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A B S T R A C T

A recently introduced hierarchical generative model unified the inference of effective connectivity in individual
subjects and the unsupervised identification of subgroups defined by connectivity patterns. This hierarchical
unsupervised generative embedding (HUGE) approach combined a hierarchical formulation of dynamic causal
modelling (DCM) for fMRI with Gaussian mixture models and relied on Markov chain Monte Carlo (MCMC)
sampling for inference. While well suited for the inversion of complex hierarchical models, MCMC-based sampling
suffers from a computational burden that is prohibitive for many applications.

To address this problem, this paper derives an efficient variational Bayesian (VB) inversion scheme for HUGE
that simultaneously provides approximations to the posterior distribution over model parameters and to the log
model evidence. The face validity of the VB scheme was tested using two synthetic fMRI datasets with known
ground truth. Additionally, an empirical fMRI dataset of stroke patients and healthy controls was used to evaluate
the practical utility of the method in application to real-world problems.

Our analyses demonstrate good performance of our VB scheme, with a marked speed-up of model inversion by
two orders of magnitude compared to MCMC, while maintaining a similar level of accuracy. Notably, additional
acceleration would be possible if parallel computing techniques were applied. Generally, our VB implementation
of HUGE is fast enough to support multi-start procedures for whole-group analyses, a useful strategy to ameliorate
problems with local extrema. HUGE thus represents a potentially useful practical solution for an important
problem in clinical neuromodeling and computational psychiatry, i.e., the unsupervised detection of subgroups in
heterogeneous populations that are defined by effective connectivity.
Introduction

Generative models of neuroimaging (Friston et al., 2003; Harrison
et al., 2015; Havlicek et al., 2017; Hinne et al., 2014; Langs et al., 2014)
or behavioral (Behrens et al., 2007; Friston et al., 2017; Mathys et al.,
2014) data have become important pillars of computational and cogni-
tive neuroscience. This type of analysis has the advantage of inferring
putative mechanisms underlying neurophysiological and cognitive pro-
cesses from neuroimaging and behavioral measurements. Such mecha-
nistic accounts are not only highly beneficial for understanding the
healthy human brain (for examples, see Piray et al., 2017; Rae et al.,
2015; van Leeuwen et al., 2011) but also for identifying possible disease
mechanisms in psychiatric disorders and for guiding differential
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diagnosis in individual patients (for review, see Stephan et al., 2017).
Ultimately, this might help to overcome the lack of predictive validity of
current symptom-based diagnostic schemes (DSM-5 or ICD-11) of psy-
chiatric disorders (Stephan et al., 2015).

An important intermediate task relates to the stratification of clinical
spectrum disorders (e.g., schizophrenia) into physiologically more ho-
mogenous subgroups. A neuromodeling strategy to addressing this
challenge is offered by generative embedding (Brodersen et al., 2014;
Brodersen et al., 2011). Classically, generative embedding is a two-step
procedure: first, generative models of measured data are inverted to
infer the hidden (latent) parameter values of a system (e.g., neuronal
circuit) of interest (Bishop, 2006). For example, for neuroimaging data,
the most frequently used generative model is dynamic causal modelling
medical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, CH
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(DCM) (Friston et al., 2003), which describes neuronal dynamics as a
function of the effective (directed) connectivity among neuronal pop-
ulations. In a second step, summary statistics of posterior parameter
distributions can be extracted. These represent a compact summary of the
mechanisms that generated the data – effectively, a model-based
dimensionality reduction – and serve as features for subsequent super-
vised (Brodersen et al., 2011) or unsupervised (Brodersen et al., 2014)
learning at the second (between-subject or group) level. In the supervised
case, the goal is to predict a clinically relevant outcome variable, such as
treatment response or future symptom score, from the inferred mecha-
nisms that are embodied by the model parameter estimates (for exam-
ples, see Brodersen et al., 2014; Harl�e et al., 2015; Lomakina et al., 2015;
Wiecki et al., 2015). By contrast, in the unsupervised case, the aim is to
detect mechanistically distinct subgroups within heterogeneous diseases
(Brodersen et al., 2014). Generative embedding frequently results in
more accurate classification/regression/clustering than conventional
(un)supervised learning. As importantly, it allows for a meaningful
interpretation of the results. This is because the achieved accuracy or
purity can now be understood in relation to latent mechanisms that are
encoded by the model's parameters.

Instead of inverting the generative model for each subject separately
and then applying group-level learning to first-level posterior estimates,
an alternative is to construct a fully hierarchical generative model that
simultaneously describes individual data generation and assigns subjects
to groups or clusters. This has the advantage that model inversion at the
single-subject level can be informed by group-level results. More spe-
cifically, this corresponds to an empirical Bayesian approach that allows
the model to learn the prior distribution from the data (Banerjee et al.,
2015). In this paper, we focus on the unsupervised variant of this
approach; we refer to this as hierarchical unsupervised generative
embedding (HUGE).

Raman et al. (2016) introduced HUGE to neuroimaging, integrating a
hierarchical formulation of DCM with a mixture of Gaussians clustering
model (Bishop, 2006). Notably, Raman et al. (2016) used Markov chain
Monte Carlo (MCMC) sampling for the inversion of this hierarchical
model. While MCMC-based sampling is asymptotically exact (i.e., in the
limit of infinite samples), it also suffers from a number of practical lim-
itations. Most importantly, MCMC is computationally very costly,
requiring run times for complex models that can be prohibitively long for
many applications. This problem is particularly acute when, as in DCM,
the likelihood of the generative model rests on differential equations that
require integration for each sampling step (but see Aponte et al., 2016).
Additionally, failure of convergence of the MCMC chains can be difficult
to detect. Finally, it is challenging to obtain accurate and robust estimates
of the (log) model evidence in MCMC (Calderhead et al., 2009; Gelman
et al., 1998; Raftery et al., 2007).

In this article, we present an approximate inference scheme for HUGE
that is based on variational Bayes (VB) (Attias, 1999). Casting model
inversion in a VB framework promises increased computational effi-
ciency and may render hierarchical generative embedding a practical
tool for clinically relevant applications, such as the stratification of
spectrum disorders. The structure of this article is as follows: after an
introduction to classical DCM and the hierarchical extension by Raman
et al. (2016), we proceed to deriving the variational update equations for
our hierarchical model. We then test our VB scheme using both synthetic
and empirical data. First, we provide an example of how a “standard”
empirical Bayesian analysis of DCM (without clustering) can be imple-
mented using HUGE. Second, we demonstrate face validity of the VB
scheme using two synthetic fMRI datasets for which ground truth was
known. Finally, we proceed to an empirical dataset from an fMRI
experiment on speech recognition in aphasic patients and healthy con-
trols (Schofield et al., 2012), which has not been analyzed with HUGE to
date but was used in the original work on generative embedding (Bro-
dersen et al., 2011). Here, we return to this dataset and evaluate the
performance of HUGE. Based on these results, we discuss the advantages
and disadvantages of our variational inversion compared to the
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MCMC-based approach from Raman et al. (2016).

Methods

Classical single-subject DCM

Dynamic causal modelling (DCM) is a generative modelling frame-
work for estimating effective (directed) connectivity between neuronal
populations from neuroimaging data (Friston et al., 2003). Originally
developed for functional magnetic resonance imaging (fMRI) data, DCM
has since been adapted to other modalities as well, including magne-
to-/electroencephalography (M/EEG) (David et al., 2006). DCM repre-
sents a generative model where neuroimaging data y is generated from
hidden (latent) neuronal activity x. Here, the dynamics of x are a function
of the effective connectivity between neuronal populations and some
experimental manipulations u (e.g., sensory stimulation, task demands)
to the network. Typically, a system of bilinear differential equations is
used to model the dynamics of neuronal activity (for its derivation, see
Stephan et al., 2008):

_x ¼ Axþ
XL

l¼1

ulBðlÞxþ Cu (1)

The bilinear formulation of neuronal dynamics in Eq. (1) allows for a
straightforward interpretation of its parameters. Specifically, the ele-
ments of matrix A can be interpreted as the endogenous (intrinsic) con-
nectivity between regions. Elements of C represent the strengths of the
direct influence of experimental manipulations u on neuronal activity
(i.e., external driving influences). The elements of the matrix Bl can be
interpreted as the strengths of modulatory effects on the endogenous
connectivity A by the l-th experimental manipulation ul. Graphical rep-

resentations of DCMs are shown in section 2.4. The matrices A, B ¼
fBðlÞgLl¼1 and C are typically of primary interest in DCM analyses and will
be referred to as (neuronal) connectivity parameters θðcÞ ¼ fA;B;Cg.

