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A B S T R A C T

We respond to a critique of our temporal Independent Components Analysis (ICA) method for separating global noise from global signal in fMRI data that focuses on
the signal versus noise classification of several components. While we agree with several of Power's comments, we provide evidence and analysis to rebut his major
criticisms and to reassure readers that temporal ICA remains a powerful and promising denoising approach.
1. Introduction

We thank Power (2019) for his perspective on our recent paper about
using temporal Independent Components Analysis (ICA) to separate
global, largely respiratory, artifact from fMRI data (Glasser et al., 2018).
We start with points of agreement with Power: (1) We agree that global
noise is an important problem for fMRI data. For resting-state fMRI, this
issue has been widely discussed, including by Power (Power et al., 2017,
2018; Burgess et al., 2016), and we also highlighted its effects on task
fMRI data (Glasser et al., 2018). (2) We also agree that temporal ICA
(tICA) is a promising approach for removing global noise from fMRI data
and provides a quantitative platform upon which differing hypotheses
about the nature of global respiratory signals can be explicitly tested (i.e.,
depending upon how the temporal ICA components are classified). (3)
We agree that the optimal component classification might eventually be
revised from the one originally presented in the paper after further study
of these phenomena. We hope that this dialogue leads to a deeper,
neurobiologically-principled experimental and theoretical basis for fMRI
data denoising. However, we disagree with a number of Power's com-
ments and found the critique insufficiently clear and lacking balance in
several critical respects. We aim to clarify these here, before considering
what we believe to be the heart of the debate.
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1.1. Preliminary points

Power frames his critique in a way that does not explicitly state that
his core concerns are about our chosen classification of several com-
ponents as ‘signal’ instead of ‘noise’. While Power does discuss the
signal versus noise classification of some tICA components without
specifically naming them, a reader might reasonably infer from the
commentary and its title that Power doubts whether the entire tICA
framework can separate global noise from global signal, regardless of
the classification chosen, and that he might believe that global signal
regression (GSR), an approach that he has previously advocated (Power
et al., 2014; Burgess et al., 2016), would outperform tICA. Thus, we first
briefly address any uncertainty over these issues and provide more
detail in Section 1 of the Supplement to this Reply, where we show the
following: i) The features of the task greyplot that Power highlighted (in
his Fig. 1) actually represent the blocked task design's neural effect on
task positive regions of the cerebral cortex, illustrating the pitfall of
assuming that all structure within greyplots that may be temporally
coincident with respiratory noise is artifactual. These findings (also
illustrated below in Fig. 1) make clear that Power's later arguments
based on the expected timecourses of event-related task fMRI neural
signal do not generalize to blocked task fMRI neural signal, nor likely to
resting-state fMRI. ii) There are numerous examples of greyplot bands
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Fig. 1. Temporal ICA cleaned greyplot from task subject 2 from Power (2019) compared with the task ‘on’ versus ‘off’ design convolved with the hemodynamic
response function. Power's regions of concern are highlighted with j_ _ _ _j (and also accompanied by a series of vertical tick marks). Task positive regions are located
below row ~1000 in the greyplot (see original Figure 13 bottom row blue regions).
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representing agreed upon global noise that are completely removed by
tICA cleanup, illustrating that the features highlighted by Power are
only sometimes temporally coincident with global noise. iii) tICA
cleanup is highly comparable to GSR in the greyplots of many epochs
that were highlighted in Power's response article. These post-GSR
greyplots were included in our original article but omitted from
Power's critique. iv) These debated features are removed when
sleep-associated components are also removed from the resting-state
fMRI data, showing that tICA can successfully separate the features in
question from the data by using a different classification.

