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Despite the success of modern neuroimaging techniques in furthering our under-
standing of cognitive and pathophysiological processes, translation of these
advances into clinically relevant tools has been virtually absent until now. Neuromo-
deling represents a powerful framework for overcoming this translational deadlock,
and the development of computational models to solve clinical problems has become
a major scientific goal over the last decade, as reflected by the emergence of clini-
cally oriented neuromodeling fields like Computational Psychiatry, Computational
Neurology, and Computational Psychosomatics. Generative models of brain physiol-
ogy and connectivity in the human brain play a key role in this endeavor, striving for
computational assays that can be applied to neuroimaging data from individual
patients for differential diagnosis and treatment prediction. In this review, we focus
on dynamic causal modeling (DCM) and its use for Computational Psychiatry.
DCM is a widely used generative modeling framework for functional magnetic reso-
nance imaging (fMRI) and magneto-/electroencephalography (M/EEG) data. This
article reviews the basic concepts of DCM, revisits examples where it has proven
valuable for addressing clinically relevant questions, and critically discusses method-
ological challenges and recent methodological advances. We conclude this review
with a more general discussion of the promises and pitfalls of generative models in
Computational Psychiatry and highlight the path that lies ahead of us.
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1 | INTRODUCTION

Psychiatry faces fundamental conceptual and practical challenges with regard to reliable differential diagnosis, as well as pre-
diction of clinical trajectories and treatment success in individual patients (Kapur, Phillips, & Insel, 2012; Krystal & State,
2014; Owen, 2014; Stephan, Bach, et al., 2016). At the moment, psychiatric diagnostics is informed by a syndromatic nosol-
ogy as defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM; American Psychiatric Association,
2013) or the International Classification of Diseases (ICD; World Health Organization, 1990). These schemes do not rest on
pathophysiological or aetiological concepts, but suggest a descriptive taxonomy based on symptoms and signs. More impor-
tantly, however, the clinical categories proposed by these schemes (e.g., schizophrenia or depression) lack predictive validity
with regard to clinical trajectories and do not provide treatment predictions for individual patients (Cuthbert & Insel, 2010,
2013; Kapur et al., 2012). Hence, physicians select therapies with respect to symptoms and side effects, typically engaging
in prolonged trial-and-error treatment until eventually an effective medication is found. This has been illustrated by studies
like the Sequential Treatment Alternatives to Relieve Depression (STAR*D) study which suggested that—in a sample of
roughly 3,000 depressed patients—even after four sequential treatment adjustments, only two-thirds of the patients showed a
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therapeutic benefit (Rush et al., 2006). This is not only frustrating for patients and physicians alike, but also time-consuming
and expensive (Insel, 2008).

This unsatisfactory state of affairs in psychiatry is widely recognized, and there is a strong drive towards exploiting novel
approaches that could not only furnish a deeper understanding of the pathophysiological processes underlying mental disorders
(Stephan, Binder, et al., 2016) but also enable individual treatment predictions. While prominent efforts in this regard have been
made by (epi)genetics and neuroimaging, theses promises are yet to be fulfilled (Braff & Freedman, 2008; Kapur et al., 2012).

In neuroimaging, techniques such as functional magnetic resonance imaging (fMRI) and magneto-/electroencephalography
(M/EEG) enable non-invasive measures of human brain function and thus offer functional readouts from symptom-producing
neural circuits in psychiatric conditions. These techniques have been maturing over decades (Berger, 1929; Ogawa, Lee, Kay, &
Tank, 1990) and have considerably advanced our understanding of the physiology of cognitive processes. However, these
advances have not yet been translated into routine clinical practice (Filiou & Turck, 2011; Kapur et al., 2012). While there are
several possible reasons for this lack in clinical utility (Kapur et al., 2012; Stephan, Iglesias, Heinzle, & Diaconescu, 2015), one
fundamental aspect is the descriptive nature of most clinical neuroimaging studies: on their own, neither localized changes in
brain anatomy or activity nor aberrations of functional connectivity provide a mechanistic understanding of pathophysiology
and do not easily inform the development of biologically grounded clinical tests (Stephan et al., 2015).

A promising alternative is a computational approach to neuroimaging, with mathematical models that capture hypothesized physi-
ological and computational mechanisms. This is at the heart of clinical neuromodeling (Figure 1), with different specialized fields that
are currently emerging, including Computational Psychiatry (Friston, Stephan, Montague, & Dolan, 2014; Huys, Maia, & Frank,
2016; Maia & Frank, 2011; Montague, Dolan, Friston, & Dayan, 2012; Stephan & Mathys, 2014; Wang & Krystal, 2014), Computa-
tional Neurology (Jirsa et al., 2016; Maia & Frank, 2011), and Computational Psychosomatics (Petzschner, Weber, Gard, & Stephan,
2017). While various computational approaches exist (for review, see Stephan et al., 2015), we restrict our discussion to so-called gen-
erative models (Box 1). These are described by the likelihood function, which is the probability of the data given a set of model
parameters, and the prior distribution, which encodes the a priori plausible regime of parameter values. Generally, generative
(Bayesian) models have a number of advantages compared to frequentist approaches and have thus gained increasing popularity over
the last years. In all brevity, these advantages include: First, generative models force us to think carefully about the mechanisms
underlying measurements and alternative hypotheses about the data-generating process. Furthermore, when writing down the exact
form of the generative model, inherent assumptions have to be made explicit. Second, having specified a generative model, one can
easily generate synthetic (simulated) data by sampling parameter values from the prior and inserting them into the likelihood function.
This allows for testing the utility of a given model for explaining certain phenomena before acquiring data. Third, generative models
allow for inference on model structure, based on the model evidence, which encodes the probability of the data given a model. This
provides a formal way to compare competing hypotheses about the mechanisms that have generated the observed data
(e.g., neuroimaging data, clinical symptoms). Simultaneously, generative models enable inference on model parameters which ideally
afford some degree of mechanistic interpretability on the putative processes underlying the studied phenomenon (e.g., cognitive func-
tions in health, or symptom-producing abnormalities in psychiatric and neurological conditions).

Their quest for mechanistic interpretability renders generative models naturally relevant for clinical applications. For
instance, as is described in detail below, model comparison could provide a formal basis for differential diagnosis, and model
parameter estimates provide compact, quantitative summaries of pathophysiological mechanisms. The latter can be used as
input for machine learning techniques to stratify heterogeneous spectrum disorders or predict outcomes. This “generative

FIGURE 1 Taxonomy for different disciplines in the computational neurosciences and their relation to clinical questions. (Reprinted with permission from
Stephan, Siemerkus, Bishop, & Haker, 2017. Copyright 2017 Hogrefe AG)
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embedding” approach (Brodersen et al., 2011, 2014) views a generative model as a theory-driven dimensionality reduction
device that projects high-dimensional data onto a mechanistically interpretable feature space.

This review focuses on dynamic causal models (DCMs), a frequently used generative modeling framework that is used
both for inferring physiological processes in local neuronal circuits and for inferring effective connectivity in distributed net-
works from neuroimaging data. Effective connectivity refers to the directed influences that neuronal populations exert over
another. This requires a generative model that provides a forward mapping from hidden (latent) neuronal circuit dynamics to
observable signals (Friston, Moran, & Seth, 2013). This is in contrast to functional connectivity which represents statistical
dependencies between regional measurements—and is thus essentially descriptive and undirected (Friston, 2011). Reviews
on other methods for estimating effective connectivity can be found elsewhere (Roebroeck, Formisano, & Goebel, 2011;
Valdes-Sosa, Roebroeck, Daunizeau, & Friston, 2011). Initially introduced for fMRI data (Friston, Harrison, & Penny,
2003), DCM was later extended to electrophysiological data (MEG/EEG; David et al., 2006; David, Harrison, & Friston,
2005). Regardless of the exact data modality, DCM rests on a hierarchically structured likelihood function or forward model
that distinguishes between (a) state or evolution equations that describe the dynamics of hidden neuronal (and, for fMRI,
hemodynamic) states and (b) observation equations that map the system’s states onto experimental measurements, such as
fMRI or M/EEG signals.

