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Abstract 

Current theories of object perception emphasize the automatic nature of perceptual inference. 

Repetition suppression (RS), the successive decrease of brain responses to repeated stimuli, is 

thought to reflect the optimization of perceptual inference through neural plasticity. While 

functional imaging studies revealed brain regions that show suppressed responses to the repeated 

presentation of an object, little is known about the intra-trial time course of repetition effects to 

everyday objects. Here we used event-related potentials (ERP) to task-irrelevant line-drawn objects, 

while participants engaged in a distractor task. We quantified changes in ERPs over repetitions using 

three general linear models (GLM) that modelled RS by an exponential, linear, or categorical “change 

detection” function in each subject. Our aim was to select the model with highest evidence and 

determine the within-trial time-course and scalp distribution of repetition effects using that model. 

Model comparison revealed the superiority of the exponential model indicating that repetition 

effects are observable for trials beyond the first repetition. Model parameter estimates revealed a 

sequence of RS effects in three time windows (86-140ms, 322-360ms, and 400-446ms) and with 

occipital, temporo-parietal, and fronto-temporal distribution, respectively. An interval of repetition 

enhancement (RE) was also observed (320-340ms) over occipito-temporal sensors. Our results show 

that automatic processing of task-irrelevant objects involves multiple intervals of RS with distinct 

scalp topographies. These sequential intervals of RS and RE might reflect the short-term plasticity 

required for optimization of perceptual inference and the associated changes in prediction errors 

(PE) and predictions, respectively, over stimulus repetitions during automatic object processing. 

 

Introduction 

Stimulus repetition-related phenomena are ubiquitous in psychophysics, psychology, and 

neuroscience (Henson, 2003; Ibbotson, 2005; Grill-Spector et al., 2006; Krekelberg et al., 2006; 

Clifford et al., 2007 ; Kohn, 2007 ; Auksztulewicz & Friston, 2016; Barron et al., 2016). Functional 

neuroimaging studies have observed both repetition suppression (RS) and repetition enhancement 

(RE) effects (reviewed in (Segaert et al., 2013)). RS, also referred to as stimulus specific adaptation 

(SSA), is thought to reflect a rapid form of experience-dependent plasticity affecting perception and 

response properties of neurons. It has also been linked to optimization of the brain’s predictions 

about the sensory environment (Solomon & Kohn, 2014) by discounting expected properties 

(Clifford et al., 2007; Summerfield et al., 2008; Webster, 2011; Vogels, 2016). 

Repetition-related phenomena in the visual system are complex and likely represent a compound of 

distinct neural processes, the mechanisms of which are not fully understood yet (Ibbotson, 2005; 

Grill-Spector et al., 2006; Solomon & Kohn, 2014). At least three mechanisms contribute to SSA, 

including i) somatic afterhyperpolarization, ii) synaptic depression due to depletion of presynaptic 

vesicles, and iii) circuit-level mechanisms (Kohn, 2007; von der Behrens et al., 2009). Adaptation is 

thought to modify neural population coordination and its effects cascade through the processing 

stages, possibly affecting multiple networks (Solomon & Kohn, 2014).  

Predictive coding (PC) offers a neurobiologically plausible, mechanistic model for stimulus repetition 

related phenomena, and accommodates observations in psychophysics, electrophysiology and 

functional neuroimaging (Friston, 2005; Auksztulewicz & Friston, 2016). PC suggests that the brain 
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maintains and updates an internal model of the environment to infer the most likely causes of 

sensory inputs and actively generates predictions (Clark, 2015). In this framework, sensory systems 

are hierarchically organized where each level receives inputs from the level below that signals a 

mismatch between predicted and observed events, a prediction error (PE; Hinton et al., 1995; Rao & 

Ballard, 1999; Friston, 2005; Hohwy, 2013). In turn, each level sends its input to the level below 

conveying predictions that are thought to explain away PEs at the lower level. Perceptual inference, 

i.e. the process of determining the most likely cause of sensory inputs, thus rests on message passing 

across the hierarchy. From the perspective of PC, adaptation or RS can be understood as a neural 

correlate of perceptual learning, i.e. the optimized process of perceptual inference where PEs to 

repeated stimuli are explained away more efficiently due to synaptic plasticity in sensory circuits 

