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Electrocardiography is the gold standard for electrical heartbeat activity, but offers
no direct measurement of mechanical activity. Mechanical cardiac activity can be
assessed non-invasively using, e.g., ballistocardiography and recently, medical radar
has emerged as a contactless alternative modality. However, all modalities for measuring
the mechanical cardiac activity are affected by respiratory movements, requiring a signal
separation step before higher-level analysis can be performed. This paper adapts a
non-linear filter for separating the respiratory and cardiac signal components of radar
recordings. In addition, we present an adaptive algorithm for estimating the parameters
for the non-linear filter. The novelty of our method lies in the combination of the non-
linear signal separation method with a novel, adaptive parameter estimation method
specifically designed for the non-linear signal separation method, eliminating the need
for manual intervention and resulting in a fully adaptive algorithm. Using the two
benchmark applications of (i) cardiac template extraction from radar and (ii) peak timing
analysis, we demonstrate that the non-linear filter combined with adaptive parameter
estimation delivers superior results compared to linear filtering. The results show that
using locally projective adaptive signal separation (LoPASS), we are able to reduce
the mean standard deviation of the cardiac template by at least a factor of 2 across
all subjects. In addition, using LoPASS, 9 out of 10 subjects show significant (at a
confidence level of 2.5%) correlation between the R-T-interval and the R-radar-interval,
while using linear filters this ratio drops to 6 out of 10. Our analysis suggests that the
improvement is due to better preservation of the cardiac signal morphology by the non-
linear signal separation method. Hence, we expect that the non-linear signal separation
method introduced in this paper will mostly benefit analysis methods investigating the
cardiac radar signal morphology on a beat-to-beat basis.

Keywords: signal processing, non-linear filtering, medical radar, vital signs monitoring, cardiac signal

INTRODUCTION

Electrocardiography (ECG) has become a universally accepted standard for measuring heart rate.
However, since ECG is caused by depolarization and repolarization of the heart, it is difficult
to directly asses the mechanical activity of the heart using ECG (Chan-Dewar, 2012). Recently,
research has been focused on unobtrusive measurements of mechanical heartbeat activity using,
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e.g., ballistocardiography (BCG) or seismocardiography
(Castiglioni et al., 2007; Postolache et al., 2007; Inan et al., 2009a;
Pinheiro et al., 2010; Giovangrandi et al., 2011). Most of these
projects aim to develop unobtrusive, long-term home monitoring
systems for monitoring patients with cardiac conditions (Brüser
et al., 2012, 2013; Christoph Hoog et al., 2015) or monitoring
sleep quality (Paalasmaa et al., 2012, 2014).

While these applications are undoubtedly of great importance,
the original intention behind the development of BCG and
related modalities was to non-invasively asses the mechanical
cardiac and hemodynamic activity and derive covariates of
measures such as cardiac output (Starr and Noordergraaf, 1967).
For these purposes, it is important to obtain a clean signal
with high signal-to-noise ratio. Additionally, one must ensure
that the preprocessing steps do not significantly change the
morphology of the signal. Unfortunately, mechanical heartbeat
signals obtained with modern systems often contain a strong
respiratory signal component (Yao et al., 2012). Removing
this component without altering the cardiac signal can pose
a certain challenge when the respiratory movements contain
high frequency components like sharp flanks (Yao et al., 2014).
Additionally, the cardiac signal itself can contain high frequency
components due to the influence of heart sounds (Castiglioni
et al., 2011), which makes it difficult to reduce noise using
simple low-pass filtering (Yao et al., 2012). For these reasons,
we have previously adapted a non-linear algorithm to separate
the respiratory and cardiac components from BCG recordings
obtained from bed-mounted sensors (Yao et al., 2014). Using
simulated data, we have shown that this non-linear method
achieves superior results compared to linear filters.

In this paper, we demonstrate that this non-linear signal
separation method can be adapted to mechanical heartbeat
signals obtained with radar. Medical radar for non-contact
vital signs acquisition is a rapidly developing modality, which
faces very similar challenges to BCG, including sensitivity to
movement artifacts, high variability in signal morphology and
spectral overlap between cardiac and respiratory components
(Sun et al., 2011a,b, 2012a, 2013, 2016; Khan and Cho, 2017).

In addition, we also address the issue of parameter estimation,
which was identified as a weakness of the original non-linear
signal separation method, by improving an automated parameter
estimation scheme developed for BCG signals (Yao et al., 2013).
This parameter estimation scheme, which, so far, has only been
tested on simulated data, is applied to real world recordings for
the first time. Using sensitivity analysis, we demonstrate that the
parameter estimation process is robust with respect to changes in
signal amplitude and settings of the algorithm.

