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Abstract
Identifying robust markers for predicting the onset of psychosis has been a key challenge for early detection research.
Persecutory delusions are core symptoms of psychosis, and social cognition is particularly impaired in first-episode
psychosis patients and individuals at risk for developing psychosis. Here, we propose new avenues for translation provided
by hierarchical Bayesian models of behaviour and neuroimaging data applied in the context of social learning to target
persecutory delusions. As it comprises a mechanistic model embedded in neurophysiology, the findings of this approach
may shed light onto inference and neurobiological causes of transition to psychosis.

Introduction

Persecutory delusions, defined as unfounded beliefs that
others are deliberately intending to cause harm, are core
symptoms of psychosis and a burden for patients [1]. Per-
secutory ideation leads to increased incidence of violent
behaviour [2], suicidal ideation and relapse [3]. About half
of the first-episode psychosis (FEP) patients with persecu-
tory delusions show psychological well-being levels lower
than 2% of the general population [4].

A recent approach to treatment of psychosis focuses on
early detection and prevention. However, a fundamental
problem for research on the early phases of psychosis is

identifying robust markers for transition to psychosis from
the clinical high-risk state (CHR) [5]. The CHR is defined
by the presence of one or more of the following criteria:
attenuated psychotic symptoms, brief limited intermittent
psychotic episodes, trait vulnerability, as well as a
marked decline in psychosocial functioning and unspeci-
fied prodromal symptoms. Whereas clinical variables
have good prognostic accuracy for ruling out individuals
who will not develop psychosis, there is a need to
improve the prediction accuracy of future transition to
psychosis [5, 6].

Previous studies have examined the predictive value
provided by neuroimaging methods including structural
[7–10] and functional magnetic resonance imaging (MRI)
[11, 12]. In contrast to clinical and environmental vari-
ables, whole-brain examinations of structural MRI data
using voxel-based morphometry delivered the largest
prediction accuracy rates, reaching ~ 80% prediction
accuracy in a cross-centre study [7]. A recent review of
predictive models for psychosis transition indicated that
using multiple variables (biological, environmental, and
neurocognitive), and testing them sequentially in CHR
individuals may substantially improve prediction rates [6].
This suggests that a multimodal, combinatorial approach
is needed.

Although current methods link transition risk with par-
ticular differences in genetic polymorphisms or brain
structures, they do not allow for quantifying the probability
that a particular disease mechanism is present. This, how-
ever, is the basis for targeted treatment.
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One solution for identifying disease mechanisms is to
pursue a computational modelling strategy and employ
generative models that focus on core symptoms, such as
persecutory delusions. Generative models describe
mechanisms that could have generated the observed beha-
viour or neuroimaging data. Individual differences in
behaviour—potentially related to disease mechanisms—can
be uncovered by estimating individual model parameters
based on participants’ behaviour [13]. In addition to pure
risk prediction, this approach, because it is mechanistic,
may also prove useful for identifying pathophysiological
mechanisms of emerging psychosis (see Supplementary
Figure 1).

One class of generative models, which can be fit to
noninvasive measurements (electroencephalogram (EEG) or
functional magnetic resonance imaging (fMRI)), is models
of effective connectivity such as dynamic causal modelling
(DCM), describing causal (directed) influences between
neurons or neuronal populations [14]. DCMs explain

measured brain activity as arising from circuit dynamics
that are a function of (i) intrinsic connectivity, (ii) experi-
mentally induced perturbations, and (iii) modulatory inputs
that invoke contextual changes in synaptic strengths (i.e.,
short-term plasticity during learning or neuromodulatory
influences). A complementary approach to neuroimaging-
based models is afforded by generative models of beha-
viour. These can be fitted to trial-by-trial behavioural
responses to capture (mal)adaptive aspects of learning and
decision-making [15].

Here, we introduce a computational framework that
focuses on a central symptom of psychosis, namely per-
secutory ideation. This framework integrates computational
models of behaviour with neural circuit models, which
describe the neuronal causes of aberrant learning and can be
fit to EEG and fMRI data. It makes specific predictions
about pathophysiology in psychosis, which may be used to
predict transition to psychosis in CHR individuals and
treatment response in FEP patients.