(Baldeweg, 2007; Garrido et al., 2009). Conversely, RE could represent increased neural activity 

during the “sharpening” of predictions corresponding to increasing precision (implemented by 

increased postsynaptic gain) over repetitions. Encoding precision is important since veridical 

perception not only rests on the content of sensory signals, but also on the confidence or precision 

of the signals that drive inference. It has been suggested that the brain might employ mechanisms to 

encode precision by relying on modulatory neurotransmitters that regulate the gain or excitability of 

populations (Friston et al., 2016). Specifically, cholinergic mechanisms might affect the encoding of 

sensory precision by modulating postsynaptic gain (Feldman and Friston, 2010; Moran et al., 2013). 

Alternatively, cholinergic mechanisms can also affect the function of N-methyl-D-aspartate (NMDA) 

receptors (Aramakis et al., 1997; Chen et al., 2008) which, in turn, are thought be involved in 

signaling both prediction errors and predictions in cortical hierarchies (Friston 2005; Corlett et al. 

2011; Stephan et al. 2016). In sum, PC offers potential explanations for the phenomena observed 

during repeated stimulus presentation: larger responses to unpredicted events, and attenuation as 

well as enhancement to repeated events (Egner et al., 2010; de Gardelle et al., 2013; Recasens et al., 

2015). 

While studies on repetition of faces and words are relatively abundant (for a recent review, see 

Schweinberger & Neumann, 2016), there are few electroencephalography (EEG) studies where time-

course and topographic distribution of repetition effects to objects were investigated at the whole-

scalp level. Typically, most studies focused the analysis on a preselected set of electrodes and 

confined amplitude measurements to time windows either based on visual inspection of the data or 

on previous reports in the literature. Furthermore, previous studies often investigated brain 

responses only to the first repetition relative to the initial presentation, thus ignoring the dynamics 

of brain responses to further repetitions (Schendan & Kutas, 2003; Henson et al., 2004; Eddy et al., 

2006; Gruber et al., 2006; Gruber & Muller, 2006; Guillaume et al., 2009; Gilbert et al., 2010; Kim et 

al., 2012; Andrade et al., 2015; Gosling et al., 2016). The aim of the current study was to determine 

the time course and scalp distribution of repetition effects without prior hypotheses about the 

dynamics (RS vs RE), time course, or scalp distribution of repetition effects. To this end, we analysed 

the spatio-temporal dynamics of ERPs to black and white line drawings of common objects over six 

consecutive presentations. We used statistical parametric mapping (SPM; Friston, 2007) to analyse 

ERP amplitudes at each and every sensor in the poststimulus 50-500ms time window using a mass-

univariate approach. Given that most studies focused on the analysis of ERPs to the first repetition 

only, little is known about the time course of the decay of scalp-recorded ERPs to object stimuli that 

are repeated multiple times. Therefore we set up three GLMs with parametric regressors 

incorporating three hypotheses about the time-course of repetition effects. We used an exponential, 
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a linear, and a “change detection” model to identify ERP components that showed a reliable 

repetition effect and performed Bayesian model comparison (Stephan et al., 2009) in order to 

identify the model that best explained the observed data.  

 

Methods 

Participants and ethics statement 

Seventeen students (mean age 21.06 ys, SD 1.56 ys, 8 female, 15 right-handed) volunteered to 

participate in the study. The experimental protocols were approved by the Institutional Review 

Board of the Institute for Psychology, Hungarian Academy of Sciences. All participants gave their 

written informed consent after the nature of the experiment had been fully explained. They received 

a monetary compensation for their participation in the study. All participants had normal or 

corrected-to-normal vision. The experiments were conducted in compliance with the Declaration of 

Helsinki. 

