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Abstract

Subjects with a diagnosis of schizophrenia (Scz) overweight unexpected
evidence in probabilistic inference: such evidence becomes ‘aberrantly salient’. A
neurobiological explanation for this effect is that diminished synaptic gain (e.g.
hypofunction of cortical N-methyl-D-aspartate receptors) in Scz destabilizes
quasi-stable neuronal network states (or ‘attractors’). This attractor instability
account predicts that i) Scz would overweight unexpected evidence but
underweight consistent evidence, ii) belief updating would be more vulnerable

to stochastic fluctuations in neural activity, and iii) these effects would correlate.

Hierarchical Bayesian belief updating models were tested in two independent
datasets (n=80 and n=167, male and female) comprising human subjects with
schizophrenia, and both clinical and non-clinical controls (some tested when
unwell and on recovery) performing the ‘probability estimates’ version of the
beads task (a probabilistic inference task). Models with a standard learning rate,
or including a parameter increasing updating to ‘disconfirmatory evidence’, or a

parameter encoding belief instability were formally compared.

The ‘belief instability’ model (based on the principles of attractor dynamics) had
most evidence in all groups in both datasets. Two of four parameters differed

between Scz and non-clinical controls in each dataset: belief instability and
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response stochasticity. These parameters correlated in both datasets.
Furthermore, the clinical controls showed similar parameter distributions to Scz

when unwell], but were no different to controls once recovered.

These findings are consistent with the hypothesis that attractor network
instability contributes to belief updating abnormalities in Scz, and suggest that

similar changes may exist during acute illness in other psychiatric conditions.

Significance Statement

Subjects with a diagnosis of schizophrenia (Scz) make large adjustments to their
beliefs following unexpected evidence, but also smaller adjustments than
controls following consistent evidence. This has previously been construed as a
bias towards ‘disconfirmatory’ information, but a more mechanistic explanation
may be that in Scz, neural firing patterns (‘attractor states’) are less stable and
hence easily altered in response to both new evidence and stochastic neural
firing. We model belief updating in Scz and controls in two independent datasets
using a hierarchical Bayesian model, and show that all subjects are best fit by a
model containing a belief instability parameter. Both this and a response
stochasticity parameter are consistently altered in Scz, as the unstable attractor

hypothesis predicts.
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Introduction

Subjects with a diagnosis of schizophrenia (Scz) tend to use less evidence to
make decisions in probabilistic tasks than healthy controls (Garety et al., 1991;
Dudley et al., 2016). The paradigm most commonly used to demonstrate this
effect is the ‘beads’ or ‘urn’ task, in which subjects are shown two urns, each
containing opposite ratios of coloured beads (e.g. 85% blue and 15% red and
vice versa), which are then hidden. A sequence of beads is then drawn (with
replacement) from one urn, and the subject either has to stop the sequence when
they are sure which urn it is coming from (the ‘draws to decision’ task) or the
subject must rate the probability of the sequence coming from either urn after
seeing each bead, without having to make any decision (the ‘probability
estimates’ task). Bayesian analysis of these tasks has indicated that Scz are more
stochastic in their responding (Moutoussis et al.,, 2011) and that they overweight
recent evidence and thus update their beliefs (in the probabilistic sense) more
rapidly (Jardri et al., 2017).

Several belief-updating abnormalities have been found in Scz using the
‘probability estimates’ task. The most consistent finding is that Scz (or just Scz
with delusions (Moritz and Woodward, 2005)) change their beliefs more than
non-psychiatric controls in response to changes in evidence (Langdon et al.,
2010) - particularly ‘disconfirmatory’ evidence, i.e. evidence contradicting a

current belief (Garety et al,, 1991; Fear and Healy, 1997; Young and Bentall,
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1997; Peters and Garety, 2006). Another is that probability ratings at the start of
the sequence are higher in currently psychotic (but not in recovered) Scz than in
both clinical and healthy controls (Peters and Garety, 2006), similar to the
‘jumping to conclusions’ bias in the ‘draws to decision’ version of the task. Others
have also found that Scz update less than controls to more consistent evidence, in
this (Horga, in preparation) and other paradigms (Averbeck et al., 2010).

These findings can potentially be understood in the light of the ‘unstable
attractor network’ hypothesis of Scz. An attractor network is a neural network
that can occupy numerous stable states that are learned from experience, via
adjustments to synaptic weights. It can revisit these states if presented with
inputs that resemble previous patterns of synaptic weights, or through
spontaneous fluctuations in neural activity: either way, the activity of all nodes is
‘attracted’ to a quasi-stable state because the network energy is lower at these
states, and network firing patterns evolve to minimise energy. Attractor
networks were originally developed to model the storage and reactivation of
memories (Hopfield, 1982), but related network models also offer mechanistic
explanations for working memory storage (e.g. Brunel and Wang, 2001),
decision-making (Wang, 2013) and interval timing (Standage et al., 2013), as
well as Bayesian belief updating (Gepperth and Lefort, 2016).

In Scz, attractor states in prefrontal cortex are thought to be less stable, so
it is easier for the network to switch between them, but harder to become more
confident about (i.e. increase the stability of) any particular one (Rolls et al.,
2008). This loss of stable neuronal states - recently demonstrated in two animal
models of Scz (Hamm et al.,, 2017) - is thought to be due to hypofunction of N-

methyl-D-aspartate receptors (NMDARs) or cortical dopamine 1 receptors in Scz



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

(Figure 1). Interestingly, healthy volunteers given ketamine (an NMDAR
antagonist) show a decrement in updating to consistent stimulus associations
and an increase in decision stochasticity in this context (Vinckier et al., 2016).
Attractor network perturbations have been linked to working memory problems
in Scz using a bistable (i.e. a stable ‘up’ state corresponding to persistent
neuronal activity, and a ‘down’ state corresponding to background activity)
model (Murray et al., 2014), but not as yet to a computational understanding of
belief updating.

We analysed belief updating in Scz using the Hierarchical Gaussian Filter
(HGF; Mathys et al., 2011), a variational Bayesian model with individual priors,
in two independent ‘probability estimates’ beads task datasets. We asked: given
the larger belief updates in Scz compared with controls, can these be explained
by group differences in i) general learning rate and/or ii) response stochasticity,
or by adding parameters encoding iii) the variance (i.e. uncertainty) of beliefs at
the start of the sequence, iv) a propensity to overweight disconfirmatory
evidence specifically, or v) patterns of belief updating typical of unstable
attractor states in a Hopfield-type network, i.e. greater instability and
stochasticity, which correlate with each other? (Note that the HGF does not
contain attractor states: the model in (v) is designed to simulate the effects on
inference that unstable neuronal attractors may have.) Furthermore, are these
findings consistent within Scz tested at different illness phases, and are they

unique to Scz or also present in other non-psychotic mood disorders?
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Methods and Materials

Subject characteristics

Dataset 1 comprised 23 patients with delusions (18 Scz), 22 patients with non-
psychotic mood disorders, and 35 non-clinical controls (overall, 50 male and 30
female - see Table 1 for details of the groups); the first two groups were selected
from inpatient wards at the Maudsley and the Bethlem Royal Hospitals. All
groups were tested twice (with loss of n=25 from the groups - see Table 1); the
clinical groups were tested once when they were unwell (‘baseline’), and again
once they had recovered (‘follow-up’). The mean time between testing sessions
was 17.4 (range 6 to 41) weeks in the deluded group, 33.4 (range 4 to 68) weeks
in the clinical control group, and 35.6 (range 27 to 46) weeks in the non-clinical
control group. The deluded group’s shorter inter-test interval was due to their
shorter admission period and to the prioritization of their follow-up over the
non-clinical control group. Dataset 1 is described in detail elsewhere (Peters and
Garety, 2006).

Dataset 2 comprised 56 subjects with a diagnosis of schizophrenia (Scz)
and 111 controls (overall, 83 male and 84 female - see Table 1). All subjects
provided informed, written consent, and ethical permission for the study was
obtained from the local NHS Research Ethics Committee (Reference
14/L0/0532). Given the National Adult Reading Test (Nelson, 1982) was used to
estimate IQ in these participants, a recruitment condition was that English was

their first language.
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Measures of cognitive function and delusion-proneness (or schizotypy)
were collected in all subjects; clinical symptom ratings were collected in clinical

subjects only (see Table 1 for details).

Experimental design

Subjects in dataset 1 performed the ‘probability estimates’ beads task as used
previously (Garety et al.,, 1991), with two urns with ratios of 85:15 and 15:85
blue and red beads respectively, and viewing a single sequence of ten beads
(Figure 2); after each bead they had to mark an analogue scale (from 1 to 100)
denoting the probability the urn was 85% red.

Subjects in dataset 2 performed the ‘probability estimates’ beads task,
with two urns with ratios of 80:20 and 20:80 red and blue beads respectively.
They each viewed four separate sequences (two identical pairs of sequences with
the colours swapped within each pair) of ten beads (Figure 2); after each bead
they had to mark a Likert scale (from 1 to 7) denoting the probability the urn
was the 80% blue one. Two sequences contained an apparent change of jar. The
order of the four sequences was randomised.

