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Abstract 27 

Predictive coding (PC) posits that the brain employs a generative model to infer the environmental 28 
causes of its sensory data and uses precision-weighted prediction errors (pwPE) to continuously update 29 
this model. While supported by much circumstantial evidence, experimental tests grounded in formal 30 
trial-by-trial predictions are rare. One partial exception are event-related potential (ERP) studies of the 31 
auditory mismatch negativity (MMN), where computational models have found signatures of pwPEs and 32 
related model-updating processes.  33 

Here, we tested this hypothesis in the visual domain, examining possible links between visual mismatch 34 
responses and pwPEs. We used a novel visual ‘roving standard’ paradigm to elicit mismatch responses in 35 
humans (of both sexes) by unexpected changes in either color or emotional expression of faces. Using a 36 
hierarchical Bayesian model, we simulated pwPE trajectories of a Bayes-optimal observer and used 37 
these to conduct a comprehensive trial-by-trial analysis across the time×sensor space. We found 38 
significant modulation of brain activity by both color and emotion pwPEs. The scalp distribution and 39 
timing of these single-trial pwPE responses were in agreement with visual mismatch responses obtained 40 
by traditional averaging and subtraction (deviant-minus-standard) approaches. Finally, we compared the 41 
Bayesian model to a more classical change detection (CD) model of MMN. Model comparison revealed 42 
that trial-wise pwPEs explained the observed mismatch responses better than categorical change 43 
detection. 44 

Our results suggest that visual mismatch responses reflect trial-wise pwPEs, as postulated by PC. These 45 
findings go beyond classical ERP analyses of visual mismatch and illustrate the utility of computational 46 
analyses for studying automatic perceptual processes. 47 

 48 

Significance Statement (120/120) 49 
Human perception is thought to rely on a predictive model of the environment which is updated via 50 
precision-weighted prediction errors (pwPE) when events violate expectations. This “predictive coding” 51 
view is supported by studies of the auditory mismatch negativity brain potential. However, it is less well 52 
known whether visual perception of mismatch relies on similar processes. Here we combined 53 
computational modeling and electroencephalography to test whether visual mismatch responses 54 
reflected trial-by-trial pwPEs. Applying a Bayesian model to series of face stimuli that violated 55 
expectations about color or emotional expression, we found significant modulation of brain activity by 56 
both color and emotion pwPEs. A categorical change detection model performed less convincingly. Our 57 
findings support the predictive coding interpretation of visual mismatch responses. 58 

 59 
Keywords:  60 
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Introduction 64 

According to predictive coding (PC), sensory systems operate under hierarchical Bayesian principles in 65 
order to infer the causes of their sensory inputs. This rests on message passing among hierarchically 66 
related neuronal populations: each level sends predictions to the level below and receives precision-67 
weighted prediction errors (pwPEs) in return which serve to update predictions (Rao and Ballard, 1999; 68 
Friston, 2005; Hohwy, 2013; Clark, 2015). This process of perceptual inference is optimized by learning, 69 
where pwPEs to repeated sensory events are explained away with increasing efficiency, mediated by 70 
plastic changes in synaptic connections of the sensory circuits (Friston, 2005; Baldeweg, 2006).  71 

Perceptual learning experiments often use stimulus repetition to establish expectations. An 72 
experimental protocol frequently used to study implicit perceptual learning in audition is the ‘roving 73 
standard’ paradigm (Haenschel et al., 2005; Garrido et al., 2008; Costa-Faidella et al., 2011a,b; Schmidt 74 
et al., 2013; Moran et al., 2013; Auksztulewicz and Friston, 2015; Komatsu et al., 2015; Takaura and Fujii, 75 
2016). This repeats a stimulus several times before unpredictably switching to a different stimulus train. 76 
This paradigm is frequently used to elicit the “mismatch negativity” (MMN), an event-related potential 77 
(ERP) that signals violations of statistical regularities during perceptual learning. Although the MMN was 78 
primarily investigated in the auditory modality (for reviews, see Näätänen et al., 2010, 2012) there is 79 
increasing evidence for MMN also in the visual modality (for reviews, see Stefanics et al., 2014; 80 
Kremláček et al., 2016).  81 

Since its discovery, the MMN response has been interpreted in different ways. First, the “memory-trace” 82 
or “change-detection” hypothesis (Näätänen et al., 1989, 1993; Schröger, 1998) conceptualized the 83 
MMN as a brain response signaling the difference between the immediate history of the stimulus 84 
sequence and a novel stimulus. Later, this interpretation was followed by  the “regularity violation” 85 
hypothesis (Winkler, 2007), according to which the MMN signals a difference between the current 86 
stimulus and expectations based on prior information which might not only represent a sensory memory 87 
trace but also more complex or abstract rules extracted from regular relationships between preceding 88 
stimuli, e.g., conditional probabilities (e.g., Paavilainen et al., 2007; Stefanics et al., 2009, 2011); for a 89 
review see Paavilainen, 2013). This interpretation is compatible with the most recent view of the MMN 90 
as an expression of pwPEs during PC (Friston, 2005; Baldeweg, 2006; Stephan et al., 2006; Wacongne et 91 
al., 2011; Lieder et al., 2013a; Stefanics et al., 2015). In fact, a PC view of MMN can be seen as 92 
mathematically formalizing ideas already inherent to the earlier “regularity violation” hypothesis. 93 

The PC interpretation of MMN is supported by much, albeit mostly indirect, experimental evidence (e.g., 94 
Garrido et al., 2007, 2013, 2017; Stefanics and Czigler, 2012; Phillips et al., 2015; Auksztulewicz and 95 
Friston, 2016; Chennu et al., 2016). By contrast, experimental studies based on formal trial-by-trial 96 
computational quantities are rare, almost entirely restricted to the auditory domain, and typically 97 
focused on specific sensors or time windows (Lieder et al., 2013b; Kolossa et al., 2015; Jepma et al., 98 
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2016). Here, we go beyond previous investigations and use a Bayesian model (the Hierarchical Gaussian 99 
Filter, HGF) to examine whether visual mismatch responses reflect pwPEs, a hallmark of PC.  100 

