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A B S T R A C T

This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor)
approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a
generative or dynamic causal model of laminar specific responses that can generate haemodynamic and
electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or
induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing
hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on
superficial or deep pyramidal cells – or both? In this technical note, we describe the resulting dynamic causal
model and provide an illustrative application to the attention to visual motion dataset used in previous papers.
Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses
reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal
activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the
relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper
does not pretend to answer these questions; rather it shows how they can be addressed using neural mass
models of fMRI timeseries.

Introduction

Over the past decade, dynamic causal modelling (DCM) has become
the predominant way of characterising effective connectivity within
networks of distributed neuronal responses (Daunizeau et al., 2011;
Razi and Friston, 2016), as measured with fMRI (Friston et al., 2003)
or electromagnetic responses (David et al., 2006). Although there have
been technical advances in the dynamic causal modelling of the fMRI
timeseries; such as the introduction of stochastic and spectral DCM (Li
et al., 2011; Friston et al., 2014b) – and innovations such as Bayesian
model reduction and hierarchical (empirical) models for group studies
(Friston et al., 2015; Friston et al., 2016) – the underlying model of
neuronal and haemodynamics has remained basically unchanged
(Stephan et al., 2007; Marreiros et al., 2008; Stephan et al., 2008).
This model is based upon a second-order Taylor approximation to

neuronal activity, as described with equations of motion. In parallel,
there have been rapid developments in the dynamic causal modelling of
electrophysiological timeseries; both in terms of event related and
induced (cross spectral) responses (Moran et al., 2011; Friston et al.,
2012). This branch of dynamic causal modelling has addressed more
physiologically informed questions about the role of forward and
backward connections in cortical hierarchies and how experimental
effects are mediated at the synaptic level: e.g., Boly et al. (2011),
Auksztulewicz and Friston (2015), Bastos et al. (2015). In this paper,
we combine these two strands of modelling to provide a DCM for fMRI
timeseries based on generative or forward models used in DCM for
electromagnetic timeseries. This is effected by replacing the Taylor
approximation used in DCM for fMRI with the differential equations
used in DCM for EEG and MEG. These differential equations are based
upon standard neural mass models of neuronal dynamics within a
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canonical microcircuit (Douglas and Martin, 1991; Jansen and Rit,
1995; Bastos et al., 2015). This combination offers several advantages:

First, it allows one to specify hypotheses or models of distributed
responses – as measured with fMRI – that are more physiologically
grounded. For example, one can specify hierarchal architectures with
distinct (laminar-specific) forward and backward connections.
Furthermore, one can specify experimental effects in terms of changes
in either extrinsic (between-region) or intrinsic (within-region) con-
nectivity at the level of specific neuronal populations; e.g., superficial or
deep pyramidal cells (Brown and Friston, 2012; Auksztulewicz and
Friston, 2015).

Second, it provides a framework within which to combine different
modalities. Crucially, because the generative model used for MRI can
also generate evoked or induced electromagnetic responses, one can
use both modalities to inform the parameters of the same model.
Furthermore, the form of fusion afforded by using the same (neuronal)
model frees one from the tyranny of having to acquire fMRI and
electrophysiological data concurrently. In other words, one can first
analyse EEG data using event related or induced responses to estimate
the connectivity and synaptic parameters of a DCM. These posterior
estimates then become prior probability distributions for a subsequent
inversion, using fMRI data, to estimate regionally specific haemody-
namic parameters. This is known as Bayesian belief updating and
properly accounts for the conditional dependencies between neuronal
and haemodynamic parameters. The resulting multimodal Bayesian
fusion provides a comprehensive characterisation of functional anat-
omy that exploits the temporal (electromagnetic) and spatial (fMRI)
nature of different imaging modalities. We will illustrate multimodal
fusion in a subsequent paper. In this paper, we consider the form of the
DCM and provide some illustrative applications to show how far one
can get using fMRI data alone.

Third, having a physiologically informed neuronal and haemody-
namic model means that one can, in principle, resolve outstanding
questions about the nature of the BOLD response. For example, does
the BOLD response reflect afferent presynaptic activity from distant
(extrinsic) sources or does it report local activity mediated by recurrent
(intrinsic) connectivity (Attwell and Iadecola, 2002; Logothetis, 2008)?
To what extent do inhibitory interneurons contribute to BOLD signals
(Arthurs and Boniface, 2002; Kann et al., 2014)? Is the BOLD signal
generated in superficial cortical layers, deep cortical layers or both
(Goense et al., 2012; Poplawsky et al., 2015)? And what are the
haemodynamic correlates of event-related desynchronisation and fast
(oscillatory) activity (Singh et al., 2002; Laufs et al., 2003; Kilner et al.,
2005; Murta et al., 2015; Scheeringa et al., 2016)?

Our main aim in this paper is to show how such questions could be
answered using the framework introduced below, rather than providing
definitive answers to the aforementioned questions. Our illustrations
are therefore restricted to the analysis of a single time series from a
single subject (Buchel and Friston, 1997). These data are the same time
series that have been used to illustrate previous developments in
dynamic causal modelling and are available from the SPM website
(http://www.fil.ion.ucl.ac.uk/spm/).

This paper comprises four sections. The first introduces the neural
mass model that constitutes the neuronal part of the DCM for fMRI.
The second section illustrates its application to empirical data acquired
during an ‘attention to visual motion’ paradigm. This section illustrates
how biological questions about the synaptic mediation of attention can
be posed at the level of specific neuronal populations; such as the
contribution of superficial versus deep pyramidal cells to attentional
effects in observed data. The third section turns to questions about
haemodynamics; for instance whether BOLD responses are driven by
extrinsic or intrinsic presynaptic activity – and whether inhibitory
interneurons have a role to play. The final section considers the
multimodal capabilities of the model by simulating the induced
responses that would have been seen using local field potentials, based
upon the parameters estimated from the fMRI data. This section

focuses on the relationship between desynchronisation (and the
expression of gamma activity) and BOLD responses disclosed by
experimental changes in attention set. We conclude with a brief
discussion of conclusions that can be drawn from this sort of model-
ling.

Dynamic causal modelling with neural mass models

This section reviews the structure of the canonical microcircuit
DCM. The requisite equations can be found in the figures, while a
glossary of variables and mathematical expressions can be found in
accompanying tables. Dynamic causal modelling refers to the inversion
of generative or forward (state-space) models of observable responses,
given a model of how neuronal activity causes measurements (e.g.
fMRI, EEG, MEG timeseries). This inversion generally uses standard
Variational Laplace (Friston et al., 2007) procedures to estimate model
parameters and their marginal likelihood or model evidence for
inferences about specific connections (Daunizeau et al., 2011) and
network architecture respectively (Penny et al., 2004). The latitude of
inferences therefore rests on the nature of the models used to explain
the data.

Usually, dynamic causal models have a neuronal part that describes
distributed neuronal activity with a greater or lesser degree of
biological realism and a measurement part that converts neuronal
activity into measurable observations. For fMRI, this involves specify-
ing haemodynamic models, while for electromagnetic data it usually
reduces to specifying a lead field or electrode gain. The separation into
neuronal and measurement models is important, because it allows the
same neuronal model to predict multiple modalities, using different
measurement models. This means one can use multimodal data
features to estimate the model's evidence and parameters. In this
paper, the neuronal model is exactly the same model used in DCM for
EEG (and MEG), while the haemodynamic model is exactly the same as
has been used for fMRI over the past decade (Stephan et al., 2007).

