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Background: Enhanced drug-related reward sensitivity accompanied by impaired sensitivity to non-drug related
rewards in the mesolimbic dopamine system are thought to underlie the broad motivational deficits and
dysfunctional decision-making frequently observed in cocaine use disorder (CUD). Effective approaches to
modify this imbalance and reinstate non-drug reward responsiveness are urgently needed. Here, we examined
whether cocaine users (CU) can use mental imagery of non-drug rewards to self-regulate the ventral tegmental
area and substantia nigra (VTA/SN). We expected that obsessive and compulsive thoughts about cocaine con-
sumption would hamper the ability to self-regulate the VTA/SN activity and tested if real-time fMRI (rtfMRI)
neurofeedback (NFB) can improve self-regulation of the VTA/SN.
Methods: Twenty-two CU and 28 healthy controls (HC) were asked to voluntarily up-regulate VTA/SN activity
with non-drug reward imagery alone, or combined with rtfMRI NFB.
Results: On a group level, HC and CUwere able to activate the dopaminergic midbrain and other reward regions
with reward imagery. In CU, the individual ability to self-regulate the VTA/SN was reduced in those with more
severe obsessive-compulsive drug use. NFB enhanced the effect of reward imagery but did not result in transfer
effects at the end of the session.
Conclusion: CU can voluntary activate their reward systemwith non-drug reward imagery and improve this abil-
ity with rtfMRI NFB. Combining mental imagery and rtFMRI NFB has great potential for modifying the mal-
adapted reward sensitivity and reinstating non-drug reward responsiveness. This motivates further work to
examine the use of rtfMRI NFB in the treatment of CUD.
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1. Introduction

Cocaine addiction is a severe and often chronically relapsing-
remitting disorder characterized by loss of control, impulsive and com-
pulsive drug intake driven by obsessive thoughts about druguse [1,2]. In
the transition from recreational substance use to addiction, neuroplastic
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adaptations within the mesolimbic dopamine system contribute to
complex alterations in reward processing [2,3]. In particular, both an
enhanced mesolimbic sensitivity to drug-related reward signals, and a
reduced sensitivity to non-drug related rewards contribute to dysfunc-
tional decision making and the characteristic narrowing of interests
[4,5]. Thoughts increasingly and obsessively circle around cocaine use,
while drug seeking and consumption compulsively dominate behavior
at the expense of previously rewarding ones such as social activities or
hobbies [6,7]. The clinical relevance of this dimensional maladaptation
process has been recognized by forthcoming diagnostic systems (ICD-
11), in which imbalanced reward sensitivity will be one of the three
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in Context

Evidence before this study

In addiction, enhanced drug-related reward sensitivity is accompa-
nied by impaired sensitivity to non-drug related rewards of the
mesolimbic dopamine system. The clinical relevance of this mal-
adaptation has been recognized by forthcoming diagnostic sys-
tems (ICD-11), in which imbalanced reward sensitivity will be
one of the three defining characteristics of substance depen-
dence. While conventional therapeutic approaches mostly focus
on reducing sensitivity to drug-related stimuli, it is unknown how
we can modify this imbalance by reinstating non-drug reward re-
sponsiveness. Recent evidence suggests that reward-related neu-
ral activation can be self-regulated using feedback of
circumscribed brain activity measured onlinewith functional mag-
netic resonance imaging (fMRI), a procedure known as real-time
fMRI neurofeedback. We searched Medline and PubMed data-
bases for articles published in English between Jan 1, 1950 and
December 1, 2017, with search terms “addiction”, “substance
use disorder” AND “neurofeedback”. As we expected, previous
real-time fMRI neurofeedback studies focused on the reduction
of enhanced drug-related reward sensitivity as potential treatment
approach. However, none of these studies investigated how we
can reinstate non-drug reward responsiveness to modify the im-
balanced reward sensitivity in cocaine use disorders.

Added value of this study

This study represents the first application of reward imagery-
based real-time fMRI neurofeedback of the reward circuit to a clin-
ical population. Cocaine users were able to use non-drug related
reward imagery to induce activity in the dopaminergic midbrain
and other regions throughout the reward network. Real-time
fMRI neurofeedback enhanced the sensitivity of non-drug related
reward imagery, but did not result in transfer effects at the end
of the single training session.

Implications of all the available evidence

Given the chronic nature of cocaine use disorders and the limited
treatment optionswithnoapprovedpharmacological interventions,
it is imperative to pursue all novel treatment options. Results from
our study suggest that combined non-drug related reward imagery
and real-time fMRI neurofeedback could directly reinstate impaired
non-drug reward sensitivity. Crucially, this neurofeedback ap-
proach might foster progress to develop neuroimaging-supported
individualized treatments in substance use disorders.
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defining characteristics of substance dependence [6]. At the neural level
thismaladaptationmanifests in increased activity in reward regions like
the ventral tegmental area and substantia nigra (VTA/SN) in response to
drug-related cues [8–11] and impaired sensitivity in these regions to
non-drug rewards like external monetary or social reward cues
[12–16].While conventional therapeutic approaches often have a stron-
ger focus on reducing sensitivity to drug-related stimuli, it is unknown
whether we can modify this imbalance by reinstating non-drug reward
responsiveness with mental imagery.

