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Learning from reinforcements involves multiple processes with 
distinct computational, neural and behavioural signatures. 
Consider a simple classical Pavlovian conditioning model, 

where a cue (or conditioned stimulus (CS)) becomes predictive of a 
reward (or unconditioned stimulus (US)) by being repeatedly pre-
sented before the US. In so-called model-free reinforcement learn-
ing, learning occurs via reward prediction errors (RPEs1), which 
quantify the difference between the value of the US that actually 
arrives and a current prediction of that value made on the basis of 
the CS. Integration of the experienced RPEs allows the predictions 
made by the CS, called a ‘cached value’, to become accurate. An 
alternative way of learning involves building a model that has two 
components: a ‘transition structure’, which captures the probability 
that one stimulus is followed by another, and a ‘reward structure’, 
which captures the value associated with each particular stimu-
lus. Learning the transition structure2,3 can occur by integration 
of a different sort of error: so-called state prediction error (SPE4), 
which quantifies the difference between the stimulus that actually 
occurs and the probability of this event that was estimated on the 
basis of the previous stimulus. This type of learning does not con-
flate transitions and rewards, and is hence more flexible when one 
of these changes. However, it is also computationally more costly to 
use models to make inferences because this requires the informa-
tion from the transition and reward structures to be integrated on 

the fly5. Model-free learning has been suggested to underlie habits, 
while model-based learning has been suggested to underlie goal-
directed decision-making5–8.

Individual differences in the balance of these learning processes 
determine how and what we learn from our experiences. In turn, 
these influence how we interpret and react to new experiences, 
and as such may influence the development of mental illness after 
adverse events or substance use9. In rodent Pavlovian conditioning 
experiments with a discrete CS presented at a different location from 
the US, two broad categories of participants can be differentiated:  
‘sign-tracking’ animals, who approach the appetitive CS during 
conditioning and only subsequently go to the location of the US, 
and ‘goal-tracking’ animals, who come to approach the location  
of the US rather than the CS when the CS is presented. Furthermore, 
sign-trackers, but not goal-trackers will work to obtain the CS  
after learning10.

The behavioural differences between sign- and goal-trackers 
have a number of revealing neural correlates. Sign-trackers learn 
from RPEs coded in the activity of dopamine neurons1 and evi-
dent in the phasic release of dopamine in the nucleus accumbens 
(NAc)11. These RPE signals initially respond to the rewarding USs, 
but across learning, shift their response from the US towards the 
predicting CS. Indeed, sign-trackers depend on the dopaminergic 
signal to learn, as systemic dopamine blockade disables learning10. 
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That sign-trackers will work to obtain the CS after learning sug-
gests that the dopaminergic RPE underlies a form of learning that 
attributes incentive salience to the CS to make it wanted and thus 
to turn it into a motivationally relevant stimulus2,10,12–15. This is in 
line with model-free Pavlovian learning, where predictive value is 
cached and conflates stimulus identity and reward, rendering the 
CS rewarding even though it itself lacks an affective consequence16. 
Such a value allows the CS to directly elicit Pavlovian approach or 
avoidance responses17. In contrast, for goal-trackers, phasic dopa-
minergic signals do not evolve with learning, as would be expected 
from an RPE learning signal, and learning is insensitive to dopa-
mine blockade. This hints at model-based rather than model-free 
learning2,18. Put together, these results suggest a double dissociation, 
with sign-trackers being predisposed to dopaminergic model-free 
learning and goal-trackers being predisposed to non-dopaminergic 
model-based learning.

While human sign- and goal-tracking have been investigated 
using eye-tracking19, their neural substrates have not yet been exam-
ined. Moreover, while detailed animal results show the neural sys-
tems underlying learning in sign-trackers, theoretical predictions 
about the computational and neural mechanisms4 underlying learn-
ing in goal-trackers have not been fully tested to date20.

We therefore administered a Pavlovian conditioning task dur-
ing functional magnetic resonance imaging (fMRI) to 129 healthy 
human participants. We hypothesized that the gaze direction during 
a specifically designed Pavlovian conditioning phase might parallel 
the behavioural responses seen in animals and allow us to separate 
humans into sign- and goal-trackers. We then examined the contri-
bution of model-free and model-based learning to gaze and pupil-
lary responses, Pavlovian–instrumental transfer (PIT) behaviours 
and blood-oxygen-level-dependent (BOLD) fMRI signals. We did 
not explicitly manipulate state learning in our present task. Instead, 
model-based learning accounts predict trial-related changes  
in uncertainty and SPEs, which we investigate here. We found 
convergent evidence for a double dissociation, with sign-track-
ers relying on model-free learning and goal-trackers relying on  
model-based learning.

Results
Participants performed a Pavlovian conditioning task, in which 
visual–auditory CSs were deterministically paired with monetary 
reinforcements (Fig. 1a). In each of 80 trials, one of five CSs, con-
sisting of fractal-like pictures and tones, was presented for 3 s on 
one side of the screen. This was followed by a blank screen with 
two fixation crosses. Then, one out of five possible USs, consisting 
of pictures of coins indicating a monetary win or loss (€−2, €−1, 
€0, €+1 or €+2), was presented on the other side of the screen. The 
conditioning task was the second part of a PIT task21 consisting of 
four parts (Supplementary Fig. 1). Eye-tracking and fMRI record-
ings were obtained during Pavlovian conditioning.

To identify individual differences between sign- and goal-track-
ers, we examined gaze responses to CS presentation19. Based on 
previous animal work10,22, we studied a gaze index defined as the 
percentage fixation time on the CS minus on the US location, and 
regressed this gaze index on the true CS value for each participant. 
Figure 1b shows the distribution of regression coefficients. As sign-
trackers approach appetitive CSs10,15 and avoid aversive CSs23, we 
defined sign-trackers as the upper tertile15 of participants with a 
positive influence of CS value on the gaze index (yellow in Fig. 1b; 
n = 43). Conversely, we defined goal-trackers as those participants 
whose gaze approached appetitive US locations10,15 and avoided 
aversive US locations (blue in Fig. 1b; n = 43). With respect to the 
timing of gaze responses, early responses to CS presentation often 
reflect orienting responses driven by visual salience22,24 that are 
insensitive to CS value or learning. We therefore identified sign- 
and goal-trackers by analysing the gaze index in the last second of 

CS presentation. Alternative analytical approaches to defining the 
groups result in similar patterns (see Supplementary Information).

To study signatures of sign-tracking, we examined how gaze was 
directed to the CS, the location of later US presentation or the back-
ground, and how gaze was biased by CS value10,19,22. To this end, we 
performed repeated-measures analysis of variance (ANOVA) with 
the factors location (CS, US and background), CS value (€−2 to 
€+2) and time from CS onset (1, 2 and 3 s). For post-hoc tests, we 
used two-tailed t-tests of linear contrasts testing a linear effect or 
a linear interaction effect (contrast of linear fits; stronger increase 
in one condition than another) against zero. Moreover, we stud-
ied linear effects of trial number (trials 1–80; coefficients from 
linear regression analyses) using repeated-measures ANOVA with 
the same factors. After initial orientating responses22,24 insensitive  
to CS value (no evidence for the interaction CS value × location: F(8, 
2,267) = 0.464; P = 0.882; η2p ¼ 0

I
; 90% confidence interval (CI) = 0 to 

0.0004), an influence of CS value on gaze emerged. During the third 
second of CS presentation, a high CS value attracted gaze towards 
the CS (linear CS value: t2,267 = 3.48; P < 0.001; b = 0.061; s.e. = 0.018; 
95% CI = 0.027 to 0.096; CS value × location × second 1–3 of CS pre-
sentation: F(11, 1,367) = 3.04; P < 0.001; η2p ¼ 0:004

I
; 90% CI = 0.001 

to 0.007) and away from the US location (t2,267 = −1.78; P = 0.075; 
b = −0.031; s.e. = 0.018; 95% CI = −0.066 to 0.003) and background 
(t2,267 = −1.70; P = 0.089; b = −0.030; s.e. = 0.018; 95% CI = −0.065 to 
0.005; CS value × location: F(8, 2,267) = 4.458; P < 0.001; η2p ¼ 0:005

I
;  

90% CI = 0.002 to 0.009; Supplementary Fig. 2; for exemplary tri-
als, see Supplementary Fig. 3). This appeared to reflect learning,  
as this CS value effect increased over trials for the CS location 
(t2,675 = 2.47; P = 0.014; b = 0.008; s.e. = 0.003; 95% CI = 0.002 to 
0.015) and decreased for the US location (trend: t2,675 = −1.77; 
P = 0.077; b = −0.006; s.e. = 0.003; 95% CI = −0.013 to 0.0006), but 
there was no evidence for a change across trials for the background 
(t2,675 = 0.70; P = 0.485; b = −0.002; s.e. = 0.003; 95% CI = −0.009 
to 0.004; CS value × location × trial: F(8, 2,675) = 2.94; P = 0.003; 
η2p ¼ 0:003
I

; 90% CI = 0.0008 to 0.006). We summarized this effect 
in the gaze index10,22 (Fig. 1c), which we analysed using non-para-
metric bootstrapping (1,000,000 case resamples and bias-corrected 
adjusted confidence intervals) with two-tailed statistical testing. The 
gaze index became increasingly biased towards the higher-value CS 
(linear fit: Pbootstrap < 0.05; b = 0.009; s.e. = 0.005; 95% CI = 0.001 to 
0.022), with the impact of value increasing over trials (interaction 
of linear fits: CS value × trial number; Pbootstrap < 0.05; b = 0.0015; 
s.e. = 0.0008; 95% CI = 0.00001 to 0.0032).

Hence, there appeared to be an eye-tracking signal in humans 
analogous to the behavioural sign-tracking response in animals19,22. 
We examined individual variation in this measure between sign- and 
goal-trackers. For this, we tested linear contrasts within each group 
(linear fits and interactions between linear fits indicating a stronger 
increase in one condition than another). The group of sign-trackers 
fixated win-predictive CSs more than loss-predictive CSs (linear fit 
of CS value: Pbootstrap < 0.001; b = 0.059; s.e. = 0.011; 99.9% CI = 0.039 
to 0.129; Fig. 1d–f), and fixated aversive CSs progressively2,3,17 
less over time, instead increasingly fixating the US location when 
anticipating aversive USs (linear fit of trial number for aversive 
CSs: Pbootstrap < 0.001; b = −0.013; s.e. = 0.005; 99.9% CI = −0.037 
to −0.001; linear CS value × linear trial number: Pbootstrap < 0.05; 
b = 0.003; s.e. = 0.002; 95% CI = 0.0003 to infinity). Conversely, 
the group of goal-trackers fixated the US location more for appe-
titive than aversive USs and vice versa for the CS (linear fit of CS 
value: Pbootstrap < 0.001; b = −0.036; s.e. = 0.004; 99.9% CI = −0.053 to 
−0.027), and did so progressively over time.