Specifically, our paradigm used a “roving” design in which two features of human faces were altered 101 
probabilistically and orthogonally: color and emotional expression. We used the HGF to generate pwPE 102 
trajectories and tested the implication by PC, that trial-by-trial brain activity would reflect these 103 
computational quantities. In addition, we applied a trial-wise change detection (CD) model (cf. Lieder et 104 
al., 2013b) and evaluated the explanatory power of both hypotheses by statistical model comparison. 105 
Finally, we analyzed visual mismatch responses (aka visual mismatch negativity (vMMN) responses; for 106 
reviews, see Stefanics et al., 2014; Kremláček et al., 2014) obtained with traditional averaging and 107 
subtraction methods, and compared the results to those obtained by modeling. 108 

 109 

  110 
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Methods 111 

Ethics Statement 112 

The experimental protocol was approved by the Cantonal Ethics Commission of Zurich (KEK 2011-113 
0239/3). Written informed consent was obtained from all participants after the procedures and risks 114 
were explained. The experiments were conducted in compliance with the Declaration of Helsinki. 115 

Subjects 116 

Thirty-nine neurologically normal subjects volunteered in this experiment. One subject’s data was 117 
excluded due to excessive blinks, and four subjects’ data were rejected because of bridges between 118 
electrodes due to conductive gel. The final sample comprised 34 subjects (mean age=23.88ys, 119 
SD=3.56ys, 17 females, 33 right-handed). All subjects had normal or corrected-to-normal vision.  120 

Paradigm 121 

We used a multi-feature visual 'roving standard' paradigm to elicit mismatch responses (PEs) by rare 122 
changes either in color (red, green), or emotional expression (happy, fearful) of human faces, or both. 123 
Roving paradigms have often been used to elicit automatic sensory expectations in the auditory 124 
modality by manipulating stimulus probabilities (Haenschel et al., 2005; Garrido et al., 2008; Moran et 125 
al., 2013; Auksztulewicz and Friston, 2015). Here, we presented four types of visual stimuli (green 126 
fearful, green happy, red fearful, and red happy faces). Hence, each stimulus type could violate 127 
expectations either about the color or emotional expression of faces (or both). Importantly, this allowed 128 
us to study brain responses to stimuli that were physically identical but differed in whether color or 129 
emotion regularities were violated. Faces were presented in four peripheral quadrants of the screen 130 
(Fig. 1A). Each stimulus type was presented with an equal overall probability (p=0.25) during the 131 
experiment. After 5-9 presentations each stimulus type was followed by any of the other three types 132 
with equal overall transition probabilities (Fig. 1B). Participants engaged in a central detection task that 133 
required speeded button-presses to changes of the fixation cross. Reaction times were recorded. The 134 
experiment consisted of 14 blocks, each lasting about 8 minutes.  A short training session preceded the 135 
EEG recording.  136 

Face stimuli, ten female and ten male Caucasian models, were selected from the Radboud Faces 137 
Database (Langner et al., 2010; www.rafd.nl) based on their high percentage of agreement on emotion 138 
categorization (98% for happy, 92% for fearful faces). To control low-level image properties, we used the 139 
SHINE toolbox (Willenbockel et al., 2010) to equate luminance and spatial frequency content of 140 
grayscale images of the selected happy and fearful faces. The resulting images were used to create the 141 
colored stimuli.  142 

 143 
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 144 

------------------------------------------------- Figure 1 around here -------------------------------------------------------- 145 

 146 

 147 

Faces were presented on a CRT monitor on a dark-grey background at a viewing distance of 1m. The 148 
width and height of each face subtended 3.8° and 5.4° visual angle, respectively. The horizontal and 149 
vertical distance of the center of the face stimuli from the center of the screen was 3.15°. To avoid 150 
potential local adaptation effects, each stimulus panel consisted of four faces with different identity 151 
(two females, two males) and the presentation order of the faces with different identity was 152 
randomized with the restriction that a face with the same identity was not presented in adjacent trials. 153 
Each face was presented with the same probability over the experiment. Stimuli were presented for 200 154 
ms, followed by a random inter-stimulus interval of 600-700 ms during which only the fixation cross was 155 
present. Stimuli were presented using Cogent2000 (http://www.vislab.ucl.ac.uk/Cogent/index.html). 156 

EEG recording and preprocessing 157 

During the experiment, participants sat in a comfortable chair in an electromagnetically shielded, sound-158 
attenuated, dimly lit room. Continuous EEG was recorded from 0.016 Hz with a low-pass filter at 100 Hz 159 
using a QuickAmp amplifier (BrainProducts, Gilching, Germany). The high-density 128-channel electrode 160 
caps had an equidistant hexagonal layout and covered the whole head. EEG was referenced against the 161 
common average potential; the ground electrode was placed on the right cheek. Electrodes above the 162 
eyes and near the left and right external canthi were used to monitor eye movements. Data were 163 
digitized at 24 bit resolution and a sampling rate of 500 Hz and filtered off-line between 0.5 and 30 Hz 164 
using zero-phase shift infinite-impulse response (IIR) Butterworth filter. Built-in and self-developed 165 
functions as well as the freeware SPM12 toolbox (v6470, RRID: SCR_007037; Litvak et al., 2011) in the 166 
Matlab development environment (MathWorks, Natick, MA) were used for subsequent off-line data 167 
analyses. Electrode positions and fiducials were digitized for each subject using an infrared light-based 168 
measurement system and Xensor software (ANT B.V., Enschede, The Netherlands).  169 