BOX 1

DEFINITION OF GENERATIVE MODELS

GENERATIVE MODELS

A generative model provides the joint probability p(y,θ|m) over measured data y and model parameters θ, given the
model m. This requires specifying the likelihood function p(y|θ,m), which describes the probability of the data given a
set of model parameters, and the prior distribution p(θ|m), which encodes the a priori plausible regime of parameter
values. Together, the likelihood function and the prior density represent a full probabilistic forward mapping from the
latent (hidden) model parameters to the measured data. Having specified such a forward mapping, one can generate
synthetic (simulated) data by sampling parameter values from the prior and inserting them into the likelihood function.

More importantly, generative models allow one to infer the latent (hidden) parameter values of the system from the
measured data. This is known as “model inversion” (or simply “inference”) and essentially corresponds to computing
the posterior distribution of the model parameters according to Bayes theorem:

p θ y,mjð Þ= p y θ,mjð Þp θ mjð Þ
p y mjð Þ ð2Þ

where p(y|m) is the model evidence or marginal likelihood, which encodes how likely it is to obtain the measured data
under the model m when randomly sampling from the prior. Since evaluating Equation (2) directly is often com-
putationally infeasible, model inversion almost always proceeds using approximate Bayesian estimation tech-
niques, for example, variational Bayes or Markov chain Monte Carlo sampling.

BOX 1. Schematic illustration of generative models, which provide a full probabilistic forward mapping from the latent (hidden) model parameters to
the measured data in terms of the likelihood function and the prior distribution. Using Bayes theorem, the latent (hidden) parameter values of the
system can be inferred from the measured data—a process that is known as “model inversion” (or simply “inference”) and essentially corresponds to
computing the posterior distribution of the model parameters. (Reprinted with permission from Stephan, Manjaly, et al. (2016). Copyright 2016
Frontiers)
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Models of effective connectivity are particularly promising for studying pathophysiological mechanisms in the human
brain because aberrant functional integration of large-scale brain networks has been suggested to play a central role in disease
concepts of various psychiatric (and neurological) disorders (Deco & Kringelbach, 2014; Menon, 2011). At a smaller scale,
impairments in synaptic plasticity have been proposed as putative mechanisms for circuit dysfunction and the pathophysiol-
ogy of brain disorders (Klassen et al., 2011; Lau & Zukin, 2007). One theory that explicitly refers to interactions between
these different scales (i.e., network and synaptic abnormalities) is the “dysconnection hypothesis” of schizophrenia. This
posits that impairments in dopaminergic and/or cholinergic regulation of NMDA receptor dependent synaptic plasticity lead
to dysconnectivity in distributed circuits for perception and learning (Friston, 1998; Friston, Brown, Siemerkus, & Stephan,
2016; Stephan, Baldeweg, & Friston, 2006; Stephan, Friston, & Frith, 2009). DCM is a useful framework to study interac-
tions across network scales since its different variants cover a wide range of levels of description, ranging from relatively
coarse, phenomenological measures of effective connectivity between large neuronal populations (DCM for fMRI; Friston
et al., 2003) to estimates of the conductance of ion channels at specific synapses (conductance-based DCM for M/EEG; Gil-
bert et al., 2016; Moran, Symmonds, Stephan, Friston, & Dolan, 2011).

In what follows, we first briefly revisit the basic concepts of DCM. Second, we describe proof-of-concept studies that
illustrate the utility of DCM for Computational Psychiatry. Third, we examine methodological challenges that need to be
addressed in order to advance the clinical applicability of DCM, and summarize recent methodological extensions to the orig-
inal framework that may offer solutions to these problems. We conclude this article by outlining important future steps for
the field of computational psychiatry.

2 | DYNAMIC CAUSAL MODELING

DCM represents a Bayesian framework for inferring effective (directed) connectivity among latent (hidden) neuronal
states from measured neuroimaging data (Friston et al., 2003). This rests on modeling a neuronal circuit as a
multiple-input-multiple-output (MIMO) system, using a likelihood function with two hierarchical layers: a model of
hidden neuronal (and, for fMRI, hemodynamic) states and an observation model that links hidden states to measured
data. Jointly, this provides a probabilistic forward mapping from the parameters of the system (e.g., synaptic connec-
tion strengths) to changes in fMRI (Friston et al., 2003) or M/EEG (David et al., 2006; Kiebel, David, & Friston,
2006; Moran, Stephan, Dolan, & Friston, 2011) signals. Augmenting this forward mapping with plausible prior distri-
butions over parameters turns the model into a full generative model (Box 1), for which the exact form depends on
the modality of the acquired neuroimaging data as well as the scientific question of interest.

2.1 | DCM for fMRI

DCM was initially introduced for fMRI data (Friston et al., 2003). In the original article, the dynamics of interacting neuro-
nal populations were described using a bilinear differential equation

dx
dt

= A+
X
j

B jð Þuj

 !
x+Cu ð1Þ

This derives from a Taylor approximation to the evolution function of an arbitrary deterministic dynamical system (Stephan
et al., 2008). Equation (1) captures how the dynamics of the neuronal states x unfold as a function of the synaptic coupling
between network nodes or brain regions (endogenous connectivity A) and experimentally controlled manipulations u that perturb
the system. Experimental manipulations either directly affect the neuronal states (driving inputs C) or modulate the endogenous
connections between the different nodes (modulatory inputs B). Over the last decade, various extensions to this bilinear neuronal
state equation have been introduced. For instance, nonlinear DCM accounts for how endogenous connections can be altered
dynamically by inputs from other brain regions, thus modeling processes related to short-term synaptic plasticity and synaptic
gain control (Stephan et al., 2008). Similarly, neuronal fluctuations have been embedded into the framework, yielding both sto-
chastic DCM (Daunizeau, Friston, & Kiebel, 2009; Li et al., 2011) and spectral DCM (Friston, Kahan, Biswal, & Razi, 2014),
two variants that enable the analysis of the “resting state” (i.e., unconstrained cognition in the absence of external perturbations).

Different clinical questions might be addressed more naturally by the DCM variants described above. If pathophysiologi-
cal mechanisms are expected to relate to aberrant synaptic plasticity due to regionally specific abnormal modulatory influ-
ences as, for instance, in network models of bipolar disorder (Breakspear et al., 2015) or the dysconnection hypothesis of
schizophrenia (Friston, Brown, et al., 2016), nonlinear DCM might represent a natural choice. Conversely, stochastic DCM
and spectral DCM are useful candidates for testing network abnormalities during the “resting state” (e.g., Bastos-Leite et al.,
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2015; Hyett, Breakspear, Friston, Guo, & Parker, 2015). The choice of the optimal DCM variant should therefore be tailored
to the specific hypothesis about disease-relevant processes.

Regardless of the exact form of the neuronal state equations, they are coupled to a hemodynamic model that translates
the predicted neuronal dynamics into region-wise blood oxygen level dependent (BOLD) signals via a cascade of differential
equations. This rests on the Balloon-Windkessel model (Buxton, Wong, & Frank, 1998), which was augmented to account
for neurovascular coupling (Friston, Mechelli, Turner, & Price, 2000). In brief, the hemodynamic model describes how
changes in the neuronal states induce changes in cerebral blood flow, which, in turn, affect venous blood volume and deoxy-
hemoglobin content (for recent extensions, see Havlicek et al., 2015). These two quantities then enter a static BOLD signal
observation equation that yields a prediction of BOLD signal time courses (Stephan, Weiskopf, Drysdale, Robinson, & Fris-
ton, 2007) (for a graphical summary of DCM for fMRI, see Figure 2). While the hemodynamic parameters are typically of
little interest in effective connectivity analyses, they account for regional variations in the shape of hemodynamic responses
and thus help avoid erroneous interpretations (David et al., 2008). More comprehensive reviews on DCM for fMRI can be
found elsewhere (Daunizeau et al., 2011; Friston et al., 2013; Kahan & Foltynie, 2013; Stephan et al., 2010).