So far, the definition of goal-tracking is simply the converse of the 
definition of sign-tracking, and hence not an independent measure. 
We therefore looked for more specific signatures of model-based 
learning that should uniquely characterize goal-trackers. Gaze is 
known to reflect uncertainty about the consequences of a stimulus 
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independent of value25,26. We reasoned that this should reflect the 
learning of the model through SPEs, which are larger when there is 
more uncertainty about the predicted stimulus identity independent 
of its associated reward. Hence, this would predict that the attrac-
tion of gaze to the CS should simply reduce over the course of the 
experiment, and this should be more prominent among goal- than 
sign-trackers. The last second of CS presentation indeed revealed 
a strong effect of trial, in addition to the above value effects. Gaze 

was strongly focused on the initially uncertain CS location early 
on, but continuously drifted away from the CS (linear trial effect: 
t410 = −8.62; P < 0.001; b = −0.008; s.e. = 0.001; 95% CI = −0.010 to 
−0.007) towards the US location (t410 = 3.21; P = 0.001; b = 0.003; 
s.e. = 0.001; 95% CI = 0.0012 to 0.0050) and the background 
(t410 = 5.41; P < 0.001; b = 0.005; s.e. = 0.001; 95% CI = 0.003 to 
0.007; trial × location: F(2, 410) = 37.93; P < 0.001; η2p ¼ 0:013

I
; 90% 

CI = 0.008 to 0.018). As a result, the gaze index was biased away 
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Fig. 1 | Assessment of sign- and goal-trackers via eye-tracking. a, Pavlovian conditioning model. CSs were deterministically followed by positive or 
negative outcomes (USs). b–f, Gaze data from the third second of CS presentation. b, The gaze index captured the tendency to fixate the CS rather than 
the US. Individual regression coefficients between the gaze index and CS value were broadly distributed around zero. Positive and negative thirds of this 
distribution were identified as sign-trackers (ST) and goal-trackers (GT), respectively. c, The gaze index was higher for CSs predicting wins than for those 
predicting losses (Pbootstrap < 0.05; b = 0.009; s.d.participants = 0.057; s.e. = 0.005; 95% CI = 0.001 to 0.022; n = 129 participants), but decreased across trials 
overall (Pbootstrap < 0.001; b = −0.011; s.d.participants = 0.024; s.e. = 0.002; 99.9% CI = −0.017 to −0.003; n = 129 participants). The CS value effect on the gaze 
index increased across trials, with green versus magenta lines separating over time (Pbootstrap < 0.05; b = 0.0015; s.d.participants = 0.0091; s.e. = 0.0008; 95% 
CI = 0.00001 to 0.0032; n = 129 participants). d, Evolution of gaze index for sign-trackers (left) and goal-trackers (right). e, Gaze index as a function of CS 
value. f, Percentage fixation time on the CS (top), background (middle) and the US location (bottom) for CSs predicting wins (green circles) and losses 
(magenta diamonds) across trials in sign-trackers (left) and goal-trackers (right). g, Difference in BIC values between computational models of gaze 
control in sign- and goal-trackers. Positive values indicate support for model uncertainty (unc), which assumes that model-based uncertainty controls 
gaze. Negative values indicate support for model value (val), which assumes that the CS value from a model-free reinforcement learner controls gaze via 
Pavlovian conditioned responses. For outlier analyses, see Supplementary Information. h, The computational model parameter ω determines weighting 
between gaze control by model-free (MF) value (ω = 0) and model-based (MB) uncertainty (ω = 1). Displayed are the distributions of the estimated 
weighting parameter for sign- and goal-trackers. In c–f, error bars are s.e.m. In g and h, box-and-whisker plots show the median (centre line), upper and 
lower quartiles (box limits), 1.5× the interquartile range (whiskers) and outliers (points).
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from the CS towards the US location (that is, it decreased) with 
increasing trial number (Pbootstrap < 0.001; b = −0.011; s.e. = 0.002; 
99.9% CI = −0.017 to −0.003; Fig. 1c).

To directly test whether this reflected the reduction in uncer-
tainty over the course of training, we implemented computational 
models assuming that gaze is controlled either by trial-by-trial 
uncertainty from a model-based learning system or by Pavlovian 
responses to model-free trial-by-trial CS value (see Methods). We 
computed Bayesian information criterion (BIC) values for both 
models for each participant, and performed a repeated-measures 
ANOVA with the factors model (model-free value versus model-
based uncertainty) and group (sign- versus goal-trackers). We per-
formed post-hoc tests using two-tailed t-tests of the difference in 
BIC values between models with each group of sign- versus goal-
trackers separately. We found that in goal-trackers, the gaze index 
was best explained by the uncertainty-based model (t84 = −3.28; 
P = 0.002; ∆BIC = −3.73; s.e. = 1.14; 95% CI = −6.00 to −1.47; 
see Fig. 1g), suggesting that state uncertainty drives gaze in goal-
trackers. In contrast, the evidence in sign-trackers’ gaze was sig-
nificantly shifted towards the value-based model (model × group: 
F(1, 84) = 6.87; P = 0.010; η2p ¼ 0:038

I
; 90% CI = 0.005 to 0.097), 

but provided no statistical evidence supporting one model over the 
other (t84 = 0.43; P = 0.672; ∆BIC = 0.48; s.e. = 1.14; 95% CI = −1.78 
to 2.75). Additional modelling, allowing for dual control, where 
value-based (ω = 0) and uncertainty-based (ω = 1) learning systems 
within each participant are combined via a weighting parameter 
(ω), suggested that goal-trackers relied strongly on uncertainty- or 
model-based control (ωmean = 0.84; ωs.d. = 0.18), whereas sign-track-
ers seemed to use a mixture of value- and uncertainty-based sys-
tems (ωmean = 0.48; ωs.d. = 0.24). We also tested the group difference 
in the ω parameter using two-tailed non-parametric bootstrapping 
(Pbootstrap < 0.001; b = 0.36; s.e. = 0.05; 99.9% CI = 0.20 to 0.50; Fig. 1h; 
see Methods). Hence, examining changes in how individuals freely 
chose to gaze at a CS or a US allowed us to distinguish two groups 
of participants who appeared to rely on different computational 
mechanisms for learning.

The pupil is known to dilate in response to uncertainty, pro-
posedly reflecting noradrenergic arousal signals in the nucleus 
coeruleus and associated sites27. Moreover, the pupil dilates dur-
ing learned anticipation of rewards relative to losses or neutral 
outcomes, putatively reflecting Pavlovian motivation or arousal 
signalled in noradrenaline and elicited by an anticipatory dopa-
mine response28. As such, we expected to see a similar distinction 
between goal- and sign-trackers as we saw in gaze control. We 
focused on the last second before US onset to avoid luminance 
effects due to the stimuli, to avoid temporal transients, and because 
incentive salience is thought to peak just before US onset29. We first 
asked whether pupil size was driven by uncertainty versus CS value, 
and again found a double dissociation. To this end, we performed 
repeated-measures ANOVA with the factors trial number (3–8 ver-
sus 9–16), CS value (€−2 to €+2), time since CS onset (seconds 1–6) 
and group (sign- versus goal-trackers). Post-hoc tests for second 6 
after CS onset were performed using t-tests, testing effects in each 
group against zero. In these contrasts, a simple between-group t-test 
between sign- and goal-trackers provides evidence for an interac-
tion (a stronger increase in one group than another) because it is a 
contrast of linear fits. In goal-trackers, average pupil size decreased 
from the beginning to the end of conditioning, consistent with  
the decrease in uncertainty occasioned by learning (effect of trials 
(3–8 versus 9–16): t140 = −2.29; P = 0.023; b = −0.055; s.e. = 0.024; 
95% CI = −0.102 to −0.008). No effect of trial number was observed 
in sign-trackers (t140 = 0.83; P = 0.405; b = 0.020; s.e. = 0.025;  
95% CI = −0.028 to 0.069), with a significant group difference  
(F(1, 140) = 4.84; P = 0.030; η2p ¼ 0:001

I
; 90% CI = 0 to 0.003;  

Fig. 2a,c). A different signature was visible in sign-trackers’  
pupil size. Here, the pupil was dilated by the expectation of wins 

compared with neutral outcomes or losses in the second half of the 
experiment (trials 9–16), reflecting a value-based pupil response 
(linear CS value effect: t1,314 = 2.89; P = 0.004; b = 0.521; s.e. = 0.180; 
95% CI = 0.167 to 0.874). This linear CS value effect developed 
from the beginning to the end of conditioning (significant increase: 
t638 = 2.93; P = 0.004; b = 0.339; s.e. = 0.116; 95% CI = 0.112 to 
0.566) reflecting learning of CS value. In goal-trackers, this was 
not observed: there was no evidence that CS value influenced pupil 
size (trials 9–16: t1,314 = −1.59; P = 0.112; b = −0.280; s.e. = 0.176; 
95% CI = −0.625 to 0.066; group difference: t638 = 3.52; P < 0.001; 
b = 0.285; s.e. = 0.081; 95% CI = 0.126 to 0.444). Pupil dilation in 
goal-trackers therefore appeared to reflect uncertainty27, while it 
was driven by CS value in sign-trackers28. Next, we asked whether 
these could again be mapped onto model-based and model-free 
learning by studying BIC values for each model, computed across all 
individual participants for each group of sign- and goal-trackers. In 
goal-trackers, pupil dilation was best accounted for by model-based 
uncertainty (model-based uncertainty: BIC = 8,023.6; model-free 
CS value: BIC = 8,032.4; ∆BIC = 8.81; Fig. 2d) and explained the 
reduction in pupil size across trials seen in goal-trackers only (Fig. 
2e). In contrast, in sign-trackers, pupil dilation was best accounted 
for by model-free CS value (model-based uncertainty: BIC = 7,460.1; 
model-free CS value: BIC = 7,457.1; ∆BIC = −2.93; Fig. 2d), and 
this model was able to capture the continuous increase of the CS 
value effect across trials seen in sign-trackers only (Fig. 2f). Hence, 
there was again a double dissociation: pupil size reflected model-
based uncertainty about upcoming states in goal-trackers, while it 
reflected model-free value in sign-trackers.

Next, we attempted to validate the distinction between sign- 
and goal-trackers in measures independent from eye-tracking. At 
a behavioural level, we examined two independent predictions. 
First, CSs are thought to acquire incentive salience12–14 in sign- but 
not in goal-trackers10,15, and to elicit PIT only in sign-trackers19. In 
PIT, appetitive CSs enhance and aversive CSs reduce instrumental 
approach21. The behavioural model employed here contained a PIT 
phase, in which Pavlovian CSs were presented in the background of 
the instrumental task; no outcomes were presented, but participants 
were instructed that outcomes would count towards their reimburse-
ment (Supplementary Fig. 1). We computed the PIT effect for each 
individual participant as the linear fit of Pavlovian CS value on the 
number of button presses, and used non-parametric bootstrapping to 
test the directed hypothesis (one tailed) that the PIT effect is stronger 
and more frequently individually significant (tested using individual 
t-tests) in sign- than goal-trackers. We found that the PIT effect was 
stronger (Pbootstrap < 0.05; b = 0.49; s.e. = 0.26; 95% CI = 0.09 to infin-
ity; Fig. 3a,b) and more frequently significant at an individual level 
(Pbootstrap < 0.05; b = 15.8; s.e. = 8.3; 95% CI = 1.6 to infinity; Fig. 3a,  
inset) in sign-trackers than in goal-trackers, suggesting that the CS 
acquired incentive salience and elicited Pavlovian approach and 
avoidance behaviour more in sign-trackers. Second, while sign- and 
goal-trackers learn differently, they should learn the Pavlovian values 
equally well. Our model also contained a phase in which participants 
were forced to choose the better among pairs of CSs and, as expected, 
sign- and goal-tracker performance was excellent and not statisti-
cally different (goal-trackers: 97.8% correct; s.d. = 9.2; sign-trackers: 
95.2% correct; s.d. = 14.0; group difference: Pbootstrap > 0.1; b = 2.6; 
s.e. = 2.6; 95% CI = −1.8 to 8.6; see also Supplementary Fig. 4).

We finally turned to neuroimaging to more directly examine the 
nature of the learning signals in the two groups. Animal sign- but 
not goal-trackers have been shown to exhibit a temporal-difference 
RPE response in NAc dopamine concentrations during Pavlovian 
conditioning10. Such RPE signals in human ventral striatum can 
be measured by fMRI30. We computed trial-by-trial temporal-dif-
ference RPEs for CSs and USs using a simple reinforcement learn-
ing model (Supplementary Information). The temporal-difference  
RPE regressor was used in a linear model with the factor group 
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(sign- versus goal-trackers) and the covariate testing site to explain 
the NAc BOLD response. ANOVA with the factor group was used to 
test the difference in the RPE signal between sign- and goal-track-
ers, and one-sample t-tests were used to test whether the RPE sig-
nal was larger than zero within each group separately. Family-wise 
error (FWE) correction was used to control the peak-voxel effect 
for multiple tests associated with multiple voxels within the a priori 
volume of interest (VOI) in the NAc. The RPE explained a signifi-
cant amount of variance in the NAc BOLD response in sign-trackers 
(small volume corrected (SVC) in NAc VOI: t75 = 3.05; PFWE = 0.025; 
Montreal Neurological Institute (MNI) coordinates [x, y, z] = [12, 6, 
–14]), but there was no evidence for such an effect in goal-trackers 
(t75 = 1.58; SVC PFWE = 0.398), with a significant group difference 
(F(1, 75) = 10.88; SVC PFWE = 0.026; MNI coordinates [12, 6, –14], 
η2p ¼ 0:122
I

; 90% CI = 0.031 to 0.242; Fig. 4a–d).
The RPE signal is evident in conditioning involving wins, but 

can be less clear for losses, which may even involve inverted RPE 
or salience signals31. We therefore repeated analysis testing the 

RPE for wins (€0, €+1 and €+2) and losses (€0, €−1 and €−2) 
separately. For this analysis, we extracted the average appetitive 
 or aversive RPE BOLD signal within the a  priori NAc VOI for  
each participant, and performed one-sample t-tests of the hypoth-
eses that the appetitive RPE signal in sign-trackers is larger than  
zero, and that it is larger than in goal-trackers. Results for the appe-
titive RPE involving wins were in line with the overall findings;  
namely, a NAc BOLD RPE response in sign-trackers (t38 = 2.15; 
P = 0.019; b = 0.087; s.e. = 0.040; 95% CI = 0.019 to infinity; 
Fig. 5a,e), but no NAc RPE response in goal-trackers (Fig. 5a,b; 
t38 = −0.04; P = 0.516; b = −0.002; s.e. = 0.042; 95% CI = −0.072 to 
infinity; group difference: t76 = 1.53; P = 0.065; b = 0.089; s.e. = 0.058;  
95% CI = −0.008 to infinity; Supplementary Fig. 5). However, 
the aversive RPE involving losses did not elicit BOLD responses 
(P > 0.1; see Supplementary Information).