Stimuli and procedure 

In each of the four blocks, we recorded event-related potentials (ERP) to 60 black and white line 

drawings of common objects taken from the picture inventory by Szekely et al. (2004). The 60 object 

pictures were selected from the following semantic categories:  small artifacts (n=39, e.g., book, 

flag); large artifacts (n=1, bed); objects found in nature (n=2, flower, leaf); things to wear (n=5, e.g., 

coat, hat); body parts (n=2, feather, heart); foods (n=11, e.g., apple, mushroom). Stimuli were 

organized into microsequences of 6-10 presentations of an object followed by a close-up or wider-

angle view of the same object, and an additional repetition of the same object with its original 

viewing angle another two times (Figure 1A). ERPs to changes of viewing angle were not analysed 

here. They were included to study boundary extension effects (e.g., Czigler et al., 2013) and will be 

published elsewhere. Thus the length of microsequences varied pseudo-randomly between 9-13 

presentations. To study repetition effects here we analysed ERPs to the first six stimuli, exclusively. 

In each block we used 60 individual black line-drawn objects on white background. Stimulus duration 

was 250ms with 320ms inter-stimulus interval (ISI). Each picture subtended 11.4° visual angle and 

was presented on a dark grey background. A black fixation cross was presented in the centre of the 

screen laid over a grey disk subtending 1.17° visual angle. To minimize eye-movements subjects 

were instructed to fixate at the cross throughout the experiment. Similar to our prior studies 

(Stefanics et al., 2011; Stefanics & Czigler, 2012; Csukly et al., 2013; Kovacs-Balint et al., 2014; Farkas 

et al., 2015) we employed a behavioural task to minimize the variation of attentional effects on the 

processing of object stimuli across participants by engaging the participants’ attention. Pseudo-

randomly every 3-6 seconds, the fixation cross became wider or longer (Fig. 1A). The participants’ 

task was a speeded button-press to the changes of the cross and reaction time (RT) was recorded. 

Trials occurring within an 800 ms interval after a change in the fixation cross were excluded from the 

analysis. RTs and hit rates were compared between experimental blocks with analyses of variance 

(ANOVA). Stimuli were presented using Cogent 2000 and Cogent Graphics developed at the 

Wellcome Department of Imaging Neuroscience (http://www.vislab.ucl.ac.uk/Cogent/index.html). 

Participants sat in a comfortable chair in a sound-attenuated, dimly lit room during EEG recording. 
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EEG recordings and preprocessing 

EEG was recorded from 61 Ag/AgCl electrodes according to a modified international 10–20 system 

(AF7, Fp1, Fpz, Fp2, AF8, AF3, AFz, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, 

FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, 

P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2). An electrode attached to the tip of 

the nose was used as reference. The ground electrode was placed on the forehead. EEG was 

recorded from DC with a low-pass filter at 100 Hz (Neuroscan Synamp, Victoria, Australia). Eye 

movements were monitored by two horizontal and two vertical bipolar EOG electrodes. Data were 

digitized at 32 bit resolution and a sampling rate of 500 Hz. EEG was filtered off-line between 1 and 

30 Hz (24 dB/octave) and re-referenced to the common average.  

Epochs extending -100 ms before to 550 ms after stimulus onset were extracted from the 

continuous EEG for each object for the first six presentations. Epochs were baseline corrected to the 

pre-stimulus 100 ms period. To avoid other potential artefacts, epochs with values exceeding ±75 μV 

on any EEG or EOG channel were rejected from the analysis using the open source software EEGLAB 

(RRID: SCR_007292, (Delorme and Makeig, 2004)) in the Matlab development environment 

(MathWorks, Natick, USA). After artifact rejection, the total number of trials (summed over the four 

blocks) used for calculating the mean ERPs that entered the GLM was 197 (sd=11), 184 (sd=13), 183 

(sd=11), 182 (sd=12), 187 (sd=11), 178 (sd=11), for 1st, 2nd, 3rd, 4th, 5th, and 6th presentation of stimuli, 

respectively. 