2.2 | DCM for M/EEG

The original neuronal model in DCM for fMRI (see Equation (1)) contains a rather abstract description of neuronal popula-
tion dynamics and thus cannot provide a detailed account of synaptic processes underlying brain function. The motivation
for its relatively coarse nature is that fMRI data represent a low-pass filtered transformation of synaptic activity, and this
places a limit on system identifiability (but see Friston et al., 2017).

On the contrary, electrophysiological measurements support more sophisticated models of neuronal dynamics as they
contain far richer temporal information. In its original description for event-related responses (ERPs), DCMs of electromag-
netic responses were cast in terms of a neural mass model; this assumes that the dynamics of an ensemble of neurons can be
represented by its first moment (mean; David et al., 2005; David et al., 2006). In these models, the neural masses for each
source were based on the Jansen-Rit model (Jansen & Rit, 1995), which comprises three interacting neuronal subpopulations.
In DCM for ERPs, these three subpopulations represent excitatory spiny stellate cells in granular layer IV, whereas both
inhibitory interneurons and excitatory pyramidal cells are assigned to supragranular and infragranular cortical layers1 (see
Figure 3; David et al., 2006). They are interconnected via intrinsic (within-source) connections, while different sources are
connected via extrinsic (between-source) connections according to established anatomical connectivity rules (Felleman &
Van Essen, 1991). The neural mass model essentially predicts the depolarization of pyramidal cells, which are assumed to
represent the main source of measured M/EEG signals due to the spatial alignment of their dendritic trees.

In DCM for ERPs, the neuronal dynamics of each neuronal subpopulation rests on two operators: First, a convolution
operator which transforms the average density of presynaptic inputs into an average postsynaptic membrane potential. Sec-
ond, the output operator which converts the average postsynaptic membrane potential into an average firing rate. The pre-
dicted potential of pyramidal cells then enters an electromagnetic forward model (essentially a linear mapping specified by a
lead field matrix that describes the conduction of electromagnetic fields; Mosher, Leahy, & Lewis, 1999).

Subsequently, refined variants of DCM for M/EEG have been developed. These extensions include conductance-based
DCMs that consider the dynamics of specific ion channels and thus potentially allow for physiologically more elaborate assess-
ments (Moran, Jung, et al., 2011). Additionally, neural field models have been introduced that treat the neuronal subpopulations
as manifolds on the cortical surface (instead of point sources) by simultaneously modeling temporal and spatial variations in corti-
cal activity using partial differential equations (Pinotsis, Moran, & Friston, 2012). Later developments finessed the model struc-
ture guided by the idea of the “canonical microcircuit” (Pinotsis et al., 2013), based on previous work by Douglas and Martin
(1991) in visual cortex. Specifically, four instead of three neuronal subpopulations were introduced to explicitly accommodate
sources of forward and backward connections in cortical hierarchies by distinguishing superficial and deep pyramidal cells, with
distinct spectral outputs (Bastos et al., 2012; Moran, Pinotsis, & Friston, 2013). Again, comprehensive reviews of the different
variants of DCM for M/EEG can be found elsewhere (Daunizeau et al., 2011; Moran, Pinotsis, et al., 2013).

2.3 | Variational Bayes

Given a generative model, one can exploit approximate Bayesian estimation techniques (Bishop, 2006) to infer the model’s
parameters from data. This is known as model inversion or simply inference, and yields an estimate of the posterior density over
model parameters, which describes the probability density of each parameter given the measured data (see Box 1). Model inver-
sion within the DCM framework rests on variational Bayes under the Laplace approximation (VBL; Friston, Mattout, Trujillo-
Barreto, Ashburner, & Penny, 2007), which is computationally highly efficient. In brief, VBL for DCM assumes a mean-field
split between parameters and hyperparameters and applies a Laplace or Gaussian approximation to the variational
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densities (approximate posteriors). Under these assumptions, one not only obtains an approximation to the true posterior density
p(θ|y,m), but also an estimate of the negative free energy. The negative free energy is a lower bound to the logarithm of the
model evidence or marginal likelihood p(y|m) (but see below) which represents a measure of model “goodness”, taking into
account both accuracy and complexity of a model (Bishop, 2006). It thus serves as a principled metric for selecting the most
plausible amongst alternative hypotheses (models) of how the data were generated (Bayesian model selection, BMS; Penny,
2012; Stephan, Penny, Daunizeau, Moran, & Friston, 2009). As we shall see later, inference both at the level of model structure
and model parameters can be informative for clinical applications.

3 | APPLICATION OF DCM TO CLINICAL QUESTIONS

This section presents a selective overview of studies that provide initial examples of the potential utility of generative models
for clinically relevant questions, such as differential diagnosis and the dissection of spectrum disorders (Figure 4). Notably, this

FIGURE 2 Graphical summary of the generative model of DCM for fMRI, comprising the neuronal and hemodynamic model, as well as the (static)
nonlinear BOLD signal change equation. The neuronal state equation is cast as a bilinear differential equation, describing the dynamics of neuronal states as
a function of the endogenous connectivity (A matrix), the modulatory influences (B matrix) and driving inputs (C matrix). The neuronal states then enter a
cascade of differential equations, which make up the hemodynamic model and describe how neuronal dynamics lead to changes in cerebral blood flow,
which, in turn, affect venous blood volume and deoxyhemoglobin content. These two quantities then enter a static BOLD signal observation equation that
yields a prediction of BOLD signal time courses. A more comprehensive description is provided elsewhere (Daunizeau, David, & Stephan, 2011; Friston
et al., 2013; Kahan & Foltynie, 2013; Stephan et al., 2010). (Reprinted with permission from Stephan et al. (2015). Copyright 2015 Elsevier)
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is not meant to represent a comprehensive list and many more studies have applied DCM to psychiatric and neurological disor-
ders than can possibly be covered here, including studies on schizophrenia (Deserno, Sterzer, Wüstenberg, Heinz, & Schlagen-
hauf, 2012; Dima et al., 2009; Lefebvre et al., 2016; Li et al., 2017), depression (Almeida et al., 2009; Schlösser et al., 2008;
Vai et al., 2016), autism (Grèzes, Wicker, Berthoz, & de Gelder, 2009; Radulescu et al., 2013), Parkinson’s disease (Dirkx
et al., 2016; Marreiros, Cagnan, Moran, Friston, & Brown, 2013), or epilepsy (Papadopoulou et al., 2017). Here, we selec-
tively focus on a few studies that not only illustrate how DCM might contribute to the understanding of pathophysiology, but
also provide an intuition of how a generative modeling approach could, eventually, improve clinical care in psychiatry.

3.1 | Differential diagnosis

3.1.1 | Bayesian model selection

A fundamental challenge for psychiatry is the problem of differential diagnosis. van Leeuwen, den Ouden, and Hagoort
(2011) presented a compelling example how BMS and DCM could enable a formal approach to differential diagnosis.
Strictly speaking, this study did not address a clinical condition, but a rare cognitive peculiarity in the healthy population:
synesthesia (Hochel & Milan, 2008), or more specifically, grapheme–color synesthesia (the simultaneous experience of
color when seeing written letters). In this condition, enhanced activation of the color-sensitive area V4 and the superior
parietal lobe (SPL) in synesthetes had been reported by several studies (Hubbard, Arman, Ramachandran, & Boynton,
2005; Sperling, Prvulovic, Linden, Singer, & Stirn, 2006; Weiss & Fink, 2009). Two competing hypotheses of this find-
ing had been proposed: Enhanced V4 activity during synesthesia might either arise from direct bottom-up cross-activation
from grapheme processing areas in the fusiform gyrus (i.e., cross-wiring; Brang, Hubbard, Coulson, Huang, & Ramachan-
dran, 2010; Ramachandran & Hubbard, 2001), or from indirect top-down effects originating in higher-order parietal areas
(i.e., disinhibition feedback; Grossenbacher & Lovelace, 2001). van Leeuwen, den Ouden, and Hagoort (2011) constructed
two competing DCMs which captured these opposing mechanisms. Random-effects BMS (Stephan, Penny, et al., 2009)
was then used to test which of the two models provided the most accurate description of the measured fMRI data. Inter-
estingly, across all synesthetes, there was no strong preference for one or the other model. However, when dividing sub-
jects according to their subjective reports into “projectors” (who experience the physical colocalization of color and
letters) and “associators” (who experience an internal association of color induced by letters), the two competing models
mapped almost perfectly onto the different subgroups (Figure 5).