Second, we disagree that widespread use of manually curated respi-
ratory traces is practical. While we agree that such data can be helpful in
aiding classification of components, manually curated traces are not
available for the HCP subjects or many other datasets in the community.
Moreover, curation of such data requires specialized expertise and would
be time consuming, particularly for those with less experience with res-
piratory trace analyses than Power. For these reasons, curation and
quality control of the HCP respiratory data has yet to be completed by the
HCP or anyone else, though we expect that the Connectome Coordination
Facility (CCF) would be willing to host such data if Power or anyone else
was able to generate it. That said, we believe that such an effort is un-
likely to change the main conclusions of our paper. Errors in peak
detection in respiratory traces are unlikely to increase correlation be-
tween physiological noise traces and the fMRI data, and we used those
traces that had the highest correlation with the fMRI data – a form of
automated quality control. We would of course welcome better auto-
mated approaches for review and cleanup of physiological noise traces,
as manual curation of such data is impractical for many fMRI studies,
particularly large ones. Overall, we believe the best way forward is
implementation of an automated classifier for tICA components that is
capable of working without explicit need to collect and manually curate
respiratory traces.

Third, Power states that we lack a “neural record” to anchor our de-
cisions on component classification. While we do not have an indepen-
dent record of neural activity, for half of the data presented in the
original article we have experimentally manipulated the fMRI signal with
a task, a widely accepted method to manipulate neural-activity-related
BOLD signals in humans. In Section 2 of this article's Supplement, Sup-
plementary Fig. 4 expands an analysis to all task contrasts that we carried
out for just one task contrast in the original article (its Supplementary
Fig. 25), showing that compared to global signal regression, tICA cleanup
avoids removing spatial patterns of fMRI signal change that mimic the
task activation map while (as we showed previously) removing biases
from stimulus-correlated respiration, and improving statistical sensitivity
to task effects (our original Fig. 6). Interestingly, we find analogous re-
sults for movement regressors versus spatial ICA þ FIX automated clas-
sification for the cleanup of motion artifacts (see Supplementary Figs. 5
and 6 of this article). Thus, we again emphasize the importance of using
task fMRI as a positive control for ‘benchmarking’ BOLD denoising ap-
proaches and note that prior studies have generally not incorporated this
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vital methodological practice, which enriches the signal/artifact classi-
fication decisions that we discuss below.

1.2. Classification of components

Although Power did not identify specific components in his critique,
we believe based on further direct communication that his main concern
relates to our classification of certain components as “neural signal” –
specifically, the semi-global sleep-related components RC1 and RC5, and
a set of somatotopically organized “DVARS Dips”-associated components
(listed below) that have clear sensori-motor spatial activations.

Component RC1 is the strongest resting-state component, but is not
present at all in the task data (unlike the respiratory noise components
that are present in both task (TC1 and TC30) and resting state (RC3, RC6,
and RC8)). Importantly, the spatial structure of RC1 has both semi-global
positive and area-specific negative features – something that is not
straightforwardly compatible with an effect of global blood flow modu-
lation (see below). It shows strong spatial similarity to patterns seen in
previous arousal studies (Horovitz et al., 2008; Tagliazucchi and Laufs,
2014), and its amplitude increases throughout a run as drows-
iness/sleepiness is likely increasing for many subjects. Interestingly, its
amplitude (per run in each subject) correlates with those of a large group
of other neural components (original Supplementary Fig. 27) – all of
which may be more active during drowsiness or sleep. This stands in
contrast to a second group of neural components that may be more active
during the awake state. Importantly, this component is not strongly
correlated with RVT (Respiration Volume per Time) or increased in
amplitude during DVARS Dips (a more precise measure of head motion,
see original Fig. 7 and original Supplementary Figs. 1–3). Based on this
information we classified RC1 as a sleep-related neural component.
Though investigators interested in awake resting state fMRI may justifi-
ably wish to avoid analyzing epochs of time when this component's
amplitude is high (i.e., subjects are likely drowsy or sleeping), regressing
it out will likely not adjust for all the other neural changes that accom-
pany drowsiness/sleep (as discussed in the original article). This com-
ponent's amplitude could be used as an index to identify subjects that
were likely to be sleeping so that those subjects could be excluded from
analyses that require awake subjects.