The neuronal model is then coupled to a forward observation model
that maps hidden neuronal dynamics x to measured data y. For fMRI
data, this forward model includes a cascade of differential equations
describing how changes in neuronal dynamics induce changes in blood
volume and deoxyhemoglobin content (Friston et al., 2000). The latter
then enter a nonlinear static observation equation of regional blood ox-
ygen level dependent (BOLD) signals (Buxton et al., 1998; Stephan et al.,
2007). This observation model depends on a second set of parameters,
commonly called hemodynamic parameters θðhÞ. The full set of DCM
parameters is defined as the concatenation of connectivity and hemo-
dynamic parameters θ ¼ fθðcÞ;θðhÞg.

Hence, in order to predict the BOLD response y from experimental
inputs u and parameters θ using DCM, one has to integrate the dynamics
of neuronal activity (Eq. (1)) to obtain x, given the connectivity param-
eters θðcÞand inputs u. The neuronal activity x and the hemodynamic
parameters θðhÞ then enter the forward observation model. Consequently,
the data generating process of DCM, which we will call gðu; θÞ in the
following, does not have a closed form.

In addition, DCM assumes a Gaussian noise model

η � N
�
0;Λ�1

�
(2)

where the noise precision Λ is shaped by hyperparameters (Friston et al.,
2003): Λ is assumed to have diagonal structure, with region-specific noise
precision λr on the diagonal (Raman et al., 2016). In combination, the
data generating process gðu; θÞ and the noise model yield a probabilistic
forward mapping from experimental inputs to measured fMRI data and
thus specify a likelihood function:

pðyjθÞ ¼ N
�
gðu; θÞ;Λ�1

�
(3)

In order to estimate neuronal connectivity and hemodynamic
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parameters, a multivariate Gaussian prior distribution is placed over
these parameters. Together, likelihood and prior yield a generative
model that can be inverted using standard Bayesian inference techniques,
such as variational Bayes (VB, Friston et al., 2007).

In brief, VB for DCM provides an estimate of two quantities simul-
taneously: (i) an approximation to the true posterior density over model
parameters, and (ii) the negative free energy, which serves as a lower-
bound approximation to the log model evidence (i.e., the log probabil-
ity of the data given the model). The model evidence serves as a prin-
cipled measure of model “goodness”, taking into account both the
accuracy and complexity of a model. Within a Bayesian setting, the model
evidence allows one to test competing hypothesis about network archi-
tecture (corresponding to DCMs with different A, B and C matrices) or
different hemodynamic models by means of Bayesian model selection
(Friston et al., 2007; Penny et al., 2004; Stephan et al., 2009, Stephan
et al., 2007).

A more detailed introduction to DCM, as well as model inversion and
model comparison techniques, can be found elsewhere (Daunizeau et al.,
2011; Friston et al., 2003; Friston et al., 2007; Stephan et al., 2007).

Hierarchical unsupervised generative embedding (HUGE)

This section summarizes the HUGE framework introduced by Raman
et al. (2016). HUGE combines a hierarchical formulation of DCM with a
Gaussian mixture model in order to unify the two-step procedure of
generative embedding (Brodersen et al., 2014; Brodersen et al., 2011)
into the inversion of a single (hierarchical) model. Additionally, the hi-
erarchical framework of the model allows for an empirical Bayesian
approach, where single-subject analyses are informed by group-level
results.

Unlike single-subject DCM, where fixed Gaussian prior distributions
are placed over the parameters and hyperparameters of the model
(Friston et al., 2007), the hierarchical DCM in HUGE assumes that each
individual from a population of N subjects belongs to one of K subgroups
or clusters. The DCM connectivity parameters θðcÞ ¼ fA;B;Cg for all
subjects from one cluster are assumed to be normally distributed, where
each cluster k has a distinct mean μk and covariance matrix Σk:

p
�
θðcÞn

��dn ¼ k; μk ;ΣkÞ ¼ N
�
θðcÞn

��μk ;Σk

�
(4)

Here, θðcÞn are the connectivity parameters of subject n. This cluster-
specific normal distribution effectively means that different priors
apply over subjects, depending on which subgroup they belong to. The
assignment indicator dn assigns subject n to one of the K clusters and is
modelled using a categorical distribution (i.e., the special case of the
multinomial distribution for a single drawing):

pðdn ¼ kjπÞ ¼ CatðkjπÞ ¼ πk (5)

where probability πk is the “weight” of cluster k and π is the probability
vector consisting of all weights:

π ¼ ðπ1;…; πKÞT with
XK
k¼1

πk ¼ 1 (6)

For the hemodynamic parameters, the hierarchical model retains the
fixed global Gaussian prior from the classical DCM formulation:

p
�
θðhÞn

��μh;ΣhÞ ¼ N
�
θðhÞn

��μh;ΣhÞ (7)

As in single-subject DCM, the measured BOLD data y is described by
means of a probabilistic forward model that relates experimental inputs u
and model parameters θ, via neuronal and hemodynamic states x, to
observed fMRI time series:

yn ¼ gðu; θnÞ þ ηn with θn ¼
�
θðcÞn ; θðhÞn

�
(8)

The measurement noise is assumed to be additive white Gaussian
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noise with zero mean:

ηn � N
�
0;Λ�1

n

�
Λn ¼

XR
r¼1

λn;rQr
(9)

where the noise precision is now also subject-dependent. In Eq. (9), Qr is
a diagonal region-indicator matrix, whose diagonal entries are one if they
belong to region r and zero otherwise (Raman et al., 2016). In other
words, the model allows for both subject and region-specific precisions of
observation noise.

To obtain a full generative model, prior distributions over model
parameters and hyperparameters have to be introduced. Eqs. (4) and (7)
specify the form of these priors for neuronal and hemodynamic param-
eters, respectively. The values of the prior parameters used throughout
this paper are specified in the Supplementary Material (section S5).

Concerning the prior over cluster weights π, we follow the original
implementation of HUGE (Raman et al., 2016) in using a Dirichlet
distribution:

π � Dðπjα0Þ (10)

Here, the parameter α0 is a vector of dimension K containing only
positive elements α0;k. Furthermore, the prior for the cluster parameters is
given by a normal-inverse-Wishart distribution:

μk ;Σk � NW�1ðμk ;Σkjm0; τ0; ν0; S0Þ (11)

where m0 is the mean, τ0 the precision, ν0 the degrees of freedom and S0
the scale matrix of the normal-inverse-Wishart distribution.

Finally, Raman et al. (2016) chose a log-normal distribution as the
prior over noise precisions: λn;r � logN

�
λn;r

��μ0; σ0�. Here, we deviate
from this choice by introducing a gamma prior distribution over noise
precisions:

λn;r � Gamðλn;r
��a0; b0Þ (12)

where a0 and b0 are the rate and inverse shape parameters, respectively.
This is the only modification to the original specification and was moti-
vated by the fact that gamma priors serve as conjugate priors on precision
for a Gaussian likelihood (Bishop, 2006). This simplifies the derivation of
the VB update equations for the posterior density below.

Under this choice of likelihood and priors, the joint probability dis-
tribution takes the following form:

p
�fyn; dn; θn;ΛngNn¼1; fμk;ΣkgKk¼1; π

��m0; τ0; ν0; S0; a0; b0; α0

� ¼YN
n¼1

��
N
�
yn
��gðθn; uÞ;Λ�1

n

�
N
�
θðcÞn

��μdn ;Σdn

�
CatðdnjπÞ

�N�θðhÞn

��μh;Σh

�YR
r¼1

Gamðλn;r
��a0; b0Þ

!

�
YK
k¼1

�
NW�1ðμk ;Σkjm0; τ0; ν0; S0Þ

�
Dðπjα0Þ

(13)

which, except for the gamma distribution over λn;r , is identical to the joint
distribution proposed in Raman et al. (2016). Fig. 1 shows the graphical
model of HUGE, where filled circles indicate variables with fixed values
(e.g., parameters of prior distributions or data).

For a comprehensive review of the mathematical details of the
probability distributions introduced in this section, we refer to Gelman
(2014).