Fig. 1 Probing persecutory ideation: inferring on others’ intentions
experimental paradigm and computational model. a Participants took
part in a face-to-face advice-taking task for monetary rewards and were
randomly assigned to “player” and “adviser” roles. “Players” had to
predict the outcome of a binary lottery draw, whereas “Advisers” gave
Players suggestions on which option to choose. Both sets of partici-
pants received incentives and the pay-off structure differed to ensure
the presence of both collaboration and competition between the two
participants. Players profited from the Adviser’s recommendations as
Advisers always received more information about the outcome of the
lottery (constant probability of 80%), whereas Advisers gained from
the Players’ compliance to take the advice into account. The Advisers’
motivation to provide valid or misleading information varied during
the game as a function of their own incentive structure. Players were
(truthfully) informed that the Adviser had his own (undisclosed)
incentive structure and because of it, intentions could change during

the game (volatility). The social learning task was adapted for fMRI or
EEG recordings by using 2-sec video clips of the Advisers recorded
during the interactive sessions. b According to the model, an agent
infers on true hidden states in the world by continuously updating his/
her predictions (or beliefs) via precision-weighted prediction errors
(PEs). Assuming Gaussian distributions over beliefs, these can be
described by their sufficient statistics, the mean (μ) and the variance/
uncertainty (σ) or its inverse precision/certainty (π). Predictions about
hidden states in the world (before observing an outcome) are denoted
with a hat symbol (e.g.,π̂). At each hierarchical level i, belief updates
(updates of the posterior means μðkÞi ) on each trial k are proportional to
precision-weighted PEs. The belief update is the product of the PE
from the level below δðkÞi�1, weighted by a precision ratio. The ratio is
composed of π̂ kð Þ

i�1 and π
kð Þ
i , which represent estimates of the precision

of the predicted input from the level below (sensory precision) and
precision of the belief at the current level, respectively

A. O. Diaconescu et al.



Computational accounts of persecutory
delusions

Delusions in general are conceptualised as false beliefs
based on incorrect inference about the external world,
which persist in the face of disconfirmatory evidence. Two
major computational theories exist, which assume specific
mechanisms of delusional belief genesis and persistence.

First, a popular notion is that patients with psychosis
attribute inappropriately high aberrant salience to irrelevant
events. This theory posits a key role of the dopamine system
in mediating the misattribution of salience (for a review, see
ref. [16]). It is consistent with well-established theories of
increased phasic dopamine release in psychosis [17–20]
and supported by a host of fMRI studies in FEP patients
[21–23]. Although compelling, this theory does not provide
an explanation how aberrant salience attribution leads to the
development of uncorrectable delusional beliefs.

A second and related theory of delusions focuses on the
Bayesian brain hypothesis and the interplay between prior
beliefs and “correction” signals or prediction errors (PEs)
[24, 25]. The Bayesian account of perception proposes that
the brain generates predictions about its sensory inputs and
adjusts those predictions via incoming PEs [26, 27].
Adopting a hierarchical Bayesian framework, beliefs at
multiple levels, from discrete sensory events to more
abstract aspects of the environment (e.g., probabilistic
associations and volatility), are updated based on precision-
weighted PEs [28, 29]. Specifically, in hierarchical models,
a ratio of precisions (assigned to sensory inputs relative to
prior beliefs) serves to scale the amplitude of PE signals and
thus their impact on belief updates [28].

Recent theories of perceptual abnormalities in
psychosis have built on hierarchical Bayesian frame-
works, extending the concept of aberrant salience by
highlighting the role of uncertainty (or its inverse, preci-
sion) [24, 30–33]. One specific suggestion from these
accounts is that aberrantly strong (or precise) incoming
PEs indicate that prior predictions are inadequate and
beliefs or actions must be changed to accurately predict
states in the world. Thus, a plethora of incoming error
signals leads to a brittle (or uncertain) model about states
in the world, which ultimately sets the stage for the for-
mation of delusions [34, 35]. High-order beliefs of
abnormally low precision lead to a lack of regularisation,
which renders the environment seemingly unpredictable
and volatile, enhancing the weight of incoming PEs [33].
A brittle model of the world may require adoption of
extraordinary higher-order beliefs [32, 36]. Notably, these
explanations are not exclusive but could co-exist; speci-
fically, they relate to numerator and denominator of the
precision ratio in Eq. 1 of Figure 1 (see Supplementary
material for additional details).