FIGURE 3 Graphical summary of the generative model of DCM for EEG/MEG, representing a single source by a neural mass model based on the Jansen-
and-Rit model (1995). The neural mass model comprises three interacting neuronal subpopulations (left). In DCM for EEG/MEG, these subpopulations are
taken to mimic excitatory spiny stellate cells in granular layer IV, inhibitory interneurons in supragranular layers II and III, and excitatory deep pyramidal
cells in infra-granular layers V and VI. Subpopulations are interconnected via intrinsic (i.e., within-source) connections γ1,2,3,4. Dynamics of the neuronal
states are described by a set of differential equations (right). The model effectively yields a prediction of the depolarization of pyramidal cells (which is
assumed to underlie the measured M/EEG signals) by first transforming average density of presynaptic inputs into an average postsynaptic membrane
potential (i.e., convolution), which is then converted into an estimate of the average rate of action potentials fired by each neuronal subpopulation.
(Reprinted with permission from David et al. (2006). Copyright 2006 Elsevier and Moran, Pinotsis, and Friston (2013). Copyright 2013 Frontiers)
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While not describing a clinical case, these results speak to the potential of BMS for distinguishing individuals with simi-
lar phenotypes (symptoms) based on differences in the underlying physiological mechanisms (here, effective connectivity).
Generally, BMS provides a principled framework for differential diagnosis where the plausibility of different explanations
(models of disease mechanisms) for a given set of clinical observations can be evaluated formally, in terms of the posterior
probability of a model (Figure 6).

3.1.2 | Generative embedding

An alternative computational approach to differential diagnosis is generative embedding (Brodersen et al., 2011). In brief,
generative embedding combines generative models of (neuroimaging or behavioral) data with (un)supervised machine learn-
ing techniques, such as classification or clustering (Bishop, 2006). Specifically, in a first step, DCM is used to infer the pos-
terior densities over model parameters (e.g., neuronal connectivity) from measured data. In a second step, features of these
posterior densities (e.g., maximum a posteriori estimates, Bishop, 2006) enter a supervised or unsupervised learning tech-
nique. This provides a simple solution to some key challenges of machine learning approaches to neuroimaging data
(Brodersen et al., 2011): First, classifying/clustering subjects directly in “raw data” space (e.g., voxel-wise fMRI time series)
is typically difficult because the dimensionality of the feature space (i.e., the number of voxels) is very high compared to the
number of available subjects. Second, even when a sparse set of meaningful features can be extracted, the results of machine
learning techniques in voxel space can be difficult to interpret and do not allow for mechanistic interpretations. In other
words, the strength of generative embedding is that a generative model like DCM essentially acts as a theory-driven data
compression method that reduces the high-dimensional fMRI data into a small set of neurobiologically interpretable parame-
ter estimates that then serve as mechanistically interpretable features for (un)supervised learning.

Brodersen et al. (2011) introduced the generative embedding framework to neuroimaging, illustrating the potential utility
in two clinical datasets. In a first paper (Brodersen et al., 2011), the authors asked whether aphasic patients (with a lesion in
the left frontal and/or temporal cortex) could be differentiated from healthy controls based on fMRI data acquired during a
simple speech recognition task (Schofield et al., 2012). Importantly, the study only modeled activity in parts of the auditory
cortex that were unaffected by the lesion, thus asking whether the presence or absence of a “hidden” lesion could be pre-
dicted based on DCM parameter estimates obtained from the healthy part of the brain. The authors used a previously estab-
lished linear DCM (i.e., only A and C matrix in Equation (1)) of the auditory system; this model comprised the medial
geniculate body, Heschl’s gyrus, and planum temporale, each in both hemispheres (Schofield et al., 2012). DCMs were then
inverted for each individual separately and the inferred neuronal connectivity parameters entered a support vector machine
(SVM). Using this approach, aphasic patients and healthy controls could be classified almost perfectly (balanced accuracy of
98% under leave-one-out cross-validation; Figure 7a,b). Importantly, the generative embedding approach significantly outper-
formed classification approaches that operated directly on regional BOLD signals or measures of functional connectivity.

Using a second, distinct fMRI dataset (Deserno et al., 2012), the same method was used to differentiate schizophrenic
patients from healthy controls with relatively high accuracy (78%, leave-one-out cross-validation) using linear SVMs. Again,
prediction accuracy of the DCM-based estimates was significantly higher than for other features derived from regional
BOLD activity or functional connectivity.

FIGURE 4 Schematic summary of key prospective endeavors in Computational Psychiatry and the necessary methodological building blocks. Ultimately,
Computational Psychiatry strives to enable generative models of brain activity (and behavior) as computational assays for differential diagnosis and
dissection of spectrum disorders in routine clinical practice. (Reprinted with permission from Stephan and Mathys (2014). Copyright 2014 Elsevier)
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These studies highlight the potential benefit of DCM (or other generative models) as a mechanistically interpretable feature
extraction or dimensionality reduction method. We emphasize that the studies described above do not yet achieve anything that
is truly useful for clinical practice: diagnosing patients with aphasia or schizophrenia, respectively, does not represent a burning
clinical problem. The former is a clinically straightforward diagnosis, and the latter is defined by DSM/ICD criteria; any classi-
fier trained with respect to these criteria simply replaces clinical interviews with a more expensive technology that is calibrated
identically and does not change clinical practice (compare the discussion in Stephan, Schlagenhauf, et al., 2017). By contrast, a
generative embedding approach would have potential clinical utility if it managed to predict clinical outcomes (Harle et al.,
2015) or distinguished diagnoses that have predictive validity (e.g., distinguishing between different forms of movement disor-
ders, such as progressive supranuclear palsy and Parkinson’s disease; Zhang et al., 2016).

So far, we have discussed supervised applications of generative embedding that are useful for predicting known clinical
entities of interest. A different approach is required when the goal is to establish procedure for differential diagnosis and
delineate (hitherto unknown) subgroups in heterogeneous spectrum diseases, as is almost universally the case in psychiatry
(Owen, 2014; Stephan, Binder, et al., 2016). This is the scenario we turn to now.

3.2 | Dissection of spectrum disorders

Clinical categories based on syndromatic classifications such as DSM or ICD have limited predictive validity with regard to
clinical trajectories and treatment prediction for individual patients (Cuthbert & Insel, 2010, 2013; Kapur et al., 2012). This
is because these descriptive categories refer to groups of patients with similar phenotypes that are likely caused by different

FIGURE 5 Example demonstrating
Bayesian model selection (BMS) in DCM
as a formal tool for differential diagnosis.
Subjects with different forms of
grapheme–color synesthesia were
analyzed, namely projector synesthesia
(left) and associator synesthesia (right).
(a) Two alternative hypotheses of the
putative effective connectivity underlying
synesthesia, formulated as a bottom-up
DCM and (b) top-down DCM. (d) BMS
results with shaded areas representing the
posterior probability distribution of the
winning model. Results suggest that no
(strong) evidence was found for either
model when comparing DCMs across the
entire populations (grey). However,
dividing subjects into projectors (red)
and associators (blue) based on their
synesthetic experience, the two competing
models mapped almost perfectly onto the
different subgroups. (c) Posterior densities
of modulatory parameters for projectors
and (e) associators. (Reprinted with
permission from van Leeuwen
et al. (2011). Copyright 2011 Society for
Neuroscience)
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pathophysiological mechanisms (Cuthbert & Insel, 2013; Kapur et al., 2012). Similarly, there are no clear-cut boundaries
between DSM-defined clinical categories as is indicated by the significant comorbidity structure of psychiatric diseases
(Borsboom, Cramer, Schmittmann, Epskamp, & Waldorp, 2011). Establishing computational tools that replicate DSM diag-
noses is therefore simply a more complex way of replicating diagnoses whose lack of predictive utility is known
(Cuthbert & Insel, 2010, 2013; Kapur et al., 2012; Stephan et al., 2015). Instead, tools are needed that dissect heterogeneous
spectrum diseases into subgroups that share underlying pathophysiological mechanisms and enable more reliable predictions
of clinically relevant outcomes.