In Raman et al. (2016), inversion of this hierarchical generative
model used MCMC. In this paper, we propose a variational Bayesian
approach to derive a computationally more efficient approximate
inversion scheme.



Fig. 1. Graphical model of HUGE. Filled nodes indicate variables with fixed or known values, such as parameters of prior distributions or data.
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Variational inversion of HUGE

Having specified the generative model, we now present the varia-
tional update equations for HUGE. A general introduction to VB is pro-
vided in the Supplementary Material (section S2). In brief, VB attempts to
fit an approximate posterior distribution qðϑÞ over latent variables ϑ by
maximizing the negative free energy F (Friston et al., 2007). This
implicitly minimizes the Kullback-Leibler divergence between approxi-
mate qðϑÞ and true pðϑjyÞ posterior distributions. To make the compu-
tation of the negative free energy tractable, the complexity of qðϑÞ can be
restricted by means of the Laplace and mean field approximations (see
Supplementary Material, section S2). In contrast to classical imple-
mentations of DCM, HUGE uses conjugate priors wherever possible,
leading to analytical update equations. The derivations of these equa-
tions are presented in the Supplementary Material.

Applying the mean field approximation to HUGE, we assume a
factorization of the approximate posterior qðϑÞ over the following
disjoint subsets of model parameters: the DCM parameters Θ1 ¼ fθngNn¼1,

the noise precisions Θ2 ¼ fΛngNn¼1, the assignment indicators Θ3 ¼
fdngNn¼1, the cluster weights Θ4 ¼ fπg and the cluster parameters Θ5 ¼
fμk;ΣkgKk¼1. This leads to the following factorized distribution:

q
�fdn; θn;ΛngNn¼1; fμk ;ΣkgKk¼1; π

� ¼ qðπÞq�fθngNn¼1

�
q
�fΛngNn¼1

�
q
�fdngNn¼1

�
q
�fμk;ΣkgKk¼1

� ¼ Y5
j¼1

q
�
Θj

� (14)

Some factors in Eq. (14) will further decompose into products of in-
dependent distributions, due to the inherent structure of the model (for
details, see Supplementary Material, section S3).

Additionally, we will apply the Laplace approximation (Friston et al.,
2007) to the variational distribution over DCM parameters (or, in the
case of some hemodynamic parameters, their logs) and thus restrict its
parametric form to a normal distribution: qðθnÞ :¼ Nðθnjμn;ΣnÞ.

As outlined in the Supplementary Material (section S2), the optimal
approximate posterior densities q*j ðΘjÞ that maximize the negative free
energy with respect to the j-th subset of model parameters can be found
according to Eq. (8) of the Supplementary Material. This yields one up-
date equation per subset, with update equations for different subsets
being mutually dependent on each other. For optimization, we thus
iterate these updates until convergence; this tightens the negative free
energy bound on the log model evidence and renders the approximate
distribution an optimal proxy to the true posterior distribution (Bishop,
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2006). In the following, we present the update equations for each subset
of parameters. The detailed derivation of these equations is provided in
the Supplementary Material (section S3).

Cluster weights (π)
According to the derivation given in the Supplementary Material

section S3.1.1, the optimal variational density over the cluster weights
q*ðπÞ is a Dirichlet distribution with parameters:

αk ¼ α0;k þ
XN
n¼1

qnk � 1 (15)

The variable qnk in Eq. (15) denotes the probability that subject n
belongs to cluster k. The expression for qnk is given below in Eq. (18).

Cluster mean and covariance (μk and Σk)
In section S3.1.2 of the Supplementary Material, we show that the

optimal variational distributions over cluster mean and covariance fac-

torizes over clusters q*ðfμk;ΣkgKk¼1Þ ¼
YK
k¼1

q*ðμk;ΣkÞ. Due to conjugacy of

the prior (compare section 2.2), each factor q*ðμk;ΣkÞ is given by a
normal-inverse-Wishart distribution with parameters:

mk ¼ qkμ
ðcÞ
k þ τ0m0

qk þ τ0
τk ¼ qk þ τ0

νk ¼ qk þ ν0

Sk ¼ ΣðcÞ
k þ

XN
n¼1

qnk
�
μðcÞn � μðcÞk

	�
μðcÞn � μðcÞk

	T

þ qkτ0
qk þ τ0

�
μðcÞk � m0

	�
μðcÞk � m0

	T
þ S0;

(16)

where we have defined the following auxiliary variables:

qk ¼
XN
n¼1

qnk

μðcÞk ¼ 1
qk

XN
n¼1

qnkμðcÞn

ΣðcÞ
k ¼

XN
n¼1

qnkΣðcÞ
n :

(17)
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The vector μðcÞn denotes the sub-vector of the variational mean μn of the
model parameters θn associated with the DCM connectivity parameters.
Equivalently, ΣðcÞ

n is defined as the sub-matrix of the entire covariance
matrix Σn which is associated with the DCM connectivity parameters (see
Eq. (19)).

Cluster assignments (dn)
The approximate posterior probability of subject n belonging to

cluster k is given by:

log q*ðdn ¼ kÞ ¼ �1
2
logjSkj þ 1

2
Ψ pc ðνkÞ �

pc
2τk

� νk
2
tr
�
S�1
k ΣðcÞ

n

�
�νk
2

�
μðcÞn � mk

�T
S�1
k

�
μðcÞn � mk

�þ ΨðαkÞ þ const

¼: log qnk

(18)

(see Supplementary Material section S3.1.3 for detailed derivation).
Notably, Eq. (18) determines qnk only up to a constant factor. However,
since qnk defines a distribution over the categorical variable dn, the sum
over all possible values of k has to equal one. Hence, the unknown scaling
factor can be determined via normalization. Here, trðXÞ denotes the trace
operation (i.e. the sum over all diagonal elements of a matrix) and Ψ ðxÞ
the digamma function (i.e. the derivative of the logarithm of the gamma
function ΓðxÞ, see also (Abramowitz et al., 1972) or Eq. (1) of the Sup-
plementary Material). Furthermore, Ψ pðxÞ denotes the expression
defined in Eq. (2) of the Supplementary Material.

DCM parameters (θn)
Similar to the cluster assignments, section S3.1.4 of the Supplemen-

tary Material shows that an optimal approximate density over the DCM
parameters q*ðfθngNn¼1Þ factors over subjects. Due to the Laplace
approximation, the factors q*ðθnÞ are normally distributed with mean and
covariance given by:

Σn ¼
�
GT

nΛnGn þ Λ
0
n

��1

μn ¼ Σn

�
GT

nΛnðεn þ Gnθ0Þ þ μ
0
n

� (19)

Note that we have defined the following auxiliary variables:

Λ
0
n ¼

0
B@

XK
k¼1

qnkνkS�1
k 0

0 Σ�1
h

1
CA

μ
0
n ¼

0
B@

XK
k¼1

qnkνkS�1
k mk

Σ�1
h μh

1
CA

εn ¼ yn � gðθ0; uÞ

Gn ¼ ∂gðθ; uÞ
∂θ

����
θ¼θ0

(20)

where θ0 denotes the current expansion point of a Taylor approximation
to the data generating process gðθn; uÞ (see Eq. (3)), which is typically
chosen as the mean μn from the last iteration of the variational update
scheme. Gn is the Jacobian matrix of gðθn; uÞ with respect to θ and εn can
be interpreted as the current prediction error of the model for subject n.
Additionally, the matrix Λn denotes the mean noise precision, i.e. the
mean of Λn under the variational distribution, for which an expression is
given below in Eq. (23).

Noise precision (Λn)
As defined in Eq. (9), the subject-specific noise precision matrix Λn is

parameterized in terms of its region-specific diagonal elements λn;r and a
set of region indicator matrices Qr . It is shown in section S3.1.5 of the
Supplementary Material that the approximate posterior over noise pre-
cisions factorizes into a product over regions and subjects q*ðfΛngNn¼1Þ ¼
608
YR
r¼1

YN
n¼1

q*ðλn;rÞ, where q*ðλn;rÞ is given by a Gamma distribution with

parameters:

an;r ¼ a0 þ trðQrÞ
2

bn;r ¼ b0 þ b
0
n;r

2

(21)

Here, trðQrÞ is the number of ones in Qr (or, in other words, the
number of data points per brain region). Furthermore, using εn and Gn

defined in Eq. (20), we have introduced the auxiliary variable:

b
0
n;r ¼ εTnQrεn þ tr

�
GT

nQrGnΣn

�
(22)

Additionally, we can now define the mean noise precision matrix
mentioned in the last section:

Λn ¼
XR
r¼1

λn;rQr

λn;r ¼ an;r
bn;r

(23)

where the second line follows from the mean of the Gamma distribution.