Fully developed delusions could be understood as
implausible beliefs with overly high precision, which
function to attenuate aberrant sensory evidence [33]. Recent
studies have shown that strong prior beliefs govern the
belief-updating process in individuals who reported audi-
tory hallucinations (hearing voices) [37]. Prior beliefs were
also more resistant to change in psychosis patients with
acute delusions [38]. Furthermore, the utilisation of prior
knowledge correlated with positive symptom severity in a
perceptual discrimination task [39]. However, the study also
reported decreased impact of experimentally induced priors
on the behaviour of psychosis patients [39] (also see ref.
[40]). On the other hand, a recent study found that delusion-
prone individuals showed a reduced influence of experi-
mental priors in perceptual but not cognitive discrimination
tasks [41]. These somewhat ambiguous results may be
reconciled by a developmental change in prior utilisation
and/or distinct impact of belief precision at different levels
of the processing hierarchy [33, 36].

In the context of psychosis, the most-prominent delu-
sional beliefs pertain to the social world and result from
inference about the mental states of others, specifically that
their intentions are of a persecutory nature [42, 43]. A
precise predictive model is particularly important for social
contexts when interpreting others’ intentions [44, 45],
because human intentions are typically concealed or only
expressed indirectly, requiring predictions from observa-
tions of ambiguous behaviour. Higher-level prior beliefs,
which shape one’s perception of others, may arise from
one’s own psychotic experiences including hearing voices,
as individuals tend to regard their own predictions about
states in the world as more reliable than second person
accounts [46].

Computational models of persecutory delusions must
be based on existing cognitive models. Key cognitive
predispositions for persecutory ideation are in line with the
hypothesis of an initially uncertain predictive model of
others’ intentions (for a review, see ref. [42, 47–49]).
Individuals who later develop persecutory delusions report
high levels of worry and rumination about how others
perceive them [50, 51]. These findings relate to the proposal
of weak prior beliefs leading to causal misattribution [35].
The notion that persecutory ideation may be associated with
abnormal inference and imprecise prior beliefs has been
related to the Jumping to Conclusions bias (e.g., [52–54]; but
see refs. [55] and [56] for alternative interpretations).
Individuals with persecutory delusions may adopt implau-
sible explanations in social contexts [38] and overly negative
attributions about others (e.g., negative events are attributed
to active, malevolent intentions of another person) [57].

With regard to pathophysiology, psychosis represents
a spectrum of disturbances in the interaction between
N-methyl-D-aspartic acid (NMDA)-receptor dependent
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synaptic plasticity and neuromodulatory systems like
dopamine and acetylcholine (see ref. [58] for a review
and [59, 60] for recent empirical findings). However,
the link between impaired social cognition, persecutory
delusions, and disruptions in synaptic plasticity by
neuromodulatory systems has not been established. This
is because it requires ecologically valid and deception-
free experimental paradigms that have also been studied
neurobiologically.

Here, we propose such a paradigm to test the hypothe-
sised link between social inference and persecutory idea-
tion. This paradigm was adapted from a previous social
learning task [61] and probes how one infers on the inten-
tions of another agent (adviser) who provides iterative
advice about the outcome of a probabilistic task based on
additional information that he/she obtains on every trial
(Fig. 1a). Importantly, this task maps onto existing patho-
physiological mechanisms of psychosis [62].

Inferring on others’ intentions: a framework
for probing persecutory delusions

To understand the genesis and persistence of persecutory
delusions the computational framework needs to be exam-
ined in an experimental context that is sensitive to the
process of interest. Therefore, we propose a paradigm that
has been developed to specifically address persecutory
ideation, as it requires learning about the hidden and
possibly changing intentions of another person. It requires
hierarchical processing from non-social to social repre-
sentations with increasing levels of abstraction, which can
be mapped onto hypothesised pathophysiological mechan-
isms of psychosis, in particular precision-weighted PE
belief-updating [62, 63].

Participants perform a binary lottery task and are addi-
tionally given advice from a more informed agent (the
adviser) about which option to choose. In order to perform
well, they not only have to predict the accuracy of current
advice, but also the adviser’s intention and how it might
change over time (i.e., volatility) (Fig. 1a, upper panel). To
examine the impact of precision on learning from advice,
we manipulated volatility and thereby varied the association
strength between the advice and the outcome. We assumed
that the higher-level belief precision about the adviser’s
fidelity is low, when volatility is high and vice-versa.

The adviser’s intentions and motivation to provide
helpful advice change according to the incentive structure of
the task (Fig. 1a, lower panel). The task was adapted for
testing along with either EEG or fMRI recordings by
replacing face-to-face interactions with videos of the advi-
sers, taken from trials when advisers truly intended to help
or to mislead the players [62, 63]. This ensured that all

participants received the same input structure and therefore
could be compared in terms of their learning parameters and
how they inferred from advice. Although each participant
received the same advice sequence throughout the task, the
advisers displayed in the videos varied between participants
to ensure that physical appearance and gender did not
impact on their decisions to take advice into account.

