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Impulsivity in Parkinson’s disease may be mediated by faulty evaluation of rewards or the failure to inhibit inappropriate choices.

Despite prior work suggesting that distinct neural networks underlie these cognitive operations, there has been little study of these

networks in Parkinson’s disease, and their relationship to inter-individual differences in impulsivity. High-resolution diffusion MRI

data were acquired from 57 individuals with Parkinson’s disease (19 females, mean age 62, mean Hoehn and Yahr stage 2.6) prior to

surgery for deep brain stimulation. Reward evaluation and response inhibition networks were reconstructed with seed-based prob-

abilistic tractography. Impulsivity was evaluated using two approaches: (i) neuropsychiatric instruments were used to assess latent

constructs of impulsivity, including trait impulsiveness and compulsivity, disinhibition, and also impatience; and (ii) participants

gambled in an ecologically-valid virtual casino to obtain a behavioural read-out of explorative, risk-taking, impulsive behaviour.

Multivariate analyses revealed that different components of impulsivity were associated with distinct variations in structural connect-

ivity, implicating both reward evaluation and response inhibition networks. Larger bet sizes in the virtual casino were associated with

greater connectivity of the reward evaluation network, particularly bilateral fibre tracts between the ventral striatum and ventromedial

prefrontal cortex. In contrast, weaker connectivity of the response inhibition network was associated with increased exploration of

alternative slot machines in the virtual casino, with right-hemispheric tracts between the subthalamic nucleus and the pre-supplemen-

tary motor area contributing most strongly. Further, reduced connectivity of the reward evaluation network was associated with more

‘double or nothing’ gambles, weighted by connections between the subthalamic nucleus and ventromedial prefrontal cortex. Notably,

the variance explained by structural connectivity was higher for behavioural indices of impulsivity, derived from clinician-administered

tasks and the gambling paradigm, as compared to questionnaire data. Lastly, a clinically-meaningful distinction could be made

amongst participants with a history of impulse control behaviours based on the interaction of their network connectivity with

medication dosage and gambling behaviour. In summary, we report structural brain-behaviour covariation in Parkinson’s disease

with distinct reward evaluation and response inhibition networks that underlie dissociable aspects of impulsivity (cf. choosing and

stopping). More broadly, our findings demonstrate the potential of using naturalistic paradigms and neuroimaging techniques in

clinical settings to assist in the identification of those susceptible to harmful behaviours.
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Introduction
Parkinson’s disease is generally viewed as a movement dis-

order characterized by slowing of action initiation, yet some

individuals develop deficits in inhibitory-control and compul-

sive choice (Gauggel et al., 2004; Kobayakawa et al., 2008;

Milenkova et al., 2011; Obeso et al., 2011; Djamshidian

et al., 2012; Nombela et al., 2014). Approximately 15%

of those treated with dopamine replacement therapy develop

a spectrum of impulse control behaviours (ICBs), including

pathological gambling, hypersexuality, compulsive shopping

and binge-eating (Weintraub et al., 2010). However, other

individuals with Parkinson’s disease under the same treat-

ment display no or less-pronounced impulsive biases without

clinically-significant impairment, suggestive of underlying

neurobiological differences in the susceptibility to ICBs. If

these neurobiological determinants could be elucidated,

enhanced identification of those vulnerable to ICBs would

be possible. Furthermore, the understanding of other psychi-

atric conditions characterized by impulsivity and compulsiv-

ity (such as addiction) could be enriched (Robbins et al.,

2012).

Neurodegeneration and dopaminergic medication are two

key biological mechanisms contributing to impulsivity in

Parkinson’s disease. Degeneration of midbrain dopaminergic

neurons is the neuropathological hallmark of Parkinson’s

disease, most often affecting the ventral tier of neurons pro-

jecting to the dorsal striatum (Kish et al., 1988), precipitat-

ing motor symptoms. However, the dorsal tier of neurons

projecting to the ventral striatum (VS) (the mesolimbic path-

way) may also be vulnerable to neurodegeneration, even at

diagnosis (van der Vegt et al., 2013). The VS is implicated in

the integration of emotional, contextual and motivational

information, with the ability to influence goal-oriented

motor behaviour through feed-forward connections in the

basal ganglia. For example, the VS is active during the ex-

perience of reward, and also during the anticipation of an

appetitive stimulus, forming the basis of a reward prediction

error signal (Knutson et al., 2001; O’Doherty et al., 2002).

Dopaminergic replacement therapy restores motor function

in Parkinson’s disease but may disrupt the homeostatic role

of midbrain dopaminergic neurons and modulate the regu-

latory input of the prefrontal cortex to the VS (Goto and

Grace, 2005; Grace, 2008). The preservation of mesolimbic

relative to nigrostriatal projections in Parkinson’s disease

(Kumakura et al., 2010) means that dopaminergic transients

in the VS encoding reward prediction errors may be biased

by supplemental dopaminergic medication and result in

exaggerated ‘better than expected’ teaching signals, driving

escalation of risky behaviours with a tendency to discount

losses (Voon et al., 2010a). Dopamine agonist medication

also mediates elevated rates of reflection impulsivity

(Djamshidian et al., 2013), but only increases temporal dis-

counting (Voon et al., 2010b) and risk taking (Claassen

et al., 2011; Voon et al., 2011) in individuals with pre-exist-

ing ICBs. This suggests that dopaminergic medication in

Parkinson’s disease is acting upon an ‘at-risk’ neural sub-

strate rather than being a sufficient aetiological factor in

isolation.

Reward evaluation and response inhibition are two distinct

neurocognitive mechanisms that likely underlie impulsive be-

haviour (cf. making a choice versus suppressing an inappro-

priate choice). As aforementioned, reward evaluation

(including appetitive learning and reinforcement) is under-

pinned by dopaminergic signalling within mesocorticolimbic

networks (Haber and Knutson, 2010) and their connections

with the orbitofrontal cortex (van Eimeren et al., 2010) and

anterior cingulate cortex (Cilia et al., 2011; Carriere et al.,

2015). These cortical regions are associated with the predic-

tion and evaluation of behavioural outcomes, amongst other

functions (Rudebeck and Murray, 2014; Kolling et al., 2016).

Response inhibition is likely to be subserved by distinct neural

networks in Parkinson’s disease (Antonelli et al., 2014) and

healthy controls (Hampton et al., 2017). This ‘stopping net-

work’ has been well characterized in non-clinical populations

and is a predominantly right-lateralized network involving the
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inferior frontal gyrus (IFG), the pre-supplementary motor

area (pre-SMA) and the subthalamic nucleus (STN) (Aron

et al., 2007; Rae et al., 2015). The STN receives direct cor-

tical projections from the IFG and pre-SMA in the ‘hyper-

direct’ pathway, which serves to deliver a global ‘stopping’

signal to the basal ganglia in response to the detection of

cognitive conflict (Aron, 2011). In Parkinson’s disease, the

firing pattern of the STN increases in response to dopamin-

ergic denervation (Vila et al., 2000), leading to bradykinesia,

rigidity and tremor that can be successfully treated with deep

brain stimulation (DBS) (Schuepbach et al., 2013), signifying

the central role of this nucleus in the pathophysiology of

motor symptoms. However, the spread of electrical stimula-

tion throughout discrete territories of the topographically-

organized STN may underlie increased impulsivity subsequent

to STN-DBS (Mosley et al., 2018b), supporting the role of

this nucleus as a key node in non-motor aspects of response

inhibition.