Epochs extending -100 ms before to 500 ms after stimulus onset were extracted from the continuous 170 
EEG. Epochs were baseline corrected using the 100 ms pre-stimulus period. A topography-based artifact 171 
correction method (Berg and Scherg, 1994) implemented in SPM12 was used to correct for eye-blink 172 
and eye-movement artifacts. Electrode positions were used to co-register EEG data to a canonical MRI 173 
template to calculate a forward model to define topographies of blink and eye-movement artifacts 174 
which were removed from the epoched data. To avoid other potential artifacts, epochs with values 175 
exceeding ±100 μV on any EEG channel were rejected from the analysis. 176 

Modeling belief trajectories 177 
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We used the Hierarchical Gaussian Filter (Mathys et al., 2011; Mathys et al., 2014) to simulate 178 
computational trajectories in order to create parametric regressors for the general linear model (GLM) 179 
analysis. The HGF is a generative (Bayesian) model of perceptual inference and learning that represents 180 
a variant of PC in the temporal domain and that has been used in several recent studies to investigate 181 
hierarchical PE responses in the brain (Iglesias et al., 2013; Hauser et al., 2014; Schwartenbeck et al., 182 
2015; Vossel et al., 2015; Lawson et al., 2017; Powers et al., 2017). It is implemented in the freely 183 
available open source software TAPAS (http://www.translationalneuromodeling.org/tapas). The HGF 184 
consists of a perceptual and a response model, representing a Bayesian observer who receives a 185 
sequence of inputs (stimuli) and generates behavioral responses. The perceptual model describes a 186 
hierarchical belief updating process, i.e., inference about hierarchically related environmental states 187 
that give rise to sensory inputs. In our MMN paradigm the ERP-eliciting face stimuli did not require a 188 
behavioral response. Therefore, we used only the perceptual model to simulate belief trajectories about 189 
external states, e.g., the occurrence of a red vs. green, or a fearful vs. happy face, without specifying a 190 
decision model.  191 

 192 

------------------------------------------------- Figure 2 around here -------------------------------------------------------- 193 

 194 

The HGF (Fig. 2A) describes how hidden states (x) of the world generate sensory inputs (u). Model 195 
inversion infers these hidden states from sensory inputs; this is equivalent to updating the beliefs across 196 
the HGF hierarchy. Here, we used a two-level version of the HGF (based on toolbox v2.2) where we 197 
eliminated the third level from the most commonly used hierarchy. This model assumes a stable 198 
volatility over the time-course of the experiment, which is in line with the stimulus sequence. The first 199 
level of the model represents a sequence of beliefs about stimulus occurrence . This corresponds to 200 
beliefs about environmental states, i.e., whether a green vs. red face, or a happy vs. fearful face was 201 
presented. The second level represents the current belief of the probability that a given stimulus occurs, 202 
i.e., the tendency  towards a given feature (e.g., the conditional probability of seeing a red face vs. a 203 
green face, given the previous stimulus).  204 

The model assumes that environmental hidden states evolve as a Gaussian random walk, such that their 205 
variance depends on the state at the next higher level (Mathys et al., 2011, 2014): 206 

     (1) 207 

      (2) 208 

where  is a trial index and  is a sigmoid function 209 

          (3) 210 
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At the second level, the top-level in our implementation (equation 2), the step size between consecutive 211 
time steps depends on .  212 

Exact Bayesian inversion requires analytically intractable integrations, therefore the HGF relies on a 213 
quadratic approximation to the variational energies. The variational inversion of the model provides a 214 
set of analytical update equations, which update trial-by-trial the model’s estimates of the state 215 
variables. Importantly, every belief within the model is updated after each trial, leading to trial-by-trial 216 
trajectories of these hidden quantities. The update rules share a general form across the model’s 217 
hierarchy: at any level  the update of the posterior mean  of the state  that represents the belief 218 

on trial  is proportional to the precision-weighted PE . This weighted PE is the product of the PE 219 

 from the level below and a precision ratio : 220 

        (4) 221 

The update equations of the hidden states of the HGF (level 2 here) have a general structure similar to 222 
those of classical reinforcement or associative learning models, such as the Rescorla-Wagner learning 223 
(Rescorla and Wagner, 1972): 224 

prediction(k ) = prediction(k-1) + learning rate  prediction error     (5) 225 

We focus our EEG analysis on the pwPE on the second level , which drives learning about the 226 
probability of the stimulus. Here, we provide a brief description of the nature of this quantity. For a 227 
detailed and more general derivation of mathematical details see Mathys et al. (2011). The update 228 
equation of the mean of the second level is: 229 

         (6) 230 

where the last term is the PE ( ) at the first level weighted by the precision term . 231 
This pwPE updates beliefs at the second level. The precision weight is also updated with every trial and 232 
can be regarded as equivalent to a dynamic learning rate in reward learning models (cf. Preuschoff and 233 
Bossaerts, 2007). Thus, is not simply a scaled version of .  234 

We computed trajectories of pwPEs (with separate models for color and emotion stimuli) assuming a 235 
Bayes-optimal observer. For this, we modeled belief trajectories by estimating the parameters that 236 
would lead to minimal surprise about the stimuli. We determined these Bayes-optimal perceptual 237 
parameters by inverting the perceptual model based on the stimulus sequence alone and under a 238 
predefined prior (the standard in the HGF toolbox). Thus, our modeled observer was the same for all 239 
participants and was optimal under its prior beliefs encoded by the parameters that controlled the 240 
evolution of the estimated hidden states (Mathys et al., 2011). These trajectories capture the evolution 241 
of pwPEs – a hallmark of predictive coding – over each and every trial, peaking when a stimulus 242 
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represented a change relative to previous stimuli, and subsiding over following repetitions (Fig. 2B). 243 
These model-derived trajectories can thus be used as quantitative regressors in a GLM single-trial 244 
analysis of EEG data, without the need to manually label trials as “deviants” or “surprising”. We used the 245 
absolute value of pwPE traces for the four stimulus types (Fig. 2B) to create regressors that entered the 246 
GLM which we estimated for each participant.  247 