Negative free energy (F)
The negative free energy for HUGE is derived by solving the general

expression in Eq. (58) of the Supplementary Material for the joint dis-
tribution from Eq. (13) and the variational distribution from Eq. (14) (see
section S4 of the Supplementary Material for detailed derivation). The
resulting expression after extensive simplification is given by:

F ¼ log Γ

�PK
k¼1

α0;k



� log Γ

�PK
k¼1

αk



� PK

k¼1
log Γðα0;kÞ

�K log Γpc ðν0Þ þ
Kν0
2

logjS0j þ Kpc
2

log τ0 � N
2
logjΣhj

þNRða0 log b0 � log Γða0ÞÞ þ Np
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Variational update schedule
As mentioned before, the update equations for the different param-

eters of the variational distribution qðΘjÞ are mutually dependent on each
other. It is therefore necessary to iterate their updates until convergence
to obtain the optimal parameters of qðΘjÞ that maximize the negative free
energy. We now briefly outline the general procedure: first, initial values
for all parameters are chosen, for instance, initial parameter values could
be set to the prior parameters. Next, the update equation for one set of
parameters is evaluated using the current estimates of all other param-
eters. This procedure is successively repeated for each set of parameters
until all parameters have been updated. The negative free energy is then
evaluated given the new estimates of all parameters. If the negative free
energy has increased by more than a pre-set threshold (10�10 in the
current implementation) compared to the previous iteration, the update
procedure is continued for another iteration; otherwise the algorithm has
converged. This process is illustrated as a flowchart in Fig. 2. We
implemented the variational update equations for HUGE in Matlab. The



Fig. 2. Flowchart of a possible variational update schedule for the parameters of
the variational distribution. Here, “update” refers to an update based on the
current value of the other variational parameters.
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numerical integration required for evaluating the observation function
gðθ; uÞ is executed using the same implementation as in Raman et al.
(2016), which rests on Euler's method implemented in C for increased
computational efficiency. The code for our VB approach to HUGE
introduced in this paper will be made available as part of the open source
toolbox TAPAS (http://www.translationalneuromodeling.org/tapas).
Datasets

Synthetic datasets
We assessed the face validity of our variational inversion scheme for

HUGE using two synthetic and one empirical dataset. The synthetic
datasets were based on a two-region linear DCM and a three-region
bilinear DCM (Fig. 3), following the same procedures as in Raman
et al. (2016). For all simulations, we verified that the chosen parameter
values resulted in a stable system by checking that the principal eigen-
value of the coupling matrix was negative.

The two-region DCM used as the basis of our first synthetic dataset
was a linear DCM with one driving input per region, one endogenous
connection from region 2 to region 1 and inhibitory self-connections on
Fig. 3. Graphical representation of the linear two-region DCM used to generate the fir
second synthetic dataset (right).
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both regions. In a first step, two subgroups were established by defining
two different sets of parameters for the DCM; these served as the mean
parameter vectors for the two subgroups. For each subgroup, 20 “syn-
thetic subjects”were simulated by sampling the DCM parameter values of
each subject independently from an isotropic normal distribution with
standard deviation 0.1 centered on the mean DCM parameter vector of
the respective subgroup. This process gave rise to a total of 40 synthetic
subjects, clustered in two groups with 20 subjects each. For each of these
subjects, the set of subject-specific DCM parameters was then used to
generate BOLD signal time series with 300 scans per brain region and a
repetition time (TR) of two seconds. Finally, white Gaussian measure-
ment noise was added to the BOLD signal. The amplitude of the mea-
surement noise was chosen such that in each region the standard
deviation of the noise was equal to the standard deviation of the BOLD
signal. This corresponds to a signal-to-noise ratio (SNR) of one and rep-
resents a relatively challenging scenario (Welvaert et al., 2013).

The second synthetic dataset is based on the more complex three-
region bilinear DCM shown in Fig. 3. Similar to the first dataset,
different sets of mean parameter values were used to establish subgroups
among the synthetic subjects. However, unlike in Raman et al. (2016),
this dataset consists of three subgroups: One subgroup of 40 and two
subgroups of 20 subjects each, for a total of 80 subjects. Moreover, the
mean parameter vectors of the two smaller subgroups differ only in three
of the nine parameters of the DCM. A dataset like this might arise, for
example, in a clinical study, where the patient cohort comprises mech-
anistically distinct subgroups which differ only in a subset of parameters.
As with the previous dataset, BOLD signal time series were generated for
each subject with 256 scans per brain region and a TR of two seconds.
The method used to simulate synthetic subjects and generate measure-
ment noise was the same as for the first dataset. The numerical values of
the cluster mean parameters used to generate the two synthetic datasets,
as well as the numerical values of the prior parameters used to invert
HUGE for all datasets are provided in the Supplementary Material (sec-
tion S5).

Empirical dataset
After testing the face validity of the variational inversion scheme

using synthetic data, we also applied our hierarchical model and the VB
inversion to an empirical dataset including stroke patients with aphasia
and healthy controls (Schofield et al., 2012). We used this clinical dataset
for two reasons: first, the original (supervised) generative embedding
analysis of this dataset (Brodersen et al., 2011) sets a challenging
benchmark; second, the working memory dataset on patients with
schizophrenia used by Raman et al. (2016) is characterized by con-
founding variables of no interest (such as age and sex) that critically
affect cluster solutions (see Brodersen et al., 2014). While accounting for
confounding variables is easy to do in the original two-step approach to
generative embedding, it is difficult in our hierarchical model since this
would require re-deriving the update equations.

Subjects consisted of 26 healthy, right-handed subjects with English
as their first language (twelve females; mean age 54.1 years; range 26–72
st synthetic dataset (left) and the bilinear three-region DCM used to generate the

http://www.translationalneuromodeling.org/tapas
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years) and eleven stroke patients (one female; mean age 66.1 years; range
45–90 years) with moderate aphasia. Participants were presented with
two types of auditory stimuli (normal speech and time-reversed speech)
and were asked to report the gender of the speaker for each stimulus. A
1.5 TMR scanner was used to acquire 488 vol (122 vol in four sessions) of
functional images using a T2*-weighted echo-planar imaging (EPI)
sequence sensitive to the BOLD contrast (in-plane resolution
3 mm � 3 mm; slice thickness 2 mm; inter-slice gap 1 mm; TR ¼ 3.15 s,
TE ¼ 50 m s) for each subject. Details are provided by Schofield et al.
(2012).

Based on the data by Schofield et al. (2012), a six-region DCMwith 22
neuronal parameters was used in the original generative embedding
paper to distinguish patients from controls with near-perfect accuracy
(Brodersen et al., 2011). Achieving the same with HUGE represents a
more challenging scenario. First, the original generative embedding
analysis of these data in Brodersen et al. (2011) used a supervised clas-
sification method (i.e., support vector machine) with the neuronal con-
nectivity parameter estimates as input features. Hence, the algorithmwas
aware of the true number of groups (in this case, moderately aphasic
patients and healthy controls) and the true group assignment of each
subject. In contrast, the HUGE approach discussed in this paper is an
unsupervised method – that is, it neither knows the number of group-
s/clusters in the population nor the assignment of each subject.

Additionally, the DCM used in the original analysis (Brodersen et al.,
2011) has 22 neuronal connectivity parameters, which means that the
dimensionality of the feature space is relatively high compared to the
number of data points (37 subjects). Estimating clusters in
high-dimensional space from a limited number of samples is a hard
problem (Bishop, 2006), and local extrema of the objective function may
pose a serious challenge for local optimization schemes like VB.

Given these considerations, we simplified the DCM used in the
analysis of Brodersen et al. (2011) to reduce the dimensionality of the
feature space and thus allow for a more graceful performance of the VB
scheme. Specifically, we excluded the medial geniculate body (MGB),
which, in the original DCM, mainly served as a relay station for auditory
input to Heschl's gyrus (HG). The resulting simplified DCM (Fig. 4)
contains only four regions and sets the driving input directly to bilateral
HG. This simplification reduced the number of neuronal connectivity
from 22 to 14. Notably, however, clustering in 14-dimensional space is
still a challenging task.