Diffusion MRI is a neuroimaging technique that can be

used to characterize the architecture of white matter tracts in

the brain (Jbabdi et al., 2015), which may provide new in-

sights into mechanisms of disease or therapy. For example,

in Parkinson’s disease, the use of diffusion MRI has revealed

that structural connectivity of motor networks is predictive

of clinically-effective subthalamic stimulation (Accolla et al.,

2016; Vanegas-Arroyave et al., 2016; Akram et al., 2017;

Horn et al., 2017; Chen et al., 2018). However, there has

been little study of cortico-subcortical networks with refer-

ence to impulsivity in Parkinson’s disease, although spatially-

extensive white matter pathology in frontostriatal circuits

may be present at early clinical stages (Rae et al., 2012).

The presence of ICBs in Parkinson’s disease has been asso-

ciated with reductions in diffusion tensor imaging (DTI)-

derived indices of white matter ‘integrity’ within frontal

and mesolimbic tracts (relative to non-ICB patients)

(Imperiale et al., 2018). However, these investigations are

typically constrained to between-group comparisons (i.e.

ICB versus non-ICBs), and hence the complex relationships

between white matter changes and the multifaceted aspects

of impulsivity remain poorly understood.

Using a high-resolution diffusion MRI acquisition, we

sought to characterize the anatomical networks that under-

lie the different facets of impulsivity in Parkinson’s disease.

We used neuropsychiatric instruments and a novel task as-

sessing gambling behaviour (Paliwal et al., 2019), which we

hypothesized would form a more ecologically-valid measure

of impulsivity. We postulated that dimensional variations

in impulsivity would relate to interindividual differences in

network connectivity, and that different networks would be

implicated in different aspects of impulsive responding. By

elucidating the multifaceted nature of impulsivity, spanning

neuroanatomy and behaviour, during an ecologically-valid

task, we aimed to create a behavioural read-out of impul-

sivity in Parkinson’s disease that could assist with diagnos-

tic and prognostic assessment. In particular, we were

interested in whether these measures would allow us to

discriminate individuals with clinically-significant ICBs.

Materials and methods

Participants

Participants were consecutively recruited at the Asia-Pacific
Centre for Neuromodulation in Brisbane, Australia between
2016 and 2018. All participants met the UK Brain Bank cri-
teria for Parkinson’s disease (Hughes et al., 1992) and at the
time of recruitment were being assessed for STN-DBS. All par-
ticipants were at Hoehn and Yahr stage 2 or greater (Hoehn
and Yahr, 1967) with motor fluctuations or other motor com-
plications related to dopaminergic therapy. No participants
met the Movement Disorder Society criteria for dementia
(Emre et al., 2007). The disease subtype was established
based on an analysis of the dominant symptoms elicited
during the Unified Parkinson’s Disease Rating Scale
(UPDRS) Part III Motor Examination, as described in
Spiegel et al. (2007). Dopaminergic medication was converted
to a levodopa-equivalent daily dose (LEDD) value (Evans
et al., 2004). Further details regarding recruitment and base-
line assessment have been previously reported (Mosley et al.,
2018a).

Ethics approval

Prior to the commencement of data collection, the full protocol
was approved by the Human Research Ethics Committees of
the Royal Brisbane and Women’s Hospital, the University of
Queensland, the QIMR Berghofer Medical Research Institute
and UnitingCare Health. All participants gave written, in-
formed consent to participate in the study.

Assessment of impulsivity

Neuropsychiatric instruments

Impulsivity was first assessed with a range of neuropsychiatric
instruments, acknowledging the multidimensional nature of this
construct. These included: trait impulsiveness: the Barratt
Impulsiveness Scale 11 (BIS) and attentional, motor and non-
planning subscales (Patton et al., 1995); ICBs: the Questionnaire
for Impulsive-Compulsive disorders in PD Rating Scale (QUIP-
RS) (Weintraub et al., 2012); impatience: the Delay Discounting
task (Kirby et al., 1999); disinhibition: the Excluded Letter
Fluency task (ELF) (Shores et al., 2006) and the Hayling
test (Burgess et al., 1997). Broadly, these instruments could
be distinguished by modality: the BIS and QUIP-RS are ques-
tionnaires completed by the participant, whilst the ELF,
Hayling and Delay Discounting tasks are administered by
an examiner. Although the use of subscales has been criti-
cized (Reise et al., 2013), we opted to use the BIS subscales
based on their prior utility in explicating relevant behavioural
features of Parkinson’s disease (Antonini et al., 2011;
Smulders et al., 2014) and in order to maintain consistency
with prior work (Mosley et al., 2018a). For further informa-
tion see the Supplementary material.

Gambling paradigm

In addition to these classical assessments of impulsivity, par-
ticipants also gambled on slot machines within a virtual
casino, which has been described and validated in healthy
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controls and individuals with Parkinson’s disease (Paliwal

et al., 2014, 2019). The motivation for this task was to pro-
vide a realistic simulation of impulsive behaviours. Participants
began the casino with 2000 AUD (virtual money) in their ac-

count, and played through 100 trials where a gambling choice
was required. In the casino, there were four slot machines to
choose from; participants could move between machines at
any time. Each slot machine had a unique visual appearance

and soundtrack and participants were informed that different
machines might have different outcome expectancies. On each
trial, participants placed a bet that they were able to increase

in increments of 5 or 10 AUD with no maximum upper limit
per bet. Once the bet was placed, a ‘Pull!’ button triggered
three spinning wheels. After 5 s, the outcomes of the first,

the second and third wheel were sequentially revealed.
During this time, participants were also able to trigger an ear-
lier reveal by using a ‘Stop!’ button. Win trials were signified

by the nature of matching symbols across the three wheels. On
all win trials, the participant was given the option to ‘Double-
Up!’, engaging in a secondary double-or-nothing gamble, risk-

ing the total win amount (Supplementary Fig. 1). Notably, the
trajectory of win-loss outcomes was predetermined, ensuring
that participants’ experience of rewards and losses were com-
parable in order and quantity. The trajectory resulted in a

positive outcome (net winnings) for most participants. At the
end of the task, participants were awarded up to 30 AUD in
real money based on the size of these virtual winnings.