There have been several advances in haemodynamic modelling that
have been informed by different sorts of (e.g., arterial spin labelling)
fMRI data (Havlicek et al., 2015) – and the modelling of laminar
specific responses measured with high-resolution fMRI (Heinzle et al.,
2016). However, here, we will use the original haemodynamic model
for simplicity and consistency with previous work; noting that it is easy
to incorporate more advanced haemodynamic models and evaluate the
improvement using Bayesian model comparison (Stephan et al., 2007).
A potentially important issue here is whether the haemodynamic model
predicts laminar specific fMRI signals. In this paper, we are not
concerned with high-resolution fMRI and therefore model the fMRI
signal as a mixture of contributions from different cortical layers,
modelling the relative contributions with unknown neurovascular
coupling parameters. This should be contrasted with alternative
strategies that include spatial aspects within the haemodynamic model
that would be necessary for data that is spatially resolved at the (sub)
millimetre level (Heinzle et al., 2016; Puckett et al., 2016). We will first
describe the DCM for a single cortical region or source (i.e., node) and
then consider distributed networks of sources (i.e., graphs) and their
extrinsic connections.

Dynamic causal models with four neuronal populations per region

Fig. 1 summarises the generative model for each region or node.
This model comprises two sets of differential equations modelling
neuronal dynamics and haemodynamics respectively. These are
coupled via a linear (neurovascular) mapping, such that neuronal
states provide input to the haemodynamics. Experimental inputs (e.g.,
visual input from the lateral geniculate) perturb neuronal dynamics
that are modelled with a canonical microcircuit. This microcircuit
comprises four neuronal populations (per node), corresponding to
spiny stellate cells, superficial pyramidal cells, inhibitory interneurons
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and deep pyramidal cells. These are denoted by populations 1–4. The
three excitatory populations model the granular, supragranular and
infragranular excitatory cells, while inhibitory interneurons neurons
are treated as a single inhibitory population. Each population is
equipped with two implicit hidden states, whose dynamics are de-
scribed by the second-order ordinary differential equation in the figure.
These model the responses of each neuronal population to presynaptic
(firing rate) inputs that include experimental inputs (mediated by Cim

j( )),
extrinsic afferents from other regions (mediated by extrinsic connec-

tivity Ajl
ik( )), and intrinsic afferents from other neuronal populations

(mediated by intrinsic connectivity aik
j( )). This class of neural mass

model is known as a convolution model (Moran et al., 2013) and,
effectively, convolves presynaptic input with a synaptic kernel to
provide a depolarizing or hyperpolarizing input to postsynaptic popu-
lations via intrinsic and extrinsic connections. The connectivity
strengths are free parameters of the model (see Table 1), whereas the
population-specific time constants κi are fixed – when modelling fMRI
data – to ensure efficient model inversion.

For simplicity, conduction delays between neuronal populations
have been omitted from the differential equations in Fig. 1. These
delays have prior expectations of 1 millisecond for intrinsic connec-
tions and 16 milliseconds for extrinsic connections. Usually, when
fitting electromagnetic data, conduction delays are optimised during
model inversion and can have an important effect on neuronal
responses. They are therefore included in the neural mass model for
fMRI (but are fixed at their prior mean). In principle, one could use
fMRI data to estimate conduction delays on a millisecond timescale.
This is because changes in conduction delays can have profound effects
on the amplitude of measurable responses, both in terms of induced
responses in electromagnetic studies and haemodynamic responses in
fMRI. This fact allows us to address an occasional misconception about
DCM: the important information that enables parameter estimation is
not contained in the timing of haemodynamic responses – it is the
subtle but systematic changes in the amplitude of distributed regional
responses that enables efficient parameter estimation. It may seem odd
to suggest that the amplitude of BOLD signals contains information
about neuronal dynamics at the millisecond timescale; however, this
assertion becomes less mysterious when appreciating that one can

Fig. 1. Schematic summarising the generative model for each region or node. This model comprises two sets of differential equations modelling neuronal dynamics and haemodynamics
respectively. These are coupled via a linear (neurovascular) mapping, such that the neuronal states provide an input to the haemodynamics. Experimental inputs perturb neuronal
dynamics that are modelled with a canonical microcircuit. This microcircuit comprises four neuronal populations, comprising spiny stellate cells, superficial pyramidal cells, inhibitory
interneurons and deep pyramidal cells. Each population is equipped with two hidden states whose dynamics are described by the second-order ordinary differential equation in the
figure. These equations of motion model the depolarisation of each population in response to experimental inputs and afferents from other populations in the same (intrinsic) and other
(extrinsic) nodes. The four populations are coupled via intrinsic connections that correspond to known inter-and intralaminar connectivity. Pre-synaptic activity at each subpopulation is
then used to drive haemodynamic responses, through local collaterals innervating astrocytes, whose (endfeet) processes release vasodilatory signals. These signals then enter a standard
haemodynamic model to generate a BOLD signal. In this graphic, pink connections are inhibitory, blue connections are excitatory and green connections correspond to collateral
projections mediating neurovascular responses. Please see Tables 1 and 2 for a list of the variables (and their prior densities). The square brackets are Iverson brackets, returning one
when the expression is true and zero otherwise.

Table 1
Parameters of a neuronal model (see also Fig. 2).

Description Parameterisation Prior

κi Postsynaptic rate constant of
the i-th neuronal population in
each of N regions

θ κ
κ
exp( )⋅

= [256, 128, 16, 32]
κ i p θ N( ) = (0, 0)κ

aik
j( ) Intrinsic connectivity to

population i from population k
in each region j

θ aexp( )⋅a p θ N( ) = (0, 0)a

bikm
j( ) Change in intrinsic connectivity

caused by the m-th input in
region j

θ ∈b J M4×4× × p θ N( ) = (0, )b
1
8

Ajl
ik( ) Extrinsic connectivity to

population i in region j from
population k in region l

θ Aexp( )⋅A p θ N( ) = (0, )A
1
8

Bjlm
ik( ) Change in extrinsic

connectivity caused by the m-th
input

θ ∈B N N M4×4× × × p θ N( ) = (0, )B
1
8

Cim
j( ) Direct driving effect of the m-th

input on population i in region j
θ ∈C N M4× × p θ N( ) = (0, )C

1
32
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measure velocity using the colour of light (i.e., the Doppler Effect). The
systematic relationship between axonal conduction delays (respec-
tively, velocity) and the pattern of fMRI responses (respectively,
frequency of electromagnetic radiation) can only be harnessed, for
inference or estimation, when we know exactly how measurements are
generated. Clearly, this also means that estimates of conduction delays
have to be qualified; because they are conditioned on the particular
generative model (i.e., DCM) in play.