While there are other multiround trust games, which
could potentially be used to examine persecutory ideation
(see ref. [57, 64]), there are several features of the current
paradigm that make it particularly useful for probing per-
secutory ideation. First of all, it is ecologically valid: the
videos of advice reflected instances when the adviser truly
intended to help or truly intended to mislead the participant.
Second, it is deception-free: participants were fully
informed that the adviser had a different incentive structure
and thus was motivated to not always offer helpful advice
(see ref. [65] for details). Third, in contrast to other theory
of mind (e.g. the mind in the eye task, emotion recognition
tasks, variations of the Sally-Ann task) or decision-making
tasks (a single-shot or short multiround dictator or trust
game), this paradigm includes a prolonged, iterative inter-
action, which allows the examination of how beliefs are
updated as a result of contradicting evidence or PEs. Fourth,
it provides a context to test what we hypothesise to be
impaired in persecutory ideation, namely the different
contributions of sensory compared with belief precision.
Finally, the paradigm includes volatility (owing to the
incentive structure offered to advisers), which can be used
to manipulate the players’ confidence about their estimates
of adviser’s fidelity.

Inferring on others’ intentions as precision-
weighted PE updates

In the context of learning about intentions, different
hypotheses about how participants took decisions (i.e.,
going with or against the advice) were formalised in terms
of a model space, which comprised different models of
learning and belief-to-action mapping, including reinforce-
ment learning models, which were formally compared [66].
The model, which best captured behaviour in this social
learning task across multiple data sets [62, 63, 65], was the
hierarchical Gaussian filter (HGF) [28, 29], which empha-
sised the role of hierarchical precision-weighted PEs in
belief updating (Fig. 2b). Irrespective of participant–adviser
assignment, but specific to the social task, we observed the
same winning model, which assumed hierarchical learning
about the advice and adviser volatility as the mechanism for
mapping beliefs to decisions [65].

In previous studies, the inferred adviser fidelity and
volatility of intentions, - estimated with the HGF, - reflected
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participants’ overtly expressed beliefs about the adviser’s
intentions at different times during the task. Furthermore,
the learning parameters describing each individual’s belief
updates predicted participants’ ratings of their own
perspective-taking tendencies, suggesting that the model
captures key aspects of social cognition [62, 65].

According to this model, surprising advice outcomes
have a greater impact on the agent’s internal representation
(should have more influence on the belief update) when the
sensory precision from the level below (i.e., π̂ kð Þ

i�1) is high.
For example, a participant may have regarded unexpected
misleading advice as evidence that the adviser has changed
the strategy, thus adapting his/her beliefs about the adviser’s
intentions and decisions to follow the advice. However, if
one has a strong prior belief that the adviser’s intentions are
to mislead, then the belief precision (i.e., π kð Þ

i ) is high and
contrary evidence (i.e., surprising helpful advice) will be
ignored.

In summary, our proposal suggests that persecutory
delusions can be understood as an imbalance between
sensory and belief precision. Sensory precision augments
the impact of social PEs on beliefs about fidelity, and likely
marks the early stages of psychosis, whereas belief preci-
sion has the opposite effect on belief updates and may
reflect the consolidation of delusions. This is because belief
precision refers to the confidence in one’s model of

intentions, which functions to “explain away” instances of
incorrect advice.

One could appreciate the distinct impact of the sensory
compared with the belief precision on the belief-updating
process with simulations (see Supplementary Figure 1) and by
considering the following intuitive example: imagine that you
buy bread from your local baker every morning. Every time,
he/she offers you one of the two types of bread that is freshest
that day. One day, you get very ill after eating the loaf of
bread recommended to you, implying an overly high precision
at the sensory level. The next day, the baker recommends you
confidently the same bread. You conclude he/she must have
no clue about bread, and choose the other option (i.e., opposite
of his/her advice). This reflects a process of “explaining away”
PEs, by adopting a new prediction. It turns out that the other
bread has an intense, pungent smell (referring to the aberrant
salience of sensory inputs). This leads you to believe that the
baker is purposely trying to poison you with bad bread, and
even when he/she recommends a “good” bread, that others in
the store also buy, it further confirms your prediction that it is
part of an elaborate plan to coax you to trust him/her again.
This reflects the adoption of false and precise high-level
beliefs, which can fully explain any instance of aberrant PEs.
The aberrantly high precision on the higher-level beliefs is an
adjustment in order to down-weigh the precision with respect
to the sensory input (i.e., unexpected bad bread).

