.05 0.819

vm::d| 0.10(0.15  0.000*  —0.09 0679 —0.15 0.485

vm:vm —0.07 (0.09)  0.000* —0.20 0348 —0.20 0.342

vm:dm 0.15(0.14)  0.000% 0.47 0.020* 0.49 0.015

dm:vm 0.08 (0.124)  0.004* 0.27 0.207 0.32 0.127

dm::dm —0.02(0.03) 0.001* —0.49 0.015  —0.56 0.005
Matrix B

Uondlzvm —035(1.06) 0123  —0.23 0275 —031 0.147

Fondl::vm 0.05(1.00)  0.822 0.49 0.015 0.36 0.088

F-U 0.39(1.42) 0.188 0.52 0.009* 0.48 0.018
Matrix C

UMFtod 0.12(0.07)  0.000 0.20 0.340 0.13 0.541

Parameter estimates are shown in Hertz, self-connections were log-transformed.

dl, Dorsolateral prefrontal cortex; vm, ventromedial prefrontal cortex; dm, dorsomedial prefrontal cortex; “:,”
endogenous connection; U, unfavorable updating; M, mid-updating; F, favorable updating.

*Equivalent to p << 0.05, Bonferroni-corrected for multiple comparisons (Matrix A, ¢ test, p << 0.007 corrected for 7
comparisons; r, optimism bias, p < 0.025 corrected for 2 comparisons with a priori hypotheses).

lations, m1 still had greater evidence than m6 and other alterna-
tive models. This finding supports the hypothesis that the vmPFC
filtered the incoming signal in a valence-dependent manner and
influenced the dmPFC.

Third, we further inspected and analyzed the parameter esti-
mates derived from the winning model m1. We hypothesized that
the magnitude of valence-dependent modulation (the difference
between F and U, F-U) of the dIPFC-vmPFC coupling would
correlate with the optimism bias across subjects because, the
stronger this modulation, the greater should be the response of
the vmPFC to different valences of updating. Furthermore, we
expected that the strength of the connection from vimPFC toward
dmPFC would also correlate with the optimism bias, assuming
that this coupling represents the influence of valuation on ongo-
ing cognitive processing. Modulation parameters and coupling
patterns in the context of favorable and unfavorable updating are
reported in Table 4 and plotted in Figure 4C. On average, the
coupling from dIPFC to vimPFC decreased in the context of un-
favorable updating relative to favorable updating. However, this
difference did not reach significance due to the large variance of
modulation estimates for U and F. It is of greater importance
though that the valence-dependent modulation of the dIPFC-
vmPFC coupling (the difference between F and U, F-U) corre-
lated with the size of the optimism bias across subjects (Fig. 4D).
This relationship explains how the data observed in the fMRI anal-
ysis were caused. Subjects with a greater optimism bias had a stron-
ger valence-dependent filtering by vimPFC, resulting in an increased
BOLD response to favorable than unfavorable updating in vmPFC.
Moreover, the individual strength of the coupling from vmPFC to
dmPFC also correlated with optimism bias (both correlations cor-
rected for multiple comparisons). Therefore, the stronger the opti-
mism bias, the stronger was the influence of valuation on ongoing
cognitive processing, mediated by the coupling from vmPFC to
dmPFC. In addition, the inspection of all possible correlation coef-
ficients (Table 4) revealed that the endogenous self-connection of
the dmPFC inversely correlated with the optimism bias (not cor-
rected for multiple comparisons). Therefore, the stronger the opti-
mism bias, the weaker the self-inhibition of the dmPFC. Together,
these parameter estimates indicate a self-enhancing cyclic flow be-
tween vmPFC and dmPFC. In subjects with high optimism bias, the
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vmPFC filtered the incoming information dependent on valence.
This differential signal was then forwarded to the dmPFC and there
enhanced by the reduced self-inhibition.

