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Abstract

In schizophrenia, increased aberrant salience to irrelevant events and reduced learning of

relevant information may relate to an underlying deficit in relevance detection. So far, sub-

jective estimates of relevance have not been probed in schizophrenia patients. The mecha-

nisms underlying belief formation about relevance and their translation into decisions are

unclear. Using novel computational methods, we investigated relevance detection during

implicit learning in 42 schizophrenia patients and 42 healthy individuals. Participants under-

went functional magnetic resonance imaging while detecting the outcomes in a learning

task. These were preceded by cues differing in color and shape, which were either relevant

or irrelevant for outcome prediction. We provided a novel definition of relevance based on

Bayesian precision and modeled reaction times as a function of relevance weighted

unsigned prediction errors (UPE). For aberrant salience, we assessed responses to subjec-

tively irrelevant cue manifestations. Participants learned the contingencies and slowed

down their responses following unexpected events. Model selection revealed that individu-

als inferred the relevance of cue features and used it for behavioral adaption to the relevant

cue feature. Relevance weighted UPEs correlated with dorsal anterior cingulate cortex acti-

vation and hippocampus deactivation. In patients, the aberrant salience bias to subjectively

task-irrelevant information was increased and correlated with decreased striatal UPE activa-

tion and increased negative symptoms. This study shows that relevance estimates based

on Bayesian precision can be inferred from observed behavior. This underscores the impor-

tance of relevance detection as an underlying mechanism for behavioral adaptation in com-

plex environments and enhances the understanding of aberrant salience in schizophrenia.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006319 August 10, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Katthagen T, Mathys C, Deserno L, Walter

H, Kathmann N, Heinz A, et al. (2018) Modeling

subjective relevance in schizophrenia and its

relation to aberrant salience. PLoS Comput Biol

14(8): e1006319. https://doi.org/10.1371/journal.

pcbi.1006319

Editor: Jean Daunizeau, Brain and Spine Institute

(ICM), FRANCE

Received: October 26, 2017

Accepted: June 20, 2018

Published: August 10, 2018

Copyright: © 2018 Katthagen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by grants from

the German Research Foundation (http://www.dfg.

de/) awarded to FS (DFG SCHL1969/1-2, DFG

SCHL 1969/2-2, DFG SCHL 1969/3-1 as part of

FOR 1617, SCHL 1969/4-1). FS was supported by

the Max Planck Society (https://www.mpg.de/en).

TK has received funding from the Elsa Neumann

Scholarship of the city of Berlin (https://www.hu-

https://doi.org/10.1371/journal.pcbi.1006319
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006319&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006319&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006319&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006319&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006319&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006319&domain=pdf&date_stamp=2018-08-22
https://doi.org/10.1371/journal.pcbi.1006319
https://doi.org/10.1371/journal.pcbi.1006319
http://creativecommons.org/licenses/by/4.0/
http://www.dfg.de/
http://www.dfg.de/
https://www.mpg.de/en
https://www.hu-berlin.de/de/forschung/szf/wiss_nachwuchs/wn_nafoeg_html


Author summary

Schizophrenia patients display deficits in the appropriate attribution of meaningfulness to

stimuli; such as aberrantly increased processing of irrelevant and insufficient processing

of relevant information. We aimed to investigate the subjective nature of relevance detec-

tion and its deficit in schizophrenia and developed an implicit learning paradigm that

allowed for parallel learning from relevant and irrelevant information. Based on the idea

that subjective relevance might be captured by Bayesian precision we set up different

computational models of how subjective relevance guides learning and behavioral adapta-

tion. We found that subjects use Bayesian precision to estimate stimulus relevance in

order to integrate multidimensional information and adapt more to the subjectively rele-

vant stimuli. This relevance weighted adaptation correlated with brain activation within

the salience network. Further, schizophrenia patients displayed an increased aberrant ten-

dency to irrelevant events which related to decreased striatal coding of the relevant learn-

ing signal. To conclude, our findings demonstrate how individual beliefs about relevance

can be inferred from computational models. Furthermore, we suggest that aberrant

salience observed in patients with schizophrenia reflects an idiosyncratic bias in states of

high subjective uncertainty.

Introduction

Reduced differentiation between relevance and irrelevance, a disruption of salience attribu-

tion, is the key component of the aberrant salience hypothesis of psychosis [1–3]. According to

this theoretical framework, neurobiological noise in terms of increased striatal dopamine turn-

over may cause the subjective experience of salience or meaningfulness in the absence of rele-

vant contextual events that usually cause dopaminergic saliency signaling. This experience of

aberrant salience is then attributed to random, irrelevant events that coincide with it and, thus,

these irrelevant events turn subjectively meaningful. At the same time, chaotic aberrant

salience signaling was proposed to blur the signal-to-noise ratio leading to decreased process-

ing of contextually relevant events and the formation and maintenance of negative symptoms

[4, 5]. This salience framework clearly renders the objective experimental measurement of

(aberrant) salience challenging and highlights the subjective nature of relevance and salience

attribution. This subjectivity aspect can be captured by modeling latent learning processes of

individuals, which is a common approach for describing the processing of relevant informa-

tion, for example, during reinforcement learning [6, 7]. However, while computational model-

ing has already revealed decreased learning from task relevant events in schizophrenia patients

[4], this approach has not been applied to learning from relevant compared to irrelevant sti-

muli, which might shed further light on aberrant salience attribution.

Both constructs, relevance and salience, are closely intertwined. In general, cues can be con-

sidered salient based on their physical characteristics, or cues are subjectively salient when

they have been learned to be relevant in a certain context. For instance, neutral cues that are

learned to predict reward can turn subjectively salient. Here, we define salient cues as those

that have been learned to reliably predict important outcomes. These associations between

cues and outcomes are learned via prediction error (PE) signals that code the surprise and

unexpectedness of events; or computationally, the difference between observation and predic-

tion. Thus, an unexpected event elicits a large unsigned prediction error (PE; a directed PE

would carry information about the valence/reward) and the corresponding event would turn

salient to the individual. Prediction errors are used to update the predictive value (belief) of
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the preceding stimulus. On the neural level, unexpectedness correlates with brain responses in

the so-called salience network [8–11]; such as the (dorsal) anterior cingulate cortex and the

insula [8, 12–16], while some studies also reported unsigned PE signaling in the striatum [for a

review see 17].