Component RC5 is a pan-sensori-motor component that behaves
similarly to RC1 in the resting-state, though it is weakly present in task
data (TC23) where it is somewhat stronger during DVARS Dips (original
Fig. 3). Its functional significance is currently unknown, though its lack of
correlation with RVT suggests that it is not a respiratory noise compo-
nent, and its respect for sensori-motor areal boundaries suggests that it is
likely neural in origin.

The most puzzling criticism of our classification relates to the soma-
totopically organized sensori-motor components RC27/TC16 (Face),
RC33/TC6 (Right Upper Extremity), RC39/TC29 (Eye and Trunk),
RC40/TC31 (Left Upper Extremity), and RC48/TC19 (Lower Extrem-
ities). Hypothetically, if an investigator were to remove these
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components from the data, very little somatotopic sensori-motor neural
signal would remain, which would, for example, eliminate the neural
signal of the HCP's motor task, as the spatial correlations between these
components and typical task fMRI GLM beta maps were very high
(original Supplementary Figs. 7–10). Indeed these components are highly
spatially similar in task vs. resting state, and during the task they show
highly specific blocked task driven activity (original Supplementary
Figures TC6, TC16, TC19, and TC31). They provide an excellent example
of the principle that being temporally correlated with a nuisance indi-
cator (in this case these components are stronger during DVARS Dips,
original Fig. 3) does not necessarily make components noise, especially if
there is a neurobiological reason for this correspondence. These com-
ponents are the neural signatures of moving the face, eyes/trunk, left
upper extremity, right upper extremity, and lower extremities. Further,
we were puzzled by certain remarks in Power's commentary that seemed
to imply that motion and respiration are strongly linked, when his pre-
vious work has robustly shown them to have differing mechanistic effects
on the fMRI signal (Power et al., 2018). While Power also shows case
examples supporting his position, we found that motion and respiration
are not necessarily closely linked and can be strongly dissociated – e.g.,
resting state subject 1 (see also below) and subject 2 have high respira-
tory and global signal but few DVARS Dips (13/1200 frames for subject 1
and 9/1200 frames for subject 2). Thus, we want to highlight that mo-
tion, respiratory physiology, and arousal all have different impacts on the
fMRI signal through different mechanisms and should be thought of and
treated as separate entities, rather than being all lumped together as
“motion-related” (even though they can at times have some correlation –
e.g., a deep breath may be accompanied by movement of the head; or
respiration depth may change as arousal changes).

1.3. Final thoughts

Even if one accepts Power's interpretation of the tICA-driven
component classification and greyplots, it is important to ask “what is
the magnitude of this effect”? Only one of the example subjects in Power's
commentary has physiological noise traces, but by chance that subject is
among those with the strongest relationship between RVT and the fMRI
data (resting-state subject 1). We find that with no cleanup at all, RVT
explains 31.3% of the global timecourse variance in this subject. This
drops to 19.7% after sICA þ FIX and 3.5% after tICA cleanup. Averaged
over the resting state and task runs with RVT traces that had the top 10%
correlation with fMRI data, the same values were 13.7%/16.6% without
cleanup, 7.8%/9.6% following sICA þ FIX, and 1.4%/2.2% following
tICA cleanup. As noted above and in this reply (Fig. 1), it is entirely
reasonable for respiration to have some correlation with neural activity
(indeedwe showed a relatively strong correlation of r¼ 0.56 between the
blocked task design and RVT in the original paper in Supplementary
Fig. 22). As we discussed in the original paper's Supplementary Discus-
sion, the null hypothesis of no correlation between respiration and neural
activity is both statistically unlikely and experimentally shown not to
occur in the task setting. Thus, we disagree that residual greyplot struc-
ture in some cortical areas that is sometimes temporally coincident with
removed global respiratory noise indicates incomplete cleanup. To reit-
erate, the observation that respiratory and neural signals are sometimes
temporally coincident (though having differing spatial patterns) does not
mean that they arise from the same mechanism – rather we would argue
that two distinct processes with some temporal overlap better explain
such findings (see this article's supplement and preliminary point 2
above).