This naturalistic gambling task allowed for impulsive behav-
iour to be expressed in several ways on each trial: bet increases
(in principle, of unlimited magnitude), exploratory slot ma-

chine switches, ‘double or nothing’ gambles and cash outs.
Keeping in mind that in the behavioural sciences ‘risk’ is typ-
ically defined in relation to the variance of choice outcomes

(Johnson and Busemeyer, 2010), these actions are indicative of
exploration and risk-taking as they increase the range of pos-
sible outcomes. For example, for a machine switch, regardless
of whether the player is performing well or poorly on the

current machine, the decision to switch machines incurs the
possibility that the new machine chosen may be more pun-
ishing or rewarding than the current machine, thereby

making the player vulnerable to increased variance in out-
comes. Similarly, a bet increase is a risk-inducing shift in
the face of uncertainty, making the player more susceptible

to larger wins and losses. In sum, each action implies a
broadening of possible outcomes (risk), and may be under-
stood as reflecting impulsivity.

A further description of the gambling paradigm can be found
in Paliwal et al. (2019) and in the Supplementary material.

Participants completed the experimental tasks ON medica-
tion to protect participants against discomfort arising from

OFF states, which were generally severe in this peri-surgical
population. LEDD was included as a covariate in subsequent
analyses. Although dopamine agonists as a class are associated

with an elevated risk of ICBs (Weintraub et al., 2010), we
included all dopaminergic medication in the calculation of
LEDD, given that ICBs are also more prevalent in individuals

on levodopa, as well as the substantial prior literature linking
dopamine to changes in reward learning (and thus impulsivity)
in preclinical models (Schultz et al., 1997), healthy individuals

(Abler et al., 2006) and individuals with Parkinson’s disease
(Frank et al., 2004).

Diffusion-weighted
imaging acquisition and
preprocessing

Diffusion-weighted imaging (DWI) data were acquired along
90 directions using a 3 T Siemens PRISMA scanner and a 64-
channel array head coil (b-value = 3000 s/mm2, voxel size =
1.7 mm3 isotropic). Twelve non-diffusion-weighted images
(b0) were acquired and interleaved throughout this main se-
quence, while an additional sequence of eight b0 images were
also collected with the opposite phase-encoding (posterior-an-
terior) direction. A structural T1-weighted MPRAGE (1-mm3

resolution) image was also acquired.
The DWI data were preprocessed with MRtrix3 software

(Tournier et al., 2019) (https://github.com/MRtrix3/mrtrix3/re-
leases/tag/3.0_RC3), using an in-house preprocessing pipeline
(https://github.com/breakspear/diffusion-pipeline). Preprocessing
steps included denoising (Veraart et al., 2016) and correction
for motion, susceptibility, and eddy-current induced distortions
(Andersson and Sotiropoulos, 2016). Finally, bias-intensity cor-
rection was performed (Zhang et al., 2001; Smith et al., 2004)
(Fig. 1A). Full details on the DWI acquisition, preprocessing and
fibre reconstruction steps are provided in the Supplementary
material.

Fibre reconstruction, tractography,
and apparent fibre density

To permit within-group comparisons of structural connectivity
estimates, group-average intensity normalization was underta-
ken (Raffelt et al., 2012), ensuring that the median b0 white-
matter value was uniform across study participants (Fig. 1B).
From these data, constrained spherical deconvolution (CSD)
(Tournier et al., 2004, 2007; Jeurissen et al., 2014) was per-
formed in each participant (Fig. 1C), providing local (i.e.
voxel-wise) estimates of fibre orientation distribution functions
(fODF).

The probabilistic streamline algorithm iFOD2 (Tournier et al.,
2010) was used to reconstruct fibre-bundles between seed and
target regions within two networks (defined a priori), with regions
selected because of their involvement in reward evaluation and
response inhibition (see below). Through sampling of the fODF
at each path point, 100 streamlines were reconstructed (Fig. 1D).

Estimates of structural connectivity between each seed and target
region were derived from the apparent fibre density representing
the underlying intra-axonal volume (Raffelt et al., 2012). For each
pathway of interest, the apparent fibre density was calculated by
summing the fODF lobe integrals, approximating the total fibre
volume, and was then divided by the mean streamline length
(Fig. 1E).

Reward evaluation and response
inhibition networks

Two discrete brain networks subserving reward evaluation and
response inhibition were reconstructed with seed-based tractogra-
phy (Fig. 1F and G). The reward evaluation network (Fig. 1F)
included streamline propagations connecting the VS with the
ventromedial prefrontal cortex (vmPFC), the orbitofrontal
cortex (OFC), the anterior cingulate cortex (ACC) and the
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Figure 1 Diffusion processing pipeline. (A) High angular-resolution diffusion-weighted imaging was acquired along 90 directions using a 3 T

scanner and a 64-channel array head coil, with a b-value of 3000s/mm2 and voxel size of 1.7 mm3 isotropic. After denoising, and correction for

motion, susceptibility, bias and eddy-current induced distortions, fractional anisotropy (FA) maps were calculated for each participant. (B) FA

maps were non-linearly registered to a population-average fractional anisotropy template, in order to derive an average white matter mask, which

was then warped back into individual space to permit intensity normalization on the diffusion data. This ensured that the median b0 white matter
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ventral tegmental area (VTA). The connectivity of the STN with
the vmPFC was also included in the reward evaluation network
given the limbic connectivity of the STN (Haynes and Haber,
2013) and recent evidence suggesting changes in value sensitivity
subsequent to STN-DBS for Parkinson’s disease (Seymour et al.,
2016). The response inhibition network (Fig. 1G) included tracts
connecting the STN with the IFG and the pre-SMA.

The cortical targets for these networks were selected from a
gold-standard subdivision of the cortex based on multimodal
MRI data (Glasser et al., 2016), which were initially projected
onto volumetric MNI ICBM non-linear asymmetric 2009a space
(Horn, 2016). These included areas 10r and 10v (vmPFC), OFC
and posterior OFC (OFC), a24 and p24 (ACC), 45 and 47l
(IFG), 6ma and 6mp (SMA). The basal ganglia parcellations
(within 2009b space), which served as seeds within these tracto-
graphy networks, included the VS (Choi et al., 2012), the VTA
(Pauli et al., 2018), and the STN (Ewert et al., 2018). For VTA–
VS connections, the VTA was defined as the seed region. All
cortical and basal ganglia parcels were non-linearly transformed
into native diffusion space via the skull-stripped anatomical
image.

Data analysis

Principal components analysis

Amongst the neuropsychiatric instruments, principal compo-
nents analysis (PCA) was first conducted. The motivation for
this was to identify latent constructs of impulsivity across the
questionnaires and clinician-administered tasks used in this in-
vestigation. Components with eigenvalues 51 were retained.
We did not include behaviours derived from the virtual casino
in this dimension-reduction step on account of the qualitative
difference in the collection of these data (i.e. derived from
virtual gameplay) and therefore hypothesized to represent
‘purer’, more ecologically-valid metrics of an individual par-
ticipant’s impulsivity.