Recent evidence suggests that reward-related neural activation can
be self-regulated using feedback of circumscribed brain activity mea-
sured onlinewith functional magnetic resonance imaging (fMRI), a pro-
cedure known as real-time fMRI neurofeedback (rtfMRI NFB) [17]. For
example, Sulzer et al. demonstrated that healthy individuals can use re-
ward imagery to self-regulate activation in the ventral tegmental area
and substantia nigra (VTA/SN) and that this ability improves with on-
line visual feedback of VTA/SN activity [18]. This self-regulation ability
was corroborated by two other studies, one focused on VTA [19], and
the other on nucleus accumbens [20]. Critically, while all three studies
demonstrated significant rtfMRI NFB training effects [18–20], MacInnes
and colleagues showed for the first time a sustained post-training effect
[19]. Although these potential implications of self-regulated reward ac-
tivity are manifold, its clinical relevance has yet to be realized. Combin-
ing reward imagery and NFB, this novel approach allows us to modify
reward sensitivity with personalized non-drug rewarding stimuli in a
continuum of recreational, harmful and addicted CU spanning a broad
range of obsessive and compulsive aspects of cocaine use.

The first aim of this study was to probe whether cocaine users (CU)
can use non-drug related rewards to endogenously regulate the VTA/SN
activity. As sensitivity to non-drug related rewards is thought to dimin-
ish gradually during the transition to chronic cocaine use, the ability to
gain self-control of reward-related brain regions via non-drug reward
imagery might be impaired in individuals with more severe obsessive
and compulsive thoughts about cocaine use [21]. Therefore, we hypoth-
esize that the severity of obsessive-compulsive thoughts correlates neg-
atively with the VTA/SN activation during mental imagery. The second
aim of the study was to investigate whether CU can use rtfMRI NFB to
improve the ability to self-regulate the VTA/SN. Finally, we investigated
effects of non-drug reward imagery throughout the reward network
within the complete sample and between CU and healthy controls
(HC). In summary, we aimed to investigate whether self-regulation of
the putatively dopaminergic mesolimbic rewards system with non-
drug related reward imagery is impaired in CU and if NFB might be a
suitable approach to improve reduced non-drug reward sensitivity in
cocaine us disorders (CUD).

2. Methods

2.1. Participants

Thirty CU and 30 healthy controls (HC) were recruited from inpa-
tient and outpatient units of the Psychiatric University Hospital Zurich
and via online advertisement. Inclusion criteria for CU were cocaine
use of at least 0.5 g/week, cocaine as the primary used illegal drug and
current abstinence duration of no longer than 6 months. Self-reports
were controlled by urine toxicology and 6-month hair analysis [22,23].
Exclusion criteria for the CU were use of opioids and a polysubstance
use pattern other than recreational use. Because of their high prevalence
in CU, nicotine dependence, attention deficit hyperactivity disorder and
history of depression were not excluded. Other lifetime or current axis I
DSM-IV disorders [24]. led to exclusion. HC and CU were matched for
sex, age and for nicotine consumption. Exclusion criteria for HC were
any axis I DSM-IV psychiatric disorderwith the exception of nicotine de-
pendence, and recreational illegal drug use (lifetime use b5 occasions
each drug) with the exception of occasional cannabis and alcohol use.
For both groups, exclusion criteria were clinically significant somatic
diseases, head injury or neurological disorders, family history of schizo-
phrenia or bipolar disorder, and use of prescription drugs affecting the
CNS. Additional exclusion criteria for both study groups were native
tongue other than German, MRI ineligibility due to non-removable fer-
romagnetic objects or claustrophobia, pregnancy, ager lower than
18 years, or older than 60 years. Please note that only one CU older
then 50 (52 years) was included in the study and the mean age of
both groups (HC, mean = 28.2 SD = 6.72; CU, mean = 29.73 SD =
7.99) were comparable to the previous study by Sulzer et al. (age
range between 24 and 35 years) [18]. Participants were asked to abstain
from illegal substances for a minimum of three days and from alcohol
for at least 24 h prior to the imaging session. All participants provided
written informed-consent in accordance with the Declaration of
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Helsinki and were compensated for their participation. The study was
approved by the local ethic committee of the canton Zurich.

2.2. Clinical assessment

Drug use was assessed with the Interview for Psychotropic Drug
Consumption developed byQuednowet al. [25]. TheObsessive Compul-
sive Cocaine Use Scale (OCCUS) was used to capture long-term cogni-
tive changes associated with cocaine use [21]. The brief version of the
Cocaine Craving Questionnaire (CCQ) was used to measure current co-
caine craving [26]. The ability to use visual mental imageries was
assessed with the Betts Questionnaire Upon Mental Imagery (QMI)
[27], the Richardson Controllability Questionnaire (RCQ) [28], the Guy
Emotive Imaging Scale (GEIS) [29] and the Spontaneous Use of Imagery
Scale (SUIS) [30]. Trait impulsivity was assessed with the BIS-11 [31].
Smoking habits were assessed with the Fagerström Test of Nicotine
Dependence (FTND) [32]. Verbal intelligence was estimated with the
Mehrfachwahl-Wortschatz-Intelligenztest (MWTB) [33], the Beck De-
pression Inventory (BDI) [34] assessed current depression symptoms,
and the ADHD self-rating scale (ADHD-SR) [35] measured adult ADHD
symptoms.