In multidimensional environments, multiple cues are potentially important and individuals

have to adapt to relevant cues that have proven to be reliable or precise predictors. A cue is pre-

cise when it announces a specific event with a high probability. Correspondingly, irrelevant

cues that are experienced to be noisy and unreliable (= uncertain) should be dismissed. This

was investigated by recent learning studies using multisensory cues [18–20] where subjects

were either instructed to find out the relevant cue feature or were told which information they

had to focus on in order to achieve the task of choosing the correct stimulus for reward maxi-

mization. While applying computational modeling, these studies provided behavioral and neu-

ral evidence for learning from multiple sources of information by integrating these according

to their respective subjective relevance. According to the principles of Bayesian learning [21–

23], as incorporated in the Hierarchical Gaussian filter [HGF; 24], Bayesian precision reflects

the computational mechanism capturing the reliability of a stimulus. We use precision as our

definition of subjective (in the sense of learned) relevance in multidimensional environments.

Furthermore, we probe the influence of this subjective relevance on prediction errors, i.e.

when the subject knows that the environment is irrelevant he/she should no longer experience

a large prediction error as salient. In line with this approach, a theoretical account proposed

that aberrant precision coding underlies psychosis formation [5, 25–27].

In schizophrenia and presumably due to chaotic dopaminergic signaling, the detection of

task relevant cues seems to be disturbed while irrelevant cues not carrying reliable information

can gain high subjective salience [1, 2, 28]. This latter phenomenon of aberrant salience

describes the subjective experience of patients characterized by random stimuli suddenly

standing out and turning meaningful. According to the hypothesis, patients make sense of this

aberrant salience experience by forming cognitive schemes that on the long run turn into

delusional beliefs. However, though the aberrant salience concept offers high descriptive value

and plausibility regarding clinical symptoms the behavioral quantification in experimental set-

tings still remains challenging. So far, conclusions about increased aberrant salience attribu-

tion has been drawn from two kinds of findings both related to reinforcement learning: (1)

heightened responses to cues that predicted (affectively) neutral outcomes and (2) increased

responses to irrelevant, i.e. unreliable cues. Regarding the first operationalization, blunted dif-

ferentiation between cues indicating either reinforcement or neutral outcomes were consis-

tently found in schizophrenia patients. Whereas healthy individuals displayed enhanced

responses to the reinforced over neutral cues, patients displayed the opposite pattern;

increased responses (reaction times, skin conductance as well as midbrain and striatal BOLD

responses) to stimuli that were followed by neutral outcomes [29–32]. With regard to the sec-

ond operationalization, aberrant salience may further be reflected in a tendency or bias

towards one over another equally irrelevant stimulus, as defined in the Salience Attribution

Test [SAT; 33]. In the SAT, subjects have to speed up their responses to a target to increase

their wins. Crucially, the target is preceded by conditioned stimuli with one feature being reli-

ably informative about the following reward (instrumental motivational salience) and another

feature being uninformative for predicting reward; being therefore relevant or irrelevant.

Here, aberrant salience is reflected by the idiosyncratic bias inside the irrelevant dimension.

This quantification of aberrant salience to irrelevant instead of neutral events circumvents

instrumental learning deficits reported in schizophrenia [6]. So far, it has revealed mixed

results in schizophrenia patients possibly pointing to differential expressions of aberrant

salience across the stages of illness. The explicit (= subjective judgment based) aberrant
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salience measure was increased in first episode patients with delusions and individuals at

ultra-high risk for psychosis [33–35] and striatal responses to irrelevant events correlated with

positive symptoms [34]. The implicit (= reaction time based) aberrant salience measure was

increased in a medicated and rather chronic schizophrenia patients sample [36]. However,

other studies using the SAT in patients only found deficits in adaptive salience [37, 38].

In a previous study [39], we found that this idiosyncratic bias inside the irrelevant cue fea-

ture does not interfere with adaptive salience attribution that is needed to successfully solve

the task. Hypothetically, this may imply that when schizophrenia patients are confronted with

cues that are not associated with task-information and that are therefore imprecise they form a

bias towards one of these cues in order to resolve this uncertainty. In other words, cues that

are irrelevant within a particular (task) framework and that thereby are unreliable in serving

instrumental aims may be inherently prone to capture aberrant salience. Thus, explicit task

demands should be low in order to create an atmosphere where aberrant salience attribution

can arise. A rather implicit task design would further reduce confounds by motivational, cog-

nitive and stress-related deficits known in schizophrenia patients [40–43].

The aim of the current study was to test the idea of aberrant salience as an idiosyncratic bias

to subjectively unreliable and thus task-irrelevant information. For that, we used computa-

tional modeling in order to assess relevance attribution on the subjective level. While we fol-

lowed the idea of the SAT of having relevant and irrelevant cue dimensions, we used a more

dynamic task design including contingency reversals in order to achieve ongoing learning that

is better suited for computational modeling. Further, participants were not instructed to

explicitly track contingencies between cues and outcomes in order to keep task demands low.

In the current study, 42 schizophrenia patients and 42 healthy individuals performed an

implicit salience paradigm during fMRI [ISP; 39]. In this paradigm, participants had to dis-

criminate between two outcomes (coin/circle) via button press. The outcome could be pre-

dicted from preceding graphic cues with dynamically changing contingencies along two

distinct features (color and shape). By applying the Bayesian learning framework of the HGF,

we used computational modeling to assess individual learning trajectories of these associa-

tions. Subjective relevance was formalized as Bayesian precision (as a dynamic reliability mea-

sure) and we compared different models, which varied in how subjective relevance affected

learning and behavior. We hypothesized that participants would be more surprised by unex-

pected events and slow down their responses. On the computational level, this was defined via

relevance weighted UPEs and we expected their neural correlates to be located in areas previ-

ously implicated in salience processing network and/or the striatum. Further, we defined aber-

rant salience as an idiosyncratic bias towards one unreliable and thus subjectively irrelevant

cue feature. We hypothesized that this measure of aberrant salience would be increased in

schizophrenia patients.

Materials and methods

Ethics statement

All participants gave written informed consent and received monetary compensation as

well as the total wins of the task battery. The study was performed in accordance with the

Declaration of Helsinki and was approved by the local ethics committee of Charité

Universitätsmedizin.