This can be addressed by unsupervised machine learning techniques, such as clustering, which can carve out subgroups
in a population by identifying structure in the data (Hastie, Tibshirani, & Friedman, 2009). Again, embedding this into the

FIGURE 6 Bayesian model selection (BMS) as a
principled framework for differential diagnosis. Given
measurements (e.g., clinical observations), the relative
plausibility of a set of competing hypotheses (models)
of how the observations have been generated, can be
evaluated in terms of the posterior model probability.
(Reprinted with permission from Stephan,
Schlagenhauf, et al. (2017). Copyright 2017 Elsevier)

FIGURE 7 Examples demonstrating generative embedding based on DCM as a formal tool for differential diagnosis and dissection of spectrum disorders.
(a) Classification accuracy of the supervised generative embedding approach for various measures. Input features were either based on measures of BOLD
activity (light grey), functional connectivity (dark grey), or effective connectivity (blue). For all measures, the balanced accuracy and its 95% posterior
probability interval is shown, as well as chance level (50%). Generative embedding based on the posterior means of the model parameters of a plausible
DCM significantly outperformed more conventional classification approaches that operated on regional BOLD activity or measures of functional
connectivity. Furthermore, balanced accuracy was markedly reduced for biologically unlikely models. (b) Representation of aphasic patients (red) and
healthy controls (grey) in the reduced voxel space—that is, the space spanned by the BOLD activity in the three peaks of the most discriminative activation
clusters (left), as well as in the reduced generative score space—that is, the space spanned by the three individually most discriminative effective
connectivity parameters (right). (c) Results of the unsupervised generative embedding approach based on the variational Bayesian inversion of a Gaussian
mixture model, operating on the posterior parameter estimates of a three-region DCM. Results suggested highest model evidence for the number of clusters
being equal to three. (d) Different effective connectivity profiles for the three distinct subgroups. (e) Clusters of the schizophrenic patients differed
significantly in the negative symptom severity scores on the Positive and Negative Syndrome Scale (PANSS). (Reprinted with permission from Brodersen
et al. (2011). Copyright 2011 PLOS and Brodersen et al. (2014). Copyright 2014 Elsevier)
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inversion of a generative model can greatly enhance both performance and interpretability. Brodersen et al. (2014) demon-
strated the potential utility of unsupervised generative embedding for dissecting spectrum diseases using an fMRI dataset of
41 patients with schizophrenia that performed a working memory task (Deserno et al., 2012). Using the posterior parameter
estimates of a three-region DCM comprising visual (VC), parietal (PC) and dorsolateral prefrontal cortex (dlPFC), the
authors showed that variational Gaussian mixture models (Bishop, 2006) detected the presence of three distinct patient sub-
groups that were characterized by distinct effective connectivity profiles (Figure 7c,d). Importantly, these three clusters
mapped onto clinically distinct subgroups (Figure 7e), in the sense that schizophrenic patients from different clusters showed
significant differences in their negative symptom severity scores on the Positive and Negative Syndrome Scale (PANSS). In
other words, a purely physiologically informed and connectivity-based demarcation of subgroups showed a remarkable corre-
spondence to a specific clinical symptom dimension. While this result is not of any clinical utility (given that the symptoms
were known), it illustrates the potential of generative embedding and motivates prospective validation studies that test
whether future clinical outcomes are related to distinct clinical subgroups. In other words, it remains to be tested whether a
re-definition of spectrum diseases by generative models provides more accurate predictions of treatment response and disease
trajectories than DSM/ICD diagnoses.

3.3 | Development of computational assays

So far, our discussion focused on macroscopic measures of brain connectivity obtained from DCM for fMRI which contains
a rather abstract description of neuronal population dynamics (due to the low-pass filter properties of the hemodynamic
response) and therefore only provides coarse representations of the underlying synaptic processes. On the contrary, DCM for
electrophysiological responses supports much more fine-grained models of neuronal dynamics and enables inference on the
relative strength of synaptic transmission at different cell types and via specific neurotransmitters. The feasibility of inferring
synaptic processes from epidural local field potential recordings was demonstrated by Moran, Jung, et al. (2011) using an
anesthetic agent (isoflurane) in rodents. By administering different doses of the anesthetic while recording local field poten-
tials (LFPs) from auditory cortex, the authors demonstrated that a neural mass DCM could track changes in the excitatory-
inhibitory balance of synaptic transmission across different levels of anesthesia. More precisely, consistent with established
neurophysiological findings (Berg-Johnsen & Langmoen, 1992; Detsch, Vahle-Hinz, Kochs, Siemers, & Bromm, 1999; Lar-
sen, Haugstad, Berg-Johnsen, & Langmoen, 1998), DCM parameter estimates representing the amplitude of excitatory post-
synaptic potentials linearly decreased with increasing levels of anesthesia, whereas parameters related to inhibitory
postsynaptic potentials displayed a nonlinear (saturating) increase.

In a second study, Moran and colleagues utilized conductance-based DCM, a more refined variant of DCM for M/EEG
which distinguishes ionotropic receptors with sufficiently different time constants (e.g., α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), γ-aminobutyric acid (GABAA)), to assess dopaminergic
modulation of NMDA and AMPA receptor conductances (Moran, Symmonds, et al., 2011). Recording MEG data during a
working memory task in a within-subject, placebo-controlled, pharmacological intervention study, the inferred conductances
of AMPA and NMDA receptors matched the profile established in previous electrophysiological studies in primates (Gao &
Goldman-Rakic, 2003; Goldman-Rakic, 1996; Robbins, 2000): AMPA receptor conductance was reduced under L-Dopa,
while the model parameter representing NMDA receptor sensitivity (nonlinearity) was enhanced. Importantly, the AMPA
and NMDA receptor related parameter estimates significantly predicted drug-induced performance changes during working
memory.

Furthermore, DCMs for M/EEG demonstrated changes in synaptic plasticity in the auditory cortex during a mismatch
negativity (MMN) paradigm under ketamine administration (Schmidt et al., 2013), and explained increases in MMN ampli-
tude under the acetylcholinesterase inhibitor galantamine in terms of increased postsynaptic gain of supragranular pyramidal
cells in auditory cortex (Moran, Campo, et al., 2013). Similarly, a DCM of the effective connectivity between dorsal hippo-
campus and medial prefrontal cortex during ketamine administration in rats showed a decrease of reciprocal connectivity
mediated via NMDA receptors that exhibited a monotonic dose–response relationship (Moran et al., 2015).