Path modelling

Partial least squares path modelling (PLS-PM) was used to
represent the multivariate relationships between anatomical
and behavioural measures (McIntosh and Lobaugh, 2004;
Shaw et al., 2016), controlling for relevant demographic and

disease-related factors. PLS-PM is a form of structural equa-
tion modelling in which complex associations between multi-
variate datasets can be estimated. Each model specifies the
linear weighting of one set of variables that best covaries
with a linear weighting of another. For example, in this inves-
tigation, anatomical variables were created from the reward
evaluation and response inhibition networks as a weighted
mixture of the connectivity of each tract within the network.
Behavioural variables were formed from each neuropsychiatric
instrument and each gambling output (although as these were
assessed individually, the relationship between each behav-
ioural variable and observed behaviour was monotonic).
Each model then represented the path coefficients and corres-
ponding significance values for the relationship between these
anatomical and behavioural variables; in addition to describing
the weighted contribution that each tract made to the anatom-
ical variable. In each model, continuous measures including
age, years since diagnosis of Parkinson’s disease and LEDD
were also entered as covariates, with disease subtype and
gender examined with a permutation test (Fig. 2). Interaction
(or moderating) effects of these covariates on the effect of con-
nectivity on behaviour were also modelled. Confidence inter-
vals for ‘out of sample’ effects were determined by
bootstrapping, in which the dataset was repeatedly sampled
with replacement to create 10 000 independent bootstrapped
datasets, with the sample size equal to the number of partici-
pants. Each PLS path model was developed using a bi-hemi-
spheric anatomical network, but results for each hemisphere in
isolation are also reported.

For each outcome of interest, a number of alternative PLS
path models of varying complexity could be proposed, with no
consensus method for determining the optimal trade-off be-
tween model fit and model complexity (Henseler and
Sarstedt, 2013). Therefore, model complexity was constrained
a priori; each PLS path model included only one anatomical
network and all included age, years since diagnosis and LEDD
as covariates. One interaction term with the anatomical net-
work was included (e.g. the interaction of LEDD or age with
the reward evaluation network). The winning model from all
permutations was selected based on the maximum R2 value
prior to bootstrapping: in the setting of equivalent complexity
of all estimated models, we thus use model fit (R2) as the single
summary metric for comparing models. To demonstrate that

Figure 1 Continued

value was uniform across the study population. (C) From the intensity-normalized diffusion data, signal responses across different tissue types

(grey-matter, white-matter, CSF) were estimated and averaged across all participants to obtain a group-wise response function. Constrained

spherical deconvolution of the average white-matter signal furnished fibre orientation distribution functions (fODF) for each participant. These

functions provide local estimates of the density of fibres according to their angular orientation and can resolve complex organizations of crossing

fibres more effectively than single tensor models. Our acquisition protocol incorporating 90 directions was designed to optimize this process.

(D) Fibre bundles were reconstructed using a probabilistic streamline algorithm, through sampling a probability density of the fODF at each path

point, tracking the most plausible fibre propagations between seed and target regions. (E) Quantitative estimates of structural connectivity

between seed and target regions were derived from the apparent fibre density (AFD), calculated by summing the fODF lobe integrals along the

pathway of interest and dividing by mean streamline length, to estimate the mean cross-sectional area of the fibre bundle. (F and G) Two discrete

networks subserving reward evaluation and response inhibition were defined based on previous work. Left: Network models for each network.

Right: Illustrative streamlines (green) from one participant connecting seed (orange) and target (blue) regions for each tract in the network.

(F) The reward evaluation network included white matter tracts connecting the VS with the vmPFC, the OFC, the ACC and the VTA. It also

included a tract connecting the STN with the vmPFC (the limbic hyperdirect pathway). (G) The response inhibition network included tracts

connecting the STN with the IFG and the pre-SMA. Left: Network models for each network. Network models were visualized with the BrainNet

Viewer (Xia et al., 2013).
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there were convincing dissociations by network (reward evalu-

ation versus response inhibition) in the explanation of vari-
ance, results from the best performing model using the

alternative network were also reported for each outcome vari-
able. For example, a winning model that included the reward

evaluation network was compared with models employing the
response inhibition network, in order to quantify the difference
in variance explained by the two alternative networks.

Impulse control behaviour status

In contrast to the QUIP-RS, which provides a dimensional

rating of compulsive traits, we also applied a semi-structured
clinical interview to delineate ICB status in a categorical

manner. This interview took place with the participant and
spousal caregiver and was completed by an experienced neuro-

psychiatrist (P.M.). An ICB was defined by the clinical diagnosis
of pathological gambling, binge eating, compulsive shopping,
hypersexuality, hobbyism or dopamine dysregulation in the

presence of clinically-significant impairment or distress. ICB
status was then examined with a permutation test in the PLS-

PM approach, performed upon the winning model for each
behavioural variable of interest. To evaluate the performance

of models that differentiated participants by their ICB status,
a repeated k-fold cross-validation was performed to evaluate

the null hypothesis of no difference in model performance.
Further details are provided in the Supplementary material.

Data analysis was performed in the R software environment
(R Core Team, 2014), using the packages FactoMineR for PCA
(Lê et al., 2008), plspm for PLS-PM (Sanchez, 2013), pls for
PLS regression (Mevik and Wehrens, 2007) and caret for cross-
validation (Kuhn, 2008).

Data availability

The gambling paradigm is provided for download on a git
repository at https://github.com/saeepaliwal/breakspear_slot_
machine and the analysis pipeline at https://github.com/saeepa-
liwal/dbs_pd_analysis_pipeline. The diffusion MRI processing
pipeline is at https://github.com/breakspear/diffusion-pipeline.
A de-identified dataset containing neuropsychiatric
assessment and gambling data can be provided by P.E.M.
(Philip.Mosley@qimrberghofer.edu.au) on application, subject
to institutional review board approval.

Results

Participants

Sixty-three surgical candidates were consented. Three

were unable to obtain diffusion MRI because of implanted

prostheses incompatible with diffusion sequences, while one

Figure 2 Partial least squares path modelling. A PLS path model represents the relationship between structural network connectivity and

impulsivity. An anatomical variable is constructed from the connectivity of each white matter tract in the anatomical network under investigation.

The individual contribution of each tract to the anatomical variable is quantified by a ‘weight’ and the anatomical variable is formed as a linear

mixture of the corresponding connectivity values that best co-varies with the behavioural variable under investigation. The relationship between

the anatomical and behavioural latent variables is quantified in the path model by a path coefficient (that can be tested for statistical significance).

Relevant demographic and disease-related covariates are also represented and path coefficients can be determined for these relationships. An

interaction (moderating) effect can be modelled; in this case, the interaction of LEDD with the anatomical variable. Bootstrapping of the model

yields 95% confidence intervals (CI) for the path coefficients of interest.
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was excluded because of excessive motion artefact in the

diffusion images (manifesting as signal dropout in con-

nected slices). One candidate was excluded because of ex-

tensive cerebrovascular disease (Fazekas grade IV), and

another was excluded after being unable to complete the

virtual casino prior to surgery because of fatigue. Thus, 57

participants proceeded to analysis (Table 1). Few partici-

pants (n = 7) engaged in the ‘cashout’ option within the

virtual casino and this measure was therefore excluded

from further analyses.