Participants

In total, 42 schizophrenia patients and a matched healthy control group of 42 individuals par-

ticipated in this study. Healthy individuals reported no past or present psychiatric disorder
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according to the SKID-I. Patients were diagnosed with schizophrenia according to the

DSM-IV and ICD-10. Psychopathology was assessed using the Positive and Negative Syn-

drome Scale (PANSS) as well as the subscale for delusions and anhedonia of the Scale for the

Assessment of Positive (SAPS) and Negative Symptoms (SANS), respectively (for information

on demographics and psychopathology, see Table 1). All patients were on antipsychotic medi-

cation (for more details, see Table A in the Supplement). They were recruited from the inpa-

tient and outpatient units of the Department of Psychiatry and Psychotherapy, Charité-

Universitätsmedizin Berlin and the Psychiatric Department of the Schlossparkklinik Berlin.

Aberrant salience raw data scores of a partially overlapping sample (37 healthy controls and 34

schizophrenia patients) were reported in a previous publication [39].

Implicit salience paradigm (ISP)

This paradigm was explicitly instructed like a target-detection task though implicitly being a

learning paradigm where features of neutral stimuli predicted certain outcomes. It consisted of

160 trials where subjects were told to discriminate the outcomes (10 Eurocent coin or blue cir-

cle) of each trial. Therefore, their only task was to press a respective button when they saw a

coin, versus another button when they saw the blue circle. Subjects were told that they would

receive the amount of money they had seen during the task irrespective of whether they had

pressed a button or not, though they were encouraged by the experimenters not to miss too

many trials because this would impede the analysis. The outcomes were preceded by condi-

tioned stimuli that differed in color and shape: gray or colorful squares or triangles (see Fig 1A

and 1B). During the instructions, subjects were told not to pay attention to these stimuli pre-

ceding the outcomes. However, prior to scanning, participants were primed with the stimulus

features while they were asked to name the color and the shape of each of the four conditioned

stimuli. Then, they practiced the outcome detection for 10 trials. In this practice session, all

outcomes were preceded by a stimulus that was not presented during the main experiment in

the scanner. In the main experiment, the conditioned stimuli predicted the outcome types in a

probabilistic manner that reversed during the task. Importantly, only one stimulus feature reli-

ably predicted the outcome (eg, shape). For instance, 80% of all triangles were followed by the

coin (20% circle), and 80% of all squares were followed by the blue circle (20% coin). Whether

the square or the triangle predicted the coin reversed every 20 trials. In the meantime, the

color of the stimuli was irrelevant in predicting the outcome; colorful and gray stimuli were

equally followed by coins and circles (50% each). After the first half of the experiment this was

Table 1. Demographic and clinical characteristics.

SCHIZOPHRENIA PATIENTS (N = 42) HEALTHY INDIVIDUALS (N = 42) STATISTICS

Gender 12 females, 30 males 16 females, 26 males χ2(1) = .355, p = 0.488

AGE (IN YEARS) 35.1 (±7.4) 33.5 (±7.8) t(82) = 1, p = 0.321

VERBAL IQ 101 (±9.4) 104.9 (±9.4) t(78) = 2.13, p = 0.036

EHI 67.4(±53) 69.72 (±48.09) t(77) = .21, p = .837

DURATION OF ILLNESS (YEARS) 9.4 (±6)

AGE OF ILLNESS ONSET (YEARS) 25.9 (±7.1)

PANSS POSITIVE 20.7 (±6.7)

PANSS NEGATIVE 22.6 (±7.6)

PANSS GENERAL 41 (±10.9)

PANSS TOTAL 84.5 (±21.5)

SAPS DELUSIONS 21.3 (±10.9)

SANS ANHEDONIA 12.4 (±4.9)

https://doi.org/10.1371/journal.pcbi.1006319.t001
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reversed, and then the formerly irrelevant feature (here: shape) predicted the outcome,

whereas the other feature turned irrelevant (see Fig 2). The relevant dimensions were counter-

balanced across participants and coins and neutral outcomes were each displayed in 50% of all

trials. In total, the experiment lasted 15 minutes and took place during fMRI scanning. Partici-

pants received the amount of coins seen in the experiment (8 Euro).

Raw data analysis

In our raw data analysis of reaction times, we focused on two aspects: (i) learning of the regu-

larly reversing relevant feature and (ii) aberrant salience towards one manifestation of the

irrelevant feature. Extreme reaction times (<150 ms and>1.5 s) were excluded.

For analyses of potential learning, reaction times (in ms) were log transformed to achieve

normal distribution required for variance analyses. First, we tested whether subjects learned

the cue-outcome contingencies and slowed down their responses if the outcome could not be

predicted based on the preceding cues and thus violated their expectation. For that, log reac-

tion times were compared for expected (i.e. trials when the 0.8 rewarded feature was followed

by reward and trials when the 0.8 non-rewarded feature was followed by a circle) versus unex-

pected events (i.e. trials when the 0.8 rewarded feature was followed by the circle and trials

when the 0.8 non-rewarded feature was followed by a coin) of the relevant condition in a

repeated-measures ANOVA with group as between-subject factor (HC versus patients) and

Fig 1. (A) Depiction of one ISP trial. Participants see one of four cues (B) that is then followed by either a coin

(representing reward) or a blue circle (neutral outcome). They have to respond to each outcome via a respective button

press. (B) Conditioned cues varying in color and shape. (C) Log reaction times (logRT) and simulated logRT (dashed

lines, based on the best model) for coin (green) and circle (orange) trials. Subjects were faster in coin than in circle

trials and speeded up their responses over the course of each block. These effects were also captured by the best fitting

model.

https://doi.org/10.1371/journal.pcbi.1006319.g001
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event type as within factor (expected versus unexpected). Second, a change in reaction times

over time following contingency changes inside the relevant cue feature was tested using a

repeated-measures ANOVA. For all eight blocks with 20 trials each, log-reaction times of the

16 expected events (ie, spanning those 8 trials when the rewarded feature was followed by

reward and the 8 trials when the non-rewarded feature was followed by a circle) were grouped

for rewarded versus neutral outcome trials (Condition factor) and combined into 4 time bins

each, consisting of 2 consecutive trials (Time factor). For analyses targeting responses with

regard to different cue features, please see the Supplement.