Discussion

The present study provides converging evidence that the value of
desirable beliefs can influence ongoing cognitive processing. Par-
ticipants demonstrated an optimism bias because they were more
likely to update beliefs regarding their risks in response to good news
than bad news (learning that BRs of the risks were lower vs higher
than expected). This finding was also confirmed by computational
modeling that formally controlled for valence-unrelated variables
that influence updating (Shah et al., 2016; Kuzmanovic and Rigoux,
2017; EE and PR of the new information). Given that we ruled out
these alternative, valence-independent explanations, manipulated
the desirability of the new information independently of prior be-
liefs, and demonstrated that the optimism bias was unrelated to the
size of risk estimates or BRs, we conclude that information integra-
tion was indeed biased by the motivation to adopt the most favorable
beliefs about one’s future.

Furthermore, fMRI results showed that the vmPFC tracked
the value of updating. In the context of good news, large updates
toward lower risk estimates improve the ultimate risk perception,
but after bad news, large updates toward higher risk estimates
worsen the ultimate belief. In turn, small updates (small or no
change in beliefs) also acquire opposing values in the context of
good and bad news, respectively. Although small updates after
good news are unfavorable because they disregard the opportu-
nity to improve risk estimates, small updates after bad news are
favorable because they prevent worsening of risk estimates. The
activity pattern in the vmPFC showed exactly this pattern: it in-
creased with increasing updates toward lower risks (after good
news) and with decreasing updates after bad news. Therefore, not
only improving beliefs, but also avoiding the worsening of beliefs
triggered the vmPFC activity. Previous studies on optimism bias
that included risk estimates for self and a similar other person
already indicated a positive value of avoiding threatening belief
updates by disregarding undesirable new information. Here, par-
ticularly the decreased updating in self-related trials with bad
news (relative to a comparably high amount of updating in self-
related trials with good news and all other-related trials) was
driving the optimism bias (Kuzmanovic et al., 2015, 2016a). Fur-
thermore, research on context dependency of option values has
shown that both gaining a reward (i.e., improving the current
state, e.g., change from 1$ to 2$) and knowingly avoiding pun-
ishment (i.e., current state is unchanged, e.g., 1$, but the possible
loss, e.g., —18$, is avoided) acquired a positive value and were
tracked by the vmPFC (Palminteri et al., 2015). Lesion studies
(Camille et al., 2011) and meta-analyses (Yarkoni et al., 2011;
Diekhof et al., 2012; Levy and Glimcher, 2012; Bartra et al., 2013;
Clithero and Rangel, 2014; Chase et al., 2015) have consistently
shown that vmPFC is associated with valuation of rewards. In
light of this literature, our results highlight that not only external
rewards such as food or money, but also intrinsic rewards such as
favorable beliefs, recruit the same valuation system. Moreover,
the vimPFC was shown to automatically encode the value of ob-
jects (faces, houses, and paintings) independently of the explicit
task instruction (Lebreton et al., 2009). Consistent with this au-
tomatic valuation and studies demonstrating unconscious moti-
vational influences (Pessiglione et al., 2007), debriefing in our
study revealed that subjects were unaware of their valence-
dependent updating indicating that the valuation of belief up-
dates need not require a voluntary process.
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Extending previous work (Kuzmanovic et al., 2016a), the
tracking of valence by vimPFC could be uniquely attributed to
update sizes above and beyond the influence of EEs, PR of errors,
actual BRs, or final risk estimates. In other words, valence of
updating depended on improvement or worsening of final beliefs
relative to initial beliefs regardless of the beliefs or the new infor-
mation per se. Moreover, we hypothesized that the valence-
tracking effect in the vmPFC would be more pronounced in
subjects with greater optimism bias because belief formation
should be biased by the desire to make favorable updates only if
favorable updates also have a positive value. Whereas favorable
future outlooks are likely to be experienced as pleasant, the sen-
sitivity to the value of such prospects may differ among individ-
uals depending on their current state or their personality. Indeed,
subjects with a stronger optimism bias exhibited a greater valence-
tracking effect in the vimPFC, confirming that the vmPFC activity is
sensitive to the subjective value of stimuli (Grabenhorst and Rolls,
2011; Winecoff et al., 2013).