Space × time SPM analysis 

Mean ERP data were converted to scalp ⨯ time images for statistical analysis using the open source 

software SPM12 (v6470, RRID: SCR_007037; Litvak et al., 2011), following similar preprocessing and 

statistical procedures as in previous work (e.g., Henson et al., 2008; Garrido et al., 2013; 

Auksztulewicz & Friston, 2015; Stefanics et al., 2018). The data were interpolated to create a 32×32 

pixel scalp map for each time-point in the poststimulus 50-500 ms interval. Given a sampling 

frequency of 500 Hz, the time dimension consisted of 226 samples in each averaged ERP. Images 

were stacked to create a 3D space-time image volume that was smoothed with a Gaussian kernel 

(full-width at half-maximum (FWHM)=[16mm 16mm 16ms]) in accordance with the assumptions of 

Random Field Theory (Worsley & Friston, 1995; Kiebel & Friston, 2004).  

A GLM with four main regressors corresponding to the four experimental blocks, and a generic 

decay/rise function as a parametric modulator for each stimulus presentation in each block, was 

estimated for each participant. The design matrix for a single subject is depicted in Fig. 1B. The 

decay/rise function was used to quantify changes in ERP amplitude over repetitions within 

microsequences as unpredicted firstly-presented objects became more predictable over consecutive 

repetitions. We chose an exponential function as parametric modulator since several 

electrophysiological and neuroimaging findings indicating that response attenuation over repeated 

stimulus presentations typically follows a non-linear decay that is well approximated by an 

exponential function (e.g., Puce et al., 1999; Sanchez-Vives et al., 2000; Baldeweg, 2006; Boehnke et 

al., 2011; de Gardelle et al., 2013; Kaliukhovich & Vogels, 2014). This allowed us to estimate 

modulation of the repetition sequence with an exponential time course. Importantly this design is 

flexible enough to capture both decay (attenuation or suppression) and rise (facilitation or 

enhancement) processes. For example, a decrease of a positive ERP component would show a 
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positive correlation with our regressor across repetitions, whereas an increase of a positive 

component would show a negative correlation with our regressor (conversely for negative 

components). The estimated regression coefficients (beta parameter estimates) of the decay 

function for each scalp time-point for each participant were analysed at the group level for all three 

models (exponential, linear, “change detection”), using a standard two-stage summary statistics 

approach (Friston et al. 2005; Mumford & Nichols 2009). These parameter estimates represent the 

relationship (similarity) between the dynamics of ERPs over repeated stimulus presentations and the 

parametric decay regressors. 

On the group level, we used F-tests to find scalp time-points where mean ERPs were significantly 

modulated by repeated stimulus presentations. The resulting statistical parametric maps (SPM) were 

family-wise error (FWE) corrected for multiple comparisons at the voxel level (p<0.05 (FWE)) using 

Random Field Theory (Flandin & Friston, 2017).  

Model comparison 

Beside using an exponential function as parametric modulator we explored two alternative models 

previously considered for studying repetition effects (Noppeney and Penny, 2006; Lieder et al., 

2013) and compared them with the exponential model. In particular, we considered repetition 

effects as 1) categorical decay (i.e., object 1st presentation > presentations 2–6) and 2) linear 

decrease. The categorical decay corresponds to a “change detection” model, i.e., it represents the 

hypothesis that whenever a new object is presented in a sequence, it elicits a phasic response which 

disappears completely under the following repetitions. While the linear model is not realistic (given 

that repetition suppression effects must become consecutively smaller in physiological systems with 

decay mechanisms), we included this regressor as a “null” model, similar to Noppeney and Penny 

(2006). Thus, we set up another two GLMs, incorporating these two hypotheses. The design matrices 

for a single subject are depicted in Fig. 1C and D, respectively. 

In order to compare the models formally, we used the Bayesian Information Criterion (BIC) (Schwarz, 

1978) approximation to the log model evidence (LME). Under Gaussian noise (as assumed by the 

GLM), this leads to an approximation of LME that is a function of the residual sum of squares (RSS): 

 

     
 

 
    

   

 
  

 

 
                 (1) 

where n is the number of data points and k is the number of parameters estimated by the model.  