These studies demonstrate the utility of DCM for providing detailed estimates of transmitter- and receptor-specific trans-
mission and highlight the potential of generative models as in vivo computational assays of pathophysiologically relevant
synaptic processes. A possible way of how such computational assays could be used in clinical settings was demonstrated in
a recent study by Gilbert et al. (2016). The authors constructed a physiologically detailed conductance-based DCM with
ligand-gated sodium, calcium, and chloride channels, as well as with voltage-gated potassium and calcium channels. This
model was applied to MEG data from a large cohort of 94 healthy controls. The ensuing parameter estimates served to con-
struct a reference distribution against which two patients with monogenic channelopathies (i.e., diseases caused by the muta-
tion of a single gene encoding a specific ion channel) were compared. Specifically, the two patients had mutations affecting
the potassium channel gene KCNJ2 and the calcium channel gene CACNA1A, respectively. The conductance-based DCM
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inferred ion channel abnormalities that were consistent with the known channelopathies in both patients and distinguished
patients and controls with high sensitivity and specificity (Figure 8). This result illustrates that generative models of electro-
magnetic responses can infer sub-synaptic properties of neuronal circuits, including ion channel conductances and their muta-
tions from non-invasively acquired M/EEG data. This is of considerable clinical relevance: an assay of dysfunctional
synaptic signaling could not only guide the search for potential targets of novel treatments in heterogeneous disorders, but
also serve as predictors of treatment response in individual patients.

These studies on DCM for M/EEG data illustrate how fine-grained physiological inference can be obtained when exploit-
ing the rich temporal information of electrophysiological data. However, even the much coarser estimates of glutamatergic
long-range connections in DCM for fMRI can prove useful for clinical applications, as demonstrated by the generative
embedding examples discussed above (Brodersen et al., 2011, 2014). An alternative fMRI approach to computational assays
utilizes trial-wise computational quantities with putative neurochemical interpretability that are obtained from generative
models of behavior. For example, certain types of prediction errors or precision (inverse uncertainty) weights may reflect the
release of dopamine or acetylcholine (for review, see Iglesias, Tomiello, Schneebeli, & Stephan, 2016). Using quantities like
prediction errors to define regressors in standard general linear model analyses of fMRI (“model-based fMRI”; Glascher &
O'Doherty, 2010) could enable one to assay individual differences in neuromodulatory systems (for possible caveats with
regard to interpreting prediction error signals in BOLD data, see Cevora & Henson, 2017). This model-based fMRI approach
is increasingly finding application in pathophysiological studies of mental disorders (for a review in the context of schizo-
phrenia, see Stephan et al., 2015). An alternative approach, less widely used so far, is to include computational quantities as
modulatory inputs in DCMs for fMRI (den Ouden, Daunizeau, Roiser, Friston, & Stephan, 2010; den Ouden, Friston, Daw,
McIntosh, & Stephan, 2009; Roy et al., 2014). Provided these quantities can be interpreted neurochemically, this modeling
approach could serve to infer the influence of neuromodulatory transmitters on short-term plasticity at glutamatergic synapses
(Stephan et al., 2008).

4 | LIMITATIONS AND METHODOLOGICAL ADVANCES

Despite the potential of generative models, a number of methodological challenges represent limiting factors for the clinical
applicability of these methods at the moment. Here, we restrict our discussion to two key limitations (further issues are
addressed in Section 5). First, the variational Bayesian framework for model inversion in DCM has several potential weak-
nesses. Second, DCM is currently limited to small network models (on the order of 10 regions). In the following sections,
we discuss these limitations and highlight recent methodological advances that may further enhance the utility of DCM for
Computational Psychiatry.

FIGURE 8 Development of computational assays based on DCM for M/EEG for model-based pathophysiological phenotyping. A conductance-based
DCM with ligand-gated sodium, calcium, and chloride channels, as well as voltage-gated potassium and calcium channels was constructed. Shown are the
posterior estimates of two ionotropic (AMPA, NMDA) and one potassium channel for a large cohort of 94 healthy controls (dark grey ellipsoids). These
serve as a multivariate reference distribution against which a single patient (red ellipsoid), suffering from a mutation affecting the potassium channel gene
KCNJ2, could be compared. This patient is placed at the edge of the multivariate distribution, suggesting that DCM could identify the synaptic channel
abnormality with high sensitivity and specificity. (Reprinted with permission from Gilbert et al. (2016). Copyright 2016 Elsevier)
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4.1 | Robustness of statistical inference technique

As highlighted above, one central goal of Computational Psychiatry is the development of computational assays for predict-
ing clinical trajectories and treatment responses in individual patients. For this endeavor, the stability of the inference proce-
dure and the reliability of the ensuing posterior parameter estimates become paramount (Woolrich & Stephan, 2013). In
other words, if generative models cannot reliably inform clinical decisions, they will be of no practical use for psychiatry
because treatment recommendations or diagnoses might randomly change across multiple measurements.

As described above, the VBL scheme in DCM uses (distributional) assumptions that can render model inversion vulnera-
ble (Daunizeau et al., 2011). One issue is that VBL rests on gradient ascent and is thus inherently susceptible to local max-
ima. Furthermore, even when the global maximum is found, inference might still be affected by the approximations currently
used in DCM (Friston et al., 2007). For example, when the Laplace approximation to the negative free energy (i.e., the sec-
ond order Taylor series expansion of the log joint around the approximate (variational) posterior means) is violated, the free
energy is no longer guaranteed to represent a lower bound on the log model evidence (Wipf & Nagarajan, 2009).

While previous experimental studies reported good reproducibility of DCM across multiple sessions and different sub-
jects, suggesting robust model inversion (Rowe, Hughes, Barker, & Owen, 2010; Schuyler, Ollinger, Oakes, Johnstone, &
Davidson, 2010), recent work on the test–retest reliability of DCM provided a more mixed picture (Frässle et al., 2015).
Here, test–retest reliability refers to the stability of model parameter estimates obtained when applying the method to multiple
datasets acquired under the same condition in the same subject over time. Comparing the reliability of deterministic DCM
for two different software versions—classical DCM (cDCM) and DCM10 as implemented in SPM5 and SPM8,
respectively—showed that reliability was indeed acceptable for cDCM. However, a marked reduction in the stability of
model selection and model parameter estimation was observed for the more recent DCM10 version—a finding that was
attributed to differences in the prior distributions across the two software versions. Specifically, the study concluded that the
stronger regularization afforded by the tighter cDCM priors rendered the objective function landscape smoother by dampen-
ing local extrema that are far away from the a priori plausible regime and thus made it easier for the gradient ascent to reach
the same maximum over multiple measurements. On the contrary, the probability of local extrema in the objective function
appeared to be increased under the more flexible DCM10 priors, leading to a reduction in reliability because the algorithm
got trapped in different local extrema in each session.

In summary, these results suggest that local extrema in the objective function and the choice of prior distributions can
become limiting factors for the stability of model inversion and thus the clinical applicability of DCM. Next, we discuss two
methodological advances that address these limitations: (a) sampling-based global optimization schemes, and (b) empirical
Bayesian procedures.

4.1.1 | Markov chain Monte Carlo

Sampling-based inversion schemes, typically based on Markov chain Monte Carlo (MCMC), represent an appealing alterna-
tive to VBL. This is because sampling-based schemes do not require distributional assumptions about the posterior density
and are guaranteed to converge to the exact posterior in the limit of infinite samples. Hence, MCMC is, in principle, capable
of finding the global maximum even for complicated multimodal objective functions and dealing with singularities in the
posterior more gracefully. However, this comes at the cost of high computational demands (i.e., run-times), which have pro-
hibited the application of sampling-based schemes for inverting generative models of neuroimaging data until recently. This
is aggravated by the fact that, unlike VB, sampling-based inversion techniques do not offer an estimate of the (log) evidence
for free. While several MCMC strategies have been devised to provide log evidence estimates, with thermodynamic integra-
tion (TI; Calderhead & Girolami, 2009; Kirkwood, 1935; Lartillot & Philippe, 2006) as a current gold standard, these typi-
cally pose non-negligible additional computational demands. It is only recently that methodological advances have turned
MCMC into a feasible alternative for the inversion of DCMs (Aponte et al., 2016; Chumbley, Friston, Fearn, & Kiebel,
2007; Penny & Sengupta, 2016; Raman, Deserno, Schlagenhauf, & Stephan, 2016; Sengupta, Friston, & Penny, 2015; Sen-
gupta, Friston, & Penny, 2016).