Fig. 2 Functional anatomy of social inference: this schematic is an
approximation of a neural process model of social inference. The
neural signatures of the computational quantities are based on
the previous, reproduced fMRI results [62]. a The hidden states that
the agent infers on are arranged in a hierarchy as proposed by the
HGF. In this graphical notation, diamonds represent quantities that
change in time (i.e., that carry a time/trial index k). Hexagons, like
diamonds, represent quantities that change in time, but additionally
depend on the previous state in a Markovian fashion. From top to
bottom, x3 represents the current volatility of the adviser’s intentions,
x2 the adviser’s fidelity or tendency to give helpful advice, and x1

represents the accuracy of the current observation (advice or cue).
b The inferred states are represented by circles. Thus, based on the
empirical findings, we propose the following theoretical neural model
of social inference: Cue-related PEs update predictions about the
visual outcome and are conveyed via projections from lingual gyrus to
posterior parietal cortex, whereas advice PEs, which update the advice
accuracy, are passed from low-level regions (including the VTA) to
higher-level “theory of mind” regions, i.e., for example, dorsomedial
PFC. High-level volatility PEs are further transmitted via the choli-
nergic septum to cingulate regions. The precisions (advice and vola-
tility) modulate the impact of PEs on medial PFC activity
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Functional anatomy of social inference

The computational quantities entering the belief-updating
process have been associated with neuromodulatory sys-
tems specifically implied in the pathophysiology of psy-
chosis (for reviews, see ref. [33, 58, 67]).

In the context of social learning, we demonstrated a
dichotomy between low- and high-level precision-weighted
PEs as they were related to dopaminergic and cholinergic
systems [62]. Whereas low-level precision-weighted PEs
about advice were represented in the dopaminergic mid-
brain and dopaminoceptive regions such as the anterior
cingulate cortex, medial, and dorsolateral PFC, high-level
precision-weighted PEs about the adviser’s intentions were
represented in the cholinergic septum and one specific tar-
geted projection, the dorsal anterior cingulate cortex. Con-
sistent results reproduced in two fMRI studies reflect

fundamental neural computational architectures underlying
social inference (Fig. 2).

Not surprisingly, as social inference is particularly
impaired in individuals at risk for psychosis [68], the
regions which encode these particular computational
quantities include dopaminergic nuclei and dopaminocep-
tive areas, such as the striatum, shown to be affected in
those at risk of developing psychosis [69, 70] and in those
who later transitioned to schizophrenia [71].

Clinical predictions afforded by
computational model

As persecutory delusions predominate in major psychotic
disorders and contribute to symptom severity, computa-
tional models that explain their formation and persistence

Fig. 3 Model predictions: beliefs and neural responses: considering the
psychosis spectrum timeline, one can make specific hypotheses about
the parameters that could mark each stage by referring to the equation
in Fig. 1 and the functional anatomy of social inference (Figs. 1 and 2)
using simulations. a In the early, prodromal stage of increased aberrant
salience, we predict an increased representation of sensory precision or
π̂

kð Þ
i�1 during the social learning task. Neurally, this may be expressed as

enhanced low-level PEs and thus enhanced connectivity between
dopaminergic and sensory to parietal and frontal regions; b In the later

stages, when persecutory delusions are present, we predict an
enhancement of the belief precision or π kð Þ

i during the social learning
task. At the level of the hierarchical Bayesian model, this would be
associated with reduced estimated volatility, tonic learning rate, and a
more negative prior estimate about the adviser’s fidelity. Neurally, this
may be expressed as increased high-level precision and PEs and thus
increased connectivity strength from the medial prefrontal regions to
cingulate areas
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may shed light onto the neural mechanisms that mark the
different stages of psychosis.

In the context of social learning, we predict that the high-
risk state is defined by an imbalance between the precision
of beliefs at low compared with high levels of the proces-
sing hierarchy, as suggested by recent studies of perceptual
inference in relation to delusions [72, 73]. Thus, the preci-
sion associated with advice PEs will likely be larger com-
pared with the precision of the prediction about intentions,
leading to a high learning rate and a reduced ability to form
a cohesive model of the adviser’s intentions, which could be
predicted using simulations (Fig. 3a).