We first computed the LME for each voxel in individual participants. In order to perform model 

comparison at the group level, we computed the sum of LME (between models) across subjects for 

each voxel. This is equal to the logarithm of the group Bayes factor (GBF; Stephan et al., 2007) and 

corresponds to a fixed effects group-level Bayesian model selection (BMS; Stephan et al., 2009) 

procedure. Group model comparison was done both within a functionally defined mask (of voxels 

showing repetition effects under all models) as well as on all voxels in the 3D space-time image 

volume (to perform an unconstrained comparison).  The mask comprised all voxels from the SPM 

analyses where all three models had yielded a significant whole-brain corrected effect (logical “AND” 
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conjunction). We then used a non-parametric Wilcoxon signed rank test to assess the null hypothesis 

of zero median for LME across all voxels.  

 
 
Results 

Reaction time and hit rate 

We compared reaction times and hit rates for the occasional changes in the fixation cross between 

experimental blocks. An ANOVA of reaction times across the four blocks yielded no significant effect 

(F(3,48)=1.12, p=0.35) indicating lack of evidence for a change in reaction speed across the blocks. 

The mean reaction time was 452ms (SD=87ms). An ANOVA of hit rate across the four blocks yielded 

no significant effect (F(3,48)=0.396, p=0.76) indicating a high detection performance without signs of 

a change in hit rate during the experiment. The mean hit rate was 95.26% (SD=6.7%). 

Model comparison 

We assessed the three models by performing model comparison at the group level as described 

above. The functionally defined mask was a conjoint mask of voxels showing significant repetition 

effects under any of the three models (logical “AND” conjunction). Fixed-effects Bayesian model 

comparison revealed that the Exponential model was clearly superior compared to the other two 

models, and that the Change detection model performed better than the Linear model, both for 

voxels within the functional mask (Fig. 2A), as well as for voxels within the whole volume (Fig. 2B). 

 

To characterize the distribution of LME values more formally, we performed null hypothesis 

testing, as described above. The results are summarized in Table 1. 

 

ERP results 

Given that model comparison showed that the GLM with the exponential decay function explains 

the data best, we used the space x time clusters with significant results for the winning model to 

illustrate repetition effects. We start from scalp topographies and then show using time-windowed 

data and conventional ERP plots of the effects that lead to significant results in SPM. Scalp 

topographies of the SPMs are shown in Figure 3A for the cluster maxima. Model estimates to 

responses to line drawings showed a sequence of RS effects. Over repeated presentations of our 

visual stimuli, brain responses showed a sequence of RS and RE effects. An early RS effect was 

observed at bilateral occipital areas in the 86-140ms interval followed by RE at midline occipital sites 

(320-340ms). Temporo-parietal electrodes over the right hemisphere showed RS in the 322-360ms 

time window followed by a further interval of RS in the 400-446ms time window at right fronto-

temporal sites. Details of test statistics are given in Table 2. A video animation of the time-course of 

repetition effects over the whole scalp is available in the Supporting information of the online 

version of this paper. 
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For visual comparison, ERP amplitudes for each subject are shown in Figure 3B for each of the six 

stimulus presentations at selected electrodes in the intervals where significant repetition effects 

were observed. The early RS effect over occipital areas suggests an abrupt suppression of PE 

responses from the first to the second stimulus presentation, with constant response amplitude for 

further repetitions. In turn, the subsequent RS effects over temporal and frontal areas show a more 

smoothly decaying response profile. The occipital RE effect also shows a smooth time course of 

incrementally increasing response amplitude to repeated stimulus presentations. 

 

For visualisation, grand-average ERP waveforms to the first and sixth stimulus presentations are 

shown in Figure 2C at electrode sites where SPM analysis had shown significant repetition effects. 

Our visual stimuli (line drawings of objects) evoked the canonical posterior P1 and P2 components, 

as well as prominent negative-going peaks at parieto-temporal and frontal electrodes. Note that 

ERPs are shown for illustration purpose only and no further null hypothesis tests are conducted; all 

statistical tests were carried out as part of the SPM analysis covering the entire space-time volume, 

comprising data from all electrodes in the poststimulus 50-500 ms interval (see Methods for details). 