2.3. FMRI acquisition and setup

Each participant completed one imaging session in a Philips Achieva
3.0 Tesla magnetic resonance (MR) scanner with an eight channel
SENSE head coil (Philips, Best, The Netherlands) at the MR Center of
the Psychiatric Hospital, University of Zurich. To identify the VTA/SN
using BrainVoyager QX v2.3 (Brain Innovation, Maastricht, The
Netherlands), anatomical images were acquired using a spin-echo T2-
weighted sequence with 70 sagittal plane slices of 230 × 184 mm2

resulting in 0.57 × 0.72 × 2 mm [3] voxel size. Functional data were ac-
quired in 27 ascending transverse plane slices using a gradient-echo
T2*-weighted echo planar image sequence with in-plane resolution 2
× 2 mm2, slice thickness 3 mm, slice gap 1.1 mm, field of view 220
× 220 mm2, TR/TE 2000/35 ms, and flip angle 82°. The slices were
aligned with the anterior-posterior commissure. Each participant per-
formed four 7 min fMRI runs (195 volumes). Individual brain volumes
were converted from Philips PAR/REC format to ANALYZE DRIN using
software from Philips and then placed on a server in real time. The
BOLD signal was extracted from these files on a second computer run-
ning TurboBrainVoyager (TBV) v3.0 (Brain Innovation, Maastricht, The
Netherlands). During the two NFB runs, the extracted BOLD signal
from the VTA/SN was provided to the participant in the scanner as vi-
sual feedback via MR compatible goggles using a custom presentation
software developed in Microsoft Visual Studio 2008 (Microsoft, Red-
mond, WA, USA). The VTA/SN BOLD signal was first normalized based
on the percent signal increase from the previous baseline condition
(last five volumes) and then three-point averaged (i.e. averaging the
current value with the previous two) to reduce noise [18].

3. Experimental design

3.1. Prescanning procedure

Outside the scanner, participants were instructed about the goal of
the experiment, i.e. to gain self-control over the reward-related brain
regions by imagining non-drug related rewarding stimuli. To assess
the ability of generating vivid mental imagery, we used an adapted ver-
sion of the Prospective Imagery Task (PIT) [36,37]: we provided a list of
five potentially rewarding sceneries/topics (i.e., positive experiences
with family and friends, professional achievements, romantic or sexual
memories, hobbies, delicious food including positive scents) plus two
individually defined topics, which they rated according to speed (how
rapidly mental images can be generated), vividness, and detail on a
scale from 1 to 10. Only the three best ranked topics were used during
scanning (see Supplementary Results for strategies used during the
scanning).

3.2. Neurofeedback task

First, each participant underwent an anatomical T2-weighted scan
to identify the VTA/SN. The location of this brain region was selected
based on previous research [38,39]. The caudal edge of the SN is deter-
mined by the cranial edge of the pons at themidline. The cranial border
of this region overlaps with the cranial border of the tegmentum. The
VTA was determined by the anterior connection between the two lat-
eral SN structures. Both regions were combined into a single region of
interest (ROI), which was then coregistered with the functional scans
in TBV during the neurofeedback runs. We used the same
neurofeedback paradigm as recently published by Sulzer et al. [18]
Fig. 1. The experiment consisted of four runs: a pre-training imagery
run, two imagery runs with neurofeedback and a post-training imagery
run. Each run comprised nine blocks of alternating “Rest” (20s) and
“Happy Time” (20s) conditions. During the “Happy Time” condition,
participants were asked to raise the position of the smiley on the screen
as high as possible using non-drug rewarding mental imagery. The
position and color of the smiley were proportional to the current
BOLD signal of the VTA/SN. As the smiley rose, its color gradually
changed from red to yellow. During the “Rest” condition, participants
were asked to perform a distraction task such as mental arithmetic or
imagined paper writing, thereby reducing the height of the smiley and
making it redder in color. During the pre- and post-training imagery
runs, the instructions “Happy Time” and “Rest” were provided without
smiley feedback.

4. FMRI ROI Analysis

4.1. Image preprocessing

Data were realigned, slice-timing corrected [40], coregistered for
each participant to its individual T2 space and spatially smoothed with
a 4 mm full width at half maximum Gaussian kernel using SPM8.

4.2. First and second level analysis

Data analyses were performed in SPM (SPM8, build 6906, http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/) using a general linear
model (GLM) analysis. In the first level analysis, we specified a GLM
with regressors for the “Happy Time” and the “Rest” conditions. The ca-
nonical hemodynamic response function in SPM8was used for convolv-
ing all explanatory variables. To test for significant mental imagery
induced activity, we contrasted “Happy Time” vs. “Rest” and included
the six movement regressors (3 rotations, 3 translations) of the realign-
ment to account for residualmotion artifacts. In the second level, we ex-
tracted the contrast estimates of the reward imagery contrast (“Happy
Time “– “Rest“) from the subject-specific anatomical VTA/SN ROIs.
First, reward imagery contrast estimates in the pre-training runs were
compared using one-sample t-tests to examine whether both group
could activate the VTA/SN without feedback and two-sample t-test
was used to compare initial performance between HC and CU. Second,
the reward imagery contrast estimates of each run were input into a
two x four mixed effects repeated measures analysis of variance
(ANOVA) to examine the main effect of self-regulation and potential
group differences between CU and HC. Group was defined as
between-subject factor and run number (four levels) as within-
subject factor. Age was no included as a covariate in the model, but
groups were matched for age and sex. Second, to test whether
obsessive-compulsive thoughts impair the ability to self-regulate the
VTA/SN with reward imagery post-hoc Spearman correlations (rs) be-
tween the mean VTA/SN beta estimates (across all four runs) and the
OCCUS score as well as lifetime cocaine consumption (in grams) were
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estimated. Third, we calculated post-hoc pairwise comparisons be-
tween the VTA/SN beta estimates (“Happy Time” vs. “Rest”) of all 4
runs (pre-training, NFB run1, NFB run2 and post-training run) to assess
the enhancing effect of theNFB runs (NFB run1 – pre-training; NFB run2
– pre-training) and potential training effects (post-training – pre-
training). Please note that activity differences between “Happy Time”
and “Rest”were not caused by physiological artifacts, as the differences
in heart rate and respiration between the two conditions did not corre-
late with brain activity differences (see Supplementary Methods).