RPE(-like) signals are also found in other brain regions, such 
as ventral tegmental area (VTA)/substantia nigra, dorsal striatum 
(caudate and putamen), ventromedial prefrontal cortex (vmPFC) 
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Fig. 2 | Pupil dilation during Pavlovian conditioning in sign-trackers and goal-trackers. a,b, Pupil size between CS and US presentation (seconds 3–6 after 
CS onset) at the beginning and end of learning (stimulus presentations 3–8 and 9–16, respectively) for goal- and sign-trackers. a, Average pupil size  
during US anticipation decreases across learning in goal-trackers (t140 = −2.29; P = 0.023; b = −0.055; s.e. = 0.024; 95% CI = −0.102 to −0.008; n = 43 
participants), but there was no evidence for a change in sign-trackers (t140 = 0.83; P = 0.405; b = 0.020; s.e. = 0.025; 95% CI = −0.028 to 0.069; n = 43  
participants; group difference: F(1, 140) = 4.84; P = 0.030; η2p ¼ 0:001

I
; 90% CI = 0 to 0.003). b, Sign-trackers show a CS value effect on pupil size  

(linear regression coefficient) after learning (t1,314 = 2.89; P = 0.004; b = 0.521; s.e. = 0.180; 95% CI = 0.167 to 0.874; n = 43 participants), but there was no 
evidence for the same effect in goal-trackers (t1,314 = −1.59; P = 0.112; b = −0.280; s.e. = 0.176; 95% CI = −0.625 to 0.066; n = 43 participants; ST versus GT: 
t638 = 3.52; P < 0.001; b = 0.285; s.e. = 0.081; 95% CI = 0.126 to 0.444; n = 86 participants). In a and b, asterisks indicate time points at which the difference 
was significant (P < 0.05 from nested tests). c–f, Assessment of the luminance-independent pupil size during seconds 5 to 6. c, Left: average pupil size 
decreases from the beginning to the end of learning in goal-trackers (t140 = −2.29; P = 0.023; b = −0.055; s.e. = 0.024; 95% CI = −0.102 to −0.008; n = 43 
participants), but there was no corresponding evidence in sign-trackers (t140 = 0.83; P = 0.405; b = 0.020; s.e. = 0.025; 95% CI = −0.028 to 0.069; n = 43 
participants; GT versus ST: F(1, 140) = 4.84; P = 0.030; η2p ¼ 0:001

I
; 90% CI = 0 to 0.003; n = 86 participants). Right: sign-trackers show a CS value effect on 

pupil size after learning (t1,314 = 2.89; P = 0.004; b = 0.521; s.e. = 0.180; 95% CI = 0.167 to 0.874; n = 43 participants), but the same effect was not significant 
in goal-trackers (t1,314 = −1.59; P = 0.112; b = −0.280; s.e. = 0.176; 95% CI = −0.625 to 0.066; n = 43 participants; ST versus GT: t638 = 3.52; P < 0.001; 
b = 0.285; s.e. = 0.081; 95% CI = 0.126 to 0.444; n = 86 participants). Box-and-whisker plots show the median (centre line), upper and lower quartiles  
(box limits), 1.5× the interquartile range (whiskers) and outliers (points). d, Difference in BIC values between computational models of pupil dilation in 
goal- and sign-trackers. Positive values indicate support for model uncertainty (unc), which assumes that pupil dilation reflects model-based uncertainty. 
Negative values indicate support for model value (val), which assumes that pupil dilation reflects learned value from a reinforcement learning model.  
e, Average pupil size per trial (points) and pupil size predicted by model uncertainty (lines) for sign- and goal-trackers. f, CS value effect on normalized pupil 
size per trial (points) and CS value effect predicted by model value (lines) for sign- and goal-trackers. In a, b, e and f, error bars/bands represent s.e.m.
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and amygdala, which can be dissociated from the NAc RPE signal 
in specifically designed tasks. Whether these signals are also selec-
tively expressed in sign-trackers is currently unknown (for some 
evidence, see ref. 32). We tested whether the difference in RPE sig-
nals between sign- and goal-trackers is also present in these other 
brain regions. We performed repeated-measures ANOVAs with the 

factors VOI (VTA/substantia nigra, caudate, putamen, vmPFC and 
amygdala) and group (sign- versus goal-trackers). For post-hoc 
tests, we used one-tailed t-tests to test the hypothesis that the RPE 
signal in each group was larger than zero. For our a priori analy-
sis involving wins and losses, across these VOIs, we found signifi-
cant RPE responses in sign-trackers (t76 = 1.89; P = 0.031; b = 0.035; 
s.e. = 0.019; 95% CI = 0.004 to infinity), and these were stronger than 
in goal-trackers throughout (F(1, 76) = 4.18; P = 0.044; η2p ¼ 0:01

I
;  

90% CI = 0 to 0.03; RPE signal in goal-trackers: t76 = −1.00; 
P = 0.322; b = −0.019; s.e. = 0.019; 95% CI = −0.049 to infinity). 
There was no evidence that the group difference differed between 
VOIs (F(3, 241) = 1.07; P = 0.363; η2p ¼ 0:003

I
; 90% CI = 0 to 0.023), 

indicating no reliable difference across regions. The same pattern 
was also true for the analysis involving wins only, where again 
sign-trackers showed an RPE signal (t76 = 2.38; P = 0.010; b = 0.080; 
s.e. = 0.034; 95% CI = 0.024 to infinity), which was stronger than in 
goal-trackers (F(1, 76) = 5.40; P = 0.023; η2p ¼ 0:014

I
; 90% CI = 0.001 

to 0.039), where goal-trackers showed no evidence for an RPE sig-
nal (t76 = −0.90; P = 0.369; b = −0.030; s.e. = 0.034; 95% CI = −0.086 
to infinity). We explored appetitive RPE signals in individual VOIs 
(Fig. 5a,c–f and Supplementary Fig. 6). We found that appetitive RPE 
signals in sign-trackers were stronger than in goal-trackers in sev-
eral VOIs (VTA: P = 0.038; vmPFC: P = 0.032; putamen: P = 0.121; 
caudate: P = 0.058; amygdala: P = 0.004), and that only the effect in 
the amygdala (P = 0.020), but not in the other VOIs (P > 0.1), sur-
vived correction for the multiple exploratory tests. However, these 
differences should be interpreted with caution given that there was 
no evidence that VOIs differed. One problem with fMRI analyses 
of Pavlovian learning is that the correct learning rate is unknown 
and cannot be estimated easily from behaviour33. However, the dif-
ferences between sign- and goal-trackers were consistent across a 
range of different values for the learning rate: in our a priori analysis 
of wins and losses, averaged across all VOIs, the group difference 
was significant for learning rates 0.1 (P = 0.034), 0.2 (P = 0.039), 0.3 
(P = 0.046), 0.4 (P = 0.048), 0.5 (P = 0.0495) and 0.6 (P = 0.04998). A 
similar pattern was present when analysing wins only, but not when 
analysing losses only (see Supplementary Information, including 
Supplementary Fig. 7).

While theoretical accounts and the results so far suggest that 
goal-trackers may rely on model-based learning2,3, compara-
tively few data exist20 on the learning processes and neurobiologi-
cal mechanisms in goal-trackers. Our computational account of 
model-based learning incorporates incremental updates to state 
expectations through SPEs4. Human fMRI results have previously 
shown SPEs to be represented in the intraparietal sulcus (IPS) and 
in the lateral PFC (lPFC)4. Hence, if goal-trackers learn through 
model-based mechanisms, we expect more prominent SPEs in 
these areas in them than in sign-trackers. We tested whether SPE 
signals were different from zero within each group using two-tailed 
t-tests. Moreover, we performed repeated-measures ANOVA with 
the factors VOI (IPS and lPFC) and group (sign- and goal-track-
ers). A post-hoc two-sample t-test was used to test whether the SPE 
BOLD signal differed between groups within the IPS. We found 
SPE signals in both the IPS and the lPFC (Fig. 6a), which were 
significant in both goal-trackers (t76 = 6.44; P < 0.001; b = 1.165; 
s.e. = 0.181; 95% CI = 0.804 to 1.53) and sign-trackers (t76 = 4.94; 
P < 0.001; b = 0.894; s.e. = 0.181; 95% CI = 0.534 to 1.25; also see 
Supplementary Fig. 8), consistent with the behavioural signatures 
showing a model-based component in both groups. However, in 
the IPS, this SPE signal was stronger in goal- than in sign-trackers 
(t67 = 2.12; P = 0.038; b = 0.564; s.e. = 0.266; 95% CI = 0.034 to 1.095; 
interaction group × VOI: F(1, 76) = 5.34; P = 0.024; η2p ¼ 0:033

I
; 90% 

CI = 0.002 to 0.092; Fig. 6a,b and Supplementary Fig. 9). As previ-
ous work4 has also shown this area to relate to behaviour, this differ-
ence may underlie goal-trackers’ stronger reliance on model-based 
Pavlovian learning in the current task.
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Fig. 3 | PIT in sign-trackers versus goal-trackers. a, Instrumental approach 
increased with the value of Pavlovian CSs in sign-trackers more than in 
goal-trackers (Pbootstrap < 0.05; b = 0.49; s.e. = 0.26; 95% CI = 0.09 to infinity; 
n = 84 participants). Inset: PIT was individually significant in a higher 
percentage of sign-trackers than goal-trackers (Pbootstrap < 0.05; b = 15.8; 
s.e. = 8.3; 95% CI = 1.6 to infinity; n = 84 participants). Error bars represent 
s.e.m. b, Distributions of individual PIT effects. Box-and-whisker plots show 
the median (centre line), upper and lower quartiles (box limits), 1.5× the 
interquartile range (whiskers) and outliers (points).
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to 0.242; n = 78 participants). y = 6 indicates the illustrated plane in MNI 
coordinates. b, RPE signal at the peak response difference in NAc. Box-and-
whisker plots show the median (centre line), upper and lower quartiles  
(box limits), 1.5× the interquartile range (whiskers) and outliers (points).  
c, RPE signal in sign-trackers (red, unmasked; t75 = 3.05; SVC PFWE = 0.025). 
d, RPE signal in goal-trackers. In a, c and d, the threshold P value was 
< 0.005 (cluster size k = 0).
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Finally, if it is true that the imaging and eye measures relate to 
the same learning processes, the learning parameters estimated 
from the two modalities should not be too dissimilar. Keeping the 
difficulties in estimating learning rates in mind, we nevertheless 
found that the uncertainty-based signal in goal-trackers yielded a 
state learning rate of ηpupil = 0.19, which was well in line with the 
learning rate of ηfMRI = 0.15 used for fMRI analyses. The value sig-
nal in sign-trackers yielded a learning rate for value of αpupil = 0.06, 
which was comparable with the learning rate showing the strongest 
NAc RPE signal in model-based fMRI analyses (αfMRI = 0.05; see 
Supplementary Fig. 7).