 

Discussion 

In this study we used Statistical Parametric Mapping, a comprehensive analysis framework to 

investigate effects of stimulus repetition on ERPs to line drawings of everyday objects. For each 

subject we estimated a GLM including a decay function to quantify changes in brain potentials over 

the whole scalp in the poststimulus 50-500ms time window. We observed three consecutive 

intervals of RS in the 86-140ms, 322-360ms, and 400-446ms time window with occipital, temporo-

parietal, and fronto-temporal distribution (Figure 3A), respectively. Furthermore, we found an 

interval of RE in the 320-340ms window with occipito-temporal distribution.   

Importantly, similar to previous studies (e.g., Stefanics et al., 2011, 2018; Stefanics & Czigler, 2012; 

Csukly et al., 2013; Kovacs-Balint et al., 2014; Farkas et al., 2015), our experimental design 

implemented a primary task to control attentional effects that might modulate repetition-related 

neural activity (Vuilleumier et al., 2005; Egner et al., 2010; Chennu et al., 2013,2016; Auksztulewicz 

& Friston, 2016; Gosling et al., 2016). The constantly high hit-rate and fast RT over the experiment 

indicated that participants complied with the task and attended the fixation cross. This suggests that 

repetition effects observed in our study likely reflect automatic perceptual inference operating 

outside the focus of visual attention. Theories of perception as unconscious inference originate from 

Helmholtz’s classical idea that perceptual experience is the “conclusion” of unconscious inductive 

inference from sensory input (Hatfield, 2002; Kiefer, 2017). In current theories of cortical 

information processing such as predictive coding (Friston, 2005), RS is viewed as the result of a 

process during which the brain minimizes the prediction error (the difference between the predicted 

and the actual input) with increasing efficacy (due to updating of predictions and the associated 

synaptic plasticity of cortical connections) during repeated presentations of the same stimulus type. 

This decrease of prediction errors during processing of a given stimulus, and the change in efficacy of 

stimulus processing via plasticity in underlying neural circuits corresponds to perceptual inference 

and learning, respectively (Baldeweg, 2007).  
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Our findings represent an important advance in the understanding of the time course and scalp 

distribution of repetition effects in ERP correlates of object perception as they are based on an 

unbiased mass-univariate statistical approach that covers the entire spacetime volume of EEG 

signals. Instead of relying on visual inspection and preselection of a subset of channels for amplitude 

tests, this approach included data from all electrodes and all time points in the post-stimulus 50-

500ms interval. The analysis takes into account the smoothness of scalp potentials (correlations 

between neighbouring channels and temporal smoothness of the EEG signal) and used a stringent 

method for correcting for multiple comparisons (FWE) using Random Field Theory. 

RS has been widely used in fMRI studies that examine how specific representations may be encoded 

by neuronal population activity (e.g., Barron et al., 2016). Furthermore, models of network 

mechanisms have been put forward to explain repetition suppression at the level of population 

dynamics (Grill-Spector et al., 2006). In electrophysiology, RS effects have been studied frequently 

over trials; by contrast, their temporal evolution within trials has received little attention. A 

predictive coding view suggests that RS reflects the minimisation of prediction error by updating 

predictions about the content and precision of sensory inputs (Auksztulewicz & Friston, 2015). 

Importantly, predictive coding also suggests that for non-trivial stimuli, which are processed at 

several (spatial, temporal, or semantic) scales, multiple significant within-trial intervals of RS should 

occur. This is because model updating and the “explaining away” of PEs during perceptual inference 

occurs at several levels of the cortical hierarchy, with temporal delays inherent to the recurrent 

message passing between areas, and increasing synaptic efficacy due to short-term plasticity is 

found on all levels (Friston, 2005; Baldeweg, 2006; Baldeweg, 2007; Garrido et al., 2009). Our 

findings suggest that, for the particular stimuli used here (line drawings of everyday objects) this 

implicit perceptual process might take place in neural circuitry comprising occipital, temporal, and 

frontal areas.   