Finally, Power argues that he expects the global respiratory signal to
have a non-uniform spatial pattern that “follows a sensorimotor distri-
bution,” based on prior literature. Though we are aware of the older
literature cited by Power (Birn et al., 2006, 2008; Wise et al., 2004), these
studies were analyzed using ‘legacy’ approaches in small samples that (1)
relied on volume-based smoothing and volumetric cross-subject align-
ment that will alter the locations of apparent boundaries in the data
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(Coalson et al., 2018), and (2) in some cases relied on statistical
thresholding that obscures below-threshold information and potentially
enhances apparent differences across brain regions (Glasser et al., 2016).
This lack of spatial precision leaves considerable fine scale ambiguity as
to the hypothesized spatial topography of the global respiratory signal
noted by Power. For example, it is not possible to tell whether the pat-
terns appearing in this literature show the abrupt change from positive to
negative when entering areas POS2 and RSC seen in the sleep-related
component RC1 but not in the respiratory-related components RC3,
RC6, RC8, or TC1 – components that at a coarse level will all look rela-
tively similar. Overall, precise, unthresholded spatial maps are critical to
resolving the current debate, as data analyzed using legacy techniques
may be unable to distinguish these global and semi-global components
either visually or quantitatively. Moreover, other legacy studies, after
physiological noise cleanup and/or GSR, attributed the
visual/auditory/sensori-motor pattern to arousal (noted above and in the
original paper; Horovitz et al., 2008 and Tagliazucchi and Laufs, 2014),
leaving the question of the precise spatial distribution of the global res-
piratory signal open, if one does not believe that we fully characterize it
with temporal ICA in a group of 449 precisely aligned, unsmoothed, and
unthresholded subjects. Regardless of this legacy literature and its
methodological barriers to interpretation, we invite Power to propose
and test a mechanistic explanation of how changes in overall blood pool
pCO2 from respiration would lead to modulation of the fMRI signal in
specific cortical areas or subregions that could produce the areal or
subregional boundary dependent distributions seen in the above debated
components, as opposed to the largely T2* dependent distributions seen
in the respiratory tICA components (e.g., TC1, RC6, and RC8), or a
vascular distribution seen in other noise components. We are not aware
of any convincing theoretical or experimental basis for overall blood pool
pCO2 causing area-specific BOLD fluctuations, particularly ones that are
anti-correlated with the main semi-global fluctuations (e.g., in POS2 and
RSC in sleep-related component RC1).

Critically, rigorous experimental testing of this hypotheses would
require using analysis approaches that avoid volumetrically blurring the
data, accurately align cortical and subcortical areas across subjects, and
do not obscure the spatial topography of the entire map with statistical
thresholding (Glasser et al., 2016; Coalson et al., 2018). At present, we
find that the available evidence best supports a neural origin of these
components (RC1, RC5/TC23, RC27/TC16, RC33/TC6, RC39/TC29,
RC40/TC31, and RC48/TC19) and thus the conservative approach is to
retain them unless and until a neurobiologically sound and
experimentally-grounded basis for their removal is presented. Again, we
welcome experimental tests that would help the field improve the tICA
approach. Such future studies will hopefully further clarify the mecha-
nistic interactions between neural signals, drowsiness/sleep, respiration,
and head motion on the fMRI signal. The tICA approach is well posi-
tioned as a platform for further investigation of these issues as new
experimental evidence is generated, which will be vital for refining
temporal ICA component classification. Collectively, we welcome feed-
back and see room for future studies and improvements, but emphasize
that the proposed sICA þ tICA framework removes many
well-established artifacts (e.g., from movement and respiration) while
minimizing the removal of neural signal. In doing so, we believe that this
framework provides the most selective, effective, and refinable denoising
approach currently available for fMRI data, and thus constitutes a major
improvement over GSR and related approaches. Future work will be
directed towards automation of the tICA approach to make it widely
accessible.
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Supplementary data to this article can be found online at https://doi.
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