The four populations are coupled with intrinsic connections that
correspond (roughly) to known inter-and intralaminar connectivity
(Thomson and Bannister, 2003). The anatomical and physiological
evidence for this canonical microcircuit is reviewed in (Bastos et al.,
2012) from the perspective of predictive coding architectures in the
brain. A subsequent simplification for dynamic causal modelling of
local field potentials is described in (Bastos et al., 2015). The micro-
circuitry in Fig. 1 includes additional (interlaminar) connections, from
the superficial to the deep pyramidal cells, which are known to be
prevalent in most cortical areas (Thomson and Bannister, 2003;
Binzegger et al., 2004; Haeusler and Maass, 2007; Heinzle et al., 2007).

In brief, experimental and extrinsic input arrives at granular layer
4, targeting spiny stellate cells. These populations then project to
superficial pyramidal cells, which project to deep pyramidal cells. In
addition to this intrinsic feedforward pathway (Thomson and
Bannister, 2003), there are reciprocal connections with inhibitory
interneurons, modelled here with a single population. Extrinsic effer-
ents come in two flavours. Forward connections arise from superficial
pyramidal cells, while backward connections arise from deep pyramidal
cells (Felleman and Van Essen, 1991; Hilgetag et al., 2000). Extrinsic
forward connections provide the input to the granular layer of a higher
region (with a small projection to deep pyramidal cells), while extrinsic
backward connections target superficial pyramidal cells and inhibitory
interneurons. Note that the recurrent (self) connections are universally
inhibitory; irrespective of whether the neuronal population is excita-
tory or inhibitory. We assume that recurrent or self-connections in
excitatory neural populations (populations 1, 2 and 4) are mediated by
inhibitory interneurons; e.g., fast spiking parvalbumin positive cells
(Sohal et al., 2009; Kann et al., 2014), and that the strength of the
recurrent connection is determined by the level of excitation of the
neuronal population itself. These connections are denoted by the pink
circles in Fig. 1.

Neurovascular coupling

Pre-synaptic activity at each subpopulation is assumed to drive
haemodynamic responses, through local collaterals innervating astro-
cytes, whose (endfeet) processes release vasodilatory signals
(Carmignoto and Gomez-Gonzalo, 2010; Figley and Stroman, 2011).
These signals then enter a standard haemodynamic model to generate a
BOLD signal. The hemodynamic model has been described extensively
in previous communications (Friston et al., 2000) and completes the
Balloon model (Buxton et al., 2004). In brief, a neurovascular signal
(e.g., intracellular calcium in astrocytes) drives a vasodilatory signal
(e.g., nitric oxide) that is subject to auto-regulatory feedback (Friston,
1995; Attwell and Iadecola, 2002). Blood flow responds in proportion
to the vasodilatory signal and causes change in blood volume and
deoxyhemoglobin content. The observed BOLD signal is a nonlinear
function of volume and deoxyhemoglobin and depends upon the
relative contribution of intra-and extravascular components (Buxton
et al., 2004). In this model, outflow is a function of volume F h h( ) = α

3 3
1/

and Grubb's exponent α. The relative oxygen extraction
E h φ φ( ) = (1 − (1 − ) )/h

2
1/ 2 is a function of flow, where ϕ is resting

oxygen extraction fraction. A description of the parameters of this
model is provided in Tables 2 and 3.

From our perspective, the important part of this model is the
neurovascular coupling; namely, how neuronal activity induces a
neurovascular signal; e.g., calcium transients in astrocytes (Bazargani

and Attwell, 2016). We have parameterised this coupling under the
assumption that there is a laminar-specific drive to the neurovascular
signal mediated by collaterals of both intrinsic and extrinsic connec-
tivity. In other words, we assume that every presynaptic input to a
neuronal population is accompanied by a collateral input of the same
strength to nearby astrocytes (Figley and Stroman, 2011). This enables
us to parameterise laminar-specific contributions to neurovascular
signals, while preserving the distinction between extrinsic and intrinsic
input. Note that intracellular calcium can be influenced by both
excitatory and inhibitory input to astrocytes via their glutamatergic
and GABAergic receptors (Bazargani and Attwell, 2016). We therefore
distinguish between excitatory and inhibitory input by assigning
separate neurovascular coupling parameters to each sort of presynaptic
drive (see Fig. 1).

Clearly, there could be other neurovascular architectures; for
example, each population could send signals to the local vasculature
in proportion to its postsynaptic activity. Alternative mechanisms such
as extra-synaptic communication could also be considered. Although
we do not pursue this here, it would be an interesting exercise to
adjudicate among different forms of neurovascular coupling
(Carmignoto and Gomez-Gonzalo, 2010; Figley and Stroman, 2011;
Bazargani and Attwell, 2016) using Bayesian model comparison. In this
paper, we use an over parameterised model of presynaptic neurovas-
cular coupling for three reasons: first, it allows us to ask whether
intrinsic, extrinsic or both sorts of presynaptic afferents are responsible
for eliciting a neurovascular response; this illustrates the latitude
afforded by having an explicit model of neurovascular coupling.
Second, it allows us to distinguish between the contribution of
excitatory and inhibitory collaterals. Third, having a laminar specific
neurovascular parameterisation may be useful in the future when
modelling high resolution (laminar) fMRI (Heinzle et al., 2016). In
future applications of canonical microcircuit DCM to fMRI data, we
anticipate that this part of the model will become much
simpler and informed; particularly when using Bayesian fusion of
EEG and fMRI data to resolve conditional dependencies between
neuronal and haemodynamic parameters. This completes our specifi-
cations of the model for a single node. We now consider how nodes are
assembled to form a graph with directed forward and backwards
connections.

Table 2
Haemodynamic parameters.

Description Parameterisation Prior

η Rate of vasodilatory signal decay
per sec

θ0.64⋅exp( )η p θ N( ) = (0, )η
1

256

χ Rate of flow-dependent
elimination

θ0.32⋅exp( )χ p θ N( ) = (0, 0)χ

τ Rate hemodynamic transit per sec θ2.00⋅exp( )τ p θ N( ) = (0, )τ
1

256
α Grubb's exponent θ0.32⋅exp( )α p θ N( ) = (0, 0)α
ε Intravascular: extravascular ratio θ1.00⋅exp( )ε p θ N( ) = (0, )ε

1
256

φ Resting oxygen extraction
fraction

θ0.40⋅exp( )φ p θ N( ) = (0, 0)φ

βij Sensitivity of signal to neural
activity

θi p θ N( ) = (0, )i
1

16

Table 3
Biophysical parameters.

Description Value

V0 Blood volume fraction 0.08
k1 Intravascular coefficient φ6.9⋅
k2 Concentration coefficient ε φ⋅
k3 Extravascular coefficient ε1 −
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Dynamic causal models for graphs

A distributed network or graph is determined by between-node or
extrinsic connectivity. The distinction between forward and backward
connections defines the hierarchical relationships among cortical and
subcortical systems – and has clear correlates in terms of laminar-
specific origins and targets (please see above). This hierarchical aspect
of the current DCM was missing from earlier variants based upon
Taylor approximations. This is because earlier versions did not model
laminar-specific neuronal dynamics. Fig. 2 illustrates the extrinsic
connectivity architecture, in terms of the network that will be used to
analyse empirical data in the next section.