 248 
Space × time SPM analysis and model comparison 249 

Single-trial sensor data were downsampled to 250 Hz and converted to scalp × time images for statistical 250 
analysis. Data were interpolated to create a 32×32 pixel scalp map for each time-point in the 251 
poststimulus 50-500 ms interval. The time dimension consisted of 113 samples (of 4 ms) in each trial. 252 
Images were stacked to create a 3D space-time image volume which was smoothed with a Gaussian 253 
kernel (full-width at half-maximum (FWHM)=[16mm 16mm 16ms]) in accordance with the assumptions 254 
of Random Field Theory (Worsley et al., 1996; Kiebel and Friston, 2004).  255 

We performed statistical parametric mapping across the time×sensor space, using two separate GLMs 256 
incorporating regressors from the HGF and from a more classical change detection model (CD; see 257 
Lieder et al. 2013), respectively. Both models make trial-by-trial predictions about mismatch responses, 258 
but differ in the exact form of the ensuing trajectories (HGF: gradually changing pwPEs; CD: categorical 259 
changes). For the HGF-based GLM, we included the four stimulus types as main regressors, and color-260 
pwPE and emotion-pwPE as parametric modulators for each stimulus type. For the GLM based on the 261 
CD model, we included the four stimulus types as main regressors, and stick functions as parametric 262 
modulators for each stimulus type on those trials when a change occurred in the stimulus sequence. The 263 
GLMs were estimated for each participant individually. 264 

Group level analyses used F-tests to find scalp time-points where single-trial ERPs were significantly 265 
modulated by pwPEs. The resulting statistical parametric maps (SPM) were family-wise error (FWE) 266 
corrected for multiple comparisons at the cluster level (p<0.05; with a cluster defining threshold of 267 
p<0.001, as recommended by (Flandin and Friston, 2016) using Random Field Theory. Similar 268 
preprocessing and statistical procedures have been applied elsewhere (e.g., Henson et al., 2008; Garrido 269 
et al., 2013; Auksztulewicz and Friston, 2015). 270 

In order to compare the two models formally, we used the Bayesian Information Criterion (BIC) 271 
(Schwarz, 1978) approximation to the log model evidence (LME), separately for each participant. Under 272 
Gaussian noise (as assumed by the GLM), this leads to an approximation that is a function of the residual 273 
sum of squares (RSS): 274 

         (7) 275 
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where n is the number of data points and k is the number of parameters estimated by the model. 276 
Notably, in our case, n and k are the same in both models. Hence, the difference between the LMEs and, 277 
therefore, model comparison depends only on the logarithm of the RSS, i.e. model fit.  278 

In order to perform model comparison at the group level, we computed the logarithm of the group 279 
Bayes factor (GBF; Stephan et al., 2007) for each voxel, i.e., the sum of LME (between models) across 280 
subjects. This corresponds to a fixed effects group-level Bayesian model selection (BMS; Stephan et al. 281 
2009) procedure and was done both within a functionally defined mask (of voxels showing mismatch 282 
responses under both models) as well as on all voxels in the 3D space-time image volume (to perform an 283 
unrestricted comparison).  The mask comprised all voxels from the SPM analyses where, either for color 284 
or emotion changes, both the pwPE and the CD model (“logical AND” conjunction) had yielded a 285 
significant whole-brain corrected effect. We then used a non-parametric Wilcoxon signed rank test to 286 
assess the null hypothesis of zero median for LME across all voxels.   287 

 288 

Traditional ERP analysis 289 

In addition to the model-based approach, we studied mismatch effects using traditional analysis 290 
methods by comparing ERP responses to deviants and standards. Deviants were defined as the first 291 
stimulus representing a change either in color or in emotion in the stimulus sequence relative to the 292 
preceding stimulus; standards were defined as responses to the same stimulus after five repetitions (the 293 
6th presentation of the same stimulus in a row; e.g., Garrido et al., 2008). Thus we compared responses 294 
to physically identical stimuli.  295 

Deviant and standard ERP amplitudes were tested for significant MMN response at three posterior 296 
region of interest (ROI) at the left occipito-temporal, middle occipital, and right occipito-temporal 297 
regions. Regions and time windows for analysis were selected based on prior literature for color (Czigler 298 
et al., 2002; Kimura et al., 2006; Thierry et al., 2009; Czigler and Sulykos, 2010; Müller et al., 2010; Mo et 299 
al., 2011; Stefanics et al., 2011) and emotion (Zhao and Li, 2006; Astikainen and Hietanen, 2009; Kimura 300 
et al., 2012; Stefanics et al., 2012; Astikainen et al., 2013; Csukly et al., 2013; Kreegipuu et al., 2013) 301 
changes. Prior studies measured ERP amplitudes consistently at posterior occipital, temporal, and 302 
parietal regions. However, the time windows selected for analysis varied remarkably across studies in 303 
the 100-500 ms range, therefore we adopted a flexible approach and measured ERP amplitudes to 304 
deviants and standards in twelve 32 ms long consecutive intervals in the 100-484 ms range. The effect of 305 
stimulus type on evoked responses was tested by a three-way analysis of variance (ANOVA) of Stimulus 306 
type (Deviant vs. Standard) × ROI (Left vs. Middle vs. Right) × Interval (12 intervals). Greenhouse–Geisser 307 
correction of the degrees of freedom was applied where appropriate, ε values are provided in the 308 
results. Significant main effects and interactions were further specified by Tukey HSD (Honestly 309 
Significant Difference) post-hoc tests.   310 
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Results 311 