We used some of the behavioural measures employed in the original
analysis of dataset 1 (Peters and Garety, 2006) to analyse dataset 2. These were
‘disconfirmatory updating’, the mean change in belief on seeing a bead of a
different colour to the 22 beads preceding it and ‘final certainty’ (the response to
the last bead). We altered their ‘initial certainty’ measure from the mean

response to the first three beads to the response to the first bead, which comes
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closer to capturing the classic ‘jumping to conclusions’ bias (in which around
50% of Scz decide on the jar colour after seeing only one bead; (Garety et al.,

1991), although the results of both measures are presented below.

Computational modelling

The optimal way to use sensory information to update one’s beliefs under
conditions of uncertainty is to use Bayesian inference. Neural systems are likely
to approximate Bayesian inference using schemes of simple update equations
(Rao and Ballard, 1999; Friston, 2005); one such model is the Hierarchical
Gaussian Filter (HGF). The HGF is a hierarchical Bayesian inference scheme that
gives a principled account of how beliefs are updated on acquiring new data,
using variational Bayes and individual priors. Variational Bayesian schemes (e.g.
(Beal, 2003) use analytic equations to derive an exact solution to an
approximation of the posterior distribution over the latent variables and
parameters (as opposed to sampling methods which approximate a solution to
the exact posterior). The HGF has been used as a generic state model for learning
under uncertainty and has repeatedly been shown to outperform similar
approaches, such as reinforcement learning models with fixed (e.g. Rescorla-
Wagner) or dynamic (e.g. (Sutton, 1992) learning rates (Iglesias et al., 2013;
Diaconescu et al.,, 2014; Hauser et al., 2014; Vossel et al., 2014). One advantage of
the HGF is that it contains subject-specific parameters (and prior beliefs) that
can account for between-subject differences in learning whilst preserving the

(Bayes) optimality of any individual’s learning (relative to his/her model
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parameters and prior beliefs). These parameters may be encoded by tonic levels
of neuromodulators such as dopamine (Marshall et al., 2016), or by the intrinsic
properties of neuronal networks (e.g. the ratio of excitatory to inhibitory neural
activity can affect both the speed of evidence accumulation (Lam et al., 2017) -
analogous to the evolution rate in the HGF - and also response stochasticity
(Murray et al., 2014)). Differences in model parameters between Scz and
controls may therefore explain, in computational terms, how pathophysiology
leads to abnormal inference (Adams et al., 2015).

In general, when modelling behaviour under Bayesian assumptions, it is
necessary to distinguish between the model of the world used by the subject (the
perceptual model) and a model of how a subject’s beliefs translated into
observed behaviour (the observation or response model). Most of the
parameters pertain to the perceptual model (here, all parameters except
response stochasticity v - see Table 2) and reflect (inferred) neuronal
processing. In contrast, the parameters of the response model link subjective
states to behavioural outcomes, and thus may reflect stochasticity in neuronal
processing, measurement noise (in some paradigms), or non-random effects that
have not been captured by the perceptual model. This and related learning
models are freely available from
http://www.translationalneuromodeling.org/tapas/ (version 5.1.0): this
analysis used the perceptual models ‘hgf binary’ or ‘hgf arl_binary’ and the
response model ‘beta_obs’.

At the bottom of the model (Figure 3 shows some simulated responses) is

the bead drawn u® on trial k and the probability xik) that draws are coming

from the blue jar. At the level above this is x,, the tendency towards the blue jar

10
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(a transform of the probability, bounded by +o0); by definition, x; = s(x,), where
s(e) is the logistic sigmoid function. As x, approaches infinity, the probability of
the blue jar approaches 1; as it approaches minus infinity, the probability of the
blue jar approaches 0. For x, = 0, both jars are equally probable. This quantity is
hidden from the subject and must be inferred: the subject’s posterior estimate of

X, is U,, and the subject’s posterior estimate of the probability of the jar being

blue on trial k is s(ugk)) - equivalent to the prediction (denoted by *) on the next

trial ﬁ;kﬂ).

Before seeing any new input on trial k the model’s expected jar

probability ﬁgk) and precisions (inverse variances) ﬁik), ﬁgk) of the expectations

at each level are given by:

ﬁik) = s(Klugk_l))

L) _ 1
1 — A(k A(k
-1

ﬁgk) = —1
az(k_l) + exp(w)

Note that in Models 1-4, i, is fixed to 1. A new input u® = ;¥ generates

a prediction error 61(k) and the model updates and generates a new prediction as

follows:

k) —  (k ~(k
6 = ui” —nf”

W _ A, K
T, =17, +-—5 0]
Ty

(o _ (k=1 . K1 o)
Ho  =Hp 50y
T,

ﬁ§k+ 1) = S(Kﬂlgk))

11



266 The subject’s response y® (i.e. where on the continuous or Likert scale
267  theyresponded) is determined by ,&ikﬂ) and the precision of the response
268  model’s beta distribution v.

269 We parameterize the beta distribution in terms of its mean u and

270  precision v. These sufficient statistics relate to the conventional

271  parameterization in terms of the sufficient statistics @ and f by the following

272  Dbijection:

273 S
K= B
274 vi=a+f
275 Note that updates to p, are driven by the product of the prediction error

276  from Bayesian updating explained above and a learning rate which, crucially, can
277  change over time: this is an important aspect of the HGF in contrast to learning
278  models such as Rescorla-Wagner that have a fixed learning rate. Parameters

279  which affect the degree to which pu, can change during the experiment include w,
280 ¢, k1 and 02(%. The contributions of ¢ and k1 are illustrated in Figure 4 (left

281  panels).

282 The model usually has a third level, at which x5 encodes the phasic

283  volatility of x, (this determines the probability of the jar changing at any point):
284  given the very short sequences employed in our datasets, from which volatility
285 cannot be reliably estimated, we omitted this level. In any case, volatility could
286  notaccount for the rapid changes in learning rate (from trial to trial, following

287  confirmatory vs disconfirmatory evidence) present in the Scz group in these
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In Models 1 and 2, changes in x2 from trial to trial occur only according to
the evolution rate w, the variance of the random process at the second level.
These models were equivalent to the subsequent models with either ¢ (Models 3
and 4) fixed to 0 or k1 (Models 5 and 6) fixed to 1.

In Models 3 and 4, changes in xz from trial to trial occur according to an
autoregressive (AR(1)) process that is controlled by three parameters: m, the
level to which xz is attracted, ¢, the rate of change of x2 towards m, and w, the

variance of the random process:

k+1 k k
p(x0) ~ (x50 + p(m — 1), exp( )
After inversion, the evolution of x2 according to this equation is reflected in the

prediction of y,:

~(k+1 k
A = g + p(m — g

k))
In this study, given there was no bias towards one jar or the other, m was

fixed to 0, so ¢ always acted to shift the model’s beliefs back towards maximum

uncertainty (i.e. disconfirm the current belief) about the jars. Figure 4 (upper left
. k) .
panel) illustrates the effect of ¢ on s(uz ) over time.

In Models 5 and 6, changes in p2 from trial to trial occur according to two
parameters: w, the variance of the random process, and k1, a scaling factor that
changes the size of updates when fi; = 0.5, or maximum uncertainty, relative to
when i, is closer to 0 or 1, i.e. when the subject is more confident about either
jar. Figure 4 (lower left panel) illustrates the effect of k1 on fi; over time.

Formally, the scaling occurs as:

ﬁ§k+1) = S(ﬂgk)’cl)

13



312 When k1 > 1, updating towards 1 on observing a blue bead (u=1) is

313  greatest (i.e. switching between jars becomes more likely) when fi; < 0.3; when
314 k1< 1,updating is comparatively far lower when fi; < 0.3. This is illustrated in
315 Figure 4 (middle panel): for high values of k1 (brown line), belief updates that
316  cross the f1; = 0.5 line encounter little resistance (i.e. little evidence is required
317  to cause a large shift), while approaching the extremes of i; = 0 and i; = 1in
318 response to confirmatory evidence is resisted (belief shifts are very small for fi;
319 near 1). By contrast, for low values of k1 (black line, Figure 4 middle panel), there
320 isrelatively less resistance against approaching the extremes while it takes more
321  evidence for beliefs to cross the fi; = 0.5 line.

322 Figure 4 (right panel) illustrates the average absolute shifts in beliefs on
323  observing beads of either colour. This ‘vulnerability to updating’ is highly

324  reminiscent of the ‘energy state’ of a neural network model - i.e. in low energy
325  states, less updating occurs. The effect of increasing ki is to convert confident
326  Dbeliefs about the jar (near 0 and 1) from low to high ‘energy states’, i.e. to make
327  them much more unstable. This recapitulates the attractor network properties
328  illustrated in Figure 1: an unstable network easily switches from one state to
329  another but has difficulty stabilising any one state, whereas a stable network
330 requires more energy (here, information) to overcome the boundary between
331 two states (here, beliefs). Models 5 and 6 therefore capture the effects of

332  attractor (in)stability on belief updating, or at least the kind of updating for

333  which (un)stable attractor states are a good analogy.