For instance, recent advances have exploited the power of graphics processing units (GPUs) for speeding up sampling-based
inversion schemes, as implemented in the “massively parallel dynamic causal modeling” (mpdcm) toolbox (Aponte et al., 2016).
In mpdcm, which presently focuses on DCM for fMRI, the evaluation of the likelihood function as the computationally most
expensive operation during sampling (because it requires integrating differential equations in the neuronal and hemodynamic
models) is delegated to highly efficient GPUs. Similarly, different gradient-free and gradient-based MCMC sampling schemes
have been introduced for electrophysiological DCMs, where nonlinearities are more pronounced and thus problems with local
extrema more likely (Sengupta et al., 2015; Sengupta et al., 2016). Finally, significant advances are presently being made in
developing TI implementations with acceptable computational requirements (Aponte et al., in preparation). This will facilitate
obtaining robust estimates of log evidences for DCMs (and other generative models), regardless of data modality.
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4.1.2 | Empirical Bayes

Empirical Bayes (EB) provides a principled way for “estimating” prior distributions by exploiting measurements from multi-
ple subjects in the context of a hierarchical Bayesian model (Efron & Morris, 1973; Kass & Steffey, 1989). In hierarchical
models, constraints on the posterior density over model parameters at any given level are provided by the level above. In
other words, under the hierarchical structure of a multi-subject random or mixed-effects model, single-subject inference is
informed by information from the entire population. These constraints are so-called empirical priors because they are
informed by empirical data (of the entire group). For the standard parametric empirical Bayesian (PEB) framework, this
essentially means that single-subject data are generated by adding random (Gaussian) variations to the group means (Friston,
Litvak, et al., 2016).

Friston, Litvak, et al. (2016) have proposed a PEB model for DCM that includes Bayesian model reduction (BMR).
BMR refers to the inversion of reduced models based on the posterior densities of the full model, and was originally intro-
duced in the context of post hoc model optimization and model discovery (Friston, Li, Daunizeau, & Stephan, 2011; Rosa,
Friston, & Penny, 2012). BMR is a highly efficient way to invert large number of models because the posterior of all reduced
models can be evaluated analytically after a single (computationally expensive) inversion of the full model. BMR is, how-
ever, restricted to nested models and cannot be used to compare models with structurally different likelihood functions.

The PEB framework has been used in several empirical and methodological studies. For example, it served to examine
the reproducibility of DCM for ERPs across independent datasets, distinct models, and different inversion schemes (Litvak,
Garrido, Zeidman, & Friston, 2015). PEB was also used to study inter-subject variability of DCM for MEG, using visually
triggered gamma oscillations, and to demonstrate the use of Bayesian cross-validation for assessing the predictive validity of
DCM (Pinotsis, Perry, Litvak, Singh, & Friston, 2016).

An alternative approach that unifies DCM, mixture models and EB within a single hierarchical model was introduced by
Raman et al. (2016). Their model combines the inference of subject-specific connectivity parameters with unsupervised
learning of the population structure, that is, the detection of subgroups in the sample. This allows for empirical Bayesian
inference, where subgroup-specific prior distributions inform the subjects’ parameter estimates; and conversely, the definition
of subgroups (clustering) is informed by the parameter estimates across subjects. Dissecting a heterogeneous spectrum of
patients into more homogeneous subgroups while at the same time harvesting group-level information to finesse the local
extrema problem inherent in the (first-level) inversion of DCMs has promising potential for future clinical applications.
While the original model operated under an MCMC-based inversion scheme, recent work has introduced complementary var-
iational Bayesian procedures for the inversion of this hierarchical DCM (Yao et al., in preparation).

While these are important methodological developments, the practical utility of both sampling-based global optimization
schemes and empirical Bayesian techniques for overcoming DCM’s current limitations with regard to local extrema in the objec-
tive function and the choice of prior distributions remains to be tested.

4.2 | Small network models

Apart from the statistical and computational limitations highlighted above, a more conceptual concern has also been raised
regarding the restriction of DCM to relatively small networks (on the order of 10 regions). This restriction is necessary to
keep model inversion numerically feasible (e.g., to avoid intractably large error covariance matrices). One potentially prob-
lematic consequence is, however, that it introduces the “missing region” problem: the possibility that ignoring interactions
with a region outside the modeled system could affect inference on connectivity (Daunizeau et al., 2011; Roebroeck et al.,
2011). This is less of a problem when one has clear-cut hypotheses about specific circuits that can be activated by carefully
designed experimental manipulations. However, it might become a limiting factor for capturing pathophysiological processes
of relevance for Computational Psychiatry. For example, in various mental disorders, such as schizophrenia (Bullmore, Fran-
gou, & Murray, 1997; Friston, Brown, et al., 2016; Friston & Frith, 1995; Stephan et al., 2006; Stephan, Friston, et al.,
2009), autism (Courchesne et al., 2007; Kennedy, Redcay, & Courchesne, 2006; Muller, 2007) or depression (Greicius et al.,
2007; Mayberg, 1997; Wang, Hermens, Hickie, & Lagopoulos, 2012), global dysconnectivity has been postulated as a hall-
mark of the disease and a possible cause of symptoms; this points to the clinical utility of whole-brain models of functional
integration (Menon, 2011). Consequently, a key endeavor in Computational Psychiatry is the development of large-scale net-
work models with biophysically interpretable state equations and parameters that encode (patho)physiological mechanisms of
neuronal population dynamics (Deco & Kringelbach, 2014; Stephan et al., 2015).

At present, these efforts are visible in two main development streams. First, whole-brain biophysical network models can
be constructed by combining mean-field models of population activity with diffusion-weighted imaging data (Deco & Krin-
gelbach, 2014). While biologically detailed, these models are not proper generative models and, due to their complexity,
have very limited scope for parameter estimation; typically, only a single global scaling parameter can be estimated (Deco
et al., 2013). Second, an established variant of DCM for “resting state” fMRI data (spectral DCM; Friston, Kahan, Biswal, &
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Razi, 2014) was recently combined with BMR and a procedure to exploit functional connectivity estimates for defining
shrinkage priors on effective connectivity (Seghier & Friston, 2013). This has made it possible to apply DCM to a network
consisting of 36 brain regions (Razi et al., 2017). While representing a significant advance, it is presently not clear how far
this approach can be pushed. Generally, extending DCM to whole-brain networks may require an approach that scales grace-
fully across several orders of brain network cardinality. One possible candidate for such an approach is regression DCM.

4.2.1 | Regression DCM

Regression DCM (rDCM) was recently introduced as a novel variant of DCM for fMRI that is specifically designed to deliver
estimates of whole-brain effective connectivity (Frässle et al., 2017). In brief, rDCM rests on translating a linear DCM from
the time into the frequency domain and reformulating model inversion as a special case of Bayesian linear regression. Drawing
upon a mean-field approximation across regions, one can derive analytic variational update equations for the model parameters
that enable extremely efficient inference—three to four orders of magnitude faster than in classical DCM. Given that run-time
scales gracefully with the number of regions, rDCM can deal with very large networks, potentially with hundred regions.

A simple example is provided in Figure 9. This shows simulation results where rDCM adequately recovered effective connec-
tion strengths in a whole-brain network consisting of 66 regions, with a realistic human structural connectome and 300 free param-
eters to be estimated. Notably, this computation only took 3 seconds on a standard computer. More recent work with empirical
fMRI data demonstrated the feasibility of rDCM for whole-brain networks with more than 100 regions. This augmented rDCM
with sparsity constraints to enable automatic “pruning” of fully connected graphs (sparse rDCM; Frässle et al., in preparation).

These developments bring whole-brain physiological phenotyping of individual patients within reach and open up excit-
ing possibilities for advancing the utility of generative models for clinical diagnosis and prognosis. Having said this, rDCM
is only in its infancy and many limitations of the current implementation (e.g., fixed hemodynamic response function, lack
of bilinear effects) need to be addressed in forthcoming extensions.

5 | FUTURE STEPS

In this article, we have reviewed DCM as a generative modeling framework for the development of computational assays that
could improve diagnosis and treatment prediction for individual patients. What are the practical next steps that are needed to
translate currently available generative models into clinically applicable tools?