Here, we have selected three areas that showed a significant
experimental effect (either attentional modulation or motion sensitive
responses – see below) shown in the inset. These comprise an early
visual source (V1) a motion sensitive area (V5 or MST) and an
attentional area; the frontal eye fields (FEF). These three nodes are
modelled as a simple hierarchy, where forward connections arise from
superficial pyramidal cells and target spiny stellate cells in the granular
layers of a higher level. In addition, we have modelled a (weak)
connectivity to deep pyramidal cells. Backward connections arise from
deep pyramidal cells and target inhibitory interneurons and superficial
pyramidal cells in the level below. The laminar specificity of these
extrinsic connections is specified quantitatively by the prior values of
the parameters of adjacency or A matrices shown in the lower panel of
Fig. 2. See also Table 1. These extrinsic adjacency matrices model two
sorts of forward connections (to spiny stellate and deep pyramidal cells
and the two sorts of backward connections (to superficial pyramidal

cells and inhibitory interneurons) respectively. While this represents
only a subset of known connections within the visual hierarchy; e.g.
Ninomiya et al. (2012), our aim here was to specify a plausible and
minimal subgraph that would support questions about attentional
modulation within V5. Hypotheses about different extrinsic connectiv-
ity architectures can be tested in the usual way using Bayesian model
comparison with different A matrices.

In addition to specifying the extrinsic connectivity architecture, it is
necessary to specify where experimental inputs (here, visual input, visual
motion and attention to visual motion) drive or modulate neuronal
responses. As usual, the driving effects of experimental inputs are
determined by the parameters of a C matrix, directing experimental
input to spiny stellate populations in each region. In this example, visual
input, visual motion and attention drive responses in the early visual
cortex, motion sensitive cortex and frontal eye fields respectively. Finally,
we have to specify where experimental effects change intrinsic or
extrinsic connectivity. For each experimental effect there are a pair of
B matrices whose off-diagonal terms parameterise the change in the
(forward or backward) adjacency matrix per-unit change in experimental
input. The diagonal elements of the forward B matrix are used to model
experimental modulation of intrinsic (recurrent or self-inhibition) of
superficial pyramidal cells, while the diagonal elements of the backward
B matrix encode condition specific changes in the self-inhibition of deep
pyramidal cells. In this example, attention exerts a modulatory effect on
both the self-inhibition of superficial and deep pyramidal cells in area
(V5). This particular parameterisation allowed us to ask whether atten-
tional modulation of superficial, deep or both pyramidal cell populations
is necessary to explain the observed responses.

Fig. 2. This figure provide an example of the extrinsic connectivity architecture used in this sort of DCM – and the particular network or graph used in this paper. Here, we have selected
three regions that comprise an early visual source (V1), a motion sensitive area (V5 or MST) and an attentional area; the frontal eye fields (FEF). Forward connections arise primarily
from superficial pyramidal cells and target spiny stellate cells in the granular layers. In addition, we have modelled a (lower density) connectivity to deep pyramidal cells. Backward
connections arise from deep pyramidal cells and target inhibitory interneurons and superficial pyramidal cells. The laminar specificity of these extrinsic connections is specified
quantitatively by the prior expectations of the connectivity parameters in the lower equalities. In addition to specifying the extrinsic connectivity architecture, it is necessary to specify
where experimental inputs drive or modulate neuronal responses. Here, visual input, visual motion and attention drive responses in the early visual cortex, motion sensitive cortex and
frontal eye fields respectively. Crucially, attention exerts a modulatory effect on the self-inhibition of superficial and deep pyramidal cells in the hierarchically intermediate area (V5). Our
key question was whether the attentional modulation of superficial, deep or both pyramidal populations is necessary to explain the observed data. Please see the tables for a description
of the variables in this figure.
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On a general note, the B matrices usually contain the parameters of
greatest interest in DCM. This is because they mediate (experimentally
induced) context sensitive changes in coupling. In other words, they
model the dynamic effective connectivity, which characterises func-
tional integration in the brain (Jirsa et al., 2010; Senden et al., 2014).
Clearly, the parameterisation in DCM is relatively simple. This is
because experimental inputs can change the strength of extrinsic or
intrinsic connections (i.e., change the excitability of neuronal popula-
tions in receipt of specific afferents). In reality, these effects would
themselves be mediated by other brain systems that, in principle, could
be included in the model. This is the ambition of nonlinear general-
isations of vanilla (bilinear) DCM for fMRI. See Stephan et al. (2008)
for a fuller discussion.

An empirical illustration: attentional modulation of intrinsic
connectivity

In this section, we use the exemplar DCM in Fig. 2 to analyse
empirical data from a single subject. These data were acquired over 20
years ago – and have been used for demonstrations and training
purposes since that time (Buchel and Friston, 1997). Therefore, the
analyses presented below are for didactic purposes to show how
questions can be framed and answered. In what follows, we briefly
describe the data and the results of dynamic causal modelling.

Data and whole brain analysis

Timeseries data were acquired from a normal subject at 2 T using a
Magnetom VISION (Siemens, Erlangen) whole body MRI system.
Contiguous multi-slice images were acquired with a gradient echo-
planar sequence (TE=40 ms; TR=3.22 seconds; matrix size=64x64×32,
voxel size 3x3×3 mm). Four consecutive hundred-scan sessions were
acquired, comprising a sequence of 10-scan blocks under five condi-
tions. The first was a dummy condition to allow for magnetic saturation
effects. In the second, Fixation, the subject viewed a fixation point at
the centre of the screen. In an Attention condition, the subject viewed
250 dots moving radially from the centre at 4.7° per second and was
asked to detect changes in radial velocity. In No attention, the subject
was asked simply to view the moving dots. In last condition, the subject
viewed stationary dots. The order of the conditions alternated between
Fixation and photic stimulation. In all conditions the subject fixated
the centre of the screen. No overt response was required in any
condition and there were no actual speed changes.

The three potential causes of neuronal activity were encoded as
box-car functions corresponding to the presence of a visual stimulus,
motion in the visual field and attention. A standard whole brain SPM
analysis then identified several regions showing a significant effect of
visual input, motion and attention (see the inset in Fig. 2). From these,
we selected a region showing an effect of visual stimulation (early visual
cortex, labelled V1); a region showing the effect of visual motion (V5)
and a region showing an effect of attention (FEF). Regional activity was
summarised with the principle eigenvariate of all significant (p < 0.001
uncorrected) voxels within 8 mm of the most significant voxel within
each region. These timeseries were subject to dynamic causal modelling
in the usual way but using the canonical microcircuit model of the
previous section.

The priors on the parameters of the neural mass model are
provided in Table 1. Some of these parameters have zero prior
variance; in other words, in contrast to DCM for electromagnetic data,
we fix some parameters to their prior mean, because they cannot be
estimated efficiently in the context of MRI. Clearly, if one had also
performed the experiment using EEG, these priors could be replaced by
the posterior means and covariances following a standard DCM
analysis of evoked or induced electromagnetic responses. This corre-
sponds to the Bayesian fusion or belief updating mentioned in the
introduction.