We therefore additionally restarted the VB inversion at random initial
positions; this is a common method to reduce the influence of local op-
tima (Bishop, 2006). For the VB scheme for HUGE, we randomize the
initial values of the means of the approximate posterior over DCM pa-
rameters μn and clusters μk by setting these parameters to their prior
value plus random fluctuations sampled from a Gaussian with a standard
Fig. 4. Graphical representation of the DCM used as the basis for the HUGE
analysis of the empirical fMRI dataset (Schofield et al., 2012).
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deviation of 0.1. We used 100 restarts, each time with a different initial
position of the VB scheme. For each of these initial positions, we ran the
VB scheme under three different settings for the number of clusters K
(i.e., 1, 2, or 3). This resulted in 300 runs of the VB scheme from 100
different initial positions. For details concerning the multi-start
approach, see section S8 of the Supplementary Material.
Assessing clustering performance and model fit

Balanced purity
Since the main objective of HUGE is to search for clusters within a

heterogeneous subject population, it is necessary to introduce a measure
of goodness for clustering results, which allows for a quantitative
assessment of the performance of HUGE and the VB inversion. For this
purpose, we use the “balanced purity” criterion introduced by Brodersen
et al. (2014), which measures the degree of agreement between the
inferred cluster labels and the true labels. Balanced purity is a modifi-
cation of the conventional “purity” criterion (Manning et al., 2009),
which corrects for the confounding effects due to imbalanced datasets
(i.e., clusters of different sizes). Given a clustering solution Ω ¼ ðω1;…;

ωk;…;ωKÞ, where ωk contains the indices of all subjects for which cluster
k had the highest posterior probability, and the set of true class assign-
ments Φ ¼ ðc1;…; ck;…; cKÞ, the balanced purity is defined as:

bpðΩ;ΦÞ ¼
�
1� 1

K


�
purityðΩ;ΦÞ � ξ

1� ξ



þ 1
K

purityðΩ;ΦÞ ¼ 1
N

XK
k¼1

maxj
��ωk \ cj

�� (25)

Here, K is the number of clusters, N the number of subjects and��ωk \ cj
�� the number of subjects in cluster k with true label j. The number

ξ denotes the degree of imbalance in the data, defined as the fraction of
subjects associated with the largest class. The balanced purity is 1 for a
perfect clustering result, where the inferred cluster label corresponds to
the correct label for each subject. In contrast, if the clustering scheme
assigns subjects at random, the balanced purity tends towards 1/K on
average.

Bayes factors
In addition to the quality of the clustering result, assessing model fit is

also of importance. Specifically, the number of clusters K is a free
parameter in the current formulation of HUGE, which necessitates an
additional model selection step to determine the value for K that best
represents the acquired data.

Fortunately, the negative free energy, which our VB implementation
of HUGE provides for free, represents a lower bound approximation to
the log-model evidence and thus serves as a principled measure of model
fit in form of Bayes factors. These are defined as the ratio between the
model evidence of two competing models (e.g., K ¼ i versus K ¼ j):

Bij ¼ pðyjm ¼ iÞ
pðyjm ¼ jÞ (26)

Heuristically, one can interpret the Bayes factor as the posterior odds
ratio between models i and j for equal prior odds (Penny et al., 2004).
Conventionally, a Bayes factor of 20 or higher (equivalent to a free en-
ergy difference>3) is considered as strong evidence for the superiority of
one model compared to another (Kass et al., 1995).

Results

In this section, we present clustering results obtained with our VB
inversion scheme for the synthetic and empirical datasets introduced in
section 2.4. In addition, we demonstrate that the HUGEmodel can also be
used to perform a “standard” empirical Bayesian DCM analysis (without
subgroup detection) by assuming a single cluster.
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Synthetic datasets

Simulations: demonstration of empirical Bayes
First, we demonstrate how to perform a “pure” empirical Bayesian

analysis using HUGE and the associated VB scheme. Although designed
as a clustering model, HUGE can be adapted to this task by forcing the
number of clusters to one. This effectively switches of the clustering and
the DCMs for all subjects are inverted while marginalizing out the
Gaussian prior distribution.

For this demonstration, we apply HUGE to the first 40 subjects from
the second synthetic dataset (see Methods) while fixing the number of
clusters to one. The prior distribution was chosen such that the marginal
prior distribution over DCM parameters for each subject corresponds
approximately to the prior distribution over DCM parameter in SPM
(SPM8 r6313, Penny et al., 2007). This choice should maximize the
comparability of the HUGE results with those from single-subject model
inversions in SPM. The numerical values of the prior parameters are
provided in the Supplementary Material (section S5). For comparison, we
additionally invert the DCMs for each subject individually using SPM
(SPM8 r6313, Penny et al., 2007).

Fig. 5 shows the range of ground truth DCM parameter values, as well
as the range of maximum a posteriori (MAP) estimates obtained with
SPM for each subject individually and with empirical Bayes (i.e., HUGE
with number of clusters fixed to one) in a hierarchical setting. The
variability in MAP estimates obtained in a hierarchical setting is
consistently smaller than for the individually obtained MAP estimates.
The VB scheme, run in empirical Bayes configuration, converged within
33 iterations, corresponding to 1.5min on a laptop computer (2.8 GHz,
16 GB RAM). Inverting the DCMs for each subject individually with SPM
required about 10min. In principle, the empirical Bayes analysis could
also be carried out using the MCMC implementation from Raman et al.
(2016) instead of VB, which, however would require significantly more
Fig. 5. The regularizing effect of HUGE on parameter estimation demonstrated for th
truth parameter values (green), maximum a posteriori (MAP) estimates obtained fo
empirical Bayes, i.e. HUGE with K set to one (black). Bottom panels: Actual values of
MAP estimates (black dots) for DCM parameters A11 (Bottom left), A32 (Bottom cen
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computational resources.

Simulations: two-region linear DCM
For the first synthetic dataset based on the two-region linear DCM

shown in Fig. 3, we tested whether the VB inversion method introduced
in the previous section could recover both the data-generating parameter
values for each subject, as well as the group structure (i.e., two sub-
groups) in an unsupervised fashion. In addition, we compared all results
to those obtained with the MCMC implementation from Raman et al.
(2016). For this purpose, we ran five independent chains and pooled the
samples from all chains resulting in a total of 500,000 samples.
Convergence was monitored with the potential scale reduction factor
(PSRF) proposed by Gelman et al. (1992). The results are presented
alongside those of VB (for details concerning the MCMC inversion, see
Supplementary Material, section S7).

Both the VB and MCMC algorithms correctly identified the existence
of two clusters and assigned the synthetic subjects to the correct cluster
with high accuracy. Specifically, VB assigned only one subject (i.e.,
subject 26) to the wrong cluster (cluster 1 instead of the “true” cluster 2),
which corresponds to a balanced purity of 97.5% (see Eq. (25) for the
definition of balanced purity). In comparison, the MCMC inversion was
able to assign all subjects correctly, although the posterior assignment
probability for subject 26 was only 65%. Fig. 6 shows the posterior
assignment probabilities estimated by VB and MCMC for K¼ 2.

Fig. 7 shows the estimated cluster mean parameter values obtained
under VB and MCMC inversion, as well as the true mean parameter
values. Both inversion schemes accurately recover most data-generating
parameter values, with MCMC delivering slightly more accurate esti-
mates. A notable exception is the A12 parameter of the second cluster,
which neither VB nor MCMC could estimate reliably (Fig. 7). This is
likely due to the structure of the underlying DCM. Specifically, the values
of both A12 and the input strength C22 to region 2 are relatively small,
e first 40 subjects from the second synthetic dataset. Top panel: Range of ground
r each subject individually with SPM (blue) and MAP estimates obtained with
ground truth (green dots), SPM MAP estimates (blue dots) and empirical Bayes

ter) and B32
(2) (Bottom right).



Fig. 6. Synthetic data from the two-region DCM: Estimated assignment probability of subjects to clusters for K¼ 2 obtained with VB (top panel) and MCMC (bottom
panel). Red lines indicate correct assignments: subjects 1–20 – cluster 1 and subjects 21–40 – cluster 2. The balanced purity is 97.5% for VB and 100% for MCMC.