Discussion
In summary, we found a double dissociation between model-free 
and model-based Pavlovian learning systems in human sign- versus 
goal-trackers. As a key neurobiological finding, the model-free RPE 
teaching signal in the (ventral) striatum was present in human sign-
trackers, but was not detectable in goal-trackers, suggesting that, as 
in animals10, only sign-trackers rely on model-free RPE signals1,11 
for learning. Model-free learning assigns value to the CS, which 
turns it into a motivationally relevant stimulus that elicits approach 
and avoidance responses in its own right. Here, we found that the 
value of the CS elicited approach and avoidance responses during 
conditioning, as measured in influences of CS value on gaze and 
pupil size during conditioning, and on PIT. Sign-trackers thus seem 
to rely on a model-free learning system that uses RPE signals to 
attribute incentive salience to the CS. In contrast, in goal-trackers, 
gaze and pupil size were related to model-based uncertainty. This 

was accompanied by a stronger model-based SPE signal in the IPS. 
Goal-trackers also showed reduced PIT effects17,34, suggesting that 
the CSs did not acquire the same motivational properties. Goal-
trackers thus seem to rely on model-based reinforcement learn-
ing to predict the identity of upcoming US states from the CS. Of 
note, the neural distinction does not only show a dissociation of the 
(ventral) striatal versus (intra-)parietal brain regions for learning in  
sign- and goal-trackers, but also of the computational mechanisms 
driving learning in each. Furthermore, for learning success as 
assessed in a forced-choice task, we did not find a difference between 
sign- and goal-trackers. Hence, group differences, as in animals10, 
may not reflect differences in learning ability, but rather indicate dif-
ferent mechanisms or systems underlying learning. Taken together, 
eye-tracking, pupillometry, behavioural PIT responses and fMRI 
consistently reveal a double dissociation between model-free RPE 
learning mediating incentive salience attribution in sign-trackers 
versus model-based SPE learning guiding uncertainty-based selec-
tion in goal-trackers.

Strikingly, the RPE signal was not only present in the ventral 
striatum, but extended throughout a broad affective area, includ-
ing the dorsal striatum (putamen and caudate), VTA, amygdala 
and vmPFC, in the sign-trackers, while we found no evidence 
for RPE signals in these areas in the goal-trackers. Early theories  
(for example, ref. 35) had conceived of the RPE signal as a dopa-
minergic teaching signal with wide applicability to be broadcast 
throughout the brain. The fact that the RPE signal only behaves 
as a teaching signal in sign-trackers, and only seems to be broad-
cast widely in them, is consistent with such an account. Given the 
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extensive literature on the relationship between RPEs and phasic 
dopaminergic signals1,10,36, it is highly likely that the RPE signal in 
sign-trackers is dopaminergic.

In model-free learning, the predictive value computed by iter-
atively adding up RPE signals is assigned directly to the CS. This 
assignment mechanism is thought to turn CSs into valuable and 
wanted stimuli that are attributed with incentive salience and elicit 
approach and avoidance responses12–14. Aspects of this were visible 
in the impact of CS value on gaze and attention, and through pupil 
dilation, also arousal. While outcome-specific PIT may depend in 
part on model-based mechanisms, the current model has previously 
been argued to capture mostly outcome-general effects34. Hence, in 
sign-trackers, the model-free learning algorithm based on RPEs 
seems to assign predictive value or incentive salience to the CS, 
turning it into a motivationally relevant—and wanted—stimulus 
that elicits responses12–14 across multiple modalities, including in 
visual attention, arousal and approach/avoidance behaviour.

While all of our learning measures indicated model-free learning 
in sign-trackers, model-based learning in goal-trackers was likewise 
consistently evident across all measures. As a key property, model-
based learning algorithms construct a model of the state transi-
tions, where they estimate the probabilities for state transitions  
in a task. Such transition probabilities can be estimated via SPE in 
the IPS4, which we found to be stronger in goal-trackers than in 
sign-trackers. This key novel finding provides evidence for theoreti-
cal predictions2,3 whereby goal-trackers rely more on model-based 
reinforcement learning. Notice that our conditioning task did not 
experimentally manipulate state transitions, limiting our access to 
the process of model construction.

Model-based learning relies on uncertainty to guide selective 
attention (that is, associability)37 and pupil dilation27, and is thought 
to be more resistant to Pavlovian response biases compared with 
model-free control17,34. These model-based signatures were present 
in goal-trackers. Increased associability associated with situations 
of model-based uncertainty may thus also attract visual attention 
to the CS to increase its perceptual but also higher-level process-
ing. These findings converge on the functioning of a model-based 
system in goal-trackers that learns predictions about upcoming US 
identity by selective processing of uncertain predictors.

Taken together, these results show a double dissociation between 
model-free RPE learning mediating incentive salience attribution in 
sign-trackers and model-based SPE learning guiding uncertainty-
based selection in goal-trackers. Nevertheless, there are a number 
of limitations to our findings. First, we used a trace conditioning 
task with a fixed interstimulus interval. The trace conditioning was 
employed to allow us to examine gaze unconstrained by stimuli being 
present. The fixed interval and deterministic aspects were employed 
to ensure the necessary predictability for the eye-tracking analyses. 
While we judged these design choices to be necessary, they were 
probably also responsible for the relatively weak nature of the RPE 
signals observed. Second, the RPE signal was specific for rewards, 
and was not identifiable for losses31. However, computational model-
ling did not show differences between model-free learning responses 
in either gaze or pupil size in terms of either mechanisms or param-
eters for rewards versus losses, and defining sign- and goal-trackers 
based on appetitive trials did not reveal the same distinctions across 
modalities. Other approaches to define sign- and goal-trackers that 
were based on all trials, by replacing the gaze index with the prob-
ability to fixate the CS, and by using a computational model of gaze 
responses rather than a linear regression of CS value, showed similar 
convergent effects across gaze, behaviour and MRI measures. The 
failure to see such distinction when examining rewards only may 
relate to the reduction in statistical power (already low due to the 
deterministic trace conditioning model) when removing half of the 
trials with losses. However, it may also hint at hitherto poorly under-
stood distinctions between learning from rewards and losses. The 
fact that RPE signals in sign-trackers were specific for appetitive win-
associated trials is compatible with the known asymmetric encoding 
of RPEs in dopaminergic signals. Third, the study and the PIT task 
were part of a larger study examining learning in a population of 
individuals at risk of developing alcohol dependence, and our sam-
ple therefore consists of 18-year-old males drawn from the general 
population. Since we only investigated male participants, the results 
can only be generalized to males. Fourth, one limitation of our study 
is that visual input differs between sign- and goal-trackers (as their 
definition is based on gaze fixations). This implies that differences 
in visual input could bias the fMRI results. However, such biases are 
unlikely because: (1) we analysed brain activity in regions known to 
encode prediction error signals; and (2) we studied highly specific 
computational prediction error signals. Nevertheless, we performed 
control analyses, controlling for gaze-dependent visual effects in the 
fMRI analyses. Our results remained stable in these control analyses, 
suggesting that they were not driven by differences in visual input, 
but were due to differences in prediction error signalling.

Being able to measure sign- and goal-trackers in humans may 
be useful for investigating disorders such as drug addiction. Drug 
addiction is strongly tied to the dopamine system. This is thought 
to be sensitized by repeated drug consumption, leading to increas-
ingly stronger incentive salience attribution to drug-predictive cues, 
which elicit drug craving and consumption38. Sign-tracking animals 
are known to be more prone to develop addiction2,39. In humans, 
drug consumption in alcohol-dependent patients is closely linked 
to PIT and associated neural activation in the NAc40,41. Human sign- 
and goal-tracking have so far not been studied in addiction, but 
given that sign-tracking can be bred true, it suggests a potential link 
between familial risk, learning and addiction.

Methods
This research complied with all of the relevant ethical regulations. Ethical 
approval for the study was obtained from the ethics committee of Charité-
Universitätsmedizin Berlin (EA1/157/11) and Universitätsklinikum Dresden 
(EK228072012), and procedures were in accordance with the Declaration of 
Helsinki. Informed consent was obtained from all human participants. Participants 
received a monetary compensation of €10 h−1 for study participation, plus a 
performance-dependent compensation. The data were collected as a part of the 
LeAD study (www.lead-studie.de; clinical trial number: NCT01679145).
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Fig. 6 | Neural SPE learning signals in sign-trackers versus goal-trackers. 
a, Trial-by-trial SPE predicts BOLD response in the IPS and lPFC in goal-
trackers (t76 = 6.44; P < 0.001; b = 1.165; s.e. = 0.181; 95% CI = 0.804 to 
1.53; n = 39 participants) and sign-trackers (t76 = 4.94; P < 0.001; b = 0.894; 
s.e. = 0.181; 95% CI = 0.534 to 1.25; n = 39 participants), with a stronger 
response in goal- than sign-trackers in the IPS (t67 = 2.12; P = 0.038; 
b = 0.564; s.e. = 0.266; 95% CI = 0.034 to 1.095; n = 78 participants).  
Box-and-whisker plots show the median (centre line), upper and lower 
quartiles (box limits), 1.5× the interquartile range (whiskers) and outliers 
(points). b, Voxel-vise results for the contrast of a stronger SPE signal in 
goal- than in sign-trackers. Inset: glass brain (P < 0.01; k = 0). For GT > ST, 
P < 0.005 (cyan) or P < 0.01 (blue) (k = 40).

Nature Human Behaviour | www.nature.com/nathumbehav

http://www.lead-studie.de
http://www.nature.com/nathumbehav


ArticlesNaTure HuMan BehavIour

Definition of sign- and goal-tracking. To define sign- and goal-trackers, we 
computed a gaze-direction index as the proportion of fixation time on the CS 
minus the proportion of fixation time on the US location during the third second 
of CS presentation (that is, gaze index = p(CS) – p(US)). A gaze index of 1 indicated 
that 100% of fixation time was spent on the CS; a gaze index of −1 indicated that 
100% of fixation time was spent on the US; a gaze index of 0 indicated the same 
percentage of fixation time on the CS and US; and intermediate values indicated 
intermediate fixation statistics. For each individual participant, we computed a 
linear regression of gaze index on the true value of the CS (that is, €−2, €−1, €0, 
€+1 or €+2). Participants for whom gaze was attracted more to win-predictive 
than to loss-predictive CSs had a positive regression coefficient of CS value, and 
we defined the third of participants with the most positive regression coefficients 
as sign-trackers (n = 43). Participants for whom gaze was attracted towards the 
goal for expected wins more than for expected losses had a negative regression 
coefficient, and we defined goal-trackers as the third of participants with the most 
negative regression coefficient (n = 43).

Overview of computational modelling. Model-based valuation estimates the 
probabilities of arriving at each outcome state j (US) given the observation of a 
certain cue i (CS), which can be written as a matrix of transition probabilities: 
Ti, j = p(USj|CSi). Moreover, it estimates a ‘reward matrix’, which stores expected 
reward R for each US outcome j: Rj = E[R|USj]. When a CS i is presented, the 
model-based system determines the expected value VMB

i
I

 by considering all of the 
possible US outcomes, and by weighing their expected rewards by their transition 
probabilities. This can be formulated by multiplying the transition matrix with 
the reward matrix: VMB

i ¼ Ti ´R
I

. Learning in the model-based system involves 
learning the transition matrix from the experience of state prediction errors (SPE), 
δSPEt
I

. Initially, before learning, all five US outcome states in our task are equally 
likely (that is, T0

i;j ¼ 1
5 ¼ 0:2 for all i; j

I
). Participants experience an SPE when they 

encounter a transition from a CS i to a US j in trial t, δSPEt ¼ 1� Tt
i;j

I
. They use 

this to update the transition matrix, Ttþ1
i;j ¼ Tt

i;j þ η ´ δSPEt

I
. To keep the matrix 

normalized to total probabilities of one, transition probabilities for the other US 
j0≠j
I

 that have not been observed are reduced by Ttþ1
i;j0 ¼ Tt

i;j0 ´ 1� ηð Þ
I

. We assume 
that the reward matrix is known instantly and with certainty. We approximate 
uncertainty (unc) in state predictions as unct ¼ 1�maxj Tt

j

I
. We repeated core 

analyses with a fully Bayesian model-based learner with explicit uncertainty 
computation, with comparable results.

In contrast, model-free learning conflates the transition matrix and the reward 
matrix and thus does not learn about the identity of US outcomes. Instead, it uses 
the experience of RPEs, δRPEt ¼ Rt � VMF

i;t

I
, where Rt is the experienced reward 

value in trial t and VMF
i;t

I
 is the current model-free state value for CS i in trial t, to 

update estimates of expected value directly: VMF
i;tþ1 ¼ VMF

i;t þ α ´ δRPEt

I
.