For aberrant salience attribution, aberrant salience scores were calculated as in the previous

literature [39], and reflected an individual bias towards one of the two irrelevant cue manifes-

tations based on the ground truth contingencies. For that, the mean reaction times (in ms) to

each of the four cue features when they were irrelevant to the task were calculated. Then, aber-

rant salience was calculated as the absolute difference in reaction times between both manifes-

tations of each condition (eg, square over triangle when shape is irrelevant). Then, these two

scores were collapsed across test halves.

Fig 2. Upper plot: Underlying task contingencies between color and outcome (blue) and shape and outcome (red). Note that the direction of the

trajectories reflects a tendency towards an association (eg, 1 for [triangle! reward; square!circle] and 0 for the opposite associations) and does not

reflect a reward value. In this example, during the first half of the ISP, color is relevant for predicting the outcome, whereas the squares and triangles both

predict coin and circle with a probability of 0.5 and are therefore irrelevant. The extradimensional relevance reverses after 80 trials, and shape becomes

relevant. Inside the relevant features, the 80% rewarded feature manifestation reverses every 20 trial block. That is to say, if colorful cues are rewarded in

80% of trials (gray cues in 20%) in the beginning, gray cues are followed by coins (colorful cues by a circle) for the next 20 trials. Middle plot: One subject’s

individual belief trajectories for color (blue) and shape (red) associations with outcome based on the best fitting model (2HGF RelPE+IrrelBias). Lower

plot: Trajectories that were used to determine individual reaction times in the best response model: Inferred relevance weights (see Eq 5) for color (blue)

and shape (red) predictions and the mean relevance weighted prediction error (magenta; see Eq 4.1.2).

https://doi.org/10.1371/journal.pcbi.1006319.g002
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Computational modeling of relevant and irrelevant predictions

We used detailed computational modeling combined with model selection in order to assess

the learning mechanisms driving the observed individual behavior. By that we tested if subjects

learned the underlying cue-outcome associations and inferred the relevant cue feature. In

keeping with our initial definition of relevance, a cue feature should be perceived as more rele-

vant the more precisely it is believed to predict the outcome. In contrast, if the association

between cue feature and outcome is very noisy, because the occurrence of reward and circle

are equally probable this feature should be perceived as irrelevant. We set up novel response

models that postulated slowing down of responses when the expectations were violated. Com-

putationally, a violation was captured by the unsigned PE of each feature. In different models,

we compared if unsigned PEs of the different cue features differentially affected behavior

based on their current relevance. By the relevance weighted PE, we implemented increased

adaptation to surprising events (unsigned PE) predicted by the most relevant cue feature as

well as decreased adaptation to the irrelevant cue feature. Thereby, we tested if individuals

adapted their behavior less to events when these had proven to be noisy and uninformative in

the past. Instead, they would adapt their behavior to those unexpected events that were held to

be informative because these may actually signal a real change in the environment (as the con-

tingency changes in our task).

Our modeling analysis was guided by two aims:

1. Modeling two parallel learning processes of predicting the relevant and the irrelevant cue

feature in order to compute distinct prediction error trajectories [for a comparable learning

model, please see 44]. Here, it is crucial to determine a formal definition of “relevance”

since the participants had to dynamically infer which cue feature was relevant for predicting

the outcome (even though this was not necessary to solve the task, that is, discriminating

between a coin and a circle).

2. Describing the aberrant salience effect to an irrelevant feature as seen in previous analyses

[39] on a computational level by finding interindividual differences in model parameters

capturing this effect.

We modeled predictions for each of the two cue features, shape and color, in separate HGF

learning models so that a trial-by-trial expectation was computed for each feature (learning

model). We did not model relevant and irrelevant conditions separately because of two rea-

sons. First, the generative model was supposed to capture the subjects’ learning experience and

they were not instructed about the task structure having relevant and irrelevant conditions.

Instead they were only primed with the distinction by feature, color and shape, in the practice

session. Second, after the first half of the experiment we switched the relevant dimension (e.g.

shape to color). Hence, modeling separately for relevance versus irrelevance would have intro-

duced external information on the task structure that was not accessible to subjects and thus

not generative. The resulting learning trajectories for shape and color were transformed into

trial-by-trial predictors of reaction times (response model).

Hierarchical Gaussian filter [HGF; 24, 45]

According to the ‘Bayesian brain’ hypothesis [21–23, 46], an agent forms a generative model of

the world in part by increasing the precision of predictions (μ) to successfully adapt one’s

behavior. The HGF offers a generic framework for Bayesian learning on multiple hierarchical

levels. Crucially, the belief update at each level is comprised of a lower-level prediction error

d
ðkÞ
i� 1

that is weighted according to a cross-level precision ratio (Eqs 1 and 2; i for learning level,
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and k for trial number). The precision of each level’s prediction p̂
ðkÞ
i ¼ 1=ŝ

ðkÞ
i is defined as the

inverse variance of the prediction.

Δmk
i /

p̂
ðkÞ
i� 1

p
ðkÞ
i

d
ðkÞ
i� 1

ð1Þ

Δmk
2
¼

1

p
ðkÞ
2

d
ðkÞ
1

ð2Þ

We used a “two branches” version of the HGF for parallel learning of the shape and color

associations with the outcome. In our modelling, we focused on the reliability and thus undi-

rected beliefs about associations. Thus, the direction of the learning trajectories (association

beliefs m̂
ðkÞ
1 and prediction errors δ) did not reflect the reward value but an arbitrarily deter-

mined relationship between cue feature manifestations and outcomes. A more detailed

description of the HGF and its levels can be found in the Supplement.

A novel definition of relevance: First-level precision

Since the core aim of this study was the dissociation between learning about relevant versus

irrelevant cue features, the term relevance needs to be defined formally. In terms of the ISP, a

cue feature should be perceived as more relevant the more precisely it is believed to predict

the outcome. In contrast, if the belief m̂
ðkÞ
1 of an association is 0.5 it should be perceived as

irrelevant for outcome prediction (because in this case reward and circle will occur with the

same probability and cannot be reliably predicted). In the HGF framework, this interpreta-

tion of relevance is reflected in the estimated precision of prediction on the first level p̂
ðkÞ
1

(see 4).

p̂
ðkÞ
1 ¼

1

m̂
ðkÞ
1 ð1 � m̂

ðkÞ
1 Þ

ð3Þ

It is a function only of the first-level association prediction m̂
ðkÞ
1 , which ranges between 0

and 1. p̂
ðkÞ
1 has a minimum of 4 for m̂

ðkÞ
1 ¼ 0:5 and increases symmetrically to infinity as m̂

ðkÞ
1

approaches 0 or 1. This relevance could affect how beliefs are updated (for this implementa-

tion (‘precision feedback’), see the Supplement) and/or how learning signals affect

behavior, which we implemented in four response models. Our learning model space

contained 2-level and 3-level HGFs with and without precision feedback (see Supplement),

leading to four different hierarchical learning models: 2HGF, 2HGFprecfb, 3HGF, and

3HGFprecfb.