In these sorts of DCM, most of the unknown variables are scale
parameters. In other words, they never take negative values (for
example, connection strengths and synaptic rate constants). This
means the free parameters of a DCM are generally log-scaling para-
meters, where a value of zero means a scaling of exp(0)=100%. The
variance of a Gaussian shrinkage prior therefore determines to what
extent the scaling of a particular value can deviate from its prior log-
scaling of zero. The prior variances in Table 1 ensure that free
parameters are restricted in their scaling to within an order of
magnitude or less.

Dynamic causal modelling

Fig. 3 shows the results of inference about the effects of attention.
The left panel shows the posterior density over the two modulatory
effects on superficial and deep pyramidal cells in motion sensitive area
V5. The posterior expectations are shown as grey bars, while the 90%
posterior confidence intervals are shown in pink. One can see
immediately that both (log-scaling) effects are substantially greater
and smaller than their prior mean of zero. The intuition that both

Fig. 3. This figure shows the results of inference about attentional modulation. The left panel shows the posterior density over the two modulatory effects on superficial and deep
pyramidal cells in motion sensitive area V5. The posterior mean is the grey bar, while the 90% posterior confidence intervals are shown in pink. One can see that both (log scaling) effects
are substantially greater and smaller than the prior mean of zero (i.e. a scaling of 100%). The intuition that both parameters are necessary to explain the observed responses is confirmed
through Bayesian model comparison. The right panel shows the results of Bayesian model reduction of the full model, when eliminating either the modulation of the superficial
pyramidal cells, deep pyramidal cells or both. With these data, we can be almost 100% confident that both effects are evident in these data.
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parameters are necessary to explain the observed responses is con-
firmed through Bayesian model comparison: the right panel shows the
results of Bayesian model reduction of the full model when eliminating
either the modulation of superficial pyramidal cells, deep pyramidal
cells or both. With these data, we can be almost 100% confident that
both effects are evident.

Neurobiologically, this is interesting because there are neuromo-
dulatory synaptic processes that implicate both superficial and deep
pyramidal cells. For example, cholinergic modulation of inhibitory
interneurons is usually associated with the modulation of superficial
(and deep) pyramidal cells through their interactions with inhibitory
interneurons (Everitt and Robbins, 1997; Kopell et al., 2011; Lee et al.,
2013; Vossel et al., 2014; Hedrick and Waters, 2015). Conversely, the
laminar specific deployment of nicotinic (cholinergic) receptors and
5HT receptors generally implicate deep pyramidal cells (Hedrick and
Waters, 2015; Nocjar et al., 2015). See Auksztulewicz and Friston
(2015), Vossel et al. (2015) for a further discussion of the importance
of laminar specific attentional modulation in the context of predictive
coding and precision control. These studies used the canonical micro-
circuit neural mass model above to analyse EEG and MEG data. Having
briefly illustrated the sort of application we envisage people might want
to pursue, we now turn to the haemodynamic parameters that can only
be estimated using fMRI.

Bayesian model comparison and neurovascular coupling

Fig. 4 characterises neurovascular coupling in terms of the para-
meters that couple presynaptic activity to the neurovascular signal in
each region. The inset (on the right) summarises the results of Bayesian
model averaging over all reduced models; which considered all

combinations of the 12 neurovascular coupling parameters. The
Bayesian model averages suggest intrinsic inhibitory collaterals (to
excitatory populations) were the most potent in eliciting a neurovas-
cular signal. In more detail, the parameter estimates of the full model –
with all 12 parameters – are shown on the upper left using the format
of Fig. 3. The 12 neurovascular coupling parameters correspond to
intrinsic inhibitory collaterals (dark green) intrinsic excitatory collat-
erals (green) and extrinsic excitatory collaterals (light green) to each of
the four populations. Interestingly, each set of inputs appears to
provide complementary information, because the conditional or pos-
terior correlations among the parameters are mild (see lower left
panel). The Bayesian parameter averages (Hoeting et al., 1999) –

following Bayesian model reduction over all combinations of the 12
parameters – are shown on the upper right. This procedure shrinks
redundant parameters to their prior expectation (of zero) (Friston
et al., 2016).

The lower right panel shows the posterior probability over all models
with and without each of the 12 parameters. These Bayesian parameter
averages suggest that, in this instance, intrinsic inhibitory collaterals are
the most important determinant of haemodynamic responses.
Interestingly, these parameter estimates are both positive and negative.
This suggests that (self-inhibiting) collaterals from the excitatory popula-
tions may target astrocytes to both increase and decrease local blood
flow. Irrespective of the precise arrangements of axonal collaterals (or
heterosynaptic facilitation), this sort of result highlights the key role of
inhibitory interneurons not only in mediating synchronisation and
excitability (Kopell et al., 2011) – but also in orchestrating neurovascular
responses (Kann et al., 2014; Anenberg et al., 2015).

Having said this, it is important to remember that this result should
not be generalised. If one was really interested in the form of

Fig. 4. This figure shows the characterisation of neurovascular coupling in terms of the parameters that couple afferent presynaptic activity to the neurovascular signal in each region.
The inset (on the right) shows that inhibitory presynaptic collaterals from the excitatory neuronal populations are the most important. Estimates of the neurovascular coupling
parameter are shown on the upper left using the same format as the previous figure. These 12 parameters correspond to intrinsic inhibitory collaterals (shown on dark green) intrinsic
excitatory collaterals (shown on green) and extrinsic excitatory collaterals (shown on light green) to each of the four populations. These collaterals provide distinct inputs because the
posterior correlations among the associated parameter estimates are not intense (see lower left panel). The Bayesian parameter averages – following Bayesian model reduction over all
combinations of the 12 neurovascular coupling parameters – are shown on the upper right. This procedure shrinks redundant parameters to their prior expectation (of zero). The lower
right panel shows the posterior probability over all models with and without each of the 12 parameters. These Bayesian parameter averages suggest that, in this instance, intrinsic
inhibitory activity is the most important determinant of haemodynamic responses.
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neurovascular coupling, one would use a much more informed model
of laminar specific neuronal responses based upon extensive DCM
studies using EEG. For example, one could use a DCM for cross
spectral responses (Moran et al., 2008; Friston et al., 2012) in each of
the conditions studied with fMRI to provide informative (empirical)
priors for the canonical microcircuit. This Bayesian fusion or updating
should then provide much more efficient estimates of the haemody-
namic parameters – and a more definitive Bayesian model comparison.
We anticipate that this sort of analysis will be used to refine the model
of neurovascular coupling – that could then be used in routine
applications of canonical microcircuit DCMs.

The electrophysiological correlates of haemodynamic
responses

In this section, we use the parameter estimates of the neuronal
model to generate local field potential responses, to characterise the
electrophysiological correlates of the observed BOLD responses. Fig. 5
provides a schematic that illustrates the generation of multimodal
predictions from the same dynamic causal model. The previous
sections focused on the generation of BOLD responses that are
mediated by (hidden) neuronal states. However, these states can also
be used to generate predictions of local field potentials or event related
responses; here, characterised as a linear mixture of superficial and
deep pyramidal cell depolarisation (here, superficial pyramidal cells
and deep pyramidal cells contributed in equal amounts).