334 As group differences in initial updating had been observed in dataset 1,
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335  we also estimated the standard deviation of uz before the sequence begins, 2%,

336 in Models 2,4 and 6.
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NB for intermediate values of k1, Models 5 and 6 produce similar belief
updating trajectories to Models 3 and 4 (containing the disconfirmatory updating
parameter ¢): both make greater updates following disconfirmatory evidence.
For more extreme values of k1, however, Models 5 and 6 produce trajectories
that Models 3 and 4 cannot: ¢ cannot pull beliefs far towards certainty in the
opposite jar (c.f. brown line in Figure 4, lower left panel), and neither can it make
it more difficult to update to disconfirmatory evidence (c.f. black line in Figure 4,
lower left panel).

The parameters w and v +/- 02() +/- ¢ or k1 were estimated individually
for each subject. If estimated, the prior probability distributions for their values
are given in Table 2. The means given here refer to the parameters’ native space,
but the variances refer not to the parameters’ native space, which in many cases

is bounded, but to the unbounded space they were transformed to for estimation

purposes. Otherwise they were fixed as ¢ = 0 (Models 1 and 2) and 02(0) =
0.006 (Models 1, 3 and 5). The model’s prior beliefs about the jars at the start of
the sequence were fixed at u2(% = 0 (i.e. believing each to be equally likely). The
priors were sufficiently uninformative to be easily updated by the data: all prior
means are standard for the HGF except 02(%, which had to be increased from
0.006 to 0.8 to allow the data to change it. The latter change ensured that group
differences in initial belief updating alone would cause group differences in o2(%

rather than x.

Model fitting and statistical analysis
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We tested models with different combinations of parameters w, v, ¢ or k1 and
02(%) (see Table 2). In analysing dataset 2, we concatenated all four sequences for
each subject in order to estimate the model parameters as accurately as possible
(resetting the beliefs about the jars at the start of each sequence).

After fitting the six models to each subject’s data, we performed Bayesian
model selection on all groups separately in both dataset 1 (at baseline and
follow-up) and dataset 2. This procedure weights models according to their
accuracy but penalises them for complexity (i.e. unnecessary extra parameters)
to prevent overfitting (Stephan et al., 2009; Rigoux et al., 2014). The winning
model in all eight groups was Model 6 (Figure 6), although around a third of
psychotic subjects and non-clinical controls in dataset 1 (at baseline) and in
dataset 2 were better fit by Model 4. It is unclear why this change occurs, but
given that Model 6 can produce very similar trajectories to Model 4 for
intermediate values of k1 (Figure 4), any increase in response stochasticity is
likely to diminish the strength of evidence for one model over a similar one.

In order to confirm we could reliably estimate the parameters of the
winning model, Model 6, we simulated 100 datasets using the modal values of
the parameters for both control and Scz groups (Figure 5, upper and lower rows
respectively; an example simulated dataset is shown in Figure 3). We then
estimated the parameters for the simulated data, and showed that in most cases,
the parameters are recovered reasonably accurately. The exception was c2(% in
the Scz group simulation, which was distributed around the prior mean of 0.8
rather than the true value of 1.5. We retained a prior mean of 0.8 for g2(?)
because using a higher prior mean led to overestimation of g2(%) in other

simulations (not shown).
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Results

Behavioural results: dataset 1

Each group’s mean responses are plotted in Figure 24, and statistical tests
detailed in Table 1 (p(adj) refers to the adjusted p value of Tukey’s HSD post hoc
test). As described previously (Peters and Garety, 2006), at baseline there was a
significant difference in disconfirmatory updating between the groups (F(2,77) =
6, p = 0.004, ANOVA), and the psychotic group had greater disconfirmatory
updating than the non-clinical controls (p(adj) = 0.003) but not the clinical
controls (p(adj) = 0.4). There was no difference between the clinical and non-
clinical controls (p(adj) = 0.13). There were also significant differences in initial
certainty across the three groups (F(2,77) = 8.7, p = 0.0004, ANOVA); the
psychotic group’s initial certainty was higher than the non-clinical controls’
(p(adj) = 0.0003) but not the clinical controls’ (p(adj) = 0.25). There wasn’t a
significant difference between the clinical and non-clinical control groups (p(adj)
= 0.06). There were no group differences in final certainty (F(2,77) = 0.7, p = 0.5,
ANOVA).

At follow-up, the difference in disconfirmatory updating between the
groups was no longer significant (F(2,52) = 2.9, p = 0.06, ANOVA); the psychotic
group had greater disconfirmatory updating than the non-clinical controls

(p(adj) = 0.049) but not the clinical controls (p(adj) = 0.4). There was no
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significant difference in initial certainty across the groups (F(2,52) = 0.9, p = 0.4,
ANOVA). Differences in final certainty were no longer significant (F(2,52) = 2.8, p
=0.07, ANOVA); the biggest difference was the non-clinical controls’ final
certainty which was numerically higher than the clinical controls’ (p(adj) =
0.057).

There were negative correlations between initial certainty and
disconfirmatory updating at both baseline (p =-0.41, p = 0.00015) and follow-up
(p=-0.41, p = 0.002), but not between final certainty and the other two

measures (p >0.1 in all four comparisons).

Behavioural results: dataset 2

The mean responses of subjects in each group are plotted in Figure 2B. There
was a significant increase in disconfirmatory updating in Scz compared with
controls (¢(88.6) = 2.1, p = 0.04, Welch’s t-test). There was mixed evidence for a
difference in initial certainty between Scz and controls: Scz were more certain
after the first bead in sequences A and B but not C or D (Figure 2 and Table 2),
but the difference in mean initial certainty fell short of statistical significance
(¢(110) =-1.9, p = 0.059, Cohen’s d = 0.32, Welch’s t-test). Final certainty was
only assessed in sequences A and D (B and C contained two changes of colour in
the last three beads): in both sequences, Scz were less certain than controls
(sequence A: t(80.1) = 3.0, p = 0.004, sequence D: t(85.5) = 3.4, p = 0.001, Welch’s

t-tests).
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Initial certainty and disconfirmatory updating negatively correlated
within both Scz (p =-0.46, p = 0.0003) and control (p =-0.57, p = 10-11) groups.
Final certainty did not correlate with either measure in either group (p > 0.4 in

four comparisons).

Modelling results: dataset 1

Model selection results for the three groups analysed separately at both baseline
and follow-up are plotted in Figure 6 (columns 1, 2, 4 and 5); the probability of
each model being best for any given subject is shown in the left panel, and the
probability of each model being the best overall is shown in the right panel.
Model 6 is the clear winner at each time point, although a minority of psychotic
and clinical controls are best fit by Model 4.

Model 6’s parameter distributions are shown in Figure 7; they are
skewed, hence non-parametric tests were used to determine group differences
(full details in Table 3; p(adj) refers to the adjusted p value of Dunn’s post hoc
test). At baseline there were large group differences in belief instability ki
(¥2(2,n=80) = 9.64, p = 0.008, n2 = 0.12, Kruskal-Wallis’ one-way ANOVA on
ranks) and response stochasticity v (¥2(2,n=80) = 11.9, p = 0.003, n2 = 0.15) but
not in 029 or w. There were statistically significant differences in x1 between the
non-clinical controls and both the psychotic group (p(adj) = 0.01, Dunn’s test)
and the clinical control group (p(adj) = 0.01), but not between the latter two
groups (p(adj) = 0.4). Similarly, there were statistically significant differences in

v between the non-clinical controls and both the psychotic group (p(adj) = 0.002,
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Dunn’s test) and the clinical control group (p(adj) = 0.01), but not between the
latter two groups (p(adj) = 0.3).

At follow-up, there were still large group differences in k1 (¥2(2,n=55) =
8.0, p = 0.02, n2 = 0.15, Kruskal-Wallis’ one-way ANOVA on ranks) and v
(¥?(2,n=55) = 8.5, p=0.01, n2 = 0.16) but not in 02(% or w. There was a significant
difference in k1 between the psychotic and non-clinical control groups (p(adj) =
0.007, Dunn’s test) but not the clinical and non-clinical control groups (p(adj) =
0.1); v remained significantly different between the non-clinical controls and
both the psychotic group (p(adj) = 0.01, Dunn’s test) and now also between the
psychotic and clinical control groups (p(adj) = 0.01), but not between the clinical
and non-clinical controls (p(adj) = 0.5).