But what was the mechanism underlying this valence-
dependent recruitment of the vmPFC that was able to influence
ongoing belief formation? One possibility is that, in the context of
favorable (relative to unfavorable) updating, the vmPFC ampli-
fied incoming signals and further influenced other prefrontal re-
gions. Alternatively, the vmPFC may be influenced by other
prefrontal regions, the activity of which has already been modu-
lated in a valence-dependent manner. We tested these competing
hypotheses by comparing dynamic causal models comprising re-
gions differentially recruited during favorable and unfavorable
updating. The models consisted of three nodes with distinct func-
tional signatures: the dIPFC represented an “update processing”
node that received the exogenous input, the vmPFC was included
as the “valuation” node, and the dmPFC represented a “cogni-
tive” node. The dIPFC was a part of an extended network that was
generally involved in updating (both favorable and unfavorable).
The same region was also engaged in tracking errors in BR esti-
mates, whereas the strength of this tracking was predictive of
individual learning rates. In contrast, both vmPFC and dmPFC
showed greater activity for favorable than unfavorable updating.
Having demonstrated that the vmPFC tracked the valence of be-
lief updating in a strictly controlled, task-related manner, we use
the label “cognitive” node for the dmPFC to distinguish it from
the valuation-related vmPFC. Although we cannot specify the
exact kind of cognitive processing associated with the dmPFC
recruitment, recent meta-analyses indicate clear functional dissoci-
ations with vimPFC being selectively associated with reward-related
tasks and dmPFC being preferentially involved in self-referential
cognitive processes such as social inferences and perspective taking
(Bzdok et al., 2013; de la Vega et al., 2016). In the context of recon-
sidering one’s own risk with respect to that of others, social infer-
ences and perspective taking seem highly plausible and their valence-
guided use may provide the means of arriving at a particular,
preferred conclusion (Kunda, 1990; Shepperd et al., 2002).

The Bayesian model comparison identified an optimum dy-
namic causal model that had a reciprocal information flow from
dIPFC via vimPFC to dmPFC, with a valence-dependent modula-
tion of the coupling from dIPFC to vmPFC. This shows that
particularly the vmPFC filtered the incoming signal in a valence-
dependent manner and influenced the dmPFC accordingly. Im-
portantly, both of these circuit features predicted individual
magnitudes of the optimism bias. Subjects with a stronger opti-
mism bias showed a greater increase in the dIPFC-vmPFC cou-
pling during favorable (relative to unfavorable) updating.
Moreover, biased belief updating was greater the stronger the
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transmission of this valence-dependent signal from vmPFC to
dmPFC. Therefore, the magnitude of the influence of valuation
on ongoing cognitive processing, mediated by the coupling from
vmPFC to dmPFC, predicted how much participants were biased
toward more favorable updates. This finding complies with pre-
vious studies on functional connectivity, where the increase in
connection between vmPFC ([3 51 —16]) and dmPFC ([—15 56
37]) predicted greater context-initiated reevaluation of choice
options across subjects (Rudorf and Hare, 2014).

Previous studies on effective connectivity identified the
vmPFC as a target of the directional influence of other regions.
The coupling from hippocampus to vmPFC was increased when
people chose better remembered options (Gluth et al., 2015).
Furthermore, the coupling from dIPFC to vmPFC was increased
during decisions to resist tempting short-term rewards and to
choose greater, but delayed rewards instead, and this effect was
predictive of between-subject differences in delay discounting
(Hare et al., 2014). These and our findings share the general idea
of dynamic reciprocal influences between the valuation system
and other cognitive systems. However, our study is the first to show
the opposite direction of influence, namely the influence of the
vmPFC on the dmPFC that mediates value-guided belief formation.

In the resulting mechanistic model of belief formation, the
valuation of ongoing conclusions influences further cognitive
processing, which in turn determines the final belief. Therefore,
our results provide novel evidence for the notion that motivation
to maximize pleasant beliefs reinforces those cognitive processes
that are most likely to yield favorable perspectives. Leaving no
possibility of reinterpretation of the observed effects in entirely
valence-independent terms, we substantially contribute to re-
solving the still persisting “hot versus cold cognition” contro-
versy (Kunda, 1990). As soon as we have a preference for one
conclusion over another, we may be in danger of automatically
adjusting the knowledge that we recall and the inferential rules
that we apply in such a way as to support the preferred conclu-
sion. This bias in our reasoning has far-reaching implications for
diverse decisions that we make in our everyday lives, whether in
private or in professional contexts. Although it can serve to pro-
tect us from discouraging and gloomy beliefs, it may also pro-
mote risk underestimations and discriminating judgments.
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