Response models

Prediction errors relating to the cue feature that is thought to be more relevant might translate

more strongly into reaction times, and the aberrant salience effect found in the raw data may

be explained as a bias towards one of the irrelevant features on a trial-by-trial basis. Both

aspects were formalized in the following four response models. The baseline response model

(see Eq 4) postulates that trial-by-trial reaction times are a linear function of the mean of the

prediction errors of both features (4.1.1), a constant bias towards one feature manifestation

(eg, triangles over squares) and the outcome (eg, slower for circles than for coin trials; 4.2.1).

The four cue manifestation vectors m reflect whether the respective manifestations were
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displayed for every trial (eg, 1 for triangles and 0 for squares in mtriangle).

logðrtÞ ¼ b0

þb1

jd
ðcolorÞ
1
j þ jd

ðshapeÞ
1
j

2
jð4:1:1ÞMean of first-level prediction errors

� ðb2 �mcolorful þ b3 �mgreyÞ �

ðb4 �msquare þ b5 �mtriangleÞ

jð4:2:1ÞManifestation bias

þb6ðOutcomeÞ jReward effect i:e: faster response towards
reward ðOutcome: Circle ¼ 1; Coin¼ 0Þ

þz jGaussian Noise

ð4Þ

This response model was modified in three ways. In a first modification (4.1.2), the absolute

prediction errors of each feature were weighted according to their respective relevance weight

(rel; 5). The latter is formalized as the relative amount of each feature’s precision given the

overall precisions of both features.

þb1

relðcolorÞ � jd
ðcolorÞ
1
j þ relðshapeÞ � jd

ðshapeÞ
1
j

2
þ ð. . .Þ ð4:1:2Þ

ð. . .Þ � irrelcolor ðb2 �mcolorful þ b3 �mgreyÞ � irrelshapeðb4 �msquare þ b5 �mtriangleÞ þ ð. . .Þ ð4:2:2Þ

relcolor ¼
p̂
ðcolorÞ
1

p̂
ðcolorÞ
1 þ p̂

ðshapeÞ
1

¼ irrelshape; relshape ¼
p̂
ðshapeÞ
1

p̂
ðcolorÞ
1 þ p̂

ðshapeÞ
1

¼ irrelcolor; ð5Þ

In a second modification and in line with the aberrant salience effect, the constant bias was

weighted according to its feature’s irrelevance (irrel; see Eq 4.2.2). The irrelevance weight of

one feature was defined as the relevance weight of the opposing feature (see Eq 5). From the

four cue feature parameters (β2, . . ., β5) one composite parameter was calculated in two steps.

First, the individual absolute differences between the β2 and β3 for irrelevance weighted mani-

festations within color (and between the β4 and β5 for shape manifestations) were calculated.

Then, they were collapsed across color and shape to achieve one parameter βirrelevance capturing

the bias towards one cue feature manifestation that increased with subjective irrelevance.

Thus, we compared four different response models: the baseline model (Eq 4), the baseline

model with relevance weighted absolute prediction errors (Eq 4 with modification term 4.1.2;

RelPE), the baseline model with only the irrelevance bias (Eq 4 with modification term 4.2.2;

IrrelBias), and a full model with both modifications (Eq 4 with modification terms 4.1.2

and 4.2.2; RelPE+IrrelBias). This led to a total model space of 16 model combinations (see

Figure S1).

Model fitting and Bayesian model comparison

All models were fitted using the HGF toolbox 4.15 [24, 45] as part of TNU Algorithms for Psy-

chiatry-Advancing Science (TAPAS, http://www.translationalneuromodeling.org/tapas/). For

optimization, a quasi-Newton optimization algorithm was applied. We used random-effects

Bayesian Model Selection [BMS, spm_BMS in SPM12, www.fil.ion.ucl.uk/spm; 47] for each

subject’s and each model’s negative free energy (as an approximation to log-model evidence)

in order to identify which of the competing models best explained the subjects’ response time

data. BMS takes into account accuracy of each model and also penalizes for complexity. It

accounts for heterogeneity across subjects and treats each model as a random variable in the
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population. We report protected exceedance probabilities for each model (PXP) and posterior

probabilities (PP) as well as exceedance probabilities (XP) for model families (HGF vs.

HGFprecfb; 2HGF vs. 3HGF; BL vs. RelPE vs. IrrelBias vs. RelPE+IrrelBias). The XP describes

the relative probability that the model would better replicate the data in comparison with the

other models. The PXP that governed our model selection protects against the ‘null’ possibility

that there are no differences in the likelihood of models across the population.

Simulation analyses

Based on the estimated individual parameters from the best-fitting model, we simulated trial-

by-trial reaction time data. In addition to the Bayesian model comparison, we tested the mod-

el’s credibility by carrying out the same analyses as in the raw data section on the simulated

data ((1) Expectedness�Group ANOVA, (2) Condition�Time�Group ANOVA, (3) ‘ground

truth’ aberrant salience group differences). Using this approach, we checked whether the

model was capable of reproducing the meaningful effects and group differences that were evi-

dent in the data.

Functional magnetic resonance imaging

For single and group statistics, an event-related analysis was applied using the general linear

model (GLM) approach as implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm12/). On the single subject level, the outcome onsets were convolved with the

hemodynamic response function and its temporal derivative. As parametric modulator,

the mean of the relevance weighted absolute prediction errors of the best fitting model

(2HGF-RelPe+IrrelBias) was introduced, representing how unexpected and salient the

observed outcome was based on the subjects’ learned expectations about the two cue features.

Regressors of no interest were no response trials, trials with reaction times>1.5 seconds and

<150 milliseconds, realignment parameters with their first temporal derivative of translational

movement, and one regressor for scans with>1mm scan-to-scan movement. For random

effects group-level analysis, the individual contrast images for mean relevance weighted PEs

were used in a two-sample t-test for between-group comparisons (controls vs. patients).