Trial-by-trial pwPE results (Bayesian model) 312 

Our analysis across the time×sensor space demonstrated strong correlations between model-based 313 
pwPE trajectories, ε2, and the single-trial ERPs (Fig. 3A), both for color and emotion. Details of test 314 
statistics are given in Table 1. F-tests revealed significant activations for color pwPEs in several space × 315 
time clusters (scalp areas and time intervals). The earliest significant interval was found between 180-316 
255 ms at left and right posterior regions (Fig. 3B), corresponding to a negative potential (Fig. 5B), as 317 
well as a fronto-central positivity in a corresponding time window. We observed further correlations at a 318 
middle occipital area in the 320-430 ms interval corresponding to a positive potential, as well as 319 
negativity in a similar time window with fronto-central dominance. Furthermore, we found a middle 320 
occipito-parietal interval in the 430-500 ms time window corresponding to a positive potential, with 321 
corresponding fronto-central negativity in a similar time window. 322 

 323 

------------------------------------------------- Table 1 around here -------------------------------------------------------- 324 

 325 

For emotion pwPEs, F-tests revealed significant activations in two space × time clusters (Fig. 3C). The 326 
earliest effects for emotion PEs were observed at a right occipito-temporal area in the 170-214 ms 327 
interval, followed by positivity at the left occipito-temporal scalp region in the 405-455 ms interval (Fig. 328 
3D).  329 

 330 

------------------------------------------------- Figure 3 around here -------------------------------------------------------- 331 

 332 

To demonstrate the relationship between the model-based pwPE parameter estimates for color changes 333 
and the MMN obtained from ERP data using traditional averaging and subtraction methods, we plotted 334 
all raw single-trials sorted in an increasing order according to the trial-wise parameter estimates (Fig. 4A, 335 
B). The relationship between the computational quantities of pwPE estimates and raw data is apparent 336 
in plots showing the trial-wise ERP amplitudes (Fig. 4C) in the time windows where statistical parametric 337 
mapping yielded significant results. Calculating the mean ERP for the 10% of trials with the lowest and 338 
highest pwPE estimates, respectively, reveals characteristic ERP waveforms (Fig. 4D) that clearly differ in 339 
time intervals where classical deviant-minus-standard differences (early MMN, and late positivity) have 340 
been reported previously. A similar, although less robust relationship between model-based pwPE 341 
parameter estimates for emotion changes and the ERP data is shown in Fig. 4E-H.  342 
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------------------------------------------------- Figure 4 around here -------------------------------------------------------- 343 

 344 

 345 

Comparison to the change detection (CD) model 346 

In order to assess, whether the pwPE traces provided any advantage in modeling the EEG data 347 
compared to a classical CD model, we performed statistical model comparison. This was based on 348 
computing voxel-wise log group Bayes factors (using a BIC-approximation to the group-level log model 349 
evidence difference LME), as described in the Methods section. Figure 5 shows that the large majority 350 
of the voxels within a functionally defined mask showed strong evidence for the pwPE model (median 351 

LME=29.14, mean LME= 33.48, sd=37). LMEs within the whole 3D space-time volume showed very 352 
similar results (median LME=29.31, mean LME=31.34, sd=34.86). Notably, a difference in LME >5 is 353 
considered as very strong evidence in favor of the superior model (Kass and Raftery, 1995).  354 

To characterize the distribution of LME values more formally, we performed null hypothesis testing. An 355 
initial one-sample Kolmogorov-Smirnov test indicated that the distributions of LME for voxels within 356 
our functionally defined mask (D=0.78, p<10-5) as well as for the whole 3D space-time volume (D=0.79, 357 
p<10-5) was not Gaussian. A non-parametric Wilcoxon signed rank test was used to test the null 358 
hypothesis of zero median for the LME. The results showed that the median LME was significantly 359 
different from zero (Z=-70.63, p<10-5) for voxels within the mask, as well as for voxels within the whole 360 
volume (Z=-213.10, p<10-5). Distributions of LME values within the significance mask and the entire 3D 361 
space-time volume are shown in Figure 5. These results indicate the superiority of the Bayesian model 362 
over the CD model and suggest that visual mismatch responses are better explained by pwPEs than by 363 
categorical change indices. 364 

 365 

------------------------------------------------- Figure 5 around here -------------------------------------------------------- 366 

 367 

 368 

Traditional ERP results 369 

Figures 6A and 6B show grand-average ERPs to color deviant and standard as well as to emotion deviant 370 
and standard stimuli, respectively, at occipito-temporal/occipital ROIs. Stimuli evoked the canonical P1, 371 
N1/N170 and P2 components. Deviant-minus-standard difference waves show a typical visual mismatch 372 
negativity around 200 ms for color changes, followed by a positive potential after 300 ms. ERP 373 



 

14 
 
 

 

waveforms obtained with traditional averaging and subtraction methods reveal a smaller negativity for 374 
emotion changes peaking before 200 ms in the right ROI followed by a positivity after 400 ms that is 375 
most robust on the left ROI (Fig. 6C, D). 376 

The ANOVA of the amplitude values for color deviants and standards yielded a significant interaction of 377 
Stimulus type × Interval (F(11,363)=14.491, p<0.00001, ε=0.369, 2=0.305). A post-hoc Tukey test 378 
revealed that the interaction was caused by more negative responses to deviant stimuli compared to 379 
standards in the 196-228 ms interval, and by more positive responses to deviant stimuli compared to 380 
standards in five time windows comprising the continuous 324-484 ms interval (all p<0.01). Significant 381 
main effects of ROI and Interval, as well as their interaction were also observed but not analyzed 382 
further.  383 

 384 

------------------------------------------------- Figure 6 around here -------------------------------------------------------- 385 