Seventeen participants had a current or past history of an

ICB and six participants had more than one ICB, when these

were evaluated as part of a clinical interview. These com-

prised pathological gambling (n = 10), hypersexuality (n =

9), compulsive shopping (n = 3), dopamine dysregulation (n

= 2), binge eating (n = 1) and hobbyism (n = 1). ICB +

individuals had significantly higher scores on the QUIP-RS

(t = �4.31, corrected P = 0.003) but there were no other

significant differences in disease-related, neuropsychiatric or

gambling measures by ICB status (Table 1).

Principal components analysis

PCA of the neuropsychiatric instruments revealed four di-

mensions (components) of impulsivity with eigenvalues of

51, accounting for 77% of the total variance in the data

(Table 2 and Supplementary Fig. 2). Dimension 1 was com-

posed of equal contributions from the three subscales of the

BIS and the QUIP-RS score, reflecting trait impulsiveness

and compulsivity, and questionnaire-derived rather than

task-related data. Dimension 2 reflected disinhibition, com-

posed primarily from ELF Rule Violations. Dimension 3

reflected impatience, being made up of the Delay

Discounting constant k. Finally, Dimension 4 again re-

flected disinhibition, composed primarily from the

Hayling AB error score: The broad alignment of these di-

mensions with separate neuropsychiatric instruments sug-

gested that there was little redundancy in the multimodal

assessment of impulsivity in this investigation, aside from a

distinction between questionnaire-based and examiner-ad-

ministered measures. Given the equal contributions of the

BIS subscales to Dimension 1 of the PCA, BIS total score

was entered into the PLS path models.

Path modelling of connectivity and
neuropsychiatric instruments

Path models using the neuropsychiatric instruments are pre-

sented first, followed by behavioural read-outs from the

gambling paradigm. The neuropsychiatric instruments are

presented in the order in which they appeared amongst

orthogonal dimensions of the PCA, with questionnaire

measures first, followed by examiner-administered tasks.

The network (reward evaluation or response inhibition) ex-

plaining the maximum variance differed by variable accord-

ing to the construct under examination. For the gambling

outputs, the variance explained by path models

incorporating network indices was generally as high as or

higher than for the neuropsychiatric variables (Table 3).

For most measures, distinctions by hemisphere were

observed and a distinction by ICB status was observed

for the gambling variable ‘bet size’.

Barratt Impulsiveness Scale

We first assessed how variation in self-reported impulsive-

ness was related to the structural connectivity of our brain

networks. The connectivity of the reward evaluation net-

work and its interaction with LEDD best explained vari-

ations in this domain. The greater the connectivity of this

network, the lower the self-reported impulsiveness (coeffi-

cient �0.44, P= 0.0021; Table 3). The tracts weighted

most strongly in the reward evaluation network were

right VS-ACC and right STN-vmPFC (Fig. 3A and

Supplementary Table 1). The connectivity of the reward

evaluation network explained 12.8% of the total variance

in BIS total score. The right (P = 0.0028) hemisphere in

isolation evidenced a significant effect. There was no sig-

nificant difference by ICB status on the effect of connectiv-

ity (P = 0.41).

Questionnaire for Impulsive-
Compulsive disorders in PD
Rating Scale

Last amongst the questionnaire measures, the connectivity of

the reward evaluation network and its interaction with

LEDD best explained variation in dimensional ratings of

behavioural addictions such as gambling, sex, shopping

and eating. The greater the connectivity of this network,

the higher the rating of compulsivity (coefficient 0.34, P =

0.0045, Table 3). The tracts weighted most strongly in the

reward evaluation network were right VS-OFC, left VS-

vmPFC and left VTA-VS (Fig. 3B and Supplementary

Table 2). The effect of age (coefficient �0.30, P = 0.033,

younger age associated with greater compulsivity) and

LEDD (coefficient 0.34, P = 0.040, higher dose of dopamin-

ergic medication associated with greater compulsivity) were

also significant. The connectivity of the reward evaluation

network explained 22.4% of the total variance in QUIP-RS

score. The right (P = 0.037) hemisphere in isolation evi-

denced a significant effect. There was no significant differ-

ence by ICB status (P = 0.84) in the effect of connectivity.

Excluded Letter Fluency task rule
violations

First amongst the examiner-administered tasks, we assessed

how variation in disinhibition (as expressed by ELF rule vio-

lations) was related to the structural connectivity of our brain

networks. The connectivity of the reward evaluation network

and its interaction with age best explained variation in this

facet of impulsivity. The greater the connectivity of
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this network, the fewer inhibitory errors (coefficient �0.58, P

= 1.5 � 10�5; Table 3). The tracts weighted most strongly in

the reward evaluation network were right VS-vmPFC, right

VTA-VS, right STN-vmPFC and left VS-ACC (Fig. 3C and

Supplementary Table 3). The connectivity of the reward

evaluation network explained 32.7% of the total variance

in ELF rule violations. The right (P = 1.4 � 10�4) hemi-

sphere in isolation evidenced a significant effect. There was

no significant difference by ICB status (P = 0.14) in the

effect of connectivity.

Table 1 Demographic and clinical characteristics of the Parkinson’s disease cohort

Categorical variables Total (n = 57)

Gender, n (% total)

Male 38 (66.6)

Female 19 (33.3)

Clinical subtype, n (% total)

Akinetic-rigid 19 (33.3)

Mixed 27 (47.4)

Tremor 11 (19.3)

ICB status, n (% total)

Yes 17 (29.8)

No 40 (70.2)

Continuous variables, mean (SD), median [range] ICB + versus ICB��

Age, years 62.2 (�9.7), 65 [35–77] t = 2.84, corr. P = 0.059

Hoehn and Yahr stage 2.6 (�0.5), 2.5 [1.5–4] t = �1.56, corr. P = 0.22

Years since diagnosis 8.2 (�4.1), 7 [2–21] t = �0.80, corr. P = 0.52

LEDD 1124 (�618.6), 1025 [0–3450] t = �1.89, corr. P = 0.21

BIS attentional 16.0 (�3.4), 16 [10–26] t = �1.73, corr. P = 0.22

BIS non-planning 22.6 (�4.1), 23 [14–32] t = �0.54, corr. P = 0.64

BIS motor 21.5 (�3.6), 21 [14–30] t = �1.64, corr. P = 0.22

QUIP-RS total 19.4 (�15.4), 17 [0–63] t = �4.31, corr. P = 0.003��

Delay Discount k 0.037 (�0.063), 0.016 [0.00016–0.25] t = 2.42, corr. P = 0.076

Hayling AB Error Score 13.8 (�13.1), 9 [0–44] t = 1.00, corr. P = 0.43

ELF rule violations 8.4 (�5.5), 8 [0–24] t = �0.47, corr. P = 0.64

UPDRS Part III Motor 39.6 (�15.2), 39 [10–70] t = 1.34, corr. P = 0.29

Virtual Casino, mean (SD), median [range]

Average bet size, AUD 41.8 (�44.6), 27.2 [5–191.8] t = 0.39, corr. P = 0.88

Machine switch, % 1.5 (�2.7), 0 [0–12] t = 1.09, corr. P = 0.70

Double or nothing gamble, % 17.0 (�20.5), 15 [0–100] t = 2.05, corr. P = 0.23

�FDR-corrected with Benjamini and Hochberg method (1995), with � = 0.05.