Explorative analysis probed the association between model parameter βirrelevance and neural rel-

evance weighted PE signals in schizophrenia patients. Hence, interindividual βirrelevance scores

were introduced as a covariate in a one-sample t-test using the Mean relevance weighted PE

contrast. Results are reported using FWE correction at the voxel level across the whole brain.

Based on our hypothesis concerning activations in areas previously shown to code salience

such as the ACC and insula, namely the so-called salience network [8–11], and the nucleus

accumbens, we applied small volume correction at the voxel level for the respective bilateral

anatomical masks derived from the WFU PickAtlas (http://fmri.wfubmc.edu/software/

pickatlas). Thus, three VOIs were used for small volume correction at pFWE<0.05 and we indi-

cate which results survive Bonferroni correction for three tests.

Results

Raw data analysis

Participants displayed increased log reaction times observed for probabilistic (unexpected)

events compared to non-probabilistic (expected) events (Main effect of event type: F(1,82) =

5.9, p = 0.018, interaction event type�group F(1,82) = 0.02, p>0.8). The Reward�Time�Group

ANOVA revealed that reaction times differed significantly between coin and circle (main

effect Condition: F(1, 82) = 22.78, p< .001, see Fig 1C) and showed a trend-wise decrease
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following a reversal (main effect Time: F(3, 246) = 2.6, p = .053). Participants took around 8 tri-

als to decrease their reaction times after slowing down following a reversal in contingencies

(RT difference first time bin (trials 1–4) vs. third time bin (trials 8–12), t = 2.72, p = 0.048, Bon-

ferroni corrected). Groups did not significantly differ in their reaction times (main effect of

Group p>.2). The aberrant salience scores calculated based on the ground truth contingencies

differed significantly from zero in both groups (mean (SD) for HC = 17.98 (10.88), t(41) =

10.7, p< .001; for Sz = 22.95 (14.46), t(41) = 10.3, p< .001). Schizophrenia patients displayed

increased aberrant salience scores compared to healthy individuals (Welch’s F(1, 76.156) = 3.2,

p = 0.04, one-tailed based on our a priori hypothesis).

Bayesian model comparison

Across all subjects, the two-level HGF with the full response model was the best fitting model

(PP = 0.3755; PXP = 0.5155; see Table 2). Among learning models there was clear evidence

against the precision feedback model (PPHGF = .968; PPHGFprecfb = .032; exceedance probability

XPHGF = 1), while there was only a very subtle advantage for two-level compared to three-

level models (PP2HGF = .551; PP3HGF = .449; XP2HGF = .551; XP3HGF = .449). Concerning the

response models, the full response model using the mean relevance weighted prediction error

and the irrelevance weighted bias clearly explained the data best (PPBL = .015; PPirrelBias = .037;

PPrelPE = .017; PPrelPE+irrelBias = .93; XPrelPE+irrelBias = 1). Therefore, we decided to do our fMRI

analyses with the 2HGF model and the best response model relPE+irrelBias.

Model checking by data simulation

We repeated the same analyses as for the raw reaction time data for the simulated log RTs

based on the best fitting model. The ANOVAs revealed similar behavioral effects: faster

responses for expected than for unexpected events (F(1,82) = 296.8, p< .001), faster responses

for coins than for circles (F(1,82) = 118.4, p< .001), as well as faster reaction times across time

bins (F(1.6, 133.3) = 216.3, p< .001; see Fig 1C). The aberrant salience difference score was

again significantly increased in schizophrenia patients (Mean = 14.4, SD = 8.2) compared to

healthy individuals (Mean = 10.2, SD = 5.9) (Welch’s F(1, 74.6) = 7.2, p = .009) and correlated

with the aberrant salience score from the raw data (Pearson’s r = 0.637, p<0.001). In line with

that, βirrelevance reflecting the model based subjective bias towards irrelevant events differed sig-

nificantly from zero in both groups (HC: t(41) = 12.6, p<0.001; Sz: t(41) = 12.1, p<0.001) and

correlated with the aberrant salience difference score from the raw data analysis (HC: ρ =

0.523, p<0.001; Sz: ρ = 0.612, p<0.001).

Response model parameter differences

We tested for group differences on three individual response parameters that weighted the

influence of the relevance weighted prediction error (β1), the outcome (β6), and the irrelevance

bias (βirrelevance) on reaction times. Schizophrenia patients showed an increased bias towards

one of two equally irrelevant cue features as indicated by increased βirrelevance values (t(74.2) =

2.7, p = 0.036, corrected for multiple comparisons, see Fig 3). Both groups did not differ on β1

and β6 (p>0.7). For all fitted model parameters, see Table 3.

Correlation analyses

In an explorative approach, we investigated how the response model parameter βirrelevance

related to psychopathology using Spearman’s correlations within groups. In schizophrenia

patients, βirrelevance was associated with an increased negative symptoms score from the PANSS
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(ρ = 0.334, p = 0.031) but there was no significant correlation with the other PANSS scores (all

p-values>0.2; except p = 0.11 for total PANSS score).

Model based fMRI

Across all participants, the relevance weighted prediction error correlated with increased

BOLD response in the anterior cingulate cortex ([12 32 22], t(74) = 4.2, pSVC for ACC VOI =

0.032, pB corr = 0.096, see Fig 4A). A negative correlation with relPE was observed in the left

hippocampus ([-32–18–14], t(74) = 5.4, pFWE whole brain = 0.041, see Fig 4C). There was no

group difference in relevance weighted PE response in any of the VOIs nor at the whole brain

level.

In order to probe the associations between model derived parameters and brain responses

in patients, we focused on the model parameter βirrelevance that was increased in schizophrenia

patients and related to psychopatholgy. In schizophrenia patients, there was an inverse correla-

tion between βirrelevance values and relPE related bilateral nucleus accumbens response ([-14

Fig 3. Group means and individual values of the model parameter βirrelevance that captures the idiosyncratic bias to

one out of the two subjectively irrelevant cue features.

https://doi.org/10.1371/journal.pcbi.1006319.g003

Table 3. Mean (SD) free parameter estimates of the best fitting model 2HGF-relPE+irrelPE.