 386 

 387 

The ANOVA of the amplitude values for emotion deviants and standards yielded a significant interaction 388 
of Stimulus type × Interval (F(11,363)=3.169, p<0.01, ε=0.45, η2=0.087). A post-hoc Tukey test revealed 389 
that the interaction was caused by more positive responses to deviant stimuli compared to standards in 390 
the 420-452 ms interval (p<0.01). Significant main effects of ROI and Interval, as well as their interaction 391 
were also observed but not analyzed further. 392 

Reaction time and hit-rate 393 

Reaction times and hit rates for the occasional changes in the fixation cross were compared between 394 
experimental blocks. Mean reaction time was 593 ms (SD=116). Analysis of variance (ANOVA) of 395 
reaction times across the 14 blocks yielded a significant effect F(13,312)=3.78, p<0.025 (Greenhouse-396 
Geyser adjusted, ε=0.174), with an effect size of η2=0.14. A post-hoc Tukey HSD test revealed that the 397 
effect was caused by the significantly longer RTs in the first block compared to the rest of the blocks 398 
(p<0.05), indicating rapid adjustment during the first block followed by a steady performance speed 399 
throughout the experiment. 400 

Mean hit rate was 93.28 (SD=5.76). Analysis of variance (ANOVA) of hit rate across the 14 blocks yielded 401 
a marginally significant effect F(13,312)=2.32, p<0.06 (Greenhouse-Geyser adjusted, ε=0.3), with an 402 
effect size of 2=0.09. A post-hoc Tukey HSD test revealed that the effect was caused by the significantly 403 
lower hit rate in the first block compared to blocks 8, 9, 10, 12, 13, and 14 (p<0.05), indicating a steady 404 
and high performance throughout the experiment following initial adjustment to the task during the 405 
first block.  406 
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Discussion 407 

Beginning with the seminal paper by Rao and Ballard (1999), PC has become an extremely influential 408 
concept in cognitive neuroscience and currently represents one of the most compelling computational 409 
theories of perception. An experimental paradigm that was suggested early on as a suitable probe of PC 410 
in humans is the auditory MMN (Friston, 2005; Baldeweg, 2006; Stephan et al., 2006). The MMN is 411 
attractive for studies of PC, not least because the statistical structure of the stimulus sequences can be 412 
manipulated easily. This allows for straightforward tests of general predictions from PC, for example, 413 
concerning the impact of (un)predictability on ERPs. Indeed, the results from numerous auditory MMN 414 
studies are consistent with these general predictions (Wacongne et al., 2011; Schmidt et al., 2013; 415 
Phillips et al., 2015; Chennu et al., 2016; Garrido et al., 2017).  416 

By contrast, an opportunity that has remained surprisingly unexploited is that models of PC provide 417 
formal quantities, specifically pwPEs, and predict how these should fluctuate trial-by-trial, given a 418 
particular stimulus sequence. While some sophisticated computational treatments of single-trial 419 
variations in evoked auditory and somatosensory EEG responses exist (Ostwald et al., 2012; Lieder et al., 420 
2013b; Kolossa et al., 2015), these have either examined other potentials than MMN, were restricted to 421 
particular electrodes and time points, or used computational quantities different from pwPEs (e.g., 422 
Bayesian surprise). In the domain of visual mismatch, computational investigations have been lacking 423 
entirely so far. 424 

To our knowledge, this study represents the first computational single-trial EEG analysis of the visual 425 
MMN. It demonstrates that visual mismatch responses reflect trial-wise pwPEs, a core quantity of PC, 426 
and thus supports the general notion that MMN can be understood as a hierarchical Bayesian inference 427 
process (Friston, 2005; Garrido et al., 2009). Specifically, we used a Bayes-optimal agent to simulate 428 
belief trajectories about probabilities of two features of human faces: color and emotion. pwPE 429 
estimates for both features showed a significant relationship to event-related potentials at the single-430 
trial level (Fig. 3), with activations at electrodes and time windows that were comparable to classical 431 
visual MMN results (see below). Sorting single-trial ERPs according to the magnitude of the model-based 432 
pwPE estimates and selecting those with the highest and lowest pwPEs revealed the characteristic 433 
negative mismatch waveform at posterior electrodes (Fig. 4). These findings suggest that the MMN is a 434 
correlate of pwPEs as computed by a hierarchical Bayesian model. Comparing our model-based results 435 
to those obtained with traditional averaging and subtraction methods revealed that time-course and 436 
topographic distributions of the two analyses yielded highly similar results (Fig. 6).  437 

The high hit-rate and approximately constant RT over the experiment indicates that participants 438 
complied with the task and attended the fixation cross. Hence, the pwPEs observed in our study were 439 
likely generated by an automatic mechanism that operates outside the focus of attention, in line with 440 
theories of perception as unconscious inference (Hatfield, 2002; Friston, 2005; Kiefer, 2017).  441 
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Several studies used the visual MMN to investigate neural responses to changes in color and facial 442 
emotions (see Methods). The topographical distribution and time-course of pwPEs in our current study 443 
are in line with these previous findings. However, to our knowledge, our study is the first to 444 
demonstrate that pwPEs obtained from a formal Bayesian model (HGF) are reflected by visual mismatch 445 
responses. Thus, our results represent an important advance in the interpretation of the visual MMN, 446 
elucidating the potential underlying computational processes.  447 

Our model-based approach identified an early time window of pwPE responses in the 180-255 ms and 448 
170-214 ms intervals for color and emotion PEs, respectively. The topographic distribution of both 449 
responses (Fig. 6B) corresponds to the topography of the known visual MMN response characterized by 450 
a posterior dominant negative potential. These intervals are also in good agreement with our current 451 
results obtained with traditional ERP analysis methods, which showed a significantly more negative 452 
response to color deviants in the 196-228 ms interval. Traditional ERP analysis did not reveal a 453 
significant mismatch response to emotion deviants in a similarly early interval, which we discuss below. 454 