The resulting first-order kernel – mapping from experimental input
to predicted electrophysiological responses – is what one would expect
to see in response to a very brief stimulus. Under local linearity
assumptions, one can use these kernels to predict induced responses
that are generated by random fluctuations about the mean evoked
response (modelled by the first-order kernel). This means that, given
the spectral density of neuronal fluctuations, one can generate induced

responses. These are illustrated on the right, in terms of autospectra
(with and without observation noise in solid and dashed lines respec-
tively) and the associated autocovariance function (i.e., the Fourier
transform of the autospectra). The equations in Fig. 5 show the relation-
ships between the first-order kernels, cross spectral density and covar-
iance functions used to generate these sorts of predictions. In short, these
relationships enable one to generate evoked and induced (spectral)
electrophysiological responses starting with the neuronal parameters of
a canonical microcircuit; even when the parameters have been optimised
using fMRI. Please see Table 4 for a glossary of expressions used in this
figure and (Moran et al., 2008; Friston et al., 2012, 2014a) for a fuller
description of the underlying linear systems theory.

The generation of predicted spectral or induced responses inherits the
procedures used in DCM for cross spectral density (Friston et al., 2012).
In brief, the endogenous neuronal fluctuations are assumed to have a
scale-free form that is parameterised by (log) exponents. These assump-
tions allow us to simulate induced responses during different experi-
mental conditions or blocks in the fMRI experiment. In other words, not
only can we reproduce the fMRI signal used to estimate these parameters
but one can also generate the electrophysiological signals that would have
been seen if these parameters were correct. Fig. 6 shows the predicted
and observed BOLD responses in each of the regions (upper panel)
accompanied by simulated (but unobserved) local field potentials (middle
panel). In addition, time frequency induced responses are shown for the
motion sensitive region (V5) over the entire session. The agreement
between the predicted (solid lines) and observed (dotted lines) fMRI
responses is self-evident. The blue lines correspond to the early visual
response that, although vigorous, shows little attentional modulation
(with a slight deactivation during static visual stimulation). Conversely,
the motion sensitive area (green) shows a profound motion sensitive
response that is modulated by attention by about 10%. The frontal eye
field responses show a marked attentional modulation but little in the
way of visual selective responses.

Fig. 5. This schematic illustrates the potential for generating multimodal predictions from the same (neuronal) dynamic causal model. The previous figures focused on the generation of
BOLD responses that are mediated by (hidden) neuronal states. However, these states can also be used to generate predictions of the local field potentials or event related responses;
here, characterised through a linear mapping with a standard electromagnetic lead field. The first-order kernel mapping from experimental input to predicted electrophysiological
responses (at the top of the figure) is what would be seen in response to a very brief stimulus. Under local linearity assumptions, one can use these kernels to predict induced responses
that are generated by random fluctuations about the mean neuronal activity. This means that, given the spectral density of neuronal fluctuations, one can generate induced responses.
These are illustrated on the right of the figure in terms of the autospectra (with and without observation noise in solid and dashed lines respectively) and the associated autocovariance
function (i.e., the Fourier transform of the autospectra). The equations in this figure show the relationships between the first-order kernels, cross spectral density and covariance
functions used to generate these sorts of predictions. Please see Table 4 for a full description of the expressions.
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The electrophysiological responses show a similar profile; illustrating
large offset and onset responses and then maintenance at their fixed
point for each condition-specific profile of experimental input. The
attentional modulation of the superficial and deep pyramidal cells in
the motion sensitive area changes the connectivity and subsequent
predictions of induced responses. These are consistent with alpha (at
10 Hz) desynchronization during attention that is accompanied by a
marked increase in gamma activity (at 48 Hz) (Fries, 2005; Bauer et al.,
2006; Lee et al., 2013; Bauer et al., 2014; Buschman and Kastner, 2015).

The genesis of these induced responses is addressed in more detail
in Fig. 7. This figure shows the effect of modulating the self-inhibition
of each of the four subpopulations (in the absence of afferent or
exogenous input). Each row shows the autospectra from the four
populations (spiny stellate, superficial pyramidal, inhibitory interneur-
ons and deep pyramidal cells respectively) over a log scaling from −2 to
+2. In other words, from 0.13 to 7.38 times the prior mean. The left
panels show the resulting autospectra, while the right panels show the
same data in image format. These results show that increasing the self-
inhibition of spiny stellate cells rapidly suppresses alpha activity and
increases the frequency of gamma activity until a (transcritical)
bifurcation at a peak gamma activity of about 80 Hz. This phase
transition is seen even earlier as the self-inhibition of superficial
pyramidal cells increases, with a peak gamma of about 42 Hz. The
effects of increasing self-inhibition of inhibitory interneurons and deep
pyramidal cells are to suppress alpha activity and convert it into fast
activity: c.f., (Lee et al., 2013; Kann et al., 2014). With these
characteristics in mind, one can now see why increasing the gain
(self-inhibition) of superficial pyramidal cells – in conjunction with a
decrease in self-inhibition of deep pyramidal cells – attenuates alpha
activity, while increasing the amplitude and frequency of gamma
activity. Although a simplistic interpretation of increasing self-inhibi-
tion (e.g., of superficial pyramidal cells) could be construed as reducing
its excitability, the emergent responses in the setting of interactions
with inhibitory interneurons and other populations within the canoni-
cal microcircuit produce a desynchronization that is more reminiscent
of an activation (Pfurtscheller et al., 1996; Lee et al., 2013).

Discussion

This paper has described a denouement of dynamic causal model-
ling for fMRI timeseries; in the sense that it combines neurophysiolo-
gically plausible models of neuronal processing and established hae-
modynamic models of fMRI signals. To briefly rehearse the advantages
of this modelling, we note that the sorts of questions addressed by
DCM for electromagnetic neurophysiology can now, in principle, be
addressed to fMRI data.

Perhaps the most important advantage has yet to be exploited;
namely, the opportunity to use EEG or MEG data in conjunction with
fMRI data to doubly inform parameter estimation and model selection at
the level of neuronal architectures. A straightforward strategy suggests
itself along the following lines: one first identifies the key regions engaged
by an experimental paradigm using standard whole brain (SPM) analysis
of fMRI data. Significantly activated regions can then be modelled as a
neuronal network to explain evoked or induced electromagnetic re-
sponses (or both), using the location of activated regions as prior
locations in DCM for ERP or cross spectral density responses. This
modelling then provides precise or informative posterior densities over
neuronal (effective connectivity and synaptic) parameters, which are
passed as priors to a subsequent DCM of the fMRI data. The fMRI data
supply informative constraints on the haemodynamic parameters; there-
by providing a comprehensive characterisation of how non-invasive brain
signals are generated. Note that this Bayesian data fusion does not rely
upon concurrent EEG and fMRI. This enables the optimisation of both
protocols that are linked through a common experimental manipulation.
We hope to illustrate this approach elsewhere, using another (training)
dataset based upon the viewing of familiar faces (Wakeman and Henson,
2015); for which we have EEG, MEG and fMRI data. In what follows, we
consider some practical and strategic issues.