We explored whether group differences in k1 or v at baseline and follow
up might be ascribable to 1Q (Quick Test score (Ammons and Ammons, 1962)),
as the groups’ 1Q scores were not equivalent (Table 1). Including both 1Q and
group status within one regression model is an unsound method of testing for
confounding by IQ because group and IQ are clearly not independent here (Miller
and Chapman, 2001), so we tested for relationships between the parameters and
IQ separately within each group at each time point. No relationships reached
statistical significance (all p > 0.1), the closest being a trend between k; and 1Q in
non-clinical controls only (r =-0.30, p = 0.08); nevertheless, given the smaller
group sizes and larger between- versus within-group variances, it remains
plausible that IQ differences contribute to group parameter differences.

We tested whether k1 or v at baseline related to delusion-proneness
(Peters Delusion Inventory score) across all groups, after first excluding any

interaction between PDI and group; PDI significantly correlated with v (F(1,67) =
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7.1, p=0.01, ANCOVA) but not k1 (F(1,67) = 3.2, p = 0.079, ANCOVA). We tested
whether k1 or v at baseline was correlated with any particular subgroup of
symptoms (measured using the Manchester Scale (Krawiecka et al., 1977)) in
both clinical groups only, using the regression models k: [or v] ~ const +
vi*MSaffective + v2*MSpositive + v3*MSnegative: none of the models were
significant, however (all p > 0.1).

At baseline, there was no evidence of a correlation between x; and
antipsychotic medication dose (p = 0.3), but the correlation between v and
medication dose approached significance (p = -0.4, p = 0.067).

We tested for correlations between the Model 6 parameters (Spearman’s
p was used where distributions were not parametric): k1 and v were negatively
correlated both at baseline (p =-0.38, p = 0.0004) and at follow up (p =-0.52,p =
0.0001), as were k1 and w at baseline (p =-0.47, p = 10-5) and follow up (p = -
0.53, p = 10-5). In estimating the parameters from simulated data, the only
correlation present in both simulations (indicating some consistent trading-off
between these parameters during estimation) was between ks and w, with r = -
0.5 in each case. This is not surprising, as both x; and w affect updating to new
information throughout the sequence (unlike 02(?)) in a deterministic way (unlike
v). Nevertheless, k1 was estimated very reliably in the first simulation (Figure 5,
top row) and with reasonable accuracy in the second (Figure 5, bottom row), so
we are confident that the group differences in k1 are genuine. The correlations of

p = -0.5 between w and x: in dataset 1 are unlikely to be reliable, however.
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Modelling results: dataset 2

We tested the same six models and performed Bayesian model selection as
before. As in dataset 1, the winning model was Model 6 overall and in each group
separately (Figure 6), although in the Scz group a minority were best captured
by Model 4. Model 6’s parameter distributions are shown in Figure 8; they are
skewed, so non-parametric tests were used (full details in Table 3).

As in dataset 1, belief instability k1 was significantly higher in Scz than in
controls (Z = -5.6, p = 10-8, Mann-Whitney U test) with a medium-to-large effect
size (r = 0.43); also response stochasticity v was lower in Scz than in controls (Z
=3.9,p=0.0001, r = 0.3, Mann-Whitney U test), as was initial belief variance o2(%
(Z=3.1,p=0.002, r =0.24, Mann-Whitney U test). There were no statistically
significant group differences in evolution rate w. See Figures 6 and 7 for
examples of model fits in subjects with lower k1 values (two controls in Figure 9)
and higher k1 values (two Scz subjects in Figure 10); each figure also illustrates
the effects of lower and higher w values (in the top and bottom rows
respectively). We repeated the analysis using a subset of the controls (n=60) that
were better matched in age and sex, as the original control group was younger
and more female than the patient group (Table 1). The group differences in k1
and v were unchanged in this analysis (Z =-4.1, p = 0.00004; Z = 3.4, p = 0.0007
respectively, Mann-Whitney U tests), but that in 02(% was no longer significant (Z
=1.9, p = 0.056, Mann-Whitney U test).

Although IQ (National Adult Reading Test score (Nelson, 1982)) was
evenly matched in these groups, working memory (Letter Number Sequencing

score (Wechsler, 1997)) was lower in Scz than in controls (see Table 1). We
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explored whether the group parameter differences might be related to working
memory, by testing for correlations between k1 or v and working memory in each
group separately (Miller and Chapman, 2001): none were statistically significant
(all p>0.1). We also tested for relationships between k: or vand IQ (NART) in
each group: vand IQ (NART) were correlated in Scz (r = 0.33, p = 0.014), but no
other relationships were significant (all p > 0.1).

We tested whether k1 or v related to schizotypy (Schizotypal Personality
Questionnaire score) across all groups but neither did so (both p = 0.4, ANCOVA).
We tested whether k1 or v were predicted by any particular subgroup of
symptoms (measured using the Positive and Negative Symptom Scale (Kay et al.,
1987)) in the Scz group only, using the regression model k1 [or v] ~ const +
v1*PANSSgeneral + v2*PANSSpositive + v3*PANSSnegative: the k1 model was not
significant (F = 0.9, p = 0.4), but v was weakly predicted by negative symptoms
(overall F=2.76,p = 0.051; for vs, t =-2.1, p = 0.04). We had no record of
medication dose in dataset 2.

We tested for correlations between the Model 6 parameters: as in dataset
1, k1 and v were negatively correlated (Figure 8; p =-0.35, p = 10-6), but unlike
dataset 1, the only other statistically significant correlation was between k: and
0209 (p =-0.54, p = 10-13). There was a correlation of r = -0.2 between x: and v in
the data simulated from modal Scz parameter values (Figure 5, bottom row), but
no correlation in the first. This implies that the consistent correlations between
these parameters of p =-0.38, p =-0.52 (dataset 1 baseline and follow-up) and p
=-0.35 (dataset 2) are unlikely to be just estimation artefacts. The only other

correlation between parameters in the simulated data was between ¢2(%) and ki,
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of r=-0.25, in the first simulation only. These parameters were correlated in

dataset 2 but not dataset 1.

Discussion

Scz tend to update their beliefs more to unexpected information and less to
consistent information, compared to controls. We have replicated these
behavioural effects, and demonstrated a computational basis for them that is
informed by the unstable attractor hypothesis of schizophrenia. In
computational models of two ‘beads task’ datasets, Scz had consistently greater
belief instability (k:) and response stochasticity (v) than controls, as the unstable
attractor hypothesis predicts. Furthermore, v correlated with k; in all three
experiments, supporting the idea that v is measuring a stochasticity that is
related to k1 by an underlying neurobiological process, rather than simply an
unmodelled effect.

These findings are important because they connect numerous reasoning
biases previously found in Scz - e.g. a disconfirmatory bias (Garety et al., 1991;
Fear and Healy, 1997; Young and Bentall, 1997; Peters and Garety, 2006),
increased initial certainty (Peters and Garety, 2006), and decreased final
certainty (Horga, in preparation) - and its associated stochasticity in responding
(Moutoussis et al., 2011; Schlagenhauf et al., 2013) to model parameters that
describe how belief updating in cortex could be perturbed by unstable attractor
states due to NMDA (or dopamine 1) receptor hypofunction (Figure 1).

The unique features of Model 6 that make attractor dynamics a
compelling neurobiological explanation for its dominance are both Scz and

controls’ non-linearities in belief updating to confirmatory versus
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disconfirmatory evidence. The Scz group updated its beliefs (sometimes much)
more to disconfirmatory than confirmatory evidence - particularly at points of
relative certainty about the jar - and the controls were the opposite. Models with
uniformly high or low learning rates cannot reproduce these effects; and adding
high- or low-level (sensory) uncertainty to a hierarchical model would lead to
uniformly high or low learning rates respectively. Although Models 3 and 4 do
show differential updating to confirmatory vs disconfirmatory evidence, this
results in beliefs in either jar hovering around 0.5 (as in Figure 4, top left) rather
than making large updates from belief in one jar to the other (as when x:1 =
exp(1.2): Figure 4, bottom left). Furthermore, degraded neuronal ensemble firing
(consistent with unstable attractor states) has recently been shown to be
common to two different mouse models of schizophrenia (Hamm et al., 2017).

In dataset 1, belief instability k1 and response stochasticity v were also
significantly different between the clinical (mood disorder) and non-clinical
control groups when the former were unwell, but not at follow-up, whereas the
differences between the psychotic group and non-clinical controls persisted. This
indicates that the same computational parameters can be perturbed in either a
trait- or state-like manner, perhaps by different mechanisms. It seems unlikely
that these parameter changes simply reflect a lack of engagement with the task
in clinical groups (especially when unwell), because the consistent changes in k1
- with which the changes in v consistently correlate - reflect specific patterns of

belief updating.

25



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

599

600
601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

Parameter relationships with cognition and symptoms

Neither x1 nor v showed significant relationships with IQ (in dataset 1) or
working memory (in dataset 2) within the groups, giving some indication that
the group differences in these cognitive measures were unlikely to be the main
drivers of group differences in the parameters. Nevertheless, aside from the
correlation between response stochasticity v and IQ in dataset 2, it is perhaps
surprising that there weren’t more relationships between x: or v and cognitive
measures in Scz, given it is likely that abnormal prefrontal dynamics have
profound effects on all these variables. We may have lacked power to detect
them - though dataset 2 had 80% power to detect a correlation of 0.33 - or
perhaps different prefrontal regions contribute to working memory, IQ and
belief updating.