5. FMRI Whole-brain Analysis

5.1. Image preprocessing

Data were slice-timing corrected (FSL, http://fsl.fmrib.ox.ac.uk/fsl)
[40], bias-field corrected (ANTs) [41], realigned (FSL), non-linearly nor-
malized to MNI space (ANTs, final resolution 1.5 × 1.5 × 1.5 mm [3]),
and spatially smoothed with a 6 mm FWHM Gaussian kernel, using a
custom pre-processing pipeline. Please note, that this preprocessing
pipeline is designed for an optimal normalization and only the whole
brain data were normalized.

5.2. First and second level analysis

Whole Brain Data analyses were performed in SPM12 (build 6906,
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) using general lin-
ear model analysis. In first level analysis of functional data, a standard
general linear model (GLM) analysis was used to investigate our block
design data. We included one regressor for the Happy Time condition,
one regressor for the Rest condition. The canonical hemodynamic
response function was used for convolving all explanatory variables.
To test for significant mental imagery induced activity, we defined our
main contrast of interest (“Happy Time” – “Rest”). In addition, to
model signal variability unrelated to neural activity, realignment
parameter estimates and the first six principal components of white
matter and ventricle time courses were added as nuisance regressors
to account for residual motion, acquisition and physiological artifacts
[42]. The individual contrasts were entered into a second-level
random-effects group analysis using a one-sample t-test for the main
contrast (“Happy Time” – “Rest”) over all four runs across the complete
sample to investigate effects of non-drug rewarding imagery through-
out the reward network. In addition, unpaired two-sample tests were
used to investigate group differences between CU and HC.

5.3. Statistical notes

Normal distribution was tested with the Kolmogorov-Smirnov test
and non-parametric tests were used for non-normally distributed
data. Huynh-Feldt corrections were utilized to correct for sphericity vi-
olations.We applied Bonferroni-corrected pairwise comparisons as post
hoc tests for significant main effects. Finally, the correlation analyses
were controlled for multiple comparisons using Bonferroni correction.

6. Results

6.1. Demographics and clinical data

The initial study sample comprised 60 participants (CU= 30, HC=
30). In the CU group, one participant had to be excluded because of opi-
oid dependence, two participants refused to take part in the fMRI exper-
iment, two participants cancelled the scanning due to discomfort, two
participants were excluded because of negative cocaine hair analysis
and one participant because of artifacts in functional images. Additional,
one HC was excluded due to MRI ineligibility (head size), one HC was
excluded due to artifacts in functional images. The final sample
consisted of 50 participants: 22 CU and 28HC. Themain route of cocaine
administrationwas intranasal in 20 CU,while twoCUwere primarily in-
haling cocaine. Of the 22 CU, 11 fulfilled the DSM-IV criteria of cocaine
dependence, three had cocaine substance abuse and eight individuals
were recreational users. Furthermore, two CU were interested in quit-
ting while two other individuals have quitted substance use only a
few days before the experiment. Within the CU the severity of
obsessive-compulsive thoughts correlated significantly with the life
time cocaine consumption (rs= 0.426; p= .046). All participant demo-
graphics, clinical data, and group comparisons are summarized in
Tables 1 and 2.

7. Behavioral Data

7.1. Intact subjective valuation of ability to imagine rewards in CU

According to the PIT measures, neither symptom severity of
obsessive-compulsive thoughts nor the amount of cocaine use impaired
the ability to vividly imagine rewarding non-drug related scenes
(OCCUS: rs = −0.207, p = .355; lifetime cocaine consumption: rs =
−0.034; p = .882). Also, compared to HC, CU showed no differences
in the ability to imagine rewards (PIT: T = −1.63, p = .11), in the viv-
idness (QMI, GEIS) as well as controllability of mental images (RCQ),
and in the tendency to use mental images in daily life (SUIS)
(Table 1). The subjective ability to use mental imagery hence appeared
intact in the current sample of CU. A debriefing after the scan confirmed
that all CU have used non-drug reward imagery to self-regulate the
VTA/SN activity. However, ten CU reported sporadic involuntary
thoughts about cocaine during the fMRI scan, predominantly at the
end of the experiment (last NFB run and Transfer run).

8. VTA/SN ROI analyses

8.1. Induction of VTA/SN activity with reward imagery

Both groups showed significant VTA/SN activity during the pre-
training run using non-drug reward imagery (CU: t = 4.30, p b .0001
p=; HC: t = 4.74., p b .0001) with no significant group differences (t
= 0.76, p b .45). Repeated measures ANOVA revealed a significant
main effect of self-regulation of VTA/SN activity with non-drug reward
imagery across all four runs (F(2.44,117) = 3.91, p = .02). There was
no significant group (F [1,48] =0.01, p= .93), or group-run interaction
effect (F(2.44,117) = 0.98, p = .39). These findings suggest that CU
were able to induce VTA/SN activity by means of non-drug rewarding
imagery with and without NFB (Fig. 2).