Significance: ��P 5 0.01, �P 5 0.05.

UPDRS = Unified Parkinson’s Disease Rating Scale.

Table 2 PCA of neuropsychiatric instruments

Measure Representation Dimension 1 Dimension 2 Dimension 3 Dimension 4

Eigenvalue = 2.10 Eigenvalue = 1.28 Eigenvalue = 1.04 Eigenvalue = 1.00

BIS attentional Contribution 30.7% - - -

Correlation 0.80 - - -

BIS non-planning Contribution 25.7% - - -

Correlation 0.74 - - -

BIS motor Contribution 23.9% - - -

Correlation 0.71 - - -

QUIP-RS Contribution 19.4% - - -
Correlation 0.64 - - -

Delay discount k Contribution - - 60.7% 28.6%

Correlation - - 0.79 �0.53

Hayling AB error score Contribution - 22.5% - 56.8%

Correlation - 0.54 - 0.75

ELF rule violations Contribution - 55.6% - -

Correlation - �0.84 - -
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Delay Discount k

We then looked at delay discounting: the tendency to prefer

sooner, smaller rewards over those that are larger but tempor-

ally more distant. This was best explained by the connectivity

of the reward evaluation network and its interaction with age.

The greater the connectivity of this network, the lower the

impatience and the higher the ability to defer reward (coeffi-

cient �0.49, P = 8.0 � 10�4; Table 3). The tracts weighted

most strongly in the reward evaluation network were right VS-

vmPFC, right VS-OFC and left VTA-VS (Fig. 3D and

Supplementary Table 4). The connectivity of the reward evalu-

ation network explained 18.2% of the total variance in the

delay discount constant k. The right (P = 0.037) and left (P =

0.030) hemispheres in isolation evidenced a significant effect.

There was no significant difference by ICB status (P = 0.24) in

the effect of connectivity.

Hayling AB error score

Finally, the connectivity of the response inhibition network

and its interaction with years since diagnosis of Parkinson’s

disease best explained variation in disinhibition (as expressed

by Hayling A or B errors). The greater the connectivity of this

network, the fewer inhibitory errors (coefficient �0.54, P =

1.7 � 10�5; Table 3). The tract weighted most strongly in

the response inhibition network was left STN-SMA (Fig. 3E

and Supplementary Table 5). The connectivity of the response

inhibition network explained 26.2% of the total variance in

Hayling AB Error Score. The right (P = 0.0095) and left (P =

1.7 � 10�4) hemispheres in isolation evidenced a significant

effect. There was no significant difference by ICB status (P =

0.11) in the effect of connectivity.

Path modelling of connectivity and
gambling behaviours

Bet size

A gambler’s variation in bet size was best explained by the

connectivity of the reward evaluation network and its inter-

action with LEDD: The greater the connectivity of the

reward evaluation network, the greater the impulsivity as

measured by risk taking, expressed as higher bets in the

casino (coefficient 0.42, P = 0.0038; Table 3). The most

heavily weighted tracts in the reward evaluation network

were right VS-vmPFC and left VS-vmPFC (Fig. 4A and

Supplementary Table 6). The connectivity of the reward

evaluation network explained 29.7% of the total variance

in bet size. Both the right (P = 0.017) and left hemispheres

(P = 0.0021) in isolation evidenced a significant effect.

Notably, there was a significant difference by ICB status

on the effect of connectivity (coefficient ICB + = �0.87, co-

efficient ICB� = 0.45, P = 0.0099). There was also a sig-

nificant difference by ICB status in the interaction of LEDD

with connectivity (coefficient ICB + = �0.39, coefficient

ICB� = 1.53, P = 0.030).

Table 3 Detailed output of winning models from PLS-PM analysis

Model Network Interaction R2 Path

coefficient

Significance,

P

95% CI Other significant

covariates

Components of impulsivity

BIS Reward

evaluation

Reward evaluation

� LEDD

0.18 �0.44 0.0021�� �0.65 to �0.24 Nil

QUIP-RS Reward

evaluation

Reward evaluation

� LEDD

0.37 0.34 0.0045�� 0.065 to 0.57 (i) Age; coeff = �0.30;

95% CI = �0.52 to

�0.058; P = 0.014

(ii) LEDD; coeff = 0.35;

95% CI = 0.12 to 1.10;

P = 0.040
ELF rule violations Reward

evaluation

Reward evaluation

� age

0.31 �0.58 1.5 � 10�5���
�0.78 to �0.31 Nil

Delay discount k Reward

evaluation

Reward evaluation

� age

0.21 �0.49 8.0 � 10�4���
�0.75 to �0.19 Nil

Hayling AB

error score

Response

inhibition

Response inhibition

� years since

diagnosis

0.37 �0.54 8.0 � 10�5���
�0.72 to �0.34 Nil

Gambling behaviours

Bet size Reward

evaluation

Reward evaluation

� LEDD

0.34 0.42 0.0038�� 0.15 to 0.65 Nil

Slot machine switch Response

inhibition

Response inhibition

� years since

diagnosis

0.30 �0.38 0.0027�� �0.60 to �0.15 (i) Interaction; coeff = 0.29;

95% CI = 0.075 to 0.50;

P = 0.029
Double or

nothing gambles

Reward

evaluation

Reward evaluation

� age

0.33 �0.41 0.0056�� �0.68 to �0.055 Nil

Significance: ���P 5 0.001, ��P 5 0.01.
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Figure 3 Network influences on impulsivity. The association of structural connectivity with components of impulsivity derived from

neuropsychiatric instruments. Left: Bar plot displaying the relative weights of each tract in the winning network. Blue = negative weight, red =

positive weight. Right: Illustrative streamlines (green) from an exemplar participant connecting seed (orange) and target (blue) regions for each

heavily weighted tract in the network. L = left hemisphere; R = right hemisphere.
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Slot machine switch

A gambler’s tendency to switch between slot machines in the

virtual casino was best explained by the connectivity of the

response inhibition network and its interaction with years

since diagnosis of Parkinson’s disease. The greater the con-

nectivity of the response inhibition network, the more likely a

gambler was to prioritize exploitation over exploration (i.e.

less likely to switch machines) (coefficient �0.38, P = 0.0027;

Table 3). The interaction effect of years since diagnosis with

connectivity was also significant (coefficient 0.29, P = 0.029).

The most heavily weighted tracts in the response inhibition

network were right STN-SMA and right STN-IFG (Fig. 4B

and Supplementary Table 7). The connectivity of the response

inhibition network explained 21.7% of the total variance in

slot machine switch. Neither hemisphere in isolation evi-

denced a significant effect. There was no significant difference

by ICB status on the effect of connectivity (P = 0.47).