Fig. 7. Synthetic data from the two-region DCM: Cluster mean estimates for K¼ 2 with top panel showing cluster 1 and bottom panel cluster 2. True (data-generating)
cluster means are shown in black, VB estimates in dark grey and MCMC estimates in light grey. Red error bars indicate marginal 95% credible intervals.
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making the link from region 2 to region 1 weak and thus challenging to
estimate. Interestingly, however, VB and MCMC handle this situation
differently. Under the influence of the prior, the VB estimate of A12 re-
verts to the prior mean of 0.0078 (compare Supplementary Material,
Table S2), although the size of the error bar indicates that VB is over-
confident about this estimate. This is a known issue of the specific form of
the KL-divergence used in the negative free energy approximation of VB
(for details, see Bishop, 2006). On the other hand, MCMC seems to
deliver the expected result, i.e., mean estimate between the prior and the
true parameter, with large posterior variance. However, closer inspection
reveals that the large size of the error bars is due to the five chains not
converging properly for this particular parameter (for details, see Sup-
plementary Material, section S7.1).

Next, we addressed the question regarding the optimal number of
clusters, given the observed data. Since the number of clusters has to be
pre-specified in the current formulation of HUGE, we repeated the VB
612
inversion under various settings of the number of mixture components K.
Specifically, here we tested K¼ [1,2,3,4] and then compared the nega-
tive free energies for the different settings (Fig. 8). We observed that a
model with two mixture components outperformed models with less or
more components. This can be quantified using Bayes factors (see Eq.
(26)), which for the current dataset are B21¼ 3.6� 108, B23¼ 22.3 and
B24¼ 324.3. In summary, using the negative free energy obtained with
the VB inversion scheme, HUGE correctly detected that the data were
generated from two distinct clusters, with relatively small computational
overhead. Notably, the same analysis with MCMC inversion would
require the use of thermodynamic integration (Calderhead et al., 2009)
as the current gold standard for computing the model evidence, leading
to prohibitive demands on computational resources.

A plot of the posterior parameters αk of the Dirichlet distribution over
the cluster weights for the two-, three- and four-component model re-
veals that for the models with K> 2 only two of their components make a



Fig. 8. Model comparison for two-region DCM (simulated data): Negative free
energy differences (relative to the worst model) as a function of the number of
mixture components in the model.
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non-negligible contribution (Fig. 9). Hence, the additional flexibility of
these models does not allow for a better explanation of the data. At the
same time, the additional complexity of including these superfluous
components imposes a penalty, which leads to the observed decrease in
negative free energy for K> 2.

VB inversion for K¼ 2 required 254 iterations of the update equa-
tions, corresponding to 6.5min on a laptop computer (2.8 GHz, 16 GB
RAM). In contrast, the MCMC-based inversion for K¼ 2 on the same
dataset using the same computer with the settings reported in Raman
et al. (2016) – that is, 200,000 samples including 100,000 samples
burn-in – required 5.5 h per chain. This corresponds roughly to a
speed-up of two orders of magnitude by the VB scheme proposed in this
paper.

Simulations: three-region bilinear DCM
The second synthetic dataset was based on the three-region bilinear

DCM shown in Fig. 3. This dataset represents a more challenging scenario
than the first dataset for the following reasons: (i) it includes bilinear
(i.e., modulatory) effects, (ii) it includes three clusters of subjects, two of
which differ only in a subset of parameters, and (iii) the number of DCM
connectivity parameters per subject increased from five to nine. Gener-
ally, clustering becomes more difficult with increasing dimensionality of
the feature space (Bishop, 2006). We applied both the VB and MCMC
inversion schemes with K¼ 3 to the 80 sets of synthetic BOLD data and
again found that most subjects were assigned to the correct clusters
(Fig. 10). The high clustering accuracy is also reflected by the balanced
purity of 98.3% (VB and MCMC). Note that as with the previous dataset,
we ran five independent MCMC chains and pooled the samples from all
chains. Convergence was monitored with the PSRF proposed by Gelman
et al. (1992) (for details, see Supplementary Material S7.2).

Fig. 11 shows that for most of the parameters, the cluster means could
be accurately recovered. Again, the MCMC estimate (derived from
500,000 samples) delivered slightly more accurate estimates than VB.
This is most evident for parameters A31 and A32, which is due to the
Fig. 9. Synthetic data from the two-region DCM: Parameters of the posterior distribu
and K¼ 4 (right panel) components. The parameter αk corresponds approximately t
K> 2, no subjects were assigned to the clusters beyond two; however, αk is non-zer
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intrinsic difficulty of disentangling the contribution of two potential
causes (activity in regions 1 and 2) for a single observation (activity in
region 3).

For this dataset, we again varied the number of mixture components
and compared the negative free energy across these different settings.
The result is consistent with our observations for the first (simpler)
dataset and suggests that, even for more challenging scenarios (i.e.,
larger dimensionality of the feature space), our VB inversion scheme for
HUGE is able to accurately detect the correct number of distinct clusters
(Fig. 12). The free energy values shown in Fig. 12 correspond to Bayes
factors of B31¼ 3.4� 1015, B32¼ 2.2� 104 and B34¼ 26. Comparing the
computation times between VB-based and MCMC-based inversion
schemes, VB inversion required 38 iterations of the update equations,
corresponding to 3.5 min (for K¼ 3) on a laptop computer (2.8 GHz,
16 GB RAM), while the MCMC-based inversion required 13.8 h per chain
on the same computer.

Interestingly, for K¼ 2, both VB and MCMC converged to a reason-
able solution where subjects 1–40, which originated from the most
distinct cluster, were assigned to one cluster and subjects 41–80, which
originated from the other two more similar clusters, were assigned to the
remaining cluster (result not shown).

Empirical fMRI dataset

Next, we applied our VB inversion scheme for HUGE to the empirical
dataset described in section 2.4. As noted above, we used a multi-start
approach and selected the result with the highest negative free energy
for each setting of K. The setting with two clusters outperformed the
other settings in terms of the negative free energy (Fig. 13). The Bayes
factors between models with different number of clusters are
B21¼ 2.2� 108 and B23¼ 1.0� 104. The assignment probabilities for the
two-cluster case is shown in Fig. 13. The resulting balanced purity of
95.5% indicates excellent separation of aphasic patients and healthy
controls. For details on the multi-start approach, see section S8 in the
Supplementary Material.

Finally, we inspected the estimates of the cluster means for the
maximum negative free energy solution (i.e., K¼ 2) in order to identify
the parameters that were discriminative between healthy controls and
aphasic patients (Fig. 13). From visual inspection, it appears that these
parameters include particularly the self-connection of left HG, left PT to
left HG, the self-connection of left PT, right HG to left HG, right HG to
right PT, right PT to left PT, right PT to right HG, the input strength to
right HG and to a lesser extend also left HG to left PT and left HG to right
HG. Notably, this list includes the interhemispheric connections from
right to left hemisphere and the connection from left HG to left PT. These
parameters belong to the subset of discriminative features that were
found to be sufficient to distinguish between patients and healthy con-
trols in the original supervised generative embedding analysis by Bro-
dersen et al. (2011).

As before, we inverted the dataset with the MCMC implementation
tion over cluster weights for models with K¼ 2 (left panel), K¼ 3 (center panel)
o the effective number of subjects assigned to that cluster. For the models with
o due to the prior, which assigns pseudo-observations to all clusters.



Fig. 10. Synthetic data from the three-region DCM: Estimated assignment probability of subjects to clusters for K¼ 3 obtained with VB (top panel) and MCMC (bottom
panel). Red lines indicate correct assignments: subjects 1–40 – cluster 1, subjects 41–60 – cluster 2 and subjects 61–80 – cluster 3. The balanced purity is 98.3% for
both VB and MCMC.

Fig. 11. Synthetic data from the three-region DCM: Cluster mean estimates for K¼ 3 with top panel showing cluster 1, middle panel cluster 2 and bottom panel cluster
3. True (data generating) cluster means are shown in black, VB estimates in dark grey and MCMC estimates in light grey. Red error bars indicate marginal 95%
credible intervals.
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from Raman et al. (2016). For this purpose, we ran four independent
chains with K¼ 2 and 800,000 samples each (including 100,000 samples
614
burn-in). Visual inspection of Fig. 14, which shows subject assignment
and cluster mean estimates obtained by pooling the samples from all



Fig. 12. Model comparison for three-region DCM (simulated data): Negative
free energy differences (relative to the worst model) as a function of the number
of mixture components in the model.