8.2. Reduced VTA/SN activity is associated with obsessive-compulsive
thoughts and amount of cocaine use

Second, we hypothesized that both obsessive-compulsive thoughts
and severity of cocaine use would impair the ability to induce VTA/SN
activity with non-drug reward imagery. We assessed this by correlating
OCCUS total scores and lifetime cocaine consumption with the average
difference in VTA/SN BOLD signal between “Happy Time” and “Rest”
conditions across all four runs. As hypothesized, both correlations
were negative (OCCUS total: rs=−0.495, p=.009, Bonferroni adjusted
p = .018; lifetime cocaine consumption rs = −0.393, p = .035,
Bonferroni adjusted p = .07) (Table 3 and Fig. 3). In an explorative lin-
earmultiple regression analysis,we investigatedwhether substance use
other then cocaine use may predict VTA/SN activity in CU. OCCUS total
scores, lifetime cocaine consumption, lifetime amphetamine use, alco-
hol use (g/week), cannabis use (g/week), nicotine use (cigarettes/day)
were entered as independent variables in a regressionmodel predicting
VTA/SN activity (dependent variable). A backward elimination proce-
dure was applied, resulting in the exclusion of all dependent variables
other then OCCUS total score as predictor in the model (criterion:
Probability-of-F-to-remove N0.10). In other words, neither lifetime
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Table 1
Demographic, clinical data and cocaine use.

Stimulant-naive controls (n = 28) Cocaine users (n = 22) Statistical test p value

Age, y 28.2 (6.72) 29.73 (7.99) U = 271.5 0.475
Male/female 14/14 14/8 c2 = 0.930 0.335
Education, y 15.16 (2.19) 13.2 (2.56) T = 2.912 0.005
Verbal IQ (MWT-B) 115.18 (9.44) 103.36 (9.66) T = 4.28 b0.001
Smoker/Nonsmoker, n 18/10 17/5 c2 = 0.989 0.32
FTND sum score 1.11 (3.30) 4.32 (3.52) T = −3.708 0.001
BDI sum score 3.39 (3.56) 8.36 (6.76) U = 171 0.002
ADHS-SB sum score 7.14 (6.59) 17.82 (11.16) U = 136.5 b0.001
BIS sum score 37.3571 (10.00) 45.6364 (10.26) T = −2.872 0.006
Obsessive Compulsive Cocaine Use Scale, (OCCUS) 17.1 (8.45)
Cocaine Craving Questionnaire, (CCQ) – 16.3 (13.2)
Grams/week – 2.03 (2.06)
Years of use – 5.42 (5.64)
Maximum dose during 24 h – 4.40 (3.71)
Last consumption (days) – 15.3 (16.6)
Cumulative lifetime dose (grams) – 693.7 (815.0)
Urine toxicology (pos/neg) n = 21 – 11/6
Hair sample (pg/mg)
Cocaine n = 21 – 14,900,48 (18,262,65)
Benzoylecgonine n = 21 – 3429,76 (4062,59)
Cocaethylene n = 18 – 499,94 (609,43)
Norcocaine n = 15 – 671,20 (954,38)

Imagery
QMI sum score 178.75 (32.719) 181.59 (53.323) T = −0.232 0.817
RCQ sum score 24.96(9.504) 20.18 (5.795) U = 217 0.074
GEIS sum score 156.11 (33.615) 150.27(50.567) T = 0.489 0.627
SUIS sum score 60.86(11.329) 57.36 (11.396) T = 1.079 0.286
PIT sum score 62.8 (13.6) 68.2273 (9.93) T = −1.632 0.109

Note: Data are presented as means and standard deviations. MWT IQ, Multiple Word Test Intelligence; BIS, Barratt Impulsiveness Scale; FTND, Fagerström Test of Nicotine Dependence;
BDI, BeckDepression Inventory; ADHD-SR, ADHD self-rating tomeasure adult ADHD symptoms.; MI, Quotient, Betts Questionnaire UponMental Imagery; RCQ, Richardson Controllability
Questionnaire; GEIS, Guy Emotive Imaging Scale; SUIS, Spontaneous Use of Imagery Scale; PIT, Prospective Imagery Test.
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cocaine consumption nor any other substance use contributes to the
prediction of reduced VTA/SN activity during reward imagery. In con-
trast, a regression model including obsessive-compulsive thoughts
alone significantly predicted VTA/SN activity (β = −0.58, t = −3.18,
p = .005). These findings support the idea of a specific association be-
tween symptoms of obsessive-compulsive thoughts and reduced non-
drug reward imagery induced VTA/SN activity. Finally, neithermeasures
of impulsivity normeasures of depressionwere associatedwith VTA/SN
activity during reward imagery (see Supplementary Results).

8.3. NFB Enhances the induction of vta/sn activity through reward imagery

Weperformed Bonferroni-corrected post-hoc comparisons between
the two NFB runs and the pre-training run for HC and CU separately to
examine whether NFB enhanced the induction of VTA/SN activity
through reward imagery (Fig. 2). In HC, activation during reward imag-
ery in the second NFB run were significantly stronger compared to the
pre-training run (NFB run 1: p = .42; NFB run2: p = .008). In CU,
both NFB runs revealed significant stronger activation during reward
imagery compared to the pre-training run (NFB run 1: p = .002, NFB
run2: p = .052). Although NFB itself was effective, the two NFB runs
did not result in a persistent training effect at the endof the imaging ses-
sion as Bonferroni-corrected post-hoc test showed no significant differ-
ence between the pre- and post-NFB runs (HC, p = .61; CU, p = .25).