Double or nothing gambles

A gambler’s tendency to accept double or nothing gambles

was best explained by the connectivity of the reward evalu-

ation network and its interaction with age. In contrast with

bet size, the greater the connectivity of the reward evaluation

network, the less explorative the gambler, with a lower like-

lihood of accepting a double or nothing gamble (coefficient

�0.41, P= 0.0056; Table 3). Again, in contrast with bet size,

the most heavily weighted tracts in the reward evaluation

network were the left VS-OFC and left STN-vmPFC, whilst

the bilateral VS-vmPFC tract weighted negatively (Fig. 4C and

Supplementary Table 8). The connectivity of the reward

evaluation network explained 24.1% of the total variance

in double or nothing gamble uptake. The left (P = 0.027)

hemisphere in isolation evidenced a significant effect. There

was no significant difference by ICB status on the effect of

connectivity (P = 0.14).

Cross validation of bet size by ICD status

The finding that ICB+ individuals could be distinguished by

the effect of connectivity on gambling behaviour (bet size) was

evaluated with repeated k-fold cross-validation. This model

yielded a receiver operating curve (ROC) area under the

curve (AUC) of 0.72, a sensitivity of 0.89 and a specificity

of 0.38. When compared with a null (chance) model there

was a significant difference in ROC AUC (model = 0.72,

null = 0.64 P = 2.2 � 10�15) (Fig. 5). There was also a

significant difference in specificity (model = 0.38, null =

0.094 P = 2.2 � 10�16).

Supplementary analyses

To evaluate the specificity of each network (response inhib-

ition or reward evaluation) in explaining the variance of

each construct under examination, findings for the best

model from the alternative network are presented in

Supplementary Table 9. Again, this was defined as the

model with the maximum R2, allowing LEDD, age and

years since diagnosis of Parkinson’s disease as an

interaction effect with network connectivity. Findings

demonstrated that the winning network model explained

considerably more variance than the ‘second placed’

model using the alternative network. Furthermore, for the

majority of constructs, the effect of connectivity for the

alternative network did not reach statistical significance

or the bootstrapped 95% confidence intervals cross zero.

Discussion
We found that the structural connectivity of cortico-subcor-

tical networks contributes significantly to variability in im-

pulsivity and gambling behaviours amongst individuals

with Parkinson’s disease prior to subthalamic DBS. The

variance explained by connectivity was highest for behav-

ioural indices of impulsivity, derived from clinic-based tasks

and a naturalistic virtual casino. The contribution of each

network and the relative influence of each hemisphere were

dissociated by the neuropsychiatric construct or gambling

behaviour under investigation, supporting the conceptual-

ization of impulsivity as a multifaceted construct.

Furthermore, individuals with a history of ICBs could be

differentiated from those without ICBs in the virtual casino

when the interaction of betting behaviour, dopaminergic

dosage and structural connectivity was examined.

Amongst the neuropsychiatric instruments, we identified

distinct dimensions (components) of impulsivity based upon

a comprehensive phenotyping of participants. Broadly,

these orthogonal dimensions derived from the PCA

mapped onto distinct neuropsychiatric instruments, suggest-

ing that our battery assessed different facets of impulsivity

in this cohort. However, it is also notable that the first

dimension of the PCA was composed of metrics derived

from self-rated questionnaires, raising the possibility that

this dimension represented response modality rather than

impulsivity per se. This is interesting in the light of a recent

comparable finding amongst individuals with frontotem-

poral dementia, in which questionnaire measures separated

from experimental tasks in the characterization of impul-

sivity and apathy (Lansdall et al., 2017).

When the neuropsychiatric instruments were examined

individually, interindividual variability in the BIS, the

QUIP-RS, the Delay Discounting task and ELF rule viola-

tions were best accounted for by PLS path models incor-

porating the reward evaluation network—a network

composed of bilateral fibre tracts connecting the STN,

VS, VTA, OFC, ACC and vmPFC. The most heavily

weighted tracts within the reward evaluation network dif-

fered between each of these instruments. Moreover, the

influence of connectivity differed in direction (positive or

negative) amongst the different constructs. For instance,

for QUIP-RS score, heavily weighted tracts involved the

VS, VTA, OFC and vmPFC, with greater connectivity asso-

ciated with greater impulsivity and a bias to the right hemi-

sphere. However, for BIS score, ELF rule violations and

Delay Discounting k, greater connectivity of the network
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was associated with reduced impulsivity. This dissociation

may be attributable to differences in the construct assessed

in each task (such as the difference between impatience and

compulsiveness), as well as to differences in the individual

weightings of each tract within the reward evaluation net-

work. For example, for BIS score and ELF rule violations,

Figure 4 Network influences on gambling behaviour. The association of structural connectivity with gambling behaviour derived from the

virtual casino. Left: Bar plot displaying the relative weights of each tract in the winning network. Blue = negative weight, red = positive weight.

Right: Illustrative streamlines (green) from an exemplar participant connecting seed (orange) and target (blue) regions for each heavily weighted

tract in the network. L = left hemisphere; R = right hemisphere.
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heavily weighted tracts included those connecting the STN

with the vm PFC, suggesting that the strength of the stop-

ping signal exerted by the STN made a key contribution to

the role of this network. These ‘hyperdirect’ tracts may be a

means through which the STN links reward evaluation and

response inhibition networks (Nambu et al., 2002; Haynes

and Haber, 2013). Again, right-hemispheric tracts were

predominant in this measure of inhibitory control. This

bias is interesting, given prior work suggesting that the

executive control of inhibition is primarily a right-latera-

lized process (Aron et al., 2004; Possin et al., 2009;

D’Alberto et al., 2017) and that modulation of the right

STN after DBS for Parkinson’s disease is most likely to

induce disinhibition (Mosley et al., 2018b).

Amongst the neuropsychiatric instruments, only inter-in-

dividual variability in the Hayling AB Error score was best

accounted for by a PLS path model incorporating the re-

sponse inhibition network—a network composed of bilat-

eral fibre tracts connecting the STN, SMA and IFG. The

greater the connectivity of this network, the less impulsive

were the participants according to this examiner-adminis-

tered metric. The weighting of tracts in this model is con-

sistent with the classic ‘stopping’ network (Aron et al.,

2007; Rae et al., 2015) and accords with the nature of

Figure 5 Cross-validation of the relationship between ICB status, connectivity and bet size. (A) The relationship between con-

nectivity of the reward evaluation network and bet size in the virtual casino, plotted by ICB status. Shaded area = standard error. (B) Distribution

of the receiver operating curve (ROC) area under the curve (AUC) values for a repeated k-fold cross validation model, comparing a null model

(with a shuffled dependent variable) against a model trained on the relationship between connectivity and bet size.
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the behaviours represented in this task, where participants

must suppress habitual responding.