Fig. 13. VB results for the aphasia dataset: Top left: Negative free energy differences relative to the worst model. Values shown here represent the maximum negative
free energy obtained for each of the settings K¼ [1,2,3] from the 100 restarts. Top right: Estimated assignment probability of subjects to clusters for K¼ 2 (balanced
purity: 95.5%). Bottom panel: Estimated cluster means from the maximum negative free energy solution with K¼ 2. Red error bars indicate marginal 95% cred-
ible intervals.

1 This number represents only a rough ballpark figure, since the processors of
the cluster have different performance characteristics.
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chains, indicates a plausible result with balanced purity of 100%.
Furthermore, most cluster mean estimates appear to be consistent with
VB (Fig. 13). Notably, these include the self-connection of left HG and the
connections from left HG to left PT and left PT to left HG, which seem to
be highly discriminative between controls and patients in both MCMC
and VB based analyses. On the other hand, the PSRF revealed that,
despite being significantly longer, the different chains did not converge
as consistently for this dataset as they did for the synthetic datasets,
which is also the reason behind the relatively wide error bars in Fig. 14.
Hence, the posterior estimates of the MCMC inversion should be inter-
preted with caution. A detailed discussion of this result is provided in
section S7.3 in the Supplementary Material.

The 300 instances of the VB-based inversion of HUGE for the
empirical dataset were performed on a computer cluster, which could run
all inversions in parallel. One inversion required on average 143 itera-
tions of the VB update equations with 90% of all inversions converging in
615
less than 220 iterations. This translates into an average computation time
of about 30 minutes1. Repeating the VB inversion on a laptop computer
(2.8 GHz, 16 GB RAM) for the starting positions that yielded the highest
negative free energy for all three cases (K¼ [1,2,3]) resulted in compu-
tation times that were 9.7 min (73 iterations) for K¼ 1, 15min (112 it-
erations) for K¼ 2 and 22.5min (167 iterations) for K¼ 3. The increase
in computation time compared to the synthetic datasets is due to the
increased dimensionality of the feature space. Model inversion under the
MCMC scheme (for K¼ 2) was performed on the same HCP cluster as the
multi-start scheme for VB and required on average 52 h per chain.

Discussion

The approach described in this paper – hierarchical unsupervised
generative embedding (HUGE) – unifies two important streams of
development in neuroimaging: (i) hierarchical models for empirical
Bayesian analyses of multi-subject fMRI data (Friston et al., 2016; Lind-
quist et al., 2017; Sanyal et al., 2012), and (ii) combining generative
models of single-subject fMRI data with (un)supervised learning for
clinical predictions (Brodersen et al., 2014; Brodersen et al., 2011; Ste-
phan et al., 2017). An early version of HUGE was based on computa-
tionally demanding MCMC sampling (Raman et al., 2016). In this paper,
we derived a novel and efficient VB inversion scheme for hierarchical
unsupervised generative embedding (HUGE), evaluated its face validity
using simulations, and demonstrated its practical utility for empirical
Bayesian analyses of DCM. Specifically, the results on the synthetic
datasets indicate that VB is able to achieve an accuracy comparable to



Fig. 14. MCMC results for the aphasia dataset: Top panel: Assignment estimates (balanced purity: 100%; The probability of subject 36 being in cluster 2 is barely
above 50%). Bottom panel: cluster mean estimates. Red error bars indicate marginal 95% credible intervals.
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MCMC, despite its dependence on approximations which are not present
in the MCMC scheme. Based on 500,000 samples for the synthetic
datasets and 2,800,000 samples for the empirical dataset (excluding
burn-in), MCMC delivers only slightly more accurate results in terms of
balanced purity and cluster mean estimates. In addition to the simula-
tions, we also showed that the VB framework can identify the group
structure in a real-world dataset. In the following, we discuss novelty,
advantages and disadvantages of HUGE and its VB-based inversion, the
computational complexity of the VB inversion scheme and potential
additional savings that could be obtained using parallel computing
techniques.

Generative embedding exploits a key advantage of generative models
(i.e., providing a low-dimensional approximation to how high-
dimensional data were generated) in order to obtain a compact and
interpretable feature space for subsequent (un)supervised learning
(Brodersen et al., 2014; Brodersen et al., 2011). Its unsupervised variant
was introduced as a strategy to address a central problem in computa-
tional psychiatry: the need to stratify heterogeneous spectrum disorders
into pathophysiologically more homogenous subgroups and thus
enhance the predictive validity of diagnoses (Stephan et al., 2017). HUGE
unifies the original two-step procedure of generative embedding into the
inversion of a single hierarchical model. This is not only mathematically
more elegant (and challenging) but offers several important conceptual
advantages: (i) it allows the prior to be learned from the data (empirical
Bayes), (ii) it enables subgroup-specific regularization (i.e.
subgroup-specific priors), and (iii) the detection of clusters takes uncer-
tainty about connectivity parameter estimates into account. In addition,
(iv) HUGE uses a specifically derived and efficient VB implementation
that, wherever possible, exploits conjugacy to obtain fast, analytical
update equations. By combining these four aspects, the HUGE imple-
mentation presented in this paper represents a first method with which it
becomes feasible in practice (with acceptably short runtimes even for
larger datasets) to detect, in a completely unsupervised manner, sub-
groups in heterogeneous populations that are defined by effective
connectivity.

The novel aspects of HUGE may be best appreciated by juxtaposing it
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to other hierarchical models of fMRI data. In recent years, the fMRI
literature has seen the emergence of several hierarchical models of brain
activity and connectivity (e.g., Bielczyk et al., 2018; Ktena et al., 2018;
Mandke et al., 2018; Richiardi et al., 2011; Vidaurre et al., 2017). We
briefly comment on three schemes in a bit more detail since their com-
parison with HUGE may usefully illustrate unique contributions by the
present work. First, Janssen et al. (2015) also include a mixture model in
a hierarchical model (see also Hinne et al., 2015), but with important
differences to HUGE. Janssen et al. (2015) used a non-parametric
Bayesian approach (an infinite Gaussian mixture model) to cluster
resting-state fMRI time series; in contrast, the mixture model component
in HUGE acts on latent variables (DCM parameters) which serve as a
model-based dimensionality reduction layer between the mixture model
and the fMRI observations. Furthermore, to obtain subject-specific results
(in their case, parcellations), Janssen et al. (2015) use a two-step
approach. By contrast, a single inversion of the HUGE model yields
both subject-specific parameter estimates, as well as group-level (i.e.,
clustering) results. Finally, the model by Janssen et al. (2015) does not
directly estimate connectivity (but is primarily interested in assigning
voxels to clusters based on their time series, with functional connectivity
examined post hoc once clusters are determined), whereas HUGE pro-
vides estimates of effective connectivity. Second, Benozzo et al. (2017)
present a hierarchical model that also provides estimates of effective
connectivity but is based on a different formalism (Granger causality)
and uses a different approximate Bayesian inference scheme (Expectation
Propagation). In this model, hierarchy has a different purpose than in
HUGE and serves to induce sparsity in model coefficients. A final key
distinction is that this model, unlike HUGE, does not possess a hemo-
dynamic forward model but directly operates on measured BOLD signals.
Third, the model conceptually closest to HUGE is the work by Friston
et al. (2016) on parametric empirical Bayes (PEB) for DCM. PEB-DCM
represents an empirical Bayesian approach for inverting a hierarchical
model of multi-subject DCMs. PEB-DCM inverts a “full” (i.e., maximally
parameterized) model, using the Variational Laplace algorithm (Friston
et al., 2007), and uses Bayesian model reduction for selecting a (nested)
submodel. Unlike PEB-DCM, HUGE does not universally employ the
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Laplace approximation, but, wherever possible, uses conjugate priors to
derive analytical update equations. Furthermore, PEB-DCM is a super-
vised method and requires that group labels are known; by contrast,
HUGE enables the unsupervised detection of subgroups in the population
studied and allows for empirical Bayes to unfold separately for each of
the (initially unknown) subgroups.