Attention is known to counteract repetition suppression, i.e., it increases neural response to the 

repeated stimuli (e.g., Kok et al., 2012; Auksztulewicz & Friston, 2015). However, in our experiment 

the object stimuli were task-irrelevant and our protocol employed a primary task to engage the 

participants’ attention. Therefore attentional effects are unlikely to account for the enhanced 

responses we observed in the 320-340ms window with occipito-temporal distribution. Repetition 

enhancement has received less consideration than RS thus far (Segaert et al., 2013). RE effects in 

studies with implicit tasks have been suggested to reflect perceptual identification (Schnyer et al., 

2002) and involvement of explicit memory processes (Segaert et al., 2013). The predictive coding 

theory assumes that activity of a subset of neural elements that participate in perceptual inference 

represent predictions about the content and precision of sensory inputs. During stimulus repetition, 

neural activity underlying both kinds of predictions might increase, and manifest as enhanced neural 

responses. A prior study using fMRI reported that RS and RE co-occurred in a single cortical region 

during stimulus repetition (de Gardelle et al., 2013). While our present analyses do not link our scalp 

ERP results to the source level, our findings of an early interval of RS in the 86-140ms time window 

followed by an interval of RE in the 320-340ms window with posterior distributions suggest occipito-

temporal generator sources. Repetition paradigms with masked object (Eddy et al., 2006) and face 

(Henson et al., 2008) stimuli, as well an auditory study by Recasens et al. (2015), have also reported 

distinct intervals of RS and RE effects, indicating that not only unattended but even subliminal 

processing of faces and objects, as well as pure tones, are associated with both increase and 
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decrease of ERPs. It is notable that the same pattern of results have been obtained by Henson et al. 

(2008), Recasens et al. (2015) and our current study, namely that the RE effects occur later than RS 

effects. 

A limitation of our study is the relatively short stimulus onset asynchrony (SOA) of 570ms. Due to the 

short SOA, we cannot fully exclude that the pre-stimulus 100ms baseline period contained ERP 

components from the previous trial. However, it is unlikely that baseline correction (which consists 

of subtracting a constant) could have significantly contributed to the observed sequence of multiple 

short intervals of repetition effects. 

Scalp-recorded ERPs result from the linear summation of electric fields generated in the brain, 

therefore it is non-trivial to determine whether changes in a certain ERP component relative to a 

baseline period were caused by an increase/decrease of a negative/positive potential. Based on our 

current analysis we cannot unequivocally disambiguate whether our results are due to RS of 

negative components or RE of positive components; this ambiguity is inherent to all ERP studies. 

Nevertheless, several canonical ERP peaks have known timing and scalp distribution. Here, we 

interpreted amplitude changes during the period of these peaks in the most parsimonious way. For 

example, a period of decreased ERP overlapping with the early P1 peak is interpreted as repetition 

suppression of a dipolar source activity in the extrastriate cortex projecting its positive field over 

posterior electrodes (Di Russo et al., 2002; Murphy et al., 2012). While our current results provide 

objective phenomenological descriptions of repetition effects of scalp-recorded ERPs, future steps 

will involve studying repetition effects with more mechanistically interpretable computational and 

biophysically plausible network models (e.g., Garrido et al., 2009). 

Figure captions 

Figure 1. Paradigm and 1st-level design matrix. A) We used a simple stimulus repetition paradigm 
where line drawings of everyday objects were repeated 6 to 10 times. Between the 6th-10th 
presentations a change in the viewing angle was introduced, after which the original picture was 
repeated two times. Note that our analysis focused on the first six presentations where stimuli did 
not change over repetitions. B) Covariates plotted over the 1st-level design matrix. Image number 
corresponds to images for mean ERPs to the 1-6 presentations in four blocks (x axis). ERPs were 
modelled with a parametric modulator and a main regressor for each block (y axis right). The 
exponential function (mean centered) used for modelling repetition effects for the first block is 
plotted in blue over the design matrix (y axis left). C and D) Covariates plotted over the 1st-level 
design matrix for the Change detection and the Linear models, respectively. 