We assume that model-based learning influences gaze direction and pupil size 
based on trial-by-trial state uncertainty (model ‘unc’), and accordingly predict 
the dependent variable as cyIDt ¼ intunc þ bunc ´ unct

I
, where cyIDt

I
 of participant 

ID for trial t is the predicted gaze direction index during the third second of CS 
presentation or the predicted pupil size in the last second before US presentation, 
intunc is a free intercept or baseline parameter capturing the expected value of the 
dependent variable after learning and complete state certainty, and bunc is a free 
parameter for the weight of model-based uncertainty, which we reparameterize 
to bunc ¼ ebunc 0

I
, and which measures the degree to which maximum uncertainty 

before learning biases the gaze index towards the CS relative to baseline.
For model-free learning, we assume that trial-by-trial CS value (model ‘val’) 

influences gaze and pupil size via a Pavlovian response bias, and predict the 
observations cyIDt ¼ intval þ bval ´VMF

t
I

, where intval is a free intercept or baseline 
parameter capturing the average gaze direction or pupil size, and bval is a free 
parameter measuring the weight of model-free value influencing gaze or pupil size 
(that is, the Pavlovian response bias).

For gaze direction and pupil size, we assume the likelihood for individual 
observations yt is normally distributed P pupiljŷ; σ2ð Þ ¼ Q

ID

Q
t P yIDt jcyIDt ; σ2

 

I

,  
where yt is the observed dependent variable per trial, byt

I
 is the prediction by 

the learning model, and σ2 is the residual variance. Note that the distribution 
of the gaze-direction index deviates from normality. The likelihood for 
the gaze-direction index gazeID ¼ yIDt

� �T
t¼1

I
 per participant ID across T 

trials is then P gazeIDjcyID; σ2ID
 

¼ Q
t
P yIDt jcyIDt ; σ2ID

 

I

. For the pupil size, 

pupil ¼ yIDt
 T

t¼1

n on

ID¼1
I

 of n participants with each T trials, we pool the 
likelihood across all participants:

P pupiljŷ; σ2
� 

¼
Y

ID

Y
t
P yIDt jcyIDt ; σ2
 

We studied signals of model-free RPE and model-based SPE using fMRI. For 
the model-free RPE signal, we determined the trial-by-trial temporal-difference 
RPE for CS and US onsets1,11. Onset of the CS changes the model-free value 
expectation from 0 (at trial onset) to the predictive value of the CS, VMF

i;t

I
, yielding 

a temporal-difference RPE of δRPECS ¼ VMF
i;t

I
. At US onset, value expectation changes 

from the predictive value of the CS, VMF
i;t

I
, to the observed US value, Rt (that 

is, δRPEUS ¼ Rt � VMF
i;t

I
)1,11. We combined these two RPE regressors into a single 

regressor coding model-free temporal-difference RPE. Moreover, we took the 
model-based trial-by-trial SPE signal δSPEt ¼ 1� Tt

i;j

I
 to modulate fMRI activity 

at the time of US onset. The RPE and SPE regressors were each entered as a 
parametric modulator, either at the time of CS and US onset (RPE), or at the time 
of US onset (SPE). Each modulated onset regressors with onset durations equal to 
the 3 s of stimulus presentation.

The following sections provide more detailed information on the  
methods used.

Task. The task tested PIT21,42 and consisted of four parts: (1) instrumental 
conditioning; (2) Pavlovian conditioning; (3) PIT; and (4) a forced-choice task 
(Supplementary Fig. 1). Instrumental conditioning was conducted before the 
scanning session and the forced-choice task was conducted after it. Pavlovian 
conditioning and PIT were assessed during fMRI. The task was programmed using 
MATLAB 2011 (MATLAB version 7.12.0; MathWorks) with the Psychophysics 
Toolbox Version 3 extension43,44. It was presented on a computer screen 
(instrumental training and forced choice) and on a projector via a mirror system 
(Pavlovian conditioning and PIT). For a detailed description of the task, see refs. 40,45.

Instrumental conditioning. Participants were instructed to collect or avoid shells 
by repeated button presses. To collect a shell, participants had to move a red dot 
(Supplementary Fig. 1a) onto a shell by repeated button presses, and otherwise did 
not collect the shell. Each response moved the dot a fraction of the way towards the 
shell, but this was not shown on screen. At least five button presses (2-s response 
window) were needed to collect a shell, which participants were not informed 
about. Participants received probabilistic feedback. On approach trials, a ‘good’ 
shell was monetarily rewarded in 80% of trials and punished in 20% of trials if 
collected, and vice versa if not collected. On non-approach trials, if a ‘bad’ shell was 
collected, this was monetarily punished in 80% of trials and rewarded in 20% of 
trials, and vice versa if not collected. Participants learned to respond to three ‘good’ 
(that is, approach) and three ‘bad’ (that is, non-approach) shells through trial 
and error. Participants performed 60–120 instrumental training trials, depending 
on their performance. To ensure that all of the participants were at comparable 
performance levels before advancing to the PIT part, a learning criterion was 
enforced (80% correct choices over 16 trials).

Pavlovian conditioning. At the beginning of each trial, a compound CS consisting 
of fractal-like pictures and pure tones (henceforth referred to as ‘fractal CSs’) was 
presented for 3 s. This was followed by a delay of 3 s with two fixation crosses at the 
two potential CS locations (left and right; Supplementary Fig. 1b). Finally, the US 
was presented for 3 s at the position opposite where the CS had been presented.

The set of stimulus pairings consisted of two positive CSs paired with images 
of €+2 and €+1 coins, one neutral CS paired with €0, and two negative CSs paired 
with €−1 and €−2 (coins with a superimposed red cross; see also Supplementary 
Fig. 1a). The identity of the fractal and the height of the tones deterministically 
predicted US value such that higher tones predicted higher/lower values, with 
the mapping counterbalanced across participants. Moreover, there was an initial 
shaping period. First, all Pavlovian CSs were presented in descending order (€+2, 
€+1, €0, €−1, €−2) and then in ascending order.

Participants were instructed to observe the CSs and USs and to memorize the 
pairings. All participants completed 80 trials, in which each of the five different 
CSs was presented 16 times in a random (except for initial shaping) sequence with 
randomized (left versus right) stimulus locations.

PIT. Participants then performed 90 trials of the instrumental task, as in training, 
but with fractal CSs tiling the background (Supplementary Fig. 1c). No outcomes 
were presented, but participants were instructed that their choices still counted 
towards the monetary outcome. Each of the six instrumental shells (three shells for 
each of the two conditions: instrumental approach/non-approach) was presented 
with each of the five Pavlovian CSs a total of three times (6 × 5 × 3 = 90 trials), such 
that instrumental and Pavlovian approach/non-approach were orthogonalized. 
This was implemented to control for instrumental approach and non-approach 
tendencies during PIT (see refs. 17,21).

There were also interleaved trials with drink-related stimuli (alcoholic drinks 
or water) tiling the background. The results for these will be reported separately.

Forced-choice task. Finally, participants chose one of two sequentially presented 
compound CSs (Supplementary Fig. 1d). They received 10% of the monetary 
US value associated with the chosen option and were fully instructed about this. 
Each of the ten possible CS pairings was presented three times in an interleaved, 
randomized order, yielding a total of 30 trials. Within a trial, CSs were presented 
one at a time for 2 s each. Slow responses led to a reminder requesting faster 
responses.

Participants. The two-centre study was conducted in Berlin and Dresden, 
Germany. We assessed 198 participants, all of whom were male and 18 years old.

Exclusion criteria were left-handedness, a history of any substance dependence 
or current substance use (assessed by breath and drug urine testing) except for 
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nicotine dependence, other major psychiatric disorders (Diagnostic and Statistical 
Manual of Mental Disorders (DSM-IV)46 axis I and Composite International 
Diagnostic Interview (CIDI)47) and neurological disorders.

Here, we report on a subsample of 144 participants for whom eye-tracking 
data were available during Pavlovian conditioning. These same participants were 
tested on all tasks (that is, we tested the same sample repeatedly). For each task and 
recording technique, data for some participants were missing for technical reasons 
(for example, recording failures or early task abortion). For numbers of missing 
data, see below.

The study was designed, and a sample size of 198 participants was chosen, to 
detect moderate differences (a priori power analysis: d = 0.4; α = 0.05; β = 0.80) in 
learning parameters or brain activity in healthy adults with high- versus low-risk 
alcohol consumption, using longitudinal follow-up over 3 years. For our cross-
sectional analysis, valid eye-tracking data in the fMRI scanner were available for 
129 participants. The statistical group identification (described in the manuscript) 
resulted in a final sample size of 43 participants per sign-/goal-tracker group, 
which yielded good power to detect medium differences in learning parameters or 
brain activity (d = 0.6; α = 0.05; β = 0.79).

Randomization. There were no experimental group allocations. Group definitions 
in the analyses were based on the statistical tests described in the Methods. 
Assignment of experimental stimuli (Pavlovian CSs and instrumental shells) to 
experimental (reinforcement) conditions, stimulus orderings and locations across 
trials were randomized.

Blinding. There were no experimental group allocations. Group definitions in the 
analyses were based on the statistical tests described in the manuscript.

Measurements. Eye-tracking. We recorded eye position and pupil size during 
Pavlovian conditioning via an EyeLink 1000 eye-tracker (SR Research; recording 
binocularly at 1,000 Hz; in Dresden) and an iViewX MRI-LR eye-tracker (SMI; 
recording monocularly at 50 Hz; in Berlin), which were both used in the fMRI 
scanner via a mirror system mounted on the head coil. Calibration of the eye-
tracker was performed inside the scanner before the start and after 40 trials of 
Pavlovian conditioning. At the beginning of each trial, participants were instructed 
to fixate on a central fixation point. Failure to fixate led to a reminder (a maximum 
of two times per calibration).

fMRI acquisition. Functional imaging was performed on two Siemens Trio 3 
Tesla MRI scanners with echo planar imaging (EPI) sequences (repetition time: 
2,410 ms; echo time: 25 ms; flip angle: 80°; field of view: 192 × 192 mm2; voxel size: 
3 × 3 × 2 mm3) comprising 42 slices at approximately −25° to the bicommissural 
plane. For coregistration and normalization during preprocessing, a three-
dimensional magnetization-prepared rapid-gradient echo image was acquired 
(repetition time: 1,900 ms; echo time: 5.25 ms; flip angle: 9°; field of view: 
256 × 256 mm2; 192 sagittal slices; voxel size: 1 × 1 × 1 mm3). Before functional 
scanning, a field map was collected to account for individual homogeneity 
differences of the magnetic field.

Participants wore magnetic resonance-compatible Siemens headphones. 
Responses were made on a 1 × 4 current design magnetic resonance-compatible 
response box button using the dominant index finger (instrumental response  
in training and transfer) or two buttons using the left and right index finger  
(forced choice).

Data analyses and statistics. Data were analysed using MATLAB 2013a (MATLAB 
version 8.1.0.604; MathWorks) and the R System for Statistical Computing48. fMRI 
data were analysed using Statistical Parametric Mapping 8 (Wellcome Department 
of Imaging Neuroscience; http://www.fil.ion.ucl.ac.uk/spm/).

For eye-tracking analyses, we performed repeated-measures ANOVA using 
the R package afex49. Contrasts were computed using the R package emmeans50. 
For fMRI analyses, at the second level, we performed either one-sample Student’s 
t-tests or two-sample Welch’s t-tests (capturing situations of equal and unequal 
variances)51. For random effects analyses of behavioural responses, we performed 
Shapiro–Wilk tests to test the normal distribution assumption of t-tests. If violated, 
non-parametric bootstrapping, with 1,000,000 case resamples and bias-corrected 
adjusted confidence intervals (90, 95, 99 and 99.9%; R package boot52,53), was  
used instead. Statistical tests were two-tailed unless otherwise indicated. Error 
bars in the figures represent repeated-measures s.e.m.54 unless otherwise indicated. 
Error bars for pupil analyses (Fig. 2e,f) were extracted via linear mixed-effects 
models. Box-and-whisker plots show the median (centre line), upper and lower 
quartiles (box limits); 1.5× the interquartile range (whiskers) and outliers (points). 
For F-tests, as a measure of the effect size, we report the proportion of variance 
of the dependent variable accounted for by the levels of the factor (that is, n2p

I
), 

together with 95% CIs, as computed by the function ci.pvaf() from the R  
package MBESS55.