Free parameters Schizophrenia patients Healthy individuals

s0
2

.05 (±.0007) .05 (±.0008)

ω -1.97(±.09) -1.98(±.08)

β0 6.27 (±.15) 6.22 (±.18)

β1 .21 (±.10) .20 (±.10)

βirrelevance .050 (±.027) .037(±.02)

β6 .07 (±.06) .08 (±.06)

z .04 (±.22) .03 (±.01)

https://doi.org/10.1371/journal.pcbi.1006319.t003
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4–10], t(36) = 5.21, pSVC for nucleus accumbens<0.001; pBonferroni corr = 0.001; [14 6–8], t(36) = 3.6,

pSVC for nucleus accumbens = 0.019, pBonferroni corr = 0.057, see Fig 5).

Discussion

In the current study, we established a novel definition of subjective relevance based on Bayes-

ian precision of predictions. This computational mechanism was involved in implicit learning

about multidimensional and changing environments, as well as in aberrant salience attribution

in schizophrenia. To our knowledge, our study stands alone in investigating subjective beliefs

during implicit learning in a dynamic appetitive Pavlovian conditioning task. We had three

main findings: 1) Both groups learned the underlying associations equally well but patients

showed more aberrant salience in terms of a bias towards task-irrelevant features; 2) in all par-

ticipants unexpected outcomes as indicated by high relevance-weighted unsigned prediction

errors were associated with increased dorsal ACC BOLD signal as part of the so-called salience

Fig 4. (A) Across all participants, relevance weighted PEs correlate with increased BOLD response in the right

ACC ([12 32 22],], t(1,74) = 4.22, pSVC for ACC VOI = 0.032) and (B) decreased left hippocampus response ([-32–18–

14], all plots displayed at p<0.001, k>10).

https://doi.org/10.1371/journal.pcbi.1006319.g004

Fig 5. In schizophrenia patients, the tendency towards an irrelevant cue feature (βirrelevance) correlated with

decreased response to relevance weighted PEs in the bilateral nucleus accumbens (p. e. for parameter estimates;

[-14 4–10] and [14 6–8], displayed at p<0.001, k>10).

https://doi.org/10.1371/journal.pcbi.1006319.g005
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network; and 3) heightened aberrant salience in patients in terms of a bias towards the cur-

rently task-irrelevant stimulus feature was associated with a lower neural salience signal in the

nucleus accumbens and higher negative symptom severity.

On the behavioral level, patients and controls both performed the target detection task with

high accuracy and responded faster to the rewarding coin stimulus compared to the neutral

circle. These two findings suggested that participants of both groups were engaged in the sim-

ple task of pressing one button upon seeing a coin and another for a circle, which had obvi-

ously minimal cognitive demands. We found that schizophrenia patients and healthy

individuals seemed to use the preceding cues to speed up during the outcome discrimination

task.

Subjects were faster for expected than for unexpected events in terms of ground truth prob-

abilistic contingencies. Detailed computational modeling combined with model selection

revealed that participants learned and used the underlying cue-outcome associations and

could determine the currently relevant feature. Thus, participants discriminated faster if the

outcome was predicted based on the preceding cues but slowed down if the observed outcome

violated the expectation, which was formalized in the relevance weighted PE. Responses to the

most relevant cue feature were increased, whereas reactions to the irrelevant feature were

decreased as implemented in the best-fitting response model. Hence, subjects adapted more to

those unexpected events that were thought to be reliable and that thus signaled actual changes

in the environment. Correspondingly, they downregulated responses to such information that

was thought to be noisy and uninformative. To conclude, in our task the relevance weighted

unsigned PE can be interpreted as subjective informative surprise that leads to subtle adapta-

tion in behavior even in the absence of instrumental need.

While relevance weights scaled the influence of prediction errors on reaction times, that is,

behavioral adaptation, we had no evidence that updating of association beliefs was increased

by the subjective relevance of a cue feature beyond the HGF implementation of a cross level

precision ratio [24, 45]. This may only hold for our implicit and dynamic paradigm and seems

to be different when subjects are explicitly instructed to find out the steadily relevant aspect of

a multidimensional learning cue [18].

The relevance weighted unsigned PE correlated with BOLD responses in the salience net-

work comprising the dorsal ACC. This is in line with the theory of proximal salience, which

proposes that activity of ACC and insula regulates higher order processing of external stimuli

[16]. Especially the dorsal ACC/medial prefrontal cortex has been reported to respond to

unexpectedness regardless of valence [48, 49]. According to the response-outcome theory [50],

the dorsal ACC is crucial for detecting discrepancies between expectations and outcomes and

thereby drives attentional and behavioral reallocation. Further studies that elaborated how

individuals use those unexpectedness signals highlighted the ACC’s function in belief updating

[51] and in predicting future cognitive load based on previous experience [14]. This can be

related to the relevance weighted unsigned PE signal in our study that also comprised esti-

mates of prior reliability of a cue feature. In line with our results, a recent study also used

computational modeling of Bayesian conflict learning and reported similar UPE correlates in

the dorsal ACC [12]. On the other hand, the hippocampus showed an opposite pattern in our

study: high hippocampus activation was associated with low relevance weighted UPE. This

stands in contrast to previous findings and theories describing hippocampal activation during

mismatching events [for a review see 52]. In our task, low relevance weighted UPE occurred

when the observed outcome was not surprising and would therefore be mostly present at the

end of each block, after constantly changing contingencies have been learned. In other words,

expected events elicit stronger BOLD response in the hippocampus which might indicate
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higher-order processes related to contextualizing and memorizing these learned contingencies

[53, 54].

Although participants were not incentivized for target detection, both groups performed

well and no group differences emerged for learning contingencies indicating that patients and

controls both used the cues for behavioral adaptation. Contrarily, there is sound evidence for

learning deficits in schizophrenia patients mostly in more explicit and instrumental tasks [55–

58]. Our study assessed implicit learning which might have led to the subtle behavioral and

neural effects. In addition, the reversals inside the relevant condition appeared every 20 trials.