One might also question why there were no strong relationships between
k1 or v and positive or negative symptom domains (negative symptoms were
weakly associated with v in dataset 2 only). Again, power may have been an
issue, although note that across all subjects in dataset 1, response stochasticity v
was associated with PDI score even after including group in the model, indicating
a potential relationship with delusions, but not with the broader concept of
schizotypy (assessed in dataset 2). It is also likely that other pathological factors
contribute to symptoms, beyond those measured here (e.g. striatal dopamine
availability and positive symptoms). Of note, two other computational studies
demonstrating clear working memory parameter differences between Scz and
controls also failed to detect any relationship between those parameters and

symptom domains (Collins et al., 2014, 2017). Both their and our Scz groups
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were taking antipsychotic medication, which is also likely to weaken correlations
of parameters to positive symptoms.

Although replicated numerous times in the beads task, a ‘disconfirmatory
bias’ is perhaps surprising in Scz, given one might expect delusional subjects to
show a bias against disconfirmatory evidence (as indeed they do in tasks
involving scenario interpretation (Woodward et al., 2006)). In fact, the
disconfirmatory bias is misleadingly named, as Scz make large shifts in beliefs
both away from and back towards the current hypothesis (there are numerous
examples in both datasets in Figure 2). This pronounced switching behaviour in
the beads task is likely to illustrate a more fundamental instability of cognition
and prefrontal dynamics in Scz, rather than being related to delusions
specifically; indeed, the latter may be an attempt to remedy the former.

[t is interesting that non-clinical controls’ data were also best fit by Model
6 in both datasets, implying that even healthy subjects show some asymmetry in
their belief updating to expected versus unexpected evidence. Most non-clinical

control subjects had ki<1, i.e. reduced updating to changing evidence.

Related modelling studies

How do these findings relate to other computational modelling work in
Scz? A study of unmedicated, mainly first episode Scz performing a reversal
learning task (Schlagenhauf et al., 2013) also demonstrated an increased
tendency to switch that was not accounted for by reward sensitivity (which
would be affected by more stochastic behaviour), and increased switching also
occurs in chronic Scz (Waltz et al., 2013), although not always (Pantelis et al.,

1999).
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Two recent studies of similar tasks in Scz populations have also
demonstrated evidence of non-linear belief updating. (Jardri et al., 2017) showed
that the Scz group on average “overcount” the likelihood in a single belief update;
an effect they attribute to reverberating cortical message-passing, but which
could also be due to the belief instability shown by Model 6. (Stuke et al., 2017)
showed in a very similar task that all subjects showed evidence of non-linear
updating, but the Scz group updated more than controls to “irrelevant
information” (i.e. disconfirmatory evidence). Some differences between their
model and ours are that they did not estimate response stochasticity in their
subjects (neither did (Jardri et al., 2017), and their ‘non-linearity’ parameter was
bounded by linear updating on one side, roughly equivalent to belief instability
K1 being constrained to being <1 in our model, whereas we have shown (as in
(Jardri et al., 2017) that Scz belief updating is often beyond this bound (Figure 7),
and more stochastic. Conversely, (Moutoussis et al., 2011) demonstrated
increased response stochasticity in acutely psychotic subjects, but did not test
for differences in belief updating.

The extent to which a loss of belief stability in Scz is apparent depends
critically on the strength (precision) of incoming sensory evidence relative to the
current belief (prior): if the former is less precise, no belief switching may occur,
and instead the percept may be weighted towards the prior. In the beads task,
sensory evidence (i.e., the colour of the bead drawn) is unambiguous, but a task
using very imprecise auditory sensory evidence (Powers et al., 2017)
demonstrated some interesting heterogeneity in Scz: non-hallucinating Scz

showed greater belief updating relative to controls, while in hallucinating Scz,
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672  percepts were driven by prior expectations, leading to a reduction in the

673  updating of their beliefs (relative to controls).

674 Further evidence for heterogeneity in Scz is that those with delusions
675  have greater certainty about the hypothesis that matches the evidence at every
676  stage (Speechley et al,, 2010), unlike the reduced final certainty we observed in
677  Sczin dataset 2. On the other hand, Scz with high negative symptoms have

678  difficulty choosing the most rewarding option very consistently (Gold et al.,

679  2012), which may reflect a lack of certainty about its value. We lacked sufficient
680  power to detect differences between Scz with exclusively high positive or

681 negative symptoms, however.

682 Limitations

683 Each of our datasets contains some limitations of the beads task that are
684  addressed by the other. Dataset 1 did not include a memory aid or measure

685  working memory, but dataset 2 did both, and dataset 2 also matched IQ across
686  groups much better than dataset 1; dataset 2 used a Likert scale for responding
687  and so could potentially exaggerate small changes in belief updating, but dataset
688 1 used a continuous measure; dataset 2 only tested stable outpatients, but

689  dataset 1 tested more unwell inpatients and retested them once they were

690  better. The main limitation common to both datasets is that all subjects with

691  psychotic diagnoses were taking antipsychotic medication when tested. Although
692  the correlation between v and medication dose was almost significant in dataset

693 1, this relationship seems likely to be driven by illness severity rather than
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694  medication itself. Dopamine 2 receptor antagonists seem to both reduce

695  overconfidence in probabilistic reasoning (Andreou et al,, 2014), and also

29




s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

reduce motor response variability (Galea et al,, 2013) and so if anything likely

reduce our group differences.

Conclusion

In conclusion, we have shown that Scz subjects in two independent beads
task datasets have consistent differences in two parameters of a belief updating
model that attempts to reproduce consequences of attractor network instability.
Note that this study was designed to link patterns of inferences to model
parameters that (do or don’t) mimic the effects of abnormal attractor states on
belief updating. The HGF itself does not contain attractor states and no relation
between its parameters and NMDAR function has hitherto been tested. More
detailed spiking network modelling, pharmacological (or other NMDAR)
manipulations and imaging are required in future to understand how
neuromodulatory function in both pyramidal cells and inhibitory interneurons
contributes to real attractor dynamics and probabilistic inference, and to seek
empirical evidence for a correspondence between the stability of network states
and the stability of its inferences (especially in schizophrenia). This work
underscores the importance of relating psychological biases to their underlying
computational mechanisms, and thence (in future) to the constraints - e.g. the

hypofunction of NMDARs - that neurobiology imposes on these mechanisms.
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Figure Legends

Figure 1: Effects of attractor network dynamics on belief updating

This schematic illustrates the energy landscapes of two Hopfield-type networks
each with two basins of attraction. The continuous black line depicts a normal
network whose basins of attraction are relatively deep. The dotted black line
depicts the effect of NMDAR (or cortical dopamine 1 receptor (Durstewitz and
Seamans, 2008)) hypofunction (Abi-Saab et al., 1998; Javitt et al., 2012) on the
energy landscape: the attractor basins become more shallow. We assume that
Basins A and B correspond to different inferences about (hidden) states in the
world, e.g. one jar or another being the source of beads in the beads task. The
dots correspond to the networks’ representations of either control or Scz
subjects’ beliefs about these hidden states. Such networks are highly reminiscent
of Hopfield networks with two stored representations - in this case, the
representations correspond to inferences about hidden states, rather than
memories. The arrows depict the changes in network states resulting from
sensory evidence for (solid arrows) or against (dashed arrows) the current
inference. When the attractor basin is shallower, it is harder for supportive
evidence to stabilise the current state much further, but it is easier for
contradictory evidence - or just stochastic neuronal firing - to shift the current
network state towards an alternative state. These changes in network dynamics
may also be reflected in the inferences the network computes - i.e. easier

switching between attractor basins may correspond to easier switching between
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beliefs - although this is yet to be demonstrated experimentally. NMDAR
hypofunction could contribute to an increased tendency to switch between
beliefs and increased stochasticity in responding in several ways (Rolls et al.,
2008): i) by reducing inhibitory interneuron activity, via weakened NMDAR
synapses from pyramidal cells to interneurons, such that other attractor states
are less suppressed when one is active (a spiking network model has shown that
this leads to more rapid initial belief updating in perceptual tasks (Lam et al.,
2017)), ii) by reducing pyramidal cell activity, via weakened recurrent NMDAR
synapses on pyramidal cells, such that attractor states are harder to sustain, and
iii) by reducing the NMDAR time constant, making states more vulnerable to
random fluctuations in neural activity. See also similar schematics elsewhere

(Durstewitz and Seamans, 2008; Rolls et al., 2008).

Figure 2: Beads task schematic and group average confidence ratings in

Datasets 1 and 2.