As already hinted at in the previous section, one important step is to evaluate the success of ongoing methodological develop-
ments (e.g., sampling-based global optimization schemes and empirical Bayesian techniques) for improving test–retest reliability
of DCM. So far, these developments concern DCM for fMRI, for which local extrema in the objective function and the choice of
prior distributions have been identified as limiting factors for reliability (Frässle et al., 2015). On the contrary, systematic analyses
of test–retest reliability of the more complex models in DCM for M/EEG are absent so far (but see above and Garrido, Kilner,
Kiebel, Stephan, & Friston, 2007; Litvak et al., 2015, for an analysis of the related concept of reproducibility). Given the impor-
tant role of DCMs of electrophysiological data for inferring pathophysiologically relevant quantities, evaluating the reliability of
these variants as well represents an important step towards establishing their clinical utility.

It is worth emphasizing that test–retest reliability does not only depend on the stability of the computational modeling
framework, but also on the measured data itself. The robustness of the data can be affect by various factors including
scanner-related noise, physiological noise from the subject, head motion, task-unrelated cognitive processes, and changes in
cognition over time (e.g., learning; Bennett & Miller, 2010). While test–retest reliability of fMRI has been studied frequently
for various cognitive processes, there are only few tasks for which high reliability has been established. These typically
involve motor or sensory processes (Aron, Gluck, & Poldrack, 2006; Maldjian, Laurienti, Driskill, & Burdette, 2002; Rae-
maekers et al., 2007), whereas tasks probing higher cognitive functions yield less stable results (Caceres, Hall, Zelaya, Wil-
liams, & Mehta, 2009; Fliessbach et al., 2010; Nord, Gray, Charpentier, Robinson, & Roiser, 2017; Schunck et al., 2008).
Similarly, findings on the reliability of activation patterns and functional connectivity measures obtained during the “resting
state” have been inconclusive so far. Initial studies reported high reliability of resting state data (Braun et al., 2012; Shehzad
et al., 2009; Zuo et al., 2010); more recently, this has been called into question (Anderson, Ferguson, Lopez-Larson, &
Yurgelun-Todd, 2011; Laumann et al., 2015; Noble et al., 2017), in particular for the short scan times commonly used in
resting state studies. For example, Nobel and colleagues found poor reliability of resting state functional connectivity mea-
sures in a multi-site study and identified within-subject variance across sessions as the main source of variability in the con-
nectivity estimates, outweighing other factors related to site, scanner, or day of scan (Noble et al., 2017). Hence, establishing
experimental paradigms and fMRI protocols that provide robust activation of disease-relevant neural circuits and enable com-
putational modeling of the pathophysiological mechanisms represents a key goal for forthcoming studies (Frässle, Paulus,
Krach, & Jansen, 2016).
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Separately from reliability, another challenge is to evaluate the predictive validity of generative models with respect to major
clinical questions. Using data from studies with controlled perturbations of pathophysiologically relevant processes in animals
and humans (e.g., pharmacology), we need to challenge generative models to infer which perturbation was administered to the
individual subject. As reviewed in the present paper, first attempts have been made in this direction (Gilbert et al., 2016; Moran,
Symmonds, et al., 2011; Moran, Jung, et al., 2011; Moran et al., 2015); however, the sensitivity of currently available generative
models for inferring pathophysiologically relevant quantities (e.g., status of ion channels and neurotransmitters) has not been
investigated comprehensively yet.

Apart from perturbation studies, evaluation of the predictive validity of generative models like DCM also necessitates
prospective patient studies with clinically relevant outcomes (e.g., treatment response). These could be either observational
studies or clinical trials, and will be indispensable for demonstrating the efficacy and utility of computational assays for rou-
tine clinical practice (Paulus, Huys, & Maia, 2016; Stephan et al., 2015). For instance, such prospective studies could assess
the utility of generative models for predicting whether an individual patient will benefit from an intervention, such as first-
line treatment in first-episode patients or medication switch in chronic patients, based on neuroimaging data acquired prior to
that intervention. This necessitates following up patients after the intervention to record clinical (symptom) trajectories

FIGURE 9 Regression DCM (rDCM) as a novel variant of DCM for inferring whole-brain effective connectivity patterns from fMRI data. (a) Endogenous
connectivity architecture (A matrix) among the 66 brain regions from the parcellation reported by Hagmann et al. (2008) as well as the driving inputs,
mimicking the effects of visual stimulation in the right and the left visual field (left), as well as an actual “observation” of the endogenous connectivity (right).
L = left hemisphere; R = right hemisphere; A = anterior; P = posterior; LVF = left visual field; RVF = right visual field. (b) Parameter recovery of rDCM
in terms of the root mean squared error (RMSE) and (c) the number of sign errors (SE) for various combinations of the signal-to-noise ratio (SNR) and the
repetition time (TR) of the synthetic fMRI data. Results are shown when restricting the analysis to parameter estimates with a non-negligible effect size
(i.e., the 95% Bayesian credible interval of the posterior not containing zero). (Reprinted with permission from Frässle et al. (2017). Copyright 2017 Elsevier)
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against which generative models can be challenged. The utility of generative models would then be evaluated by computing
the accuracy of a model-based prediction (based on generative embedding) of who will respond to treatment and who will
not. That is, do parameter estimates identify responders and non-responders with clinically useful levels of sensitivity and
specificity? Only if model-based estimates improve prediction of treatment outcomes and clinical trajectories for individual
patients, a generative modeling approach will be of value for the clinician. Unfortunately, only few studies with prospective
designs exist to date—and those that do exist, tend to suffer from relatively small sample sizes (Kapur et al., 2012). While
underpowered studies are a general concern in neuroscience, this is aggravated when high-dimensional data sets are investi-
gated using machine learning tools like classification and/or clustering (Arbabshirani, Plis, Sui, & Calhoun, 2017). Acquiring
large datasets that address clinically relevant questions, such as the prediction of disease trajectories and treatment success, is
therefore important for translating generative models into clinical tools. Additionally, to make the most out of these valuable
datasets, they should be shared amongst researchers. Unless such large shared datasets from prospective patient studies
become available, rapid progress of Computational Psychiatry, Computational Neurology, and Computational Psychoso-
matics is unlikely. Fortunately, efforts are moving in this direction, as reflected by clinical studies like the Netherlands Study
of Depression and Anxiety (NESDA; Penninx et al., 2008), as well as large-scale epidemiological (observational) studies like
the UK Biobank (Sudlow et al., 2015), Rhineland study, and German National Cohort Study (Consortium German National
Cohort, 2014). Close communication and exchange between experimentalists and modelers will be needed to ensure that
these datasets are suitable for computational analyses.

6 | CONCLUSION

Generative models of neuroimaging and electrophysiological data have great potential for Computational Psychiatry and
may help establish concrete solutions to some of the most urgent clinical problems in psychiatry. Their capacity for inferring
pathophysiological mechanisms from non-invasively obtained measurements could guide differential diagnosis and treatment
prediction in individual patients—and, ultimately, result in the development of standardized computational assays for routine
clinical practice. In this article, we have reviewed DCM as a generative modeling framework for Computational Psychiatry,
which, in principle, can elucidate the neurophysiological states of disease-relevant circuits. Clearly, major challenges related
to statistical, conceptual and practical issues need to be tackled before DCMs can support clinical practice. In this respect,
we have highlighted recent developments that address current methodological problems. Further methodological advances
and careful validation studies, including prospective patient studies, may enable computational assays that usefully inform
clinical decision making in psychiatry.
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NOTE

1The figures in the original papers for DCM for ERPs (David et al., 2006) are sometimes misinterpreted as suggesting that the model assigns inhibitory inter-
neurons exclusively to supragranular layers and pyramidal cells exclusively to infragranular layers. Inspection of the model’s equations of inter-areal interac-
tions reveals that both types of neurons exist in both layers.
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