Eye-tracking analyses of gaze. Preprocessing. Data from the EyeLink 1000 system 
(right eye) were downsampled to the 50 Hz that was available for the iViewX 
system. Given different sampling rates between testing sites, we checked for 

differences in the gaze-index results (Fig. 1b–d and Supplementary Fig. 2a), but 
found no significant difference (P > 0.1). We corrected for temporal–spatial drifts 
and distortions of the eye-tracking data for each participant and each calibration 
across trials. A total of 15 participants showed poor correction performance and 
were removed from the analysis after visual inspection, yielding 129 participants 
with valid eye-tracking data. We repeated some of the core analyses using 
uncorrected eye-tracking data, and found overall consistent results.

No valid gaze data were recorded after the second calibration in three out of the 
129 valid participants (one sign-tracker and two controls). In one (sign-tracker) 
participant, no eye-tracking data were available for the last 22 trials. Additionally, 
an average of 12.8% of the eye-tracking samples recorded during CS presentation 
(median = 10.6%; s.d. across participants = 10.0%) were missing or invalid, 
including gaze samples outside screen boundaries or during blinks, as detected by 
the eye-tracker device. This yielded an average of 0.8% (median = 0%; s.d. = 2.2%) 
trials with no valid gaze data overall, and for the third second of CS presentation, 
an average (s.d.) of 3.5 (6.6)% of trials with no valid gaze data.

Valid gaze samples were classified as being directed at one of three spatial 
regions of interest (ROIs): (1) the CS; (2) the spatial location of later US 
presentation; and (3) the rest of the screen reflecting the background. Note that 
for each second of CS presentation, the percentage of samples within each ROI 
(p(ROI)) also reflects the cumulative gaze times (that is, dwell times) for these 
ROIs, proportionally corrected for missing/invalid data.

Percentage fixation times. CS onset is known to trigger initial orientating 
responses22,56 that do not differ between sign-trackers and goal-trackers24. Later 
on, gaze exhibits Pavlovian conditioned responses to CS value, visible in enhanced 
fixations on appetitive compared with neutral or aversive cues22,56–58 (for early 
responses, see ref. 59). Moreover, uncertainty is known to attract attention to the 
CS37, which decreases across learning. To identify Pavlovian conditioned responses 
in gaze, we estimated how the influence of Pavlovian (CS) value (€+2, €+1, €0, 
€−1 or €−2) on percentage fixation times on the CS, US location and background 
differed between the 3 s of CS presentation via repeated-measures ANOVA. 
Moreover, we tested how attention changed across learning by performing 
random-effects linear regression analyses, regressing percentage fixation times  
on trial number (mean centred). Regression coefficients were analysed via 
repeated-measures ANOVA to test how trial effects differed between the CS, US 
location and background (factor location), between CS value levels (€+2, €+1, 
€0, €−1 and €−2) and between the 3 s of CS presentation. We followed up on 
significant interactions using post-hoc contrasts. Moreover, based on the results 
from these analyses, we tested the interaction CS value × trial number × location  
for the third second of CS presentation. We used planned contrasts to test linear  
CS value effects (€−2, €−1, €0, €+1 or €+2). Last, we tested a contrast coding 
whether an increase in CS value effects across trials on the CS was stronger than 
that on the US.

Gaze index. To assess sign- and goal-tracking, we computed a gaze index 
measuring the difference in the probabilities of approaching (here, fixating) the CS 
minus the US location. The aim was to parallel the approach employed in animal 
research to measure the relative approach to a CS and US10. The gaze index was 1 if 
the entire time was spent looking at the CS, −1 if the entire time was spent looking 
at the US, and 0 if there was no preference for either the CS or the US location, 
and it had some intermediate value if gaze was distributed between the CS, US 
location and background. For example, for values of p(CS) = 0.7, p(US) = 0.2 and 
p(BG) = 0.1, the gaze index would be p(CS) − p(US) = 0.7 − 0.2 = 0.5.

We investigated learning by testing whether the gaze index decreased across 
trials, whether it increased with increasing CS value, and whether the observed CS 
value effect became stronger across trials (interaction CS value × trial number per 
stimulus; refs. 19,22,37,57).

Definition of sign-tracker and goal-tracker based on gaze index. To define sign-
trackers versus goal-trackers, we computed the influence of CS value on the gaze 
index during the third (that is, last) second of CS presentation per participant. 
Sign-trackers were defined as the third with the most positive regression 
coefficients (n = 43), while goal-trackers were defined as the third with the most 
negative (n = 43). We tested whether the frequency of sign-trackers versus goal-
trackers differed between testing sites (Berlin/Dresden) using a chi-squared test.

We tested the effects of CS value on the gaze index, and whether CS value 
effects became stronger across trials (one-tailed test for sign-trackers19). Moreover, 
for sign-trackers, we separately tested the effect of trial number for trials involving 
wins versus losses. Figure 1d,f visualizes how influences of CS value developed over 
time in sign-trackers versus goal-trackers.

Model-based influences on gaze. Learning in the model-based system involves 
learning the transition between CSs and USs. Cues for which predictions were 
more uncertain were hypothesized to be attended more to support optimal 
processing and learning37. Specifically, we formulated a state transition matrix 
T(CS,US) of transition probabilities, where each element in the matrix holds the 
current estimate for the probability of transitioning from state CS to US. At the 
beginning of learning, the probability to observe one of the five different outcomes 
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after seeing a certain CS is T0(CS,US) = 1/5 as all USs are equally likely. In each 
conditioning trial t, the model-based system computes an SPE:

δSPEt ¼ 1� Tt CS;USð Þ ð1Þ

and updates the probability T(CS,US) of the observed transition via:

Ttþ1 CS;USð Þ ¼ Tt CS;USð Þ þ η´ δSPEt ð2Þ

where the free parameter η is a learning rate. For the other USs not observed 
in the current trial (that is, all US′s except for the observed US), the estimated 
probabilities are updated to keep probability distributions normalized using the 
equation Tt+1(CS,US′) = Tt(CS,US′) × (1 − η).

We approximate uncertainty (U) in state predictions in this experience- 
and model-based system via the distance of the highest state transition 
probability conditional on the visited CS ‘cs’ from certainty (that is 
U = 1 − max[T(CS = cs,US)]). We assumed that predictive uncertainty directly 
increases attention towards the predictive CS, and hence increases CS-related eye 
fixations. We therefore modelled the trial-by-trial gaze index via:

ModelMB : GazeIndext ¼ cþ βgazeU ´Ut sð Þ ð3Þ

where GazeIndext was computed during the third second of CS presentation in 
trial t, c is a free constant baseline parameter capturing preference for CS- over 
US-related fixations after learning and complete state certainty (for example, 
capturing effects of visual salience60), Ut(s) is the trial-by-trial CS-related 
uncertainty, and βgazeU

I
 is a free parameter for the degree to which maximum 

uncertainty during the first trial biases the gaze index towards the CS relative to 
baseline. Here, we multiplied the βgazeU

I
 parameter by the maximum uncertainty in 

the first trial (that is, 0.8), to standardize the uncertainty-based weight to reflect the 
effect of maximum uncertainty in our experimental design.

Model-free influences on gaze. In model-free learning, the value of CSs was learned 
from experience via errors in predicting the US outcome value. A simple model-
free reinforcement learning model computes an RPE:

δRPEt ¼ Rt � Vt sð Þ ð4Þ

and updates the expected CS value Vt(s) via:

Vtþ1 sð Þ ¼ Vt sð Þ þ α ´ δRPEt ð5Þ

where Vt(s) is the value of the CS s presented in trial t, Rt is the value of the US, and 
α is a free learning rate parameter. We assumed that the trial-by-trial value estimate 
Vt(s) exerts a Pavlovian response bias on gaze direction, and hence we modelled 
the influence of model-free learning on the trial-by-trial gaze index in the model 
‘value’ via:

ModelMF :GazeIndext ¼ cþ βgazeV ´Vt sð Þ ð6Þ

where βgazeV
I

 is a free parameter controlling the weight of the model-free Pavlovian 
response bias from CS value. Positive values of the βgazeV

I
 weight parameter indicate a 

sign-tracking response, whereas negative weight values indicate goal-tracking.

Dual model-free and model-based influences on gaze. Lastly, we constructed a model 
assuming that dual learning systems for model-free value (ω = 0) and for model-
based uncertainty (ω = 1) are combined via a weighting parameter ω to guide 
attention:

ModelMFþMB : GazeIndext ¼ cþ βgaze ´ 1� ω½  ´Vt sð Þ þ ω ´ ~Ut sð Þ
� �

ð7Þ

In the present task, uncertainty was constrained between 0.8 and 0, whereas 
CS value ranged between −2 and +2. Direct comparison of uncertainty and CS 
value is therefore difficult. For a comparison via the weighting parameter, we 
therefore normalized the uncertainty variable to span the same range as CS value 
by computing ~Ut sð Þ ¼ Ut sð Þ � 0:4ð Þ´ 2

0:4
I

. Note, that it is therefore difficult to 
interpret the absolute size of the weighting parameter ω, but that it is useful to 
analyse differences in parameter estimates between groups.

Parameter estimation and model comparison. To perform model comparison, 
we estimated free model parameters using maximum likelihood estimation for 
each individual participant, assuming Gaussian residuals. Bounded parameters 
were transformed to an unbounded scale for fitting: learning rate parameters for 
learning from RPEs or SPEs, as well as the weighting parameter ω, were bound to 
values between 0 and 1 via the logistic transform α ¼ 1

1þexp �að Þ
I

; the uncertainty-
based weight bU was bound to positive values via an exponential transform 
βU ¼ 0:8 ´ exp bUð Þ
I

. Optimization was performed using the nlm function in the 
R package stats48. We compared models for each participant by computing the 
difference in BIC values. We tested whether BIC values differed between sign- 
and goal-trackers via repeated-measures ANOVA. We used contrasts to test our 
hypotheses of: (1) a stronger value effect in sign-trackers (that is, stronger evidence 

for the model assuming conditioned responses to CS value13,16,17); and (2) a stronger 
model-based2,3 uncertainty response in goal-trackers.

To increase stability in the estimation of noisy model parameters, we followed 
up maximum likelihood estimation via fixed-effects maximum a posteriori (MAP) 
estimation. We assumed weakly informative independent Gaussian priors with 
mean zero (except for the learning rate parameters, where we assumed a mean 
prior learning rate of μα = 0.3 (that is, μa = log[0.3/0.7]) and a standard deviation  
of v = 5.

Eye-tracking analyses of pupil dilation. Pupil size data for valid fixation samples 
were z-standardized for each participant. For each participant and calibration 
(trials 1–8 and trials 9–16), we corrected for average baseline pupil size during 
1 s before CS presentation. We removed data from the first two trials per CS to 
prevent potential biases arising from the fixed order of stimulus presentation in 
these trials. We analysed pupil size via repeated-measures ANOVA with the factors 
trials (3–8 versus 9–16), CS value (€−2 to €+2) and time within trial (6 s from 
CS onset to US onset). We hypothesized that pupil size during the last second of 
US anticipation should decrease from the beginning to the end of conditioning, 
reflecting decreasing uncertainty with learning27. Moreover, we expected pupil size 
to increase for expected wins compared with expected losses or neutral outcomes28, 
and we coded planned contrasts for linear CS value effects. This CS value effect 
should increase across trials, and we tested interactions of linear CS value with 
trials (3–8 versus 9–16). To minimize influences from luminance, we tested effects 
nested within the last second before US presentation. We tested whether effects of 
CS value and of trials differed between sign- and goal-trackers. Contrasts tested 
effects separately for sign- versus goal-trackers and for trials 3–9 versus 9–16. In a 
first overall approach, we studied effects in all 6 s from CS onset to US onset. We 
thus tested whether the effects of CS value and of trials changed as a function of 
linear time within trials (seconds 1–6 after CS presentation (that is, the interaction 
trials × time and the interaction CS value × trials × time)). Next, we focused our 
analysis on the last second before US onset, where the signal is least confounded 
by luminance-related influences from CS presentation. Estimated contrasts were 
extracted from the ANOVA for visualization.

To visualize the effects of trials and of CS value, we moreover performed 
random-effects linear regression analyses on data before US onset, regressing pupil 
size on CS value separately for trials 3–8 versus trials 9–16 for time bins of 100 ms 
each. For each time bin and experimental half, we excluded outlier participants 
with CS value effects deviating more than 6 s.d. from the mean, yielding a total 
of two excluded data points. We performed repeated-measures ANOVA on the 
estimated regression coefficients for (1) the intercept and (2) the linear CS value 
effect, with the factors time bin, trials (3–8 versus 9–16) and group (sign- versus 
goal-trackers). We then performed exploratory tests nested within each time bin of: 
(1) the trial effect (3–8 versus 9–16) additionally nested within sign- versus goal-
trackers; and (2) the difference between sign- and goal-trackers in the CS value 
effect, nested within trials (3–8 versus 9–16).