The bottom right panel is an illustrative schematic of the beads task: two jars
containing opposite proportions of beads are concealed from view and a subject
is asked to rate the probability of either jar being the source of a sequence of
beads he/she is viewing (after each bead in turn). The top left panel shows the
mean (+ standard error) confidence ratings in the blue jar over the 10 bead
sequence averaged across each group at baseline in dataset 1. The bottom left
panel shows the same quantities at follow-up in dataset 1. The top right panel
shows these quantities in four 10 bead sequences concatenated together (they

were presented to the subjects separately during testing) in dataset 2.
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Figure 3: The structure of the Hierarchical Gaussian Filter (Model 6) and

some simulated data

In the upper left panel, the evolution of pz, the posterior estimate of tendency xz
towards the blue (positive) or red (negative) jar, is plotted over two
concatenated series of 10 trials (the first two in dataset 2). The estimate of the

£y

tendency on trial k+1, ,ungr ,1s selected from a Gaussian distribution with mean

,ugk) (blue line) and variance az(k) + exp(w) (blue shading). w is a static source of

variance at this level. The initial variance 02(0) (along with w) affects the size of
initial updates, so we estimated this parameter (which is often fixed). The beads
seen by the subjects, u® (blue and red dots) and the response model are

A (k+1)

illustrated in the bottom left panel. The response model maps from fi;

(purple line) - the prediction of x: on the next trial, which is a sigmoid function s
of 1l (or of (Kl,ugk)) in Models 5 and 6) - to y®), the subject’s indicated

estimate of the probability the jar is blue (green dots). Variation in this mapping
is modelled as the precision v of a beta distribution.

The right panel is a schematic representation of the generative model in Models
5 and 6 (i.e. including x; ). The black arrows denote the probabilistic network on
trial k; the grey arrows denote the network at other points in time. The
perceptual model lies above the dotted arrows, and the response model below
them. The shaded circles are known quantities, and the parameters and states in

unshaded circles are estimated. The dotted line represents the result of an

38



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

inferential process (the response model builds on a perceptual model inference);

the solid lines are generative processes.

Figure 4: Simulated data illustrating the effects of ¢ (Models 3 and 4)

and k1 (Model 5 and 6) on inference

This figure illustrates the effects of ¢ (used in Models 3 and 4) and k1 (used in
Models 5 and 6) on inference. Both panels show simulated perceptual model
predictions in the same format as before, with 02(% and w set to their previous
values - hence the purple line in these plots is identical to that in Figure 3. The
second level and simulated responses y have been omitted for clarity.

Upper left panel: Simulations of a perceptual model incorporating an
autoregressive order (1) process at the second level, using three different values

of AR(1) parameter ¢: 0, 0.2 and 0.8. The estimate of the tendency on trial k+1,

(k+1)

u, 7, is selected from a Gaussian distribution with mean ,ugk) +@o(m— ugk))

and variance az(k) + exp(w). Over time, p2 is therefore attracted towards level m

(fixed to 0, i.e. at o(u2) = 0.5) at a rate determined by ¢. In effect, this gives the
model a ‘disconfirmatory bias’, such that as ¢ increases, o(uz) is pulled further
away from a belief in either jar, and towards 0.5 (maximum uncertainty about
the jars).

Lower left panel: Simulations of a perceptual model using four different values of

. (k+1)

scaling factor k1, which alters the sigmoid transformation: fi; = s(Kq - ,ugk)).

When 1 > exp(0) updating is greater to unexpected evidence and lower to

consistent evidence; when k1 < exp(0) the reverse is true. The red and brown
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lines (k1 > exp(0)) illustrate the effects of increasingly unstable attractor
networks, i.e. switching between states (jars) becomes more likely (a
concomitant increase in vulnerability to noise, i.e. response stochasticity, is not
shown). The green line (k: = exp(-1)) illustrates slower updating around /1, = 0.5,
as was found in controls. k1 permits a greater range of updating patterns than ¢
(the green and brown trajectories in the lower panel cannot be produced by
Model 4) which may be why Model 6 can fit both controls and Scz groups well.
Middle panel: This plot shows the effects of k1 on belief updating, as a function of
the initial belief i; (02(¥ and w were set to 1.5 and -1 respectively, as in Figure 5;
changing these parameters does not qualitatively alter the effects of x; shown
here). For values of k1 < exp(0)=1 (bottom three curves) and initial beliefs to the
left of these curves’ maxima (i.e. that the jar is probably red), relatively small
increases in fi; are made if one blue bead (u = 1) is observed, such that the
subject still believes the jar is most likely red. For values of k1 > exp(0.5) (top two
curves), observing one blue bead causes such a large update for all but the most
certain initial beliefs in a red jar that the subject’s posterior belief is that the jar
is probably blue. These subjects’ beliefs are no longer stable, but neither can they
reach certainty: only tiny updates towards 1 are possible for ji; > 0.8.

Right panel: This plot illustrates the average absolute shifts in beliefs on
observing beads of either colour. This ‘vulnerability to updating’ is highly
reminiscent of the ‘energy state’ of a neural network model (schematically
illustrated in Figure 1) - i.e. in low energy states, less updating is expected. The
effect of increasing k1 is to convert confident beliefs about the jar (near 0 and 1)

from low to high ‘energy states’, i.e. to make them much more unstable.
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Figure 5: Recovery of model parameters from simulated data

200 datasets were simulated using Model 6; 100 using modal parameter values
for the control group (dataset 2) and 100 using modal values for the Scz group
(also dataset 2) - the values are indicated using red lines. Both used settings of
02(9 = 1.5, w = -1. The control group used k1 = 0.37 (i.e. exp(-1)) and v = exp(3).
The Scz group used k1 = 2.7 (i.e. exp(1)) and v = exp(2). Histograms depicting the
parameter estimates from model inversion using the same priors as were
employed in the main analysis are shown above: the modal control and Scz

simulation results are in the upper and lower rows respectively.

Figure 6: Bayesian model selection results for both datasets.

The left panel depicts the protected exceedance probabilities for the six models in
each group in each dataset. The protected exceedance probability is the
probability a particular model is more likely than any other tested model, above
and beyond chance, given the group data (Rigoux et al., 2014). Model 6 wins in all
groups in both datasets (upper row: controls, middle row: Scz, bottom row:
clinical controls).

The right panel depicts the model likelihoods for the six models in each group in
each dataset. The model likelihood is the probability of that model being the best
for any randomly selected subject (Stephan et al,, 2009). Model 4 is a clear runner-
up in the psychotic (Scz) and clinical control groups at baseline in dataset 1, and

in the Scz group in dataset 2.
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Figure 7: Probability density plots for Model 6 parameters in dataset 1.

The distributions of parameter values for 02, w, log(v) and log(k:) are plotted
for dataset 1 at baseline (upper row) and dataset 1 at follow-up (lower row). The
symbols denote significant group differences: § between non-clinical controls
and clinical controls, * between non-clinical controls and Scz, T between Scz and

clinical controls. Please see the text for the details of all statistical comparisons.

Figure 8: Model 6 parameters in dataset 2 - distributions and correlation

Upper panel: The distributions of parameter values for 02(, w, log(v) and log (k1)
are plotted for dataset 2. The * symbol denotes significant group differences
between the Scz group and non-clinical control subgroup (well-matched in age
and sex); the group difference in 02(% is not indicated because it was non-
significant (p=0.056) in the well-matched comparison. Please see the text for the
details of all statistical comparisons.

Lower panel: The significant correlation between log(v) and log(x:) in dataset 2
is plotted, with controls’ parameters in black and Scz in red. Similar correlations

were also found in dataset 1 at both time points (see text).

Figure 9: Responses and model fits for two control subjects

These plots show two control subjects’ responses to four ten-bead sequences
concatenated together, in the same format as Figure 3 (but without the second

level, due to space constraints); in the latter two sequences blue and red were
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swapped around for model-fitting purposes. Each plot shows u® - the beads
seen by the subjects on trials k =1,...,10 (blue and red dots), y - the subject’s
(Likert scale) response about the probability the jar is blue (green dots), and
ﬁgkﬂ) - the model’s estimate of the subject’s prediction the jar is blue (purple
line). The parameter estimates for each subject are shown above their graphs.
These subjects have fairly similar initial variance 02(%, (inverse) response
stochasticity v, and instability factor k1. Subject 18 in the upper panel has a much
lower overall evolution rate w than Subject 67 in the lower panel, therefore
Subject 18 never reaches certainty about either jar, and makes relatively small
changes to her beliefs in response to beads of varying colours. Both subjects have
alow «1, and so they make relatively small adjustments to their beliefs following
unexpected evidence (this behaviour can best be captured by the models

containing k1 - see Figure 4). Subject 18’s responses are very close to those

predicted by the model, and this is reflected in her relatively high value of v.