8.4. Explorative analysis of CU with high levels of obsessive-compulsive
drug use

In addition to our group comparison between the complete contin-
uum of CU (recreational, harmful and addicted CU) and HC, we per-
formed an explorative group comparison of the ability to self-regulate
the VTA/SN with the eleven CU with most severe obsessive-
compulsive drug use (median-split, OCCUS Total Score higher 15). We
found that, the CU most affected by severe obsessive-compulsive drug
use had a significant reduced activity induced by reward imagery across
all four runs (t=1.916, p= .031, one-tailed) when compared to HC. In
other words, the ability to self-regulate the VTA/SN with non-drug re-
ward imagery was significantly impaired in the group of CU with the
most severe obsessive-compulsive drug use. This between-group com-
parison is in line with the dimensional relation between severity of
obsessive-compulsive drug use and impaired reward sensitivity to
non-drug rewards within the complete sample of CU.

9. Whole-brain Analyses

9.1. Activation of the reward network with reward imagery

In addition to the VTA/SN ROI analysis we performed a whole brain
analysis to investigate the effect of non-drug reward imagery through-
out the reward networkwithin the complete sample (CU+HC). Similar
to previous observations from Sulzer et al. [18], the reward imagery
contrast revealed strong activation across several regions of the dopa-
minergic reward system including the VTA/SN complex, ventral (VS)
and dorsal striatum (DS), medial prefrontal cortex (mPFC), hippocam-
pus, insula, and posterior cingulate cortex PCC (Fig. 4, Table 4) (p b .05
whole brain voxel-level FWE corrected). Group comparison showed
that CU had increased activation in the left inferior parietal cortex com-
pared to HC (p b .05 whole brain cluster-level FWE corrected, cluster-
defining voxel-level threshold p b .001 uncorrected). In contrast, no in-
creased activation in HC compared to CU was observed (p b .05 whole
brain cluster-level FWE corrected, cluster-defining voxel-level thresh-
old p b .001 uncorrected). Thus, reward imagery induced activation in
the reward system did not differ between CU and HC.

10. Discussion

In the present study imagery of non-drug related rewards results in
activation of the dopaminergic midbrain and other reward regions. In
CU, the impact of mental imagery was, however, reduced in those
most affected by severe obsessive-compulsive drug use, and in those



Table 2
Description and comparison of psychoactive substance use between groups.

Stimulant-naive
controls
(n = 28)

Cocaine
users
(n = 22)

Statistical
test

p value

Nicotine
Cigarettes per day (CPD) 4.9 (6.9) 13.0

(14.17821)
T = −2.4 p = .021

Pack years 4.0 (5.6) 7.5
(8.96232)

T = −1.6 p = .115

Alcohol
Grams/week 70.8 (68.0) 165.8

(183.0)
T = −2.3 p = .029

Cumulative dose
(grams) n = 21

42,340.5
(56,264.8)

74,330.4
(90,805.4)

T = −1.4 p = .165

Cannabis
Grams/week 0.1 (0.4) 2.4 (4.4) T = −2.4 p = .028
Last consumption (days) 111.9 (135.3) 523.3

(1789.3)
T = −0.8 p = .444

Cumulative dose
(grams)

74.0 (199.0) 1351.5
(2508.9)

T = −2.3 p = .030

Urine toxicology
(pos/neg)

6/22 6/15 c2 = 4.0 p = .045

Amphetamine
Grams/week 0.0 0.5 (1.7) T = −1.4 p = .167
Last consumption (days) 360.0 259.4

(646.9)
T = 0.1 p = .885

Cumulative dose
(grams)

0.0 (0.19) 124.4
(497.2)

T = −1.2 p = .254

MDMA
Tablets/week 0.0 0.0 – –
Last consumption (days) 34.7 (23.3) 222.0

(626.5)
T = −0.9 p = .370

Cumulative dose
(tablets)

0.1 (0.75) 16.4 (63.5) T = −1.2 p = .242

Opioids
Cumulative dose
(grams)

0.0 0.0

Ketamine
cumulative dose
(grams)

0.0 0.3 (1.1) T = −1.0 p = .331

Note: Data are presented as means and standard deviations.

Table 4
Whole-brain Analysis of Reward Imagery (“Happy Time” – “Rest”) Across the Complete
Sample.

X Y Z (mm) cluster size T

Lingual Cortex 9 −84 −6 37,319 11.62
Posterior Cingulate −6 −60 14 10.77
Cerebellum (Declive) 9 −73 −16 10.67
Medial Frontal Cortex −2 59 −6 1490 8.47

−6 54 −14 6.89
−2 59 11 6.14

Middle Frontal Cortex −28 32 −18 2765 8.14
Inferior Frontal Cortex −45 23 −4 8.14
Superior Temporal Cortex −38 22 −24 7.96
Superior Frontal Cortex 2 0 65 1511 7.8
Medial Frontal Cortex −6 4 54 6.23

−2 −19 77 5.69
Middle Frontal Cortex −39 −2 60 350 7.15
Middle Temporal Cortex −45 −76 22 670 6.99
Superior Occipital Cortex −39 −85 29 5.48
Caudate Nucleus 20 −8 26 113 6.83

20 2 24 5.48
Inferior Temporal Cortex −64 −6 −20 220 6.82
Globus Pallidus 22 −13 0 53 6.46
Precuneus −2 −84 42 145 6.4

−3 −90 34 5.71
Anterior Cingulate Cortex −3 12 40 321 6.28

−2 22 30 6.23
−2 4 41 5.15

Anterior Cingulate Cortex −2 −16 36 83 6.25
Caudate Nucleus −18 4 23 47 6.06
Cerebellum 28 −37 −34 254 6.02

28 −31 −24 5.79
22 −42 −42 5.54

Inferior Frontal Cortex 34 29 −18 52 6.01
Medial Frontal Cortex −2 53 44 242 5.91
Superior Frontal Cortex −9 58 35 5.81
Inferior Frontal Cortex −27 14 −18 23 5.9
Inferior Frontal Cortex 44 20 −4 28 5.87
Insula 46 10 −4 24 5.84
Middle Frontal Cortex −22 18 47 68 5.63
Superior Frontal Cortex −22 29 56 5.17
Parahippocampal Cortex 16 −14 −20 21 5.39

All clusters are significant at p b .05 peak-level FWE whole-brain corrected.