Practical issues

Readers familiar with extant DCM for fMRI procedures will note
that there are now four adjacency or A matrices, as opposed to a single
A matrix in standard DCM. This follows from the fact that there is a
distinction between forward and backward connections – and that
within forward and backward connections there are two collateral
streams. In practice, the user specifies allowable connections in two
adjacency matrices, specifying whether a forward and backward
connection exists. These prior specifications are then applied to both
sorts of forward and backward connections respectively. Note that it is
possible to have both forward and backward connections between a
target and source region. These are often used to model lateral
connections that have a less specific (usually bilaminar) laminar
specificity (Markov et al., 2013). Similarly, one has to specify pairs of
B matrices for each experimental effect. Crucially, enabling condition
specific effects in the diagonal elements of these (forward and back-
ward) matrices is interpreted as allowing the modulation of the self
inhibition of (superficial and deep) pyramidal cells respectively. Other
effects are easy to implement by simply changing the equations of
motion (in spm_gen_fmri.m).

For readers who require a more technical (annotated) description of
the procedures, a demo routine (DEMO_dcm_fmri_nnm.m) is

Table 4
Glossary of variables and expressions.

Variable Description

um The m-th of M experimental inputs as a function of time

vi
j( ) The i-th (neuronal) state in region j; e.g., mean depolarisation of a neuronal population

σ v( )i
j( ) The neuronal firing rate – a sigmoid squashing function of depolarisation

q p r, ,i
j

i
j

i
j( ) ( ) ( ) (intrinsic, extrinsic and combined) presynaptic input to the i-th population of region j; eliciting postsynaptic and neurovascular responses; e.g., by

depolarising astrocytes
s Neurovascular signal; e.g., intracellular astrocyte calcium levels
h h h h, , ,1 2 3 4 Haemodynamic states: h1 - vasodilatory signal (e.g., NO), h2 - blood flow, h3 - blood h4 - volume deoxyhaemoglobin content
Li Lead field vector mapping from (neuronal) states to measured (electrophysiological) responses
g ω g ω g ω( ), ( ), ( )v o y Spectral density of (neuronal) state fluctuations, observation error and ensuing measurement, respectively

f∂x System Jacobian or derivative of system flow with respect to (neuronal) states

k t FT K ω( ) = [ ( )] First order kernel mapping from inputs to responses; c.f., an impulse response function of time. This is the Fourier transform the transfer function
K ω FT k t( ) = [ ( )] Transfer function of frequency modulating the power of endogenous neuronal fluctuations to produce a (cross spectral density) response. This is the Fourier

transform of the kernel
λ Eigenvalues of the transfer function
μ μ, − Eigenvectors of transfer function and their generalised inverse
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available in the current version of the SPM software that reproduces
the graphics in this paper. This routine shows how the core inversion
routine (spm_dcm_fmri_nmm.m) is called and how to specify the
requisite input arguments. In terms of numerics, the inversion of a
typical timeseries takes about 16 s per iteration on a standard personal
computer, where 32 iterations are usually required for convergence.
One might ask how one can solve or integrate the neuronal equations of
motion so quickly, over the long periods of time typically associated
with an fMRI session. The computational efficiency follows from the
fact that the neural mass model has a fixed point that is reached within
a second or so, following any change in experimental or exogenous

input. This means that the neuronal equations of motion only have to
be solved for a brief period of time, following any change in experi-
mental condition. Crucially, these changes are relatively infrequent in
standard fMRI paradigms, from the point of view of neuronal dynamics
that unfold over time scale of several hundred milliseconds. In block
designs (of the sort used in this paper), one is effectively using an
adiabatic approximation to neurodynamics. In other words, for the
majority of the time, neuronal activity has attained steady-state,
because neuronal dynamics are very fast (on a scale of milliseconds)
in relation to changes in input (every few seconds). As an alternative,
fast GPU based integration of the differential equations could be

Fig. 6. This figure shows the predicted and observed BOLD responses in each of the regions (upper panel) accompanied by simulated (but unobserved) local field potentials (middle
panel). In addition, the time frequency induced responses are shown for the motion sensitive region (V5), over the entire session. The agreement between the predicted (solid lines) and
observed (dotted lines) fMRI responses is self-evident. The blue lines correspond to the early visual response (V1) which shows little attentional modulation. Conversely, the motion
sensitive area (V5, green lines) shows a profound motion sensitive response that is modulated by attention by about 10%. The frontal eye field responses (red lines) show a marked
attentional modulation but little in the way of visual selective responses. The electrophysiological responses show a similar profile; illustrating large offset and onset responses and then
maintenance at the fixed point for each level of experimental input. The attentional modulation of the superficial and deep pyramidal cells in the motion sensitive area changes the
connectivity and subsequent predictions of induced responses. These are entirely consistent with alpha (at 10 Hz) desynchronization during attention that is accompanied by an increase
in gamma activity (at 48 Hz). The genesis of these induced responses is addressed in more detail in the next figure. The light green bars indicate periods of attention to visual motion.
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adopted for paradigms with very frequent input changes (Aponte et al.,
2016). Note that the transients in the middle panel of Fig. 6 are short-
lived, in relation to the periods of steady-state activity attained during
each block. This means the neuronal transients contribute relatively
little to sustained BOLD responses.

Practically, this means a canonical microcircuit DCM for fMRI can
be applied to relatively small graphs (with eight nodes or less) in a
reasonable amount of time. However, the current inversion scheme
may take many hours with larger graphs – and may call for additional
constraints that finesse the computational load; e.g., Seghier and
Friston (2013) or an equivalent canonical microcircuit formulation
for cross spectral data features; e.g., Razi et al. (2015). The practical
issue here is the computation of (variational free energy) gradients with
respect to parameters that increases the quadratically with a number of
nodes. Theoretically, there is no upper bound on the number of
parameters that can be estimated; indeed, increasing the number of
parameters usually eludes local minima problems. Furthermore,

redundant parameters can be removed easily, using Bayesian model
reduction (Friston et al., 2016). Having said this, the computational
burden of inverting a full model remains an issue for large DCMs.

Strategic issues

Perhaps the most interesting insight (at least for the authors) offered
by the modelling in this paper pertains to the electrophysiological
correlates of BOLD activity (and vice versa). We had always imagined
that there was some systematic (unique or diffeomorphic) mapping
between induced electrophysiological responses and concurrent fMRI
signals (Kilner et al., 2005). In other words, we had always assumed that
there was some generalised convolution of induced (time frequency)
electrophysiological signals that would predict BOLD activity (Logothetis
et al., 2001; Laufs et al., 2003). The argument here goes as follows. If
neuronal activity causes both induced responses and BOLD responses;
then a deconvolution of induced (or BOLD) responses should reproduce

Fig. 7. This figure shows the effect of modulating the self-inhibition of each of the four subpopulations (in the absence of afferent or experimental input). Each row shows the
autospectra from each of the four populations (spiny stellate, superficial pyramidal, inhibitory interneurons and deep pyramidal cells respectively) over a log scaling from −2 to +2. The
left panels show the resulting autospectra from 0 to 96 Hz, while the right panels show the same data in image format. These suggest that increasing the self-inhibition of spiny stellate
cells rapidly suppresses alpha activity and increases the frequency of gamma activity until a bifurcation at a peak gamma activity of about 80 Hz. This phase transition is seen even earlier
as the self-inhibition of superficial pyramidal cells increases, with a peak gamma of about 42 Hz. The effects of increasing self-inhibition of inhibitory interneurons and deep pyramidal
cells are to suppress alpha activity and convert it into fast activity. See main text for further discussion.
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the underlying neuronal activity, which can then be convolved to generate
BOLD (or induced) activity. Therefore, the composition of a deconvolu-
tion and convolution should, in principle, map between induced and
BOLD responses (Kilner et al., 2005). However, this argument overlooks
the fact that the requisite deconvolutions are ill-posed, which means a
direct mapping between induced and BOLD responses does not necessa-

rily exist. For example, there may be many different patterns of neuronal
activity that produce the same spectral responses.