Figure 10: Responses and model fits for two Scz subjects

These plots show two Scz subjects’ responses to four ten-bead sequences in the
same format as Figure 9. These subjects have similar evolution rate w to the
control subjects in Figure 9, but they both have a much higher k1, meaning that
they make much greater changes to their beliefs when presented with
unexpected evidence, but do not reach certainty when faced with consistent
evidence. Subject 122 (lower panel) has a slightly higher evolution rate w than
Subject 145 (upper panel), and so his switching between jars is even more

pronounced. These subjects also have slightly lower (inverse) response

43



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

1092

1093

1094
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1096

stochasticity v than the control subjects in Figure 9, and so their responses tend

to be further from the model predictions.
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Dataset 1 Dataset 2

Non- Non-

clinical clinical Controls

controls | controls | Clinical Clinical Psychotic | Psychotic Controls (subset)

t1 t2 controlstl | controlst2 | t1 t2 (all) Scz
N 35 20 22 18 23 17 N 111 56 60

27.77 279 4091 40.1 31.22 32.8 453 39.5
Age? (6.74) (6.37) (13.57) (13) (7.28) 29.9(7.83) | Age (11.5) (8.8) (11.4)
Gender 18M, 12 M, 11M, 8M, 21M, 17 M, Gender 45 M, 38M, |40M,

17 F 8F 11F 10F 2F OF 66 F 18F 20F
Cognitive
measures

107.5 108.6 97.4 99.8 88.1 87.8 112 109 112
1Qb (11.6) (10.3) (13.8) (10.2) (12.7) (14.2) NART? (6.9) (8.2) (7.5)

Working memory | 16.2 10.3
(LNS) (2.8) (4.2) 16.4 (2.7)

Delusion Schizotypy
proneness

54.6 43.6 87.1 64.3 138.1 96.7 2.8 4.0 3.1(2)
PDI (total)c (43.1) (42.5) (55.2) (57.3) (74.2) (42.6) SPQ, cognitive (1.9) (2.6)

5.3 3.2(2.2)

DSSId 2.3 (4.9) 29(5.3) |4.8(45) 4.5 (5.6) 15.2 (6.3) 8.1 (6.6) SPQ, interpers 3.2(2.2) | (2:6)
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2.7 1.9(1.8)
SPQ, disorg 21(1.7) | (1.9
12 8.2 (4.4)
SPQ, totale 82(1.3) [(53)
Diagnosis/
Symptoms
Diagnoses 16 12 18 Scz, 13 Scz, Diagnoses
Depression, | Depression, | 5 bipolar/ | 4 bipolar/
3anxiety & | 3anxiety & | schizo- schizo-
depression, depression, | affective affective
- - 3 SAD 3 SAD - 56 Scz | -
32.6 -
MS affective - - 4.6 (1.7) 1.0(1.2) 1.8(1.5) 1.5(1.3) PANSS, gen - (9.2)
15.9 -
MS positive - - 0.3 (0.8) 0(0) 6.0 (2.4) 1.4 (1.7) PANSS, pos - (5.8)
15.9 -
MS negative - - 0.7 (1.6) 1.8(3.19) 1.3(2.0) 0.9 (1.6) PANSS, neg - (6.2)
64.4 -
MS totale - - 5.5(2.6) 2.8(3.39) 9.1(3.76) |3.7(3.9) PANSS, total - (17.3)
Beads task
Initial certainty | 0.58 0.59 0.68 0.63 0.76 0.68 Initial certainty 0.67 0.71 0.68
(1 bead)* (0.15) (0.12) (0.19) (0.16) (0.17) (0.29) (all, 1 bead)d (0.13) (0.14) | (0.14)
46




Initial certainty | 0.65 0.67 0.69 0.64 0.78 0.74 Initial certainty 0.7 0.71 0.71
(3 beads)s (0.14) (0.1) (0.15) (0.16) (0.15) (0.15) (all, 2-3 beads)e | (0.12) (0.12) | (0.13)
Disconfirmatory | -0.06 -0.03 -0.19 -0.11 -0.29 -0.2 Disconfirmatory | -0.16 -0.23 -0.19
updating” (0.14) (0.13) (0.3) (0.22) (0.33) (0.3) updating (0.17) (0.22) | (0.2)
(all sequences)f
0.85 0.94 0.82 0.79 0.88 0.85 Final certainty 0.88 0.77 0.86
Final certainty! (0.2) (0.11) (0.16) (0.23) (0.11) (0.23) Sequence A8 (0.16) (0.25) | (0.18)
Final certainty 0.12 0.25 0.16
Sequence Dh (0.18) (0.24) | (0.2)
1097
1098 Table 1: Demographic, psychological and behavioural details of both datasets
1099

1100 Dataset 1 includes measures at both baseline (t1) and follow-up (t2). In dataset 1, verbal IQ was estimated using the Quick Test (Ammons and Ammons, 1962)
1101 and delusion proneness using the Peters Delusion Inventory, PDI (Peters et al,, 1999) and Delusions-Symptoms-States Inventory, DSSI (Foulds and Bedford,
1102 1975). Symptoms were assessed using the Manchester Scale, MS (Krawiecka et al,, 1977). In the tests below, ‘Scz’ refers to the whole Psychotic group.

1103  Results are given for ‘Initial certainty’ using both the measure in the original analysis of dataset 1 (Peters and Garety, 2006), the mean response to the first
1104  three beads (‘3 beads’) - in dataset 2 this had to be the mean response to the first three beads in sequences B and C and two beads in sequences A and D (‘2-
1105 3 beads’) - and using the response to the first bead (‘1 bead’).

1106

1107
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1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

aAttl: One-way ANOVA F(2,77) = 13.9, p = 10-5. Tukey’s HSD: Scz vs Non-clinical controls diff
=3.45, p(adj) = 0.35; Clinical vs Non-clinical controls diff = 13.1, p(adj) = 10-5; Clinical controls
vs Scz diff = 9.69, p(adj) = 0.002

At t2: One-way ANOVA F(2,52) = 8.85, p = 0.0005. Tukey’s HSD: Scz vs Non-clinical controls
diff = 1.98, p(adj) = 0.8; Clinical vs Non-clinical controls diff = 12.2, p(adj) = 0.0006; Clinical
controls vs Scz diff = 10.2, p(adj) = 0.007

b Attl: One-way ANOVA F(2,75) = 16.2, p = 10-6; Tukey’s HSD: Scz vs Non-clinical controls diff
= -19.5, p(adj) = 10-5; Clinical vs Non-clinical controls diff = -10.1, p(adj) = 0.011; Clinical
controls vs Scz diff = 9.36, p(adj) = 0.043

At t2: One-way ANOVA F(2,51) = 14.5, p = 10-5; Tukey’s HSD: Scz vs Non-clinical controls diff
= -20.8, p(adj) = 10-5; Clinical vs Non-clinical controls diff = -8.8, p(adj) = 0.057; Clinical
controls vs Scz diff = 12, p(adj) = 0.01

cAttl: One-way ANOVA F(2,68) = 12.6, p = 0.00002; Tukey’s HSD: Scz vs Non-clinical controls
diff = 83.5, p(adj) = 10-5; Clinical vs Non-clinical controls diff = -32.5, p(adj) = 0.094; Clinical
controls vs Scz diff = -51, p(adj) = 0.016

At t2: One-way ANOVA F(2,52) = 4, p = 0.024; Tukey’s HSD: Scz vs Non-clinical controls diff =
53.1, p(adj) = 0.018; Clinical vs Non-clinical controls diff = -20.7, p(adj) = 0.5; Clinical controls
vs Scz diff = -32.4, p(adj) = 0.22

d At t1: One-way ANOVA F(2,76) = 43, p = 10-13; Tukey’s HSD: Scz vs Non-clinical controls diff
=12.9, p(adj) = 10-19; Clinical vs Non-clinical controls diff = 2.52, p(adj) = 0.19; Clinical controls
vs Scz diff = -10.4, p(adj) = 10-8

At t2: One-way ANOVA F(2,51) = 3.7, p = 0.032; Tukey’s HSD: Scz vs Non-clinical controls diff
=5.2, p(adj) = 0.026; Clinical vs Non-clinical controls diff = 1.65, p(adj) = 0.66; Clinical controls
vs Scz diff = -3.56, p(adj) = 0.18

e At tl: Welch’s ¢(38.4) =-3.62, p = 0.00086, Cohen’s d = 1.1

At t2: Welch’s £(17.8) =-2.55, p = 0.02, Cohen’s d = 1.0

fAt t1: One-way ANOVA F(2,77) = 8.7, p = 0.0004; Tukey’s HSD: Scz vs Non-clinical controls
diff = 0.18, p(adj) = 0.0003; Clinical vs Non-clinical controls diff = 0.11, p = 0.06; Clinical
controls vs Scz diff = -0.08, p(adj) = 0.25

At t2: One-way ANOVA F(2,52)=0.9,p=0.4

g Attl: One-way ANOVA F(2,77) = 6.2, p = 0.003; Tukey’s HSD: Scz vs Non-clinical controls diff
=-0.14, p(adj) = 0.002; Clinical vs Non-clinical controls diff = 0.04, p = 0.57; Clinical controls
vs Scz diff = -0.096, p(adj) = 0.074