Prior studies often observed a late positive potential following the MMN peak in the deviant-minus-455 
standard differential response dominant at the posterior scalp (Czigler et al., 2002; Zhao and Li, 2006; 456 
Czigler and Sulykos, 2010; Muller et al., 2010; Stefanics et al., 2011). Accordingly, we found significant 457 
PEs in the 320-500 ms and 405-455 ms intervals for color and emotion changes, respectively, that 458 
corresponded to positive potentials at the posterior scalp (Figs. 3 and 6). These intervals are in good 459 
agreement with the results obtained with traditional averaging and subtraction methods which revealed 460 
significant mismatch responses in the 324-484 ms and 420-452 ms intervals for color and emotion, 461 
respectively. An important result of our current study is that the ‘late positive’ peak also shows a 462 
significant relationship to model-based pwPE estimates. It indicates that this later potential, similar to 463 
the MMN, is also a neural correlate of PEs, despite its scalp distribution that apparently differs from that 464 
of the MMN, which suggest that different generator sources underlie the two responses. The existence 465 
of multiple significant intervals, both for color and emotion pwPEs, are in line with PC as this posits that 466 
pwPEs are minimized in sequential steps during the model update process  (Friston, 2005). 467 

A strength of our study is that the time-course and scalp topography of significant pwPE-related 468 
potentials were identified using a model-based approach that was applied to the entire time×sensor 469 
data space. This contrasts with previous studies that often restricted the statistical analysis to certain 470 
electrodes and time intervals.  471 

We also compared our Bayesian model against a more classical alternative (change detection) to verify 472 
our computational interpretation of visual mismatch responses. This involved two GLMs incorporating 473 
either trial-wise pwPEs (from the HGF) or categorical change indices (CD model). Model comparison 474 
indicated that the pwPE model was clearly superior to the CD model in the large majority of voxels – 475 
both for a restricted mask (where both pwPE and CD models yielded significant results at the group-476 
level) and for the entire space-time volume. Two issues are worth highlighting here. First, our Bayesian 477 
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model is generic and pwPE trajectories obtained with the HGF are unlikely to differ markedly from those 478 
generated by other Bayesian models. In fact, for any probability distribution from the exponential 479 
family, Bayesian update equations share a canonical form for precision-weighted PEs (Mathys, 2016). 480 
Second, our approach is not restricted to a particular time bin (as in Lieder et al., 2013) and does not 481 
preclude that competing models could explain different trial components differentially well.  However, 482 
this potential problem of interpretability is addressed by our functionally defined mask, which is 483 
restricted to points in time-sensor space with significant mismatch responses under both models. Future 484 
extensions of the present approach could involve generative modelling of the entire waveform. While 485 
MMN waveform models do exist, these are detailed biophysical models that cannot be directly fitted to 486 
EEG data (Wacongne et al., 2012) and/or are not suited for single-trial analyses (Lieder et al., 2013a). 487 

A limitation of our paradigm is that the necessity to control face stimuli for spatial frequency and 488 
luminance diminished details of facial expressions which are important for emotion recognition. For 489 
example, an important cue for fear, the white sclera above the pupil revealed by widely opened eyes 490 
(Darwin, 1872; Ekman and Friesen, 2003), appeared remarkably diminished after equating images for 491 
spatial frequency and luminance. This might explain why our mismatch responses to emotion changes 492 
were less robust compared to previous studies (e.g., Stefanics et al., 2012), and why our current 493 
traditional ERP analysis approach did not yield a significant mismatch response in an early time window. 494 
Although our model-based analysis revealed significant emotion pwPE responses in the early time 495 
window of 170-214 ms, the effect was mainly driven by responses to happy faces (Fig. 4D). By contrast, 496 
our model-based approach did identify significant single-trial pwPE responses to emotional faces in the 497 
early time window where visual MMN responses were observed in prior studies. This highlights 498 
advantages of using a computational modeling approach in a GLM framework at the single-subject level. 499 
First, using trial-by-trial regressors in a GLM enables us to use all trials from the experiment and hence 500 
increases the robustness of the parameter estimates whereas in traditional MMN approaches a large 501 
portion of trials are not used in the deviant vs. standard comparisons. Second, our modeling approach 502 
allowed us to include trials where both color and emotion changed. 503 

Future extensions of our current work include effective connectivity analyses, such as dynamic causal 504 
modeling (DCM) that has proven useful for our understanding of the auditory MMN (e.g., Garrido et al., 505 
2007; Moran et al., 2013, 2014; Cooray et al., 2014; Ranlund et al., 2016). Although several 506 
electrophysiological studies are consistent with propagation of pwPEs in a hierarchical network 507 
supporting PC, the interpretation is indirect and a direct embedding of computational quantities into 508 
physiological models remains to be done. Future studies may combine hierarchical Bayesian models 509 
with DCM to better characterize trial-wise computational message passing in neural circuitry mediating 510 
visual perception. 511 

  512 
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Table 1. Test statistics for color and emotion prediction errors. 513 

Test statistics for color prediction errors 
Activation 
size  
(# voxels ) 

Cluster p-value 
(FEW-corrected) 

Peak p-value 
(FWE-corrected) 

Peak 
F-statistic 

Peak 
Equivalent Z-
statistic 

Peak 
Latency  
(ms) 