Pupil analyses using computational modelling. We fitted computational learning 
models to the trial-by-trial pupil data. To this end, we extracted average pupil 
size per trial for the last second before US presentation, when influences from 
luminance should be minimal. We tested two different computational models.

First, we used the model-free reinforcement learning model (see equations (4) 
and (5)) to obtain the trial-by-trial value of the CS, Vt(s), which was assumed to 
modulate pupil size via a weight parameter βpupilV

I
 via:

pupilt ¼ cþ βpupilV ´Vt sð Þ ð8Þ

Second, we used the model for model-based state learning (see equations (1) 
and (2)) to obtain the trial-by-trial state uncertainty, Ut(s), which was assumed to 
modulate pupil size via a weight parameter βpupilU

I
 via:

pupilt ¼ cþ βpupilU ´Ut sð Þ ð9Þ

Again, c is a constant, here capturing pupil size independent of learning.  
As for modelling gaze direction, we again performed MAP estimation of the 
learning rate parameter α, the regression coefficient parameter βpupil and the 
residual variance σ. For parameter estimation, the learning rate parameter was 
again transformed to a bounded scale between 0 and 1 with the sigmoid transform 
α = 1/(1 + exp(−a)). Moreover, we constrained the uncertainty-based weight to 
positive values using an exponential transform βpupilU ¼ expðbpupilU Þ

I
. We used weakly 

informative Gaussian priors with a prior mean for the learning rate of μα = 0.3 (that 
is, μα = log[0.3/0.7]), a prior mean for the regression parameter of μβ0 ¼ 0

I
, and 

prior standard deviations of v = 5. Due to the large noise in pupil size, we obtained 
fixed-effects MAP estimates for sign-trackers and goal-trackers via Newton-type 
minimization with the function nlm from the stats package in the R System for 
Statistical Computing. To test both models against each other, we computed BIC 
values, and computed the difference in BIC between models for sign- and goal-
trackers separately.

For visualization of trial-by-trial effects of CS value, we aimed to maximize 
sensitivity within trials. To this end, we removed between-trial variance in the 
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intercept by subtracting the average pupil size per trial and per CS. Moreover, to 
normalize CS value effects and remove trends in average pupil size across trials, we 
performed z-transformation across the five different levels of CS value for each trial 
separately. Linear mixed-effects models were used to estimate the effect of CS value 
in sign- and in goal-trackers for each trial. Moreover, the computational value 
model was refitted to these normalized data for visualizing model predictions.  
The results from these analyses are shown in Fig. 2f.

Behavioural analyses. Forced-choice task. Data for the forced-choice task were 
available for 39 goal-tracker participants and 42 sign-tracker participants. Successful 
Pavlovian learning was assessed via the percentage of correct choices in the forced-
choice task. We tested for a group difference in the percentage of correct choices.

Instrumental conditioning. Data on instrumental conditioning were available for all 
43 sign-trackers and 43 goal-trackers. We measured overall learning speed as the 
number of trials needed until the learning criterion was reached (with a minimum 
of 60 and a maximum of 120 learning trials), and tested learning speed in sign-
trackers versus goal-trackers. Moreover, to measure initial learning, we extracted 
the first 20 trials. To measure asymptotic learning, we extracted the last 20 trials. 
For these, we computed the difference in the response rates between instrumental 
conditions (collect versus leave) for each participant, and tested the effect in sign-
trackers versus goal-trackers.

PIT. Data on the PIT task were available for all 43 sign-trackers and 41 goal-
trackers. We calculated individual PIT effects by regressing the number of button 
presses on the five different Pavlovian values, and tested whether PIT effects were 
larger than zero for individual participants via t-tests. We tested the strength of the 
PIT effect in sign-trackers and goal-trackers, and performed one-tailed tests of the 
a priori hypothesis19 that PIT effects are stronger and more frequently individually 
significant in sign-trackers compared with goal-trackers.

fMRI analyses. Preprocessing. fMRI recordings were preprocessed using Nipype61. 
First, correction for differences in slice time acquisition to the middle slice was 
performed. Voxel-displacement maps were estimated based on the acquired 
field maps. All images were realigned to correct for head motion, distortion and 
their interaction. After coregistration of the individual structural T1 images to 
the individual mean EPI, the structural image was spatially normalized with a 
resampling resolution of 2 × 2 × 2 mm3, and the normalization parameters were 
applied to all EPI images. Finally, images were spatially smoothed with a Gaussian 
kernel of 8 mm full-width at half maximum. Before statistical analysis, data were 
high-pass filtered with a cut-off of 128 s.

Value learning during Pavlovian conditioning. We performed model-based fMRI 
analyses via first- and second-level analyses in SPM. We used the model-free 
reinforcement learning model (see equations (4) and (5)) to compute the trial-by-
trial value of the CS Vt. Based on the reinforcement learning model, we determined 
the trial-by-trial temporal difference RPE for CS and US onsets. Onset of the 
CS changes value expectation from zero (at trial onset) to the predictive value 
of the CS, Vt(s), yielding a temporal difference RPE of RPECS = Vt(s) − 0. At US 
onset, value expectation changes from the predictive value of the CS, Vt(s), to the 
observed US value, Rt (that is, RPEUS = Rt − Vt(s).

The learning rate parameter α was set to 0.05 based on an exploratory 
analysis in a related sample with the same task setup (unpublished data). This 
value maximized the signal strength in the NAc. Repeating these analyses 
with the current sample confirmed the same pattern for the learning rate (see 
Supplementary Information), but also indicated good robustness with respect 
to the precise choice. The small value also corresponded to parameter estimates 
obtained from the pupil size data, which for the sign-trackers yielded a learning 
rate of α = 0.06.

In the first-level SPM model, we included the onsets of CSs as well as USs with 
their stimulus durations of 3 s within one onset regressor. Stimulus onsets were 
parametrically modulated by the trial-by-trial temporal difference RPE. Additional 
nuisance regressors captured variance specific to US onsets, the eyetracker 
recalibration after trial 40, fixation reminders, and realignment parameters with 
derivatives62. Regressors were convolved with the canonical haemodynamic 
response function.

Animal results suggest a fixed timing and duration of the midbrain  
dopamine responses10. We therefore focused analysis on the main RPE regressor, 
but controlled for possible individual variance in the onset and duration of the 
BOLD response in the current model, by including temporal and dispersion 
derivatives of the haemodynamic response function as nuisance regressors.  
Control analyses confirmed that there were no significant differences in the  
delay or the duration of the RPE response in the NAc between sign- and goal-
tracker groups.

Individual participants’ parameter estimates for the RPE parametric modulator  
were taken to the second level. Valid fMRI recordings during Pavlovian 
conditioning were available for 39 sign-trackers and 39 goal-trackers. A  
two-sample t-test was performed comparing the RPE effect between sign-trackers 
and goal-trackers, with testing site as a control covariate of no interest. Differences 

between sign-trackers and goal-trackers in BOLD responses were tested via an 
F-test. The RPE signal in sign- and goal-trackers was tested via nested contrasts 
with 78 (n participants) – 3 (parameters used for the mean signals in sign-
trackers and goal-trackers and for the covariate site) = 75 degrees of freedom. For 
visualization (Fig. 4a), we computed a contrast coding the a priori hypothesis10 
of a stronger RPE response in sign-trackers compared with goal-trackers. The 
visualization threshold was Puncorrected < 0.005 (k = 0.) Statistical testing was 
performed in an a priori defined VOI in the bilateral NAc10: we chose a previously 
validated bilateral ventral striatal VOI a priori from the IBASPM 71 atlas, and 
derived this from the Wake Forest University PickAtlas software (www.fmri.
wfubmc.edu/software/PickAtlas). RPEs in learning tasks akin to ours have been 
reported in this very VOI on numerous previous occasions (for example, refs. 63–66 
and many others). In addition, this a priori VOI overlaps substantially with a VOI 
shown in a published meta-analysis to exhibit strong RPE signals67: 78% of our 
a priori VOIs were inside the VOI from the meta-analysis. Moreover, we performed 
a meta-analysis at https://neurosynth.org of the term ‘prediction error’. This 
showed significant prediction error-related activity in 82% of our a priori VOI. 
Hence, it appears beyond doubt, given the current state of the scientific literature, 
that our a priori VOI can be validly used to test for RPE signals. We used FWE 
correction within the VOI to control for multiple comparisons.

Analyses of appetitive trials. While a wealth of evidence supports positively coded 
appetitive RPEs in striatal dopamine activity, the coding of aversive RPEs remains 
less clear. Some evidence suggests that aversive RPEs may be coded inversely 
(that is, as a signed prediction error or salience signal)31. To exclude potential 
confounds or noise from aversive RPE signals, we repeated the RPE analysis 
focusing only on win-predictive and neutral CSs (€0, €+1 and €+2). We coded the 
onsets of win-predictive and neutral CSs in one onset regressor, while the onsets 
of loss-predictive CSs were modelled as a separate onset regressor. The win- and 
neutral-predictive CSs were parametrically modulated by trial-by-trial temporal 
difference appetitive RPEs. An additional control regressor modulated the loss-
predictive onset regressor parametrically by the prediction errors for loss trials. 
Analyses focused on the prediction error modulator for trials involving wins and 
neutral outcomes. We extracted the average of the RPE response from the bilateral 
NAc VOI and performed one-tailed t-tests for a positive RPE signal in each group, 
and a one-tailed t-test of the a priori hypothesis10 that the RPE learning signal was 
stronger in sign-trackers than in goal-trackers.

Prediction error correlates outside the ventral striatum. Prediction error-like signals 
are also observed in other regions of the brain reward system, and whether these 
signals are selectively present in sign-trackers is unknown. Dopaminergic neurons 
in the VTA1 are known to project not only to the NAc, but also to the dorsal 
striatum (putamen and caudate), amygdala and vmPFC, and may drive fMRI 
BOLD correlates of RPE signals in these areas68. Sign-trackers do show increased 
CS-related activity in a range of different regions of the brain reward system32, 
but whether these resemble RPEs is unclear. Here, we tested for RPE-like signals 
in several a priori VOIs thought to carry RPE-like BOLD responses, including 
the putamen, caudate, VTA, amygdala and vmPFC. VOIs were taken from ref. 69. 
Results are reported for the average RPE signal in these VOIs. We first performed 
a priori tests using ANOVA with the factors group (sign- versus goal-trackers) 
and VOI. We did so for our a prior analysis involving gains and losses, and in 
addition for the analysis of gains only. We performed exploratory tests for each 
group of sign- and goal-trackers (one-tailed test of a signal larger than zero), and 
we performed one-tailed statistical tests of the hypothesis32 that the RPE-like 
signals are stronger in sign-trackers than goal-trackers, which we also corrected 
for multiple exploratory tests. The visualizations of results from voxel-vise analyses 
are based on uncorrected thresholds of Punc < 0.005 (k = 40), Punc < 0.01 (k = 40; all 
VOIs) and Punc < 0.5 (k = 40; VTA).

Exploratory analyses tested for prediction error-like signals at a whole-brain 
level. We performed voxel-based analysis with FWE correction, as well as cluster-
based analysis with clusters defined based on a threshold of P < 0.005.

State learning during Pavlovian conditioning. The learning of model-based state 
transitions relies on SPEs (see ‘Model-based influences on gaze’), which have 
previously been reported in the IPS and lPFC4. To estimate a neural SPE signal, 
we used the trial-by-trial SPE (see equation (1)) as a predictor in the fMRI 
analyses. We adapted the first-level SPM model reported above by removing the 
RPE from the model, and instead including a parametric modulator with the 
trial-by-trial mean-centred SPE at the US onset time. Parameter estimates for 
the SPE regressor were examined at the second level. First, we tested whether 
SPE predicted BOLD responses for sign- and goal-trackers combined in the IPS 
and the lPFC via voxel-vise analysis with FWE correction in the a priori VOIs, 
and by extracting the average signal for each VOI. The IPS VOI was obtained 
by summation of hIP1, hIP2 and hIP3 (ref. 70) from the probabilistic brain atlas 
(Jülich-Düsseldorf cytoarchitectonic atlas) using the Anatomy Toolbox71. The 
lateral PFC VOI was extracted from the Wake Forest University PickAtlas software. 
Based on our a priori hypothesis of stronger model-based control in goal- than 
sign-trackers2,3, we tested whether the SPE signal was stronger in goal-trackers 
than in sign-trackers, and whether there was an interaction of group × VOI using 
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repeated-measures ANOVA on the extracted mean signal per VOI. We followed up 
on a significant interaction using one-tailed2,3 random-effects two-sample Welch’s 
t-tests. Moreover, we visualized voxel-based results for the group difference based 
on uncorrected thresholds of Punc < 0.005 (k = 40) and Punc < 0.01 (k = 40).