At t2: One-way ANOVA F(2,52) = 2.35, p = 0.11; Tukey’s HSD: Scz vs Non-clinical controls diff
=0.07, p(adj) = 0.28; Clinical vs Non-clinical controls diff = -0.03, p = 0.8; Clinical controls vs
Scz diff =-0.1, p(adj) = 0.1
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1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

h At t1: One-way ANOVA F(2,77) = 6, p = 0.004; Tukey’s HSD: Scz vs Non-clinical controls diff
=-0.23, p(adj) = 0.003; Clinical vs Non-clinical controls diff = -0.14, p = 0.13; Clinical controls
vs Scz diff = 0.097, p(adj) = 0.41

At t2: One-way ANOVA F(2,52) = 2.9, p = 0.062; Tukey’s HSD: Scz vs Non-clinical controls diff
=-0.18, p(adj) = 0.049; Clinical vs Non-clinical controls diff = -0.08, p = 0.51; Clinical controls
vs Scz diff = 0.098, p(adj) = 0.4

TAttl: One-way ANOVA F(2,77)=0.71,p = 0.5

At t2: One-way ANOVA F(2,52) = 2.79, p = 0.07; Tukey’s HSD: Scz vs Non-clinical controls diff
=-0.082, p(adj) = 0.41; Clinical vs Non-clinical controls diff = -0.15, p = 0.057; Clinical controls
vs Scz diff = -0.066, p(adj) = 0.57

As reported previously, there were consistent negative correlations between initial certainty
(2-3 beads) and disconfirmatory updating in the clinical controls (baseline: p = -0.68, p =
0.0005; follow-up: p = -0.75, p = 0.0003) and the non-clinical controls (baseline: p =-0.52,p =
0.001; follow-up: p = -0.43, p = 0.06), but not in the psychotic group (baseline: p =-0.30, p =
0.17; follow-up: p = 0.17, p = 0.5). There was no consistent correlation between final certainty
and either of the other two measures at either time point (p = 0.1 in 11 out of 12 comparisons).
In dataset 2, IQ was estimated using the National Adult Reading Test, NART (Nelson, 1982)
and working memory using the Letter Number Sequencing task, LNS, from the Wechsler Adult
Intelligence Scale-III (Wechsler, 1997). Schizotypy was assessed using the Schizotypal
Personality Questionnaire, SPQ (Raine, 1991), and symptoms using the Positive and Negative
Syndrome Scale, PANSS (Kay et al., 1987).

As can be seen in Figure 2 (main text), the Scz group showed greater initial certainty (1 bead)
in sequences A and B (Welch’s t(94) = 2.8, p = 0.007, Cohen’s d = 0.47; Welch’s t(97) =3,p =
0.004, Cohen’s d = 0.5, respectively) but not C and D (Welch’s ¢(87) = 0.5, p = 0.6, Cohen’s d =
0.09; Welch’s t(90) = -0.34, p = 0.73, Cohen’s d = 0.06, respectively).

a Controls (all): Welch’s ¢(95.1) = 2.27, p = 0.026, Cohen’s d = 0.38; Controls (subset): Welch’s
t(111) =1.95, p = 0.053, Cohen’s d = 0.36

b Controls (all): Welch’s t(81) = 9.57, p = 10-14, Cohen’s d = 1.66; Controls (subset): Welch’s
t(93.6) =9.25, p = 10-15, Cohen’s d = 1.73

¢ Controls (all): Welch’s £(92.4) = -4.64, p = 10-5, Cohen’s d = 0.78; Controls (subset): Welch’s
t(107) =-4.19, p = 105, Cohen’s d = 0.78

d Controls (all): Welch’s £(110) = -1.9, p = 0.059, Cohen’s d = 0.32; Controls (subset): Welch’s
t(110) =-1.1, p = 0.28, Cohen’s d = 0.2

e Controls (all): Welch’s £(109.1) =-0.76, p = 0.45, Cohen’s d = 0.12; Controls (subset): Welch'’s
t(113.9) =-0.19, p = 0.85, Cohen’s d = 0.03

f Controls (all): Welch'’s £(88.2) = 2.09, p = 0.04, Cohen’s d = 0.36; Controls (subset): Welch’s
t(110.4) =-0.94, p = 0.35, Cohen’s d = 0.18
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1181
1182
1183
1184
1185
1186
1187

1188

1189

1190

1191
1192
1193

g Controls (all): Welch’s t(80.1) = 2.99, p = 0.0038, Cohen’s d = 0.56; Controls (subset): Welch'’s

£(98.7) = 2.18, p = 0.032, Cohen’s d = 0.41

h Controls (all): Welch’s £(85.5) =-3.41, p = 0.001, Cohen’s d = 0.62; Controls (subset): Welch'’s

£(106) = -2.21, p = 0.029, Cohen’s d = 0.42

Perceptual model parameters (prior mean in native space, prior Response model
variance in estimation space) parameter
Evolution Initial variance | Disconfirmatory | Belief Response
Model | rate of belief re jars | bias instability stochasticity
1 w (-2, 16) v (exp(4.85), 1)
2 w (-2,16) 029 (0.8, 0.5) v (exp(4.85), 1)
3 w (-2, 16) @ (0.1,2) v (exp(4.85), 1)
4 w (-2, 16) 02(9(0.8,0.5) @ (0.1,2) v (exp(4.85), 1)
5 w (-2,16) K1 (1,1) v (exp(4.85), 1)
6 w (-2,16) 020 (0.8, 0.5) k1 (1,1) v (exp(4.85), 1)

Table 2: Models, parameters and their prior distributions.

020 ) log(v) log(x1)
Dataset 1 (baseline,
n=80)
Non-clinical controls: | 2.5(3.9) -1.3(2.4) | 4.1(1.0) -0.8(1.4)
mean(std)
Psychotic: mean(std) | 3.0(3.9) -1.4(2.0) | 3.1(1.1) -0.2(0.8)
Clinical controls: 1.4(1.9) -1.2(2.0) | 3.3(1.3) -0.1(1.4)
mean(std)
Kruskal-Wallis Chi Sq | 2.33, 0.22, 11.9, 9.6, p=0.008
(2,80) p=0.31 p=0.9 p=0.003 n?=0.12
n?=0.02 n?=0.0 n?=0.15
Post hoc Dunn tests

50




s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

Psychotic vs non- p(adj)=0.3 | p(adj)=1 | p(adj)=0.002 | p(adj)=0.01

clinical controls

Clinical vs non-clinical | p(adj)=0.2 | p(adj)=0.7 | p(adj)=0.01 | p(adj)=0.01

controls

Psychotic vs clinical p(adj)=0.2 | p(adj)=0.5 | p(adj)=0.3 p(adj)=0.4

controls

Dataset 1 (follow-up,

n=55)

Non-clinical controls: | 2.8(3.4) -0.9(2.0) | 3.6(0.8) -1.2(1.1)

mean(std)

Psychotic: mean(std) | 3.2(3.7) -1.4(1.5) | 2.5(1.2) -0.3(0.8)

Clinical controls: 1.2(0.9) -1.1(2.0) |3.5(1.1) -0.5(1.4)

mean(std)

Kruskal-Wallis Chi Sq | 2.35, p=0.3 | 2.32, 8.5, p=0.01 8.0, p=0.02

(2,80) n?=0.04 p=0.3 n?=0.16 n?=0.15

n?=0.04

Post hoc Dunn tests

Psychotic vs non- p(adj)=0.4 | p(adj)=0.2 | p(adj)=0.01 | p(adj)=0.007

clinical controls

Clinical vs non-clinical | p(adj)=0.2 | p(adj)=0.3 | p(adj)=0.5 p(adj)=0.1

controls

Psychotic vs clinical p(adj)=0.3 | p(adj)=0.3 | p(adj)=0.01 | p(adj)=0.1

controls

Dataset 2 (n=167)

Non-clinical controls: | 3.1(2.6) -2.3(2.0) | 2.8(1.0) -0.8(0.9)

mean(std)

Scz: mean(std) 1.9(1.5) -2.1(1.8) | 2.1(1.2) 0.2(1.0)

Mann-Whitney U test | Z=3.1, Z=-0.6, Z=3.9, Z=-5.6,
p=0.002, p=0.6, p=0.0001, p=3x10-7,
r=0.24 r=0.04 r=0.3 r=0.43

Dataset 2
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1194
1195
1196

1197

(better-matched

controls, n=116)

Non-clinical controls: | 2.8(2.7) -2.2(2.1) | 2.9(1.1) -0.6(1.0)

mean(std)

Scz: mean(std) 1.9(1.5) -2.1(1.8) | 2.1(1.2) 0.2(1.0)

Mann-Whitney U test | Z=1.9, 7=0.12, 7=3.4, 7=-4.1,
p=0.056, p=0.9, p=0.0007, p=0.00004,
r=0.18 r=0.01 r=0.31 r=0.38

Table 3: Parameter distributions and statistical tests in Datasets 1 and 2
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