Although they both assess disinhibition, Hayling AB

errors and ELF rule violations correlate in opposite direc-

tions on Dimension 2 and are influenced most strongly by

different networks when examined independently. This par-

allels prior findings using voxel-based morphometry, which

have implicated the IFG in Hayling inhibitory errors and

the OFC and VS in ELF Rule Violations (O’Callaghan

et al., 2013a, b). This may be related to underlying differ-

ences in the fine-grained structure of each task. In the ELF

task, participants must obey phonemic policies, whereas in

the Hayling test, participants must monitor semantic rules

and implement a strategy to avoid suppression errors. In

addition, to produce rule violations in the ELF task, the

participant must be sufficiently ‘energized’ to initiate and

maintain the generation of words (phonemic verbal flu-

ency), which presumably requires the integrity of dopamin-

ergic networks such as those involving the VTA and VS

(McAuley, 2003; Barker et al., 2018). Furthermore, in the

Hayling test, participants can make both gross failures of

inhibition (A errors) or more subtle errors of semantics (B

errors). In lesion studies, phonemic word fluency deficits

are associated with the left IFG (Robinson et al., 2012)

and Hayling semantic errors with the right IFG

(Robinson et al., 2015). However, in the present cohort,

the tract connecting the left STN-SMA was most strongly

implicated in interindividual variability in the Hayling AB

error score. Further work will clarify the contribution of

these tracts to these aspects of response inhibition.

As highlighted above, the brain-behaviour covariations

were as high or higher for gambling behaviours in the vir-

tual casino as compared to the clinician-administered tasks.

The greater the connectivity of the reward evaluation net-

work, the more explorative and the higher the bet size used

by participants, modulated by LEDD. Bilateral tracts con-

necting the VS to vmPFC were weighted most heavily in

this model, upholding much prior work linking the VS with

reinforcement learning and reward evaluation (Schultz

et al., 1997; Abler et al., 2006; Daw et al., 2006; Tanaka

et al., 2008; Wittmann et al., 2008; Basar et al., 2010;

Haber and Knutson, 2010; de Wit et al., 2012; Kishida

et al., 2016; Hampton et al., 2017). The amount wagered

in a gamble is a parsimonious way to obtain a behavioural

readout of impulsivity and it is interesting that this measure

correlated significantly with our reward evaluation network

measures.

The tendency of gamblers to switch slot machines in the

virtual casino was negatively correlated with the connect-

ivity of the response inhibition network, modulated by

years since diagnosis. Gamblers with reduced connectivity

of the response inhibition network were more likely to be

impatient and explore different slot machines and thus

could be considered more impulsive on this measure, pre-

ferring to explore their current environment rather than

exploit alternatives. Again, right hemispheric tracts were

weighted most strongly within this network. Here, the

effect of years since diagnosis may be related to progressive

neurodegeneration and the vulnerability of connections be-

tween the STN and SMA, given that modulation of these

connections is most likely to result in a therapeutic benefit

after STN-DBS for Parkinson’s disease (Vanegas-Arroyave

et al., 2016).

Finally, the lesser the connectivity of the reward evaluation

network, the more likely gamblers were to accept double or

nothing gambles. This appears at first paradoxical when eval-

uated against the results for bet size. Specifically, when double

or nothing gambles are considered, participants with greater

connectivity of the reward evaluation network are less likely

to take risks. However, when the weightings of the network

are examined (Fig. 4 and Supplementary material), the distri-

bution of weightings is quite different to the network evalu-

ated for bet size. In the reward evaluation network for double

or nothing gambles, the VS-vmPFC tracts are now negatively-

weighted, with the most highly-weighted tract being the left

VS-OFC. The tracts from STN to vmPFC are also upweighted

(again, a means through which the STN links reward evalu-

ation and response inhibition networks). Thus, the connectiv-

ity of the reward evaluation network may have dissociable

effects on different aspects of impulsive behaviour, with asso-

ciations in opposite directions depending upon the cognitive

operation under study. This supports prior work demonstrat-

ing that greater frontostriatal connectivity is associated with

the ability to delay gratification in young adults (Peper et al.,

2013; Achterberg et al., 2016).

Crucially, our paradigm was able to identify significant

differences between participants by ICB status. Individuals

with a history of an ICB differed in the effect of reward

evaluation connectivity on bet size, and the interaction

effect of LEDD with reward evaluation connectivity. This

finding is in line with previous work demonstrating that

individuals with ICBs differ in their neural response to

dopaminergic medication (van Eimeren et al., 2010; Voon

et al., 2011) and that striatal dopaminergic transmission is

altered in ICB + individuals (Stark et al., 2018). Our cross-

validation results suggest this is not merely a chance effect,

although we stress that we do not propose that our model

(in its current form) could be used to differentiate prospect-

ively between ICB + and ICB� individuals, given its low

specificity and the likelihood of a high false-positive rate.

Nevertheless, using a game-like assay to obtain a behav-

ioural (and, in the future, possibly also neural) signature of

impulsivity is an appealing prospect. To our knowledge this

report offers the first structural account of brain-behaviour

covariation in Parkinson’s disease.

Limitations of this investigation include the cross-sec-

tional design, which precludes causal inferences about the

link between structural connectivity and impulsivity.

Furthermore, the pre-surgical nature of the sampled popu-

lation means that these findings may not apply to all indi-

viduals with Parkinson’s disease; there may be cohort-level

differences in impulsivity amongst those who proceed to

neurosurgery for their movement disorder.
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A further limitation with the virtual casino task that we use

is its exclusive basis in gambling behaviour. Seven of our 17

participants with clinically-significant ICBs did not express

pathological gambling as a feature of their compulsive behav-

iours, whilst in the wider Parkinson’s disease population,

pathological gambling is certainly not seen in all individuals

with ICBs. We endeavoured to mitigate this problem by

including bright colours and noises in our virtual casino

that would have a universally appetitive influence, but we

cannot discount the possibility that there may be a more suit-

able ‘domain general’ behavioural paradigm that could be

developed to encompass all individuals with varied ICBs.

In summary, significant dimensional variations in impul-

sivity and compulsive behaviours are seen amongst individ-

uals with Parkinson’s disease. However, it has been unclear

if these relate to underlying differences in brain networks

likely to be affected by neurodegeneration and dopamin-

ergic therapies. Distinct reward evaluation and response

inhibition networks may associate with dissociable aspects

of impulsivity (cf. choosing and stopping) according to the

behaviour under investigation. In our cohort, we have

shown that impulsivity can be decomposed into non-over-

lapping components with separate neural covariations,

grounded in these aforementioned brain networks.

Importantly, clinician-administered tasks and ecologically

valid measures derived from a naturalistic gambling were

more closely tied to structural connectivity measures than

traditional neuropsychiatric questionnaires. During the

gambling task, participants with a history of ICBs differed

from other individuals in the manner in which their con-

nectivity strengths interacted with dopaminergic therapy

and gambling behaviour. This raises the possibility of

using similar methods in clinical settings, as a means to

identify those at risk of harmful behaviour.
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