Alternative classification of sign- and goal-trackers. Using computational 
modelling to define sign- and goal-trackers. To obtain a second, computational 
definition of sign- and goal-trackers, we constructed a computational model 
assuming that uncertainty and a Pavlovian model-free conditioned response bias 
would add up to direct attention (model ‘unc + value’):

GazeIndext ¼ cþ βgazeU ´Ut þ βgazeV ´Vt stð Þ ð10Þ

Note that this is effectively the same model as equation (7). It is parametrized 
differently in terms of two weights β rather than a trade-off parameter ω to 
allow a more direct measure of model-free and model-based contributions to 
gaze control. We estimated model parameters for this model for each individual 
participant. As before, we performed MAP estimation, using weakly informative 
independent Gaussian priors with prior means of zero (μ = 0, except for the 
learning rate parameters, for which we assumed a prior mean of μα = 0.3 (that 
is, μa = log[0.3/0.7])) and standard deviations of v = 5. Based on the estimated 
parameters, we used the weight of the model-free Pavlovian conditioned response 
bias βgazeV

I
 per participant to classify individuals as sign- or goal-trackers. The third 

of participants (n = 43) with the most positive weight parameter were classified 
as sign-trackers, whereas the third of participants (n = 43) with the most negative 
weight parameter were classified as goal-trackers.

We repeated some key analyses with this computational definition of sign- 
and goal-trackers to test the stability of our findings. Specifically, we tested the 
hypothesis that model-based uncertainty guides gaze more strongly in goal- than 
sign-trackers by testing whether the weight parameter of model-based uncertainty 
on gaze direction βgazeU

I
 was larger in goal-trackers than in sign-trackers via a 

two-sample Welch’s t-test. Moreover, we repeated the analyses to test for a larger 
PIT effect in sign-trackers. For the neural analyses, we tested whether sign-
trackers showed an RPE signal averaged across all tested VOIs, and whether it was 
stronger than in goal-trackers. Likewise, for the neural SPE, we tested whether 
the difference between sign- and goal-trackers differed between VOIs (IPS and 
lPFC), whether the SPE signal was stronger in sign- than goal-trackers in IPS, and 
whether each group showed an SPE signal different from zero. We used one-tailed 
tests based on the hypothesis of stronger model-free control in sign-trackers and 
stronger model-based control in goal-trackers2,3.

Bayesian model of model-based learning and uncertainty. In our model 
for model-based learning, we used a simple approximation as a measure of 
uncertainty. We repeated these simple analyses with a slightly more complex 
Bayesian model of model-based learning, which computes uncertainty explicitly 
for each single trial. In this model, given a certain CS i has been presented in trial 
t, we use a Dirichlet distribution to model the probabilities Tt

i
I

 for transitioning to 
one of the j = 1, .., J possible outcome states:

P Tt
i jCSti ; βti

� 
¼ 1

B βti
� 

YJ

j¼1

Tt
i;j

 βti;j�1

where evidence for each US j given CS i is βti;j ¼ γti;j þ η

I
, where γti;j

I
 is the number of 

observed transitions from CS i to US j throughout the experiment up to trial t, and 
η is the number of prior observations. In this model of state learning, we computed 
trial-by-trial uncertainty as the variance of the most likely outcome in the Dirichlet 
distribution. Trial-by-trial prediction errors were computed by taking one minus 
the expected value of the observed outcome, δSPEt ¼ 1� E Tt

i;j

h i

I

.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The task was programmed using Matlab 2011 (MATLAB version 7.12.0, 2011; MathWorks, Natick, MA, USA) with the Psychophysics 
Toolbox Version 3 extension.

Data analysis Data were analyzed using Matlab 2013a (MATLAB version 8.1.0.604, 2013; MathWorks, Natick, MA, USA) and the R System for Statistical 
Computing Version 3.3.2 (http://www.r-project.org). fMRI data were analyzed using Nipype (for preprocessing; Gorgolewski et al., 2011) 
and Statistical Parametric Mapping 8 (SPM8; http://www.fil.ion.ucl.ac.uk/spm/; Wellcome Department of Imaging Neuroscience).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data sharing will be based on a) the acceptance by the study team that a valid and timely scientific question, based on a written protocol, has been posed by those 
seeking to access the data; b) that the role of the original study team will be fully acknowledged. Please contact the corresponding author via email to request 
access to the data. Safeguarding of ethical standards will be ensured by submission of a study amendment to the Charité and Dresden ethics committees. Data 
access for questions of scientific integrity may additionally be regulated via the funder.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Data are quantitative experimental.

Research sample The study and the PIT task were part of a larger study examining learning in a population of individuals at risk of developing alcohol 
dependence (LeAD study; www.lead-studie.de; clinical trial number: NCT01679145). We therefore drew healthy male participants with 
an age of 18 years from the general population in two testing sites (Berlin and Dresden, Germany).

Sampling strategy We randomly drew healthy male participants from the general population via local registries. The study was designed and sample size of 
198 subjects was chosen to detect moderate differences (a priori Power analysis: d=0.4, α=0.05, ß=0.80) in learning parameters or brain 
activity in healthy adults with high versus low risk alcohol consumption, using longitudinal follow-up over three years. For our cross-
sectional analysis, valid eye-tracking data in the fMRI scanner was available for 129 subjects. The statistical group identification 
(described in the manuscript) resulted in a final sample size of 43 subjects per sign-/goal-tracker group, which yielded a good power to 
detect medium differences in learning parameters or brain activity (d=0.6, α=0.05, ß=0.79).

Data collection Data were collected using computers, manual response buttons, an eye-tracker, and fMRI recordings. Only the participant and the 
researcher were present during data collection. Occasionally, multiple researchers were present during the testing session. The 
researchers were blind to group definitions (sign- versus goal-trackers) during the data collection.

Timing Data collection started on Feburary 19, 2013, and stopped on October 31, 2015.

Data exclusions A priori exclusion criteria were left-handedness, a history of any substance dependence or current substance use except for nicotine 
dependence, other major psychiatric disorders (DSM-IV axis I; CIDI) and neurologic disorders. 198 subjects were tested in total. Valid eye-
tracking data was available for 129 subjects, from which 43 sign-trackers and 43 goal-trackers could be identified (for description of the 
statistical selection approach see the manuscript). For each task or data source (behavior; pupillometry; fMRI), data from some subjects 
was missing for technical reasons (e.g., early abortion of task execution, recording problems). The final sample sizes per task and 
recording technique are indicated in the methods section.

Non-participation Invited via letter (addresses from resident registration offices): n = 1937; Interested persons: n = 475; Screened: n = 445; Included: n = 
244; Valid assessment + MRI (available at time of analysis): n = 198; Valid eye-tracking data: n = 129; Classified as sign-/goal-trackers: n = 
43/43; Further missing data for each task or measure, see Methods section.

Randomization There were no experimental group allocations. Group definitions in the analyses were based on statistical tests described in the methods. 
Assignment of experimental stimuli (Pavlovian CSs; instrumental shells) to experimental (reinforcement) conditions, stimulus orderings 
and locations across trials were randomized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Participants were drawn from the general population via local registries; participants were contacted via postal letters 
concerning study participation. It is not clear how potential self-selection biases should impact the results as we defined groups 
based on subtle experimental eye-tracking markers.

Ethics oversight Ethical approval for the study was obtained from the ethics committee of Charité-Universitätsmedizin Berlin (EA1/157/11) and 
Universitätsklinikum Dresden (EK228072012).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type task; event-related

Design specifications In the fMRI scanner, subjects performed Pavlovian conditioning and Pavlovian-instrumental transfer (PIT). 
Pavlovian conditioning: 80 trials per subject; each trial lasted 9 sec; the inter-trial-interval was exponentially distributed 
with a minimum of 2 sec and a maximum of 6 sec (mean duration: 2.9 sec). 
PIT: 90 trials involving conditioned CSs. Data from additional 72 trials involving drink-related background stimuli will be 
reported elsewhere. Each trial involved an initial 600 ms of Pavlovian CS presentation, an instrumental response 
window of 3 sec, 300 ms visualization of response results, and an exponentially distributed inter-trial-interval (min / 
mean / max duration = 2 / 2.9 / 6 sec).

Behavioral performance measures During Pavlovian conditioning attention was monitored using eye-tracking and pupillometry. We studied probabilities 
(mean + SD) of fixating a presented CS, the background, and the location of later US presentation, and how this was 
affected by time and CS value. We also studied baseline-corrected pupil size. Pavlovian learning was moreover 
measured after the fMRI scanning session in a forced choice task via the percentage (mean + SD) of correctly choosing 
the higher-valued out of two presented CSs. 
During the Pavlovian-instrumental transfer (PIT) task conducted during fMRI scanning, the number of button presses 
per trial was recorded. Responses were made on a 1 x 4 current design MR-compatible response box button using the 
dominant index finger. We analyzed response rate (mean + SD) as a function of CS value and performed linear 
regression of the number of button presses on CS value (mean + SD of regression coefficients). 
SD: standard deviation across subjects.

Acquisition

Imaging type(s) functional MRI

Field strength 3

Sequence & imaging parameters Pulse sequence type: gradient echo; Imaging type: EPI; Field of view: 192 x 192 mm^2; Matrix size: 64 x 64 x 42; Slice 
thickness: 2 mm, 1mm gap between slices; Orientation: approximately -25° to the bicommissural plane; TE / TR / Flip 
angle: 25 ms / 2410 ms / 80°

Area of acquisition whole brain scan

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Nipype (release 0.11.0; hash of git version: 07d598aaffce0ecd10a3bfbed63369a6634259e5) (Gorgolewski et al., 2011) 
using SPM8; slice time correction with ref. to middle slice, motion correction via realignment to 1st slice of each 
volume, correction for field inhomogeneity with voxel displacement maps, co-registration ind. mean EPI on ind. T1 
image, segmentation of ind. T1 image , normalization, smoothing (8mm FWHM Gaussian kernel)

Normalization segmentation and normalization of ind. T1 images via default ICBM (European Brains) template (MNI space), application 
of normalization parameters to ind. distortion-corrected EPI images, resampling to 2x2x2mm^3 voxel size

Normalization template default template in SPM8/New Segmentation (ICBM152 - European Brains)

Noise and artifact removal inclusion of volume-to-volume realignment parameters (3 translation, 3 rotation) on individual-statistics level; no 
removal of tissue or physiological signals/artifacts

Volume censoring no censoring used
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Statistical modeling & inference

Model type and settings mass univariate 
first-level: random effects model, high-frequency pass filter: 128s 
second-level: random effects t-test

Effect(s) tested Model-based fMRI: one regressor coding all 2 (stimuli per trial: CSs + USs) x 80 (trials) = 160 stimulus onsets; the 
regressor of key interest was a parametric modulator coding the temporal difference reward prediction error obtained 
from a reinforcement learning model for each stimulus and trial; an additional model parametrically modulated 80 
onsets coding a state prediction error signal during US onset in each trial; we tested these parametric modulators in 
sign- and goal-tracker groups as well as the group difference via a 2nd-level t-test; t-contrasts were used to test the 
effect in each group; the group difference was tested via an F-contrast

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

We used a NAc ROI derived from the Wake Forest University (WFU) PickAtlas software 
(www.fmri.wfubmc.edu/software/PickAtlas). Additional ROIs for analysis of reward prediction errors 
were taken from a recent paper by Nebe et al. (2018). ROIs for state prediction errors were taken from 
Neyens et al. (2018; IPS) and from the WFU PickAtlas software (lPFC).

Statistic type for inference
(See Eklund et al. 2016)

FWE corrected voxel-wise threshold of p<.05 (ROI-based), and mean signal per ROI

Correction FWE correction in volume of ROI mask

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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