494 M. Kirschner et al. / EBioMedicine 37 (2018) 489–498
with higher lifetime consumption. NFB enhanced the effect of non-drug
reward imagery, but did not result in transfer effects at the end of our
single imaging session. This study represents the first application of
reward-based rtfMRI NFB of the dopaminergic midbrain to a clinical
population and contributes to the growing field of rtfMRI NFB as a po-
tential therapeutic approach in psychiatric disorders [19,43,44].

10.1. Implications of impaired sensitivity to imagined rewards in CUD

The association between impaired self-regulation of the VTA/SN by
using non-drug related imagery and severity of obsessive-compulsive
drug use suggests an important link between maladaptive cognitive
features of CUD and dysfunction in reward processing at the neural
level. In contrast, neither obsessive-compulsive thoughts nor lifetime
Table 3
Correlation between VTA/SN Activity and Clinical Parameters in CU.

VTA/SN activity p-value

CCQ sum score rs = 0.263 0.238
OCCUS sum score rs = −0.495 0.009*
Cumulative lifetime dose (grams) rs = −0.393 0.035*

CCQ, Cocaine Craving Questionnaire; OCCUS, Obsessive Compulsive Cocaine Use Scale; rs,
Spearman correlation. * One-sided tests were performed according to our a priori hypoth-
esis of negative direction. All other correlationswithout a priori predictions about the sign
of the relationship were assessed using two-sided tests.
consumption was associated with the ability to generate vividly images
of non-drug-related rewards. In other words, symptom severity of CUD
was directly linked to impaired neural reward sensitivity and was not
related to the individual capability of vivid mental imagery. This disso-
ciation between intact subjectively reported reward imagery and im-
paired neural response in reward circuits provides one possible
mechanism for the failure to engage in adaptive goal-directed behavior
in CU. Indeed, intact neural activity during reward imagery is relevant
for decision-making. It has been shown that neural responses to imag-
ined rewards reduce the temporal discounting of future rewards and
guide choice behavior [45,46]. Translating these findings from
neuroeconomics to the maladapted reward sensitivity in CUD it is
tempting to speculate that training imagery of non-drug related re-
wardsmay help individuals with CUD to reduce impulsive drug seeking
in favor of functional non-drug related decision making. Clinical inter-
ventions such as the community reinforcement approach, cognitive be-
havioral therapy andmotivational enhancement therapy already aim to
improve the intrinsic motivation for adaptive goal-directed behavior
[47–51]. In conjunction with these psychosocial interventions non-
drug related reward imagery and self-activation of the reward circuitry
[52] may provide an additional tool to directly target impaired reward
sensitivity in CUD Figs. 1 and 3.

10.2. Relevance of chronic craving for impaired non-drug related reward
sensitivity

Obsessive-compulsive thoughts are a signature of chronic craving,
and they were negatively related to VTA/SN activity during reward



Fig. 1. Task design adapted from the previous publication of Sulzer et al. 18. Following an anatomical localizer, each participant underwent four runs, each one composed of “Rest” (20 s)
followed by “Happy Time” (20 s), then repeated nine times. The first and last runs (pre-training and post-trainining) only showed instructions with no visual neurofeedback. During the
two neurofeedback runs, we instructed participants to use rewarding non-drug imagery to raise the ball during “Happy Time”, and neutral imagery to lower the ball during “Rest”.
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imagery across our continuum of CU. Additionally, the subgroup of CU
with most intense chronic craving but not the complete continuum of
CU showed impaired VTA/SN self-regulation compared to HC. These
findings suggest a specific association of chronic craving assessed with
the severity of obsessive-compulsive thoughts about cocaine use and
impaired non-drug reward sensitivity.

By way of contrast, measures of acute craving did not explain the re-
ward circuitry impairment during non-drug related reward imagery
(CCQ, rs= 0.263, p= .238, Table 3). Given that acute craving is strongly
associated with drug-cue reward sensitivity, these divergent findings
suggest that chronic and acute craving could be assigned to different
neural processes within this imbalanced reward sensitivity (acute crav-
ing stronger related to increased drug-cue sensitivity; chronic craving
stronger related to impaired non-drug sensitivity). One caveat is that
we did not directly induce craving (e.g. presenting drug cues) in our
study and hence likely have low power to detect effects related to
acute craving. Furthermore, although speculative the observed im-
paired non-drug reward sensitivity might be stronger in the presence
Fig. 2. Self-regulation of the VTA/SN and neurofeedback training effects during reward imager
separately and as mean across all runs. * indicates significant differences between runs for ea
(p = .002), nfb run2 N pre-training (p = .052). Error bars indicate 1 SEM. CU, cocaine users; H
of drug cues. With respect to themultidimensional construct of craving,
which includes conditioning, cognitive and neurobiological compo-
nents, and occurs in different disease states [21,53], future research
should try to directly address these different aspects and disentangle
the neural correlates underlying acute craving and chronic obsessive-
compulsive thoughts on drug use.