This insight is laid bare by the results described in the previous
section: these show that there is no one-to-one (diffeomorphic)
mapping between induced and BOLD responses. To make this clear,
Fig. 8 highlights the complicated relationship between fluctuations in

Fig. 8. This figure highlights the (degenerate) relationship between fluctuations in spectral power and haemodynamic responses. The three rows of this figure report the responses of the
three regions; namely, the early visual region, a motion sensitive region and the frontal eye fields. The left panels show the first principal component or eigenvariate of fluctuations in the
power of induced responses (based upon the posterior estimates of attentional modulation in Fig. 3). The right panels plot observed haemodynamic responses against the expression of
these frequency modes. The dotted lines connect consecutive time points. In the early visual cortex, there is a profound alpha suppression that is accompanied by an increase in gamma
in V5. This desynchronization is limited to gamma activity in the FEF.
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spectral power and haemodynamic responses. The three rows of this
figure report the responses of the three regions modelled above. The
left panel shows the pattern of frequency specific fluctuations – in
responses induced by attention – in terms of the first principal
component (i.e., eigenmode) of induced responses (of the sort shown
in the lower panel of Fig. 6). The right panels plot observed haemo-
dynamic responses against the expression (i.e., eigenvariate) of these
frequency modes. Because the spectral responses depend (under the
linearity assumptions of this DCM) on, and only on connectivity – and
connectivity depends only upon the presence of attention, the induced
responses have just two levels; with and without attention to motion. In
the early visual cortex, there is a profound alpha suppression that is
accompanied by an increase in gamma in V5. This desynchronization is
limited to gamma activity in the FEF. The haemodynamic correlates
(right panels in Fig. 8) are roughly consistent with the heuristic that
higher bold activity is associated with the expression of higher
electrophysiological responses (Kilner et al., 2005); however, these
results also illustrate the fact that the BOLD activity (and underlying
neuronal steady-state activity) can change markedly, without any
necessary changes in spectral activity. This means that there is no
necessary one-to-one relationship between spectral activity and hae-
modynamic responses. Clearly, more sophisticated neural mass models
– with activity-dependent changes in connectivity – would finesse this
problem; however, the current modelling provides a proof of principle
that there is no necessary (one-to-one) relationship between the
electrophysiological and haemodynamic correlates of neuronal dy-
namics.

A strong (radical) conclusion is that the search for the spectral
(electrophysiological) correlates of haemodynamic responses is
doomed to failure because electrophysiological responses do not cause
haemodynamic responses and haemodynamic responses do not cause
induced responses – both are caused by underlying neuronal activity.
Perhaps, this should not be too surprising given the cautionary
conclusion of studying endogenous brain activity as detected by surface
EEG-combined fMRI: namely, "that one EEG feature can correlate with
different fMRI activation maps and that a single resting state network
may be associated with a variety of EEG patterns" (Laufs, 2008). All of
this suggests that instead of trying to understand the relationship
between EEG and BOLD measurements it is more tenable to treat both
as the observable consequences of hidden neuronal activity – and try to
understand how neuronal activity causes these (multimodal) measure-
ments. This of course is the premise of the current DCM. The fact that
we have a generative model of the causal relationships means we can
finesse the ill-posed deconvolution above by calling on (prior) knowl-
edge or constraints. In effect, Bayesian model inversion of a convolu-
tion model is, by definition, a (Bayesian) deconvolution.

In summary, even in the absence of a one-to-one relationship
between EEG and BOLD measurements, both modalities can still
inform each other, if they provide complementary constraints on
model parameters. An important example here is the ability of EEG
to constrain posterior estimates of canonical microcircuitry, which
increases the efficiency of estimating parameters that mediate neuro-
vascular coupling using fMRI. This increase in efficiency rests upon
resolving conditional dependencies among different sets of parameters,
thereby exploiting the complementary nature of both modalities.
Conversely, fMRI can provide very precise constraints on parameters
that are difficult to estimate in EEG and MEG. Perhaps the most
obvious are the locations of functionally specialised regions or nodes
that constitute the DCM. These are specified implicitly by selecting
volumes of interest in DCM for fMRI; however, source locations have to
be estimated in EEG – and source reconstruction is a notoriously
difficult aspect of the forward problem implicit in DCM for EEG. The
term Bayesian fusion has been introduced to emphasise the implicit
handshake between different modalities – that can only be realised
with a common forward model that can generate the modalities in
question.

The ability to estimate microcircuitry and neurovascular para-
meters efficiently – and implicitly adjudicate among alternative models
or hypotheses with greater precision – shifts the emphasis on the sorts
of questions that one might ask. As with much of dynamic causal
modelling, this shift is away from simply localising functionally
differentiated responses and towards an understanding of functional
integration – and how it is mediated at the synaptic level. The
particular motivation for the current DCM was to answer questions
about pharmacological effects that may be expressed on superficial
versus deep pyramidal cells. However, one can imagine a host of
interesting questions that pertain to laminar specific cortical architec-
tures. And, more generally, the use of the fMRI to address the locus of
experimental (e.g., pharmacological, attentional, pathophysiological,
etc.) effects on extrinsic (long-range) changes in connectivity relative to
intrinsic (short-range) coupling – and whether these are mediated
primarily by inhibitory or excitatory synaptic interactions.

Limitations

The usual limitations apply to this form of dynamic causal model-
ling. The most important thing to remember is that all models are
wrong and there is no true model. In other words, the quality of a
model – as assessed by Bayesian model comparison or reduction –
depends upon the data at hand (Penny, 2012). This means there is no
true model because the best model will simplify itself to match the
amount of information in the data (by reducing the contribution of
complexity to model evidence). The only thing that one can infer is that
one model is better than another. In this sense, simply having a
framework that enables model comparison at the level questions or
hypotheses are posed is both sufficient and complete. To emphasise
this point, any question or criticism that one can imagine – about the
parameterisation of the model described in this paper – can be turned
into a hypothesis and tested, using the procedures described above. For
example, if one wanted to know the impact of making implausible
assumptions about intrinsic connectivity, one can score the effect of
different assumptions in terms of their relative model evidence. This
allows one to identify the parameters and architectures that ‘make a
difference’, in terms of inferences based upon the data to hand. See
Troebinger et al. (2014) for an example of this application of Bayesian
model comparison, in the context of laminar architectures and the
source reconstruction problem in MEG. These arguments apply to the
neuronal model, the haemodynamic model and the model of neuro-
vascular coupling that links the two. We hope that this process of
refining and improving models will be facilitated by the modelling
framework described above.
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