Returning to the comparison of HUGE to the classical two-step
generative embedding procedure using DCM, several advances are
notable. Concerning the first point mentioned above, classical DCM is a
fully Bayesian approach that requires specifying priors for the various
model parameters, raising the question how inferencemay depend on the
particular choice of priors. HUGE allows for an empirical Bayesian
approach to this problem by introducing a distribution over priors (i.e., a
hyperprior). Although this shifts the choice to the level of hyperpriors, it
enables the model to marginalize over a range of prior settings and to
adjust for general trends in the population by providing an additional
degree of freedom; thus, alleviating the influence of prior assumptions on
results for individual subjects.

Regarding the second point, the ability to learn different priors for
different subgroups enables HUGE to exert subgroup-specific regulari-
zation. This is particularly helpful for dealing with heterogeneous clinical
populations that are thought to consist of numerous (but typically poorly
known) subgroups (Brodersen et al., 2014; Stephan et al., 2017). By
contrast, even in the presence of prior evidence for the existence of
multiple subgroups in the population, classical generative embedding
would use the same priors for the inversion of the DCM of all subjects. In
HUGE, inference on subject-specific parameters in HUGE is guided by
inference on subject-wise cluster assignment; critically, this unfolds
automatically without the need to specify prior assignment preferences
for individual subjects.

With regard to the third point, HUGE neither performs clustering on
observed data nor on point estimates, but on the full posterior densities of
DCM parameters (which are estimated in parallel). In the classical two-
step generative embedding approach, point estimates (e.g., MAPs) of
the posterior are obtained from subject-wise model inversions and used
as input features for (un)supervised learning. By contrast, in HUGE, the
clustering step takes the uncertainty of the DCM parameter estimation
into account. This is evident from the VB update equations (specifically,

the term �0:5νktrðS�1
k ΣðcÞ

n Þ in the expression for the cluster assignments,
see Eq. (18)). The VB inference scheme tends to prefer solutions where
most subjects are assigned to one large cluster. Generally, this is a
desirable property: for noisy input, the more principled approach of
HUGE yields a conservative solution with regard to cluster assignments.
However, in application contexts where sensitivity of subgroup detection
is paramount, priors for the mixture model component may have to be
adapted compared to our current configuration.

Fourth, HUGE benefits from a novel VB inversion scheme that was
specifically derived for its purpose (details of the derivation are provided
by the Supplementary Material). A significant benefit afforded by model
inversion under VB is that it automatically delivers an approximation to
the log model evidence (the negative free energy). In a Bayesian setting,
the model evidence is a principled metric of model goodness and is
routinely used to distinguish between competing models (Bishop, 2006;
MacKay, 2004). One example of the utility of Bayesian model selection in
the context of HUGE concerns the choice of the optimal number of
clusters, as demonstrated in section 3. Furthermore, different connec-
tivity structures of the underlying DCM can also be compared. By
contrast, computing the model evidence with Monte Carlo-based
methods poses additional computational demands. Simple
sampling-based estimators of the model evidence (e.g., prior arithmetic
mean, posterior harmonic mean) have serious limitations; a superior
alternative is thermodynamic integration (TI) (Calderhead et al., 2009;
Lartillot et al., 2006; Paquet, 2008). Critically, TI requires numerous
parallel MCMC chains at different temperatures, rendering TI computa-
tionally very expensive. Only recently, parallel computing techniques
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have been introduced that exploit the processing power of GPUs and
begin to make TI feasible (Aponte et al., 2016). In addition, detecting
failure of convergence of the MCMC chain, as seen for the aphasia dataset
in our examples above, is a nontrivial task (Gelman et al., 1992).

In the previous paragraphs, we have highlighted some advantages of
HUGE over the original (two-step) generative embedding approach.
However, more complex models incur an increase in computational de-
mands, which may threaten the practical utility of a model. For HUGE,
approximate inversion methods like VB or expectation propagation
represent a promising alternative to earlier MCMC-based formulations
(Raman et al., 2016). The VB inversion presented here provides a
speed-up of two orders of magnitude compared to the MCMC-based
inversion presented in Raman et al. (2016). On the other hand, consid-
ering that multi-start procedures may be necessary to protect against
local optima, one might wonder whether in practice the VB inversion
scheme provides any computational advantage over MCMC. However,
the different instances (i.e., random restarts) of VB can be parallelized,
while a single MCMC chain cannot (for a detailed analysis, see Supple-
mentary Material section S8). Furthermore, the structure of the VB up-
date equations allows for additional savings by applying parallel
processing techniques to the numerical calculation of the Jacobians Gn

(see Eq. (20)). A detailed analysis of the computation time of the VB
inversion scheme for HUGE revealed that the bottleneck in the current
implementation is the evaluation of the neuronal and hemodynamic state
equations gðθn; uÞ (Eq. (8)), which accounts for about 90% of the
computation time. This is mainly due to the complexity of the numerical
integration involved in evaluating the neuronal and hemodynamic
equations, but also because the Jacobian Gn is presently evaluated with
the finite difference method. Our analysis indicated that exploitation of
opportunities for parallelization would allow for a further speed-up by
nearly one order of magnitude. This is something we will pursue in future
work. A detailed analysis of this topic is provided in the Supplementary
Material section S6.

Another advantage of our approach is that VB is not affected by the
so-called label-switching problem for mixture models. Label-switching
refers to the phenomena that, in a mixture model with symmetric
priors, permuting the numbering of the clusters does not change the
posterior distribution. When applying Monte Carlo methods to mixture
models, the label-switching problem prevents obtaining cluster-related
estimates (e.g., the cluster mean) by simply taking the ergodic averages
of samples (Celeux, 1998). Label-switching is commonly solved by either
introducing constraints on the parameters (e.g., forcing an ordering on
the cluster means) (Richardson et al., 1997) or using re-labelling schemes
(Celeux, 1998). However, both approaches have their limitations, and
using VB avoids the label-switching problem altogether.

Despite the advantages highlighted above, VB also has a number of
limitations. The most severe limitation is its susceptibility to local
extrema, which we also observed in our analysis of the empirical dataset.
Specifically, clustering solutions obtained under VB can depend strongly
on the choice of the initial (starting) values of the algorithm. This is a
well-known problem of VB, which is aggravated by the complexity of the
hierarchical DCM which induces strong posterior correlations among
different parameters. This problem puts a limit on the accuracy achiev-
able with our VB scheme in particular and the HUGE model in general.
For the empirical dataset, we addressed the problem of local maxima by
running the optimization repeatedly from random starting positions.
However, this multi-start strategy becomes less effective with increasing
dimensionality of the problem (Bishop, 2006) and does not guarantee
convergence to the global maximum. For a more detailed analysis of the
multi-start approach for the empirical dataset, see section S8 in the
Supplementary Material.

Having said this, we would like to emphasize that the empirical
dataset utilized in this paper constitutes a challenging scenario for clus-
tering because of the small sample size and the relatively high dimen-
sionality of the parameter space. Unfortunately, in fMRI studies,
conditions like these are encountered frequently. Generally, one should
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strive for larger numbers of subjects and compact single-subject models
(e.g., reducing the size of the networks studied and thus the dimen-
sionality of the parameter space in which clustering takes place) in order
to create graceful conditions for generative embedding analyses with
HUGE. However, it is worth emphasizing that the requirement of many
subjects relative to features is not specific for HUGE but similarly applies
to any unsupervised learning approach (Bishop, 2006). Deciding be-
tween different potential DCMs (including network structures with
different numbers of regions) can be done straightforwardly by
comparing which model optimizes the balanced purity with respect to
the external criteria of interest (e.g., clinical diagnoses or outcomes).
Notably, there is no overfitting issue here: these criteria are completely
independent from the model and its estimation.

A final and important point raised by Raman et al. (2016) concerns
the representation of potentially confounding effects by covariates like
age, gender or handedness in the hierarchical model. These effects can
overshadow effects of interest, such as differences between subgroups of
patients, and taking these confounds into account can be essential for
obtaining meaningful clustering results (Brodersen et al., 2014). Notably,
while correcting for confounding covariates is straightforward in the
two-step procedure of generative embedding (Brodersen et al., 2014),
this is a non-trivial endeavor for the hierarchical model presented here
because introducing covariates affects the update equations of the full
model. Nevertheless, given the importance of this issue for clinical ap-
plications, future extensions of HUGE will incorporate covariates into the
hierarchical model.
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