10.3. Potential effects of combined mental imagery and rtfMRI NFB in CUD

Previous studies on self-regulation of the dopaminergic midbrain
[18,19] and other studies using recall of rewardingmemories to control
neural activity [43,54] support the effectiveness of NFB for non-invasive
direct treatment of altered brain function in mental disorders
[19,43,44,55–59]. In linewith previous studies,we showed that imagery
of non-drug rewards efficiently stimulated reward-related circuitry in
CU across a reward network spanning mesolimbic, mesocortical and
hippocampal circuits [18,60,61]. More importantly, the same regions
underlie dysfunctional reward sensitization during the development
y. The reward imagery contrast estimate (“Happy Time” – “Rest”) is plotted for each run
ch group separately: HC, nfb run2 N pre-training (p = .008); CU nfb run1 N pre-training
C, healthy controls; nfb, neurofeedback.



Fig. 3. Spearman correlation of the reward imagery contrast estimate (“Happy Time”-“Rest”) with (A) severity of obsessive-compulsive thought about cocaine (OCCUS Total score) and
(B) lifetime cocaine consumption (in g).
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of addictive behavior [7,62]. We therefore speculate that combining re-
ward imagery and rtfMRI NFB as shown in our study might target the
underlying neural correlates of addictive behavior. With respect to pre-
vious observations showing that the severity of blunted dopamine
transmissionwas associatedwith treatment failure andongoing cocaine
use [63,64] it would be of interest to investigate whether dopamine
Fig. 4. Voxel-wisewhole brain analysis of the reward imagery contrast (“Happy Time” – “Rest”)
revealed significant activation in the dopaminergic midbrain and throughout the reward netw
transmission could be improved by rtfMRI NFB. However, of course,
substantial limitations still have to be overcome. First, we did not ob-
serve a training effect, at least after one single session. This could poten-
tially be addressed through more extensive training. Second, we have
not investigated any generalization effect, or indeed any real-life impact
on relevant clinical measures. Obvious candidates for relevant clinical
across the complete sample (CU+HC, n=50), peak-level corrected, FWE b 0.05. Analysis
ork during reward imagery.
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outcomes in future training trials would be the impact on cue-induced
craving and compulsive drug intake. Indeed, recent rtfMRI NFB studies
in depression suggest that even short-term interventions with NFB
have lasting impact improving symptom severity and enhancing previ-
ous learned cognitive strategies [43,65].

10.4. Limitations and open questions

Recent studies revealed inconclusive findings regarding the general-
ization and transfer of NFB training when comparing pre- and post-
training VTA/SN activity [18,19]. Whereas MacInness et al. found no ef-
fect during the pre-training run, but a significant pre- to post-training
effect, Sulzer et al. and we found significant pre-training VTA/SN activ-
ity, but no significant differences between pre- and post-training
[18,19]. Although speculative, these divergent findings might be ex-
plained by differences in task instructions. In the study fromMacInness
et al. [19] the best strategy was explicitly used during the post-training
run, which was not the case in our study and the previous one from
Sulzer and colleagues [18]. Furthermore, in our study, participants
underwent a pre-scanning training, which might have improved the
self-regulation ability in the first pre-training run. The lack of NFB trans-
fer effects might also be because our training was limited to one single
scan session. Thismight have caused fatigue and adaptation of the dopa-
mine signal especially during the last post-training run, thus obscured
potential transfer effects. Future NFB studies should use longitudinal de-
signs with multiple training sessions to identify potentially lasting
transfer effects. Longitudinal designs will also allow for assessing real-
life impact on relevant clinical measures.

Real-time fMRI NFB is a complex and expensive intervention that
will face substantial cost-effectiveness hurdles. However, given the
chronic nature of CUD and the limited treatment options with no ap-
proved pharmacological interventions, it is imperative to pursue all
novel treatment options. Also, there is accumulating evidence that
only a few NFB training sessions produce effects that last for several
months up to a year [66,67]. Other advantages are that NFB is safe [68]
can be personalized, combines psychological (i.e. mental strategies) as
well as biological (i.e. brain changes) factors, and focuses on learning
to self-heal [43,65]. In this context it is of interest to note, that although
NFB trainingwas effective in CU andHC, post-training subjective ratings
of controllability during the task were higher in HC compared to CU
(Supplementary Results). These findings suggest that individuals with
CUD may underestimate their own ability to learn self-regulation with
NFB training. Future studies should further investigate these potential
differences in measured NFB training effects and subjective feelings of
controllability in patients with psychiatric disorders.

Finally, our broad study sample included a wide range of CU from
recreational to chronically compulsive drug taking. This allowed a di-
mensional approach to investigate the association between symptom
severity and VTA/SN self-regulation, but it likely limited our power for
detecting categorical differences, which are potentially more pro-
nounced in severe CUD. As this group is of particular clinical relevance,
future studies should focus on severe chronic individuals with CUD.

11. Conclusion

Cocaine users can voluntary induce dopaminergic midbrain activity
by means of non-drug rewarding imagery and improve this ability
with rtfMRI NFB. Combining reward imagery and rtfMRI NFB has great
potential to modify the imbalance of reward sensitivity and reinstate
non-drug reward responsiveness. This motivates further work to exam-
ine the potential of rtfMRI NFB in the treatment of CUD.
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