Based on neuroimaging results in the healthy population
[62, 63] and recent studies of aberrant salience in the at-risk
population [22, 23, 74], several hypotheses about patho-
physiology can be put forward, which could be falsified in
future studies: first, the early prodromal stage of psychosis
may be marked by an increased low-level (sensory) preci-
sion. Consistent with previous connectivity studies [75–77],
this would be translated into enhanced bottom–up con-
nectivity from dopaminergic regions to key brain regions
involved in the representation of social (advice) PEs,
including the temporal–parietal junction and dorsomedial
prefrontal cortices [61, 62]. Thus, parameters that will likely
predict transition to frank psychosis include learning para-
meters that determine the dynamics of precision-weighted
PEs (see ref. [65]) as well as the connectivity strengths of
bottom–up connections from dopaminergic to parietal and
prefrontal cortices (Fig. 3a).

In the later stages of psychosis, the presence of delusions
might reflect a compensatory response to the aforemen-
tioned deficiencies of hierarchical inference. Thus, in indi-
viduals who exhibit persecutory delusions, we predict an
increased representation of high-level belief precision about
the other’s intentions (Fig. 3b). This notion of rigid high-
level priors leads to several experimentally testable pre-
dictions: at the behavioural level, this will likely be reflected
as a reduced estimate of volatility. At the neural level, this
will be expressed as either (i) a reduction in bottom–up
connectivity from dopaminergic regions to parietal and
medial prefrontal cortices, reflecting the suppression of
incoming PE signals, or (ii) enhancement of top–down
connectivity from cingulate to medial prefrontal and to
parietal regions, reflecting an enhancement of the precision
of predictions about intentions, or (iii) a combination of
both (Fig. 3b). Although reduction in functional con-
nectivity has featured prominently in the literature, in par-
ticular between temporal and prefrontal regions [78, 79],
enhanced connectivity was also reported [80, 81].

An alternative hypothesis is that the pathophysiology
underlying persecutory delusions is unrelated to precision,
but instead to social PEs. Accordingly, individuals with
persecutory delusions regard the adviser as purposely

misleading, and therefore place greater weight on negative
advice PEs. At the neural level, this would be expressed as
biased predictions and enhanced PE signals for misleading
advice.

Testable designs

We propose two experimental designs to test our hypoth-
eses: (1) Individuals with high-risk of developing psychosis
and patients with persecutory delusions could be compared
in a cross-sectional design. However, although generative
modelling approaches may be useful for identifying infer-
ence and neurobiological processes leading to psychosis,
validation studies are needed to determine their clinical
utility. Regardless of how well a model may capture a
putative pathophysiology, it needs to support differential
diagnosis or prognosis, for example, by predicting transition
to psychosis or treatment response with sufficient accuracy
and in individual patients. (2) This can only be tested in
prospective studies where CHR individuals and FEP
patients who receive first-line treatment are assessed at
multiple time points and model parameters are used to
predict transition to psychosis or treatment response,
respectively.

From previous studies of aberrant learning in psy-
chosis, it is unclear whether alterations in social inference
are specifically required to explain persecutory delusions.
In fact, alterations in higher-level inferential processes
that are not necessarily specific to social contexts may
affect processing of socially relevant information and
produce delusions. To address this question, a control task
that removes the aspect of intentionality may be needed.
We have previously included such a control task [65] with
blindfolded advisers who selected their advice from pre-
defined card decks, thus eliminating the effect of inten-
tionality, and demonstrated that the computational model
proposed here, which assumes hierarchical learning about
the advice and volatility of the adviser’s intentions as the
mechanism for mapping beliefs to decisions specifically
captured the intentionality behind the advice [65]. In
terms of more broadly distinguishing between mechan-
isms of abnormal plasticity linked to psychosis, additional
perceptual learning tasks that tap into different mechan-
isms, including intact NMDA receptor signalling, such as,
for example, the auditory mismatch negativity task [82]
may also be needed.

Conclusion and future directions

Mechanistically interpretable generative models like the
ones outlined here allow for model comparison and
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testing of competing hypotheses as well as inference on
disease mechanisms in individual patients at different
stages of psychosis. Furthermore, the computational
quantities derived from the model—such as the low- and
high-level, precision-weighted PEs—could be associated
with distinct neuromodulatory systems, dopaminergic and
cholinergic [62], respectively, which are ultimately the
targets of pharmacological treatment in psychosis. Future
studies in subclinical and clinical populations will
examine the usefulness of this approach for predicting
transition to psychosis or treatment response in individual
patients.

Code availability

The routines for all simulations used here are available as
Matlab code: https://gitlab.ethz.ch/compi_sim. The simula-
tions in this paper can be reproduced by following the
instructions of the ReadMe file.
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