9885 1.44E-10 2.42E-10 40.63242 7.574789 472 

2.63E-08 32.85626 6.898473 412 

4.1E-08 32.14478 6.830418 388 

5.32E-08 31.73202 6.790405 388 

3958 4.71E-06 3.9E-10 39.81532 7.50916 208 

2.11E-06 26.03102 6.192928 216 

2.6E-06 25.71183 6.156698 216 

2.5E-05 22.35084 5.753717 212 

5.9E-05 21.09702 5.592177 216 

2006 0.000426 4.78E-09 35.62346 7.152807 212 

9875 1.46E-10 6.09E-05 21.05077 5.586089 468 

6.31E-05 20.99963 5.579346 384 

0.000245 19.04328 5.312191 352 

0.000889 17.21467 5.044499 384 

0.002482 15.77195 4.819075 476 

0.002808 15.59909 4.791132 428 

0.003092 15.46402 4.76915 428 

0.004554 14.92295 4.679763 436 

0.010871 13.70968 4.471042 416 

Test statistics for emotion prediction errors 
Activation 
size  
(# voxels ) 

Cluster 
p-value 
(FEW-corrected) 

Peak 
p-value 
(FWE-corrected) 

Peak 
F-statistic 

Peak 
Equivalent Z-
statistic 

Peak 
Latency  
(ms) 

1333 0.001824 0.00334 15.51657 4.777717 428 

0.171057 9.932535 3.729684 388 

1179 0.003041 0.004358 15.14413 4.716563 188 

0.057261 11.53527 4.063691 184 

0.090418 10.87907 3.930862 180 
Table 1. Significant activations are arranged according to size. P-values and statistics are given for 514 
activation clusters and within each activation. Significant FEW-corrected p-values are in bold italics font. 515 
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Figure captions 517 

Figure 1. Stimuli and paradigm. A) We used a multi-feature visual 'roving standard' paradigm to elicit PEs by rare 518 
changes of either color (red, green), or emotional expression (happy, fearful) of human faces (or both). This 519 
allowed us to study brain responses to stimuli that were physically identical but differed in whether color or 520 
emotion regularities were violated. Faces were presented in four peripheral quadrants of the screen. A 521 
detection task was presented at fixation at the center. Faces reproduced with permission of the Radboud Faces 522 
Database (www.rafd.nl). B) Schematic illustration of a stimulus sequence showing transitions between stimulus 523 
types. Note physically identical stimuli taking the role of different ‘deviant’ stimulus types (GH: green happy, GF: 524 
green fearful, RH: red happy, RF: red fearful faces) depending on expectations established by prior stimulus 525 
context. 526 

Figure 2. The Hierarchical Gaussian Filter and pwPE trajectories. A) A graphical model of the Hierarchical 527 
Gaussian Filter with two levels (figure modified from Mathys et al., 2011). B) Model-based pwPE trajectories 528 
from one experimental block used as regressors in the GLM. GF: green fearful, GH: green happy, RF: red fearful, 529 
RH: red happy faces. 530 

Figure 3. Thresholded space-time statistical parametric maps (SPMs). A) Main effects of color pwPE estimates 531 
(pooled across emotions) of the F-test (whole-scalp corrected at p<0.05, with a cluster-defining threshold of 532 
p<0.001). Crosshair is positioned at the earliest maximum of test statistics. B) Contrast estimates (arbitrary 533 
units) for the four types of stimuli (GF: green fearful, GH: green happy, RF: red fearful, RH: red happy faces) at 534 
three time points of maxima in posterior clusters. Bars indicate 90% C.I. as additional illustration for ERP effects 535 
found after whole-scalp x epoch length FWE correction. C) and D) Main effects of emotion pwPE estimates 536 
(pooled across colors) plotted similarly as for color pwPEs. 537 

Figure 4. pwPE parameter estimates and ERP image of all single trials of 34 subjects (>283’000 single trials). Data 538 
in all subplots were smoothed with a sliding window of 3000 trials for visualization. A) Mean-centered 539 
parameter estimates of pwPEs to color input sorted from minimum (top) to maximum (bottom) values, yielded 540 
by the HGF. Data were smoothed using a vertical window of 3000 trials. B) Single-trial ERPs from occipito-541 
temporal electrodes sorted according to their associated pwPE magnitude. Note vertical lines corresponding to 542 
ERP peaks and troughs. C) Mean ERP amplitudes over the intervals with significant correlation between pwPE 543 
and ERP. Red and purple lines show potential values averaged over the intervals 200-240 ms and 320-430 ms, 544 
respectively. Confidence intervals (S.D.) resulted from the time windows used per time point. D) ERP waveforms 545 
calculated across 10 % of trials with the lowest and highest pwPE parameter estimates. Confidence intervals 546 
(S.D.) resulted from the single trials. Note the difference between waveforms in the intervals where significant 547 
pwPE-related activity has been found with multiple regression. Red areas in head plots show scalp regions 548 
where electrodes were used for plotting the ERP waveforms. E-H) Data for emotion pwPEs plotted similarly as 549 
for color above). 550 

Figure 5. Histograms of LME over the voxels within a mask defined by the conjunction of significant voxels for 551 
the pwPE and change detection models either for color or emotion changes, and over all voxels in the whole 3D 552 
space-time volume.  553 

Figure 6. ERP waveforms, scalp voltage maps, and topographic statistical parametric maps. A) ERPs with 95% 554 
confidence interval for changes in color obtained with traditional averaging deviant-minus-standard subtraction. 555 
Red areas in channel layout plots show scalp regions where electrodes were used for plotting the ERP 556 
waveforms. B) Scalp potential plots of deviant-minus-standard difference waveform (left) at two timepoints of 557 
cluster maxima where SPM analysis yielded significant results. Statistical parametric maps (right) for model-558 
based color pwPE estimates (pooled across emotions) of the F-test. Note high similarity of topographic 559 
distributions for the traditionally obtained mismatch responses (with negative and positive posterior scalp 560 
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distributions) and the statistical parametric map (SPM) obtained with computational model-based analyses. C-561 
D) Data for the emotion changes, plotted similarly as for color. 562 

 563 

  564 
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