 

Figure 2. Histograms of LME. A) Histograms over the voxels within a mask defined by the “logical 
AND” conjunction of significant voxels under any of the three models, and B) over all voxels in the 
whole 3D space-time volume. 

 

Figure 3. Statistical parametric maps (SPM) and time course of repetition effects. A) Main effect of 
stimulus repetition (pooled across the four experimental blocks), F-values thresholded at p<0.05 
FWE (whole-scalp corrected), overlaid on the contrast images. Asterisks mark scalp locations for 
electrodes shown in B and C. Numbers show activations as indicated in Table 2. Panels from top to 
bottom show observed intervals of RS in the 86-140ms, RE in the 320-340ms, and RS in the 322-
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360ms and 400-446ms time windows, with occipital, occipito-temporal, temporo-parietal, and 
fronto-temporal distribution, respectively. Note that activation #4 is not plotted separately as it 
showed a similar dynamics and temporal topography to that of activation #2 peaking at 346ms. B) 
Box plots of ERP amplitudes for each stimulus presentation. Red lines represent the mean; points 
(subjects) shown together with the 95% confidence interval of the mean (1.96 SEM) in red and a 1 
SD interval in blue. Time windows of significant repetition effects are indicated in each subplot at the 
electrode sites closest to corresponding cluster maxima. C) Grand mean ERP waveforms elicited by 
the 1st and 6th stimulus presentation with 95% confidence interval are shown for illustration 
purposes. Note that statistics were carried out on 3D scalp space-time parameter estimates which 
were based on ERPs for the 1st, 2nd, 3rd, 4th, 5th, and 6th stimulus presentation. Black horizontal 
bars mark intervals of significant repetition effects. 

 

Table captions 

Table 1. Summary of model comparison statistics. The results show that the distribution of LME 

values are not Gaussian and median LME values are significantly different from zero for all 

comparisons. The absolute value of median LME in all comparisons was >12. Notably, a difference 

in LME >5 is considered as very strong evidence in favour of the superior model (Kass and Raftery, 

1995). 

 

Table 2. Test statistics for repetition effects. Significant activations are arranged and numbered 
according to size. P-values and statistics are given for up to three peaks within each activation. 
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Table 1. 

 

 

Activation  

number 

Activation size  

(# voxels ) 

Latency  

(ms) 

p-value 

(FWE-corr.) 

F-statistic Equivalent Z-

statistic 

1 7795 422 0.00180 61.2678 4.81524 

  440 0.00404 52.1248 4.60680 

  380 0.03835 31.7057 3.95946 

2 4156 346 0.00363 53.2627 4.63474 

  346 0.00737 46.0016 4.44467 

3 570 102 0.00474 50.4278 4.56392 

4 52 298 0.03762 31.8552 3.96560 

5 8 112 0.04366 30.7134 3.91801 

6 2 108 0.04893 29.8551 3.88109 

 

Table 2. 

LME Median Mean Std % of 

voxels 

>0 

Kolmogorov-

Smirnov test 

(D) 

Kolmogorov-

Smirnov test 

(p) 

Wilcoxon 

signed rank 

test (Z) 

Wilcoxon 

signed rank 

test (p) 

EXP vs LIN 

(within mask) 
38.77 43.59 14.24 100 1 <0.00001 -53.58 <0.00001 

EXP vs CDT 

(within mask) 
16.73 21.48 11.42 100 1 <0.00001 -53.58 <0.00001 

CDT vs LIN 

(within mask) 
-21.76 -22.11 9.63 0.57 0.9839 <0.00001 -53.57 <0.00001 

EXP vs LIN 

(all voxels) 
25.03 29.15 18.58 98.36 0.9704 <0.00001 -375.75 <0.00001 

EXP vs CDT (all 

voxels) 
13.78 13.73 11.03 89.28 0.8439 <0.00001 -348.01 <0.00001 

CDT vs LIN 

(all voxels) 
-12.77 -15.43 19.98 21.43 0.7286 <0.00001 -283.30 <0.00001 
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