Presumably, fewer reversals with longer stable periods for learning the implicit associations

might have led to stronger task effects. Switching the relevant condition in the middle of the

experiment did not affect learning significantly (please see Supplement), though this seems to

be different in tasks where such shifts happen more often and are explicitly instructed as dur-

ing set-shifting. During these paradigms, schizophrenia patients are impaired [55]. Hence,

whereas we focused on the rather implicit and prediction error driven learning about relevance

with our paradigm and model space, schizophrenia patients might show more pronounced

deficits when explicit reasoning about the structure of the task is required. It has been shown

that when healthy individuals were explicitly asked to find out the relevant cue dimension they

used explicit strategies reflecting the assumed underlying task structure [59]. Thus, group dif-

ferences between schizophrenia patients and healthy individuals concerning the detection of

relevance (shifting) might be better detectable and more pronounced in such more complex

learning paradigms probing deliberative decisions that rely on the use of explicit task

knowledge.

In keeping with previous results in a partially overlapping sample [39], schizophrenia

patients displayed an increased bias for one of two equally task-irrelevant cue features as for-

malized using the ground truth contingencies of the task. This is in line with previous studies

that reported increased responses in schizophrenia patients to neutral [29–32, 60] or unreliable

[33] information. We further elucidated this bias using computational modeling that took into

account only subjective and dynamic relevance estimates. The response parameter capturing

this irrelevance bias was increased in patients indicating that they attributed more aberrant

salience to cues when they were subjectively irrelevant and thus thought to be less informative

with regard to the task. This aberrant salience bias was associated with decreased striatal

activation during relevance weighted PE signaling. Though this finding has to be treated with

caution, since this region did not display a task effect per se, it might show that patients

experiencing more idiosyncratic and task-unrelated saliency also showed a reduced striatal

processing of relevant information. There is meta-analytic evidence for decreased striatal

responses in schizophrenia patients to reward-predicting cues and rewarding feedback [61].

Also, ultra-high risk subjects who decreased their unusual thought content after treatment

showed an amelioration of striatal response to relevant and reinforced stimuli in the SAT [35].

These studies focused on striatal reward anticipation, whereas the relevance weighted PE in

our study was undirected, i.e. carried no information about reward, only about associability

strength and the respective surprise when these associations were violated in both directions,

good or bad. This striatal PE coding is in line with a recent study on explicit reasoning that ele-

gantly decorrelated reward PEs from Bayesian surprise and the authors found that the latter

was more strongly associated with striatal response [59]. Taken together, the processing of rel-

evant (not only rewarding) and the bias towards irrelevant information seem to be interfering

phenomena. We cannot make any claims on causality here and would argue that bidirectional

influences are plausible and may appear at the same time. A possible interpretation may be

that not being able to figure out the correct (e.g. rewarding) cues for behavioral adaptation
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may cause a compensatory clinging to random cues as seen in the aberrant salience bias to

irrelevant events in our study.

Note that this aberrant salience definition which is based on the SAT literature [33, 35] tar-

gets increased responses to task-irrelevant and not to neutral events as often used in previous

Pavlovian studies [30, 31, 62]. This different operationalization of aberrant salience could be

important for associations with psychopathology. One study reported increased BOLD

response towards cues reliably indicating neutral outcomes to be associated with positive

symptoms [30]. Our aberrant salience measure to events that were learned to be uninformative

of any outcome relates to negative symptoms. In the same vein, orientating behavior to unreli-

able, and thus irrelevant stimuli was proposed to underlie negative symptom formation [5].

Taken together, a biased focus on uninformative, irrelevant events by possibly limiting atten-

tion to relevant events relates to increased negative symptoms. Roiser and colleagues found a

similar association between (explicit) aberrant salience to irrelevant events and negative symp-

toms in patients as well as with anhedonia in healthy individuals [33, 63]. They interpreted this

to result from ‘false negatives’ in phasic dopamine signaling to contextually relevant events

contributing to reduced processing of reinforcing stimuli [33]. This view is supported by an

animal study reporting decreased striatal dopamine transients to relevant, reward-predicting

stimuli following amphetamine administration [64]. In the same vein, aberrant salience was

related to increased tonic dopamine synthesis capacity and reduced responses to relevant

events in the striatum in healthy individuals [65]. Transferred to our findings, processing

unreliable information in schizophrenia patients may increase processing of irrelevant as well

as decrease processing of relevant events while contributing to both, positive and negative

symptoms [4, 5]. Our association between the aberrant salience (irrelevance) bias and negative

symptoms was found in a chronic patient sample on stable antipsychotic medication showing

both negative and positive symptoms.

Taken together, we provide evidence that schizophrenia patients show a bias towards irrele-

vant stimuli when confronted with an uncertain and changing environment. Future longitudi-

nal studies should examine the time-wise formation of this bias as well as the process of

relevance detection and their respective associations with psychopathology.

Several limitations of our study need to be addressed. First, by keeping the contingency

structure implicit, it possibly led to a high variance between subjects in how to solve the para-

digm. We modeled reaction times and although there are notable exceptions [66–69], model-

ing of choice data is more widely used. For reaction time based analysis, unlike choice-based

analysis, there is no clear absolute model fit to compare against as in previous studies [56,

57]. Second, because learning was not necessary for task performance, the implicit behavioral

and neural learning effects were both very subtle and might need larger samples for the detec-

tion of group differences. Third, the two different cue features were initially chosen to be

easily dissociable resulting in differences regarding their perceptual characteristics and pre-

sumably their saliency. As alterations of visual perception have been reported in schizophre-

nia patients, patients might have processed the cue features differently compared to controls

[70]. However, in our supplementary analyses we neither found evidence that the cue features

were learned differently nor that cue features were processed differently between groups.

Fourth, with our current paradigm we cannot disentangle the saliency of cues from their

rewarding valence since we did not include a punishment condition. Finally, future studies of

learning about multidimensional information in schizophrenia should include additional

methods to detect relevance attribution, such as skin conductance response [30], eye-track-

ing, or MVPA [18].

In sum, we give a novel computational account of the use of subjective relevance estimates

in implicit learning that is based on Bayesian precision. Furthermore, we provide quantitative,
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model-based evidence of an impairment in the formation and/or use of relevance estimates

associated with schizophrenia. In a task probing the implicit learning of multidimensional and

dynamic associations, relevance detection and neural learning correlates in the ACC seem to

be intact in patients with schizophrenia, but aberrant salience to subjectively irrelevant events

was increased in patients and related to negative symptoms and reduced striatal response to

salient events. Our findings suggest that individual beliefs about relevance can be inferred

from computational models and highlight the importance of relevance detection to complex

environmental stimuli.
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