Combining signal separation and parameter estimation, we
obtain an adaptive algorithm for the extraction of the cardiac
component from radar signals. Since the signal separation
method from Yao et al. (2014) is based on a non-linear filtering
method called locally projective noise reduction (LPNR), we call
the algorithm introduced here locally projective adaptive signal
separation (LoPASS).

The intended application of LoPASS is to extract and
denoise the cardiac component from radar recordings during
the preprocessing step prior to any analysis of mechanical

cardiac activity that requires precise knowledge of the signal
morphology. In order to demonstrate the advantage of LoPASS,
we compare the results from preliminary analyses performed on
a dataset of radar recordings which have been preprocessed with
either LoPASS or linear filters. We chose linear filters for this
comparison, since they are still used regularly for the extraction
of the cardiac component, even by state-of-the-art beat detection
algorithms (Paalasmaa et al., 2014).

Specifically, we perform two benchmark applications: First, we
extract a heartbeat template from the radar signal via R-peak-
synchronized averaging, showing that the LoPASS-preprocessed
data exhibits much higher coherence and lower standard
deviation. Then, we examine the relationship between the timing
of the peaks in the radar signal and the R-T-interval. Since
ventricular systole, the main cause for the deflections in the
cardiac radar signal, takes place during the R-T-interval (Chan-
Dewar, 2012), we expect a correlation between the timing of the
main deflection in the radar signal and the R-T-interval. This
correlation is more easily detected in the LoPASS signal than in
the signal extracted with linear filters.

This article is structured as follows. In Section “Materials
and Methods,” we describe the proposed LoPASS algorithm and
investigate its robustness via sensitivity analysis. In addition,
we also provide details on the data acquisition procedure.
Section “Results” contains the results of the data analysis
and the comparison between linear filters and LoPASS-based
preprocessing. In Section “Discussion,” we will discuss our
findings, and finally a conclusion.

MATERIALS AND METHODS

Non-linear Signal Separation
The non-linear signal separation used in this paper was
previously applied to the problem of extracting fetal ECG signals
(Schreiber and Kaplan, 1996b) and separating the respiratory
and cardiac components of BCG signals (Yao et al., 2014).
It is based on the so called LPNR (Kantz and Schreiber,
2002), which is a non-linear filtering method using geometric
projections in delay space to achieve reduction of in-band noise.
Variations of LPNR have been used to denoise signals from a
variety of applications domains, such as BCG (Yao et al., 2014),
ECG (Schreiber and Kaplan, 1996a), electroencephalography
(Effern et al., 2000) or natural language (Hegger et al., 2000),
attesting to its generality. A detailed introduction to both
the LPNR algorithm and LPNR-based signal separation can
be found in Kantz and Schreiber (2002) and Yao et al.
(2014). In the following, we provide a short summary of its
working principle.

Deterministic signals tend to occupy a low dimensional
manifold when embedded into delay space using delay
embedding techniques, while noise generally spreads into
all dimensions of the delay space. This property of deterministic
signals, which is formally described in Takens’ delay embedding
theorem (Takens, 1981), can be exploited for noise reduction,
even when the signal in question is not strictly deterministic as,
e.g., in the case of ECG or BCG signals. In short, future samples
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from a deterministic signal can be predicted from past samples:

xT+1 = f (xT) (1)

Here, xt is a delay vector containing m samples up to time step
t, where m is the so-called embedding dimension:

xt = (xt−m, ..., xt−1, xt)
T (2)

Linearizing the function f (·), which encodes the
underlying dynamics that generated the signal, one obtains
an approximation, at the current location x0, to the manifold in
delay space occupied by the deterministic signal:

xT+1 = x0 + A(xT − x0) (3)

Since the manifold is restricted to a lower-dimensional
subspace, matrix A encodes the dimensions into which the
signal extends, at least locally around x0. Hence, projecting
onto the subspace spanned by the columns of A will reduce
noise, under the assumption that the space perpendicular to A
is occupied only by noise.

The principle outlined above was formalized by Grassberger
et al. (1993), who also showed that the subspace spanned by A
can be estimated given only noisy data and no prior information
about the dynamics of the signal, by calculating the principal
eigenvector of the set Yt of noisy delay vectors y within a small
region of size ε around the current delay vector yt :

Yt = {y :‖ y − yt ‖< ε} (4)

In Figure 1, we illustrate an example of LPNR denoising
a signal by projecting it onto the one-dimensional manifold
in a two-dimensional delay space. Critically, the choice
of ε determines the intensity of noise reduction and the
common recommendation is to choose the value of ε equal
to the expected peak-to-peak amplitude of the noise process
(Kantz and Schreiber, 2002).

This uncommon method of specifying the noise characteristic,
combined with the fact that LPNR operates in delay space as
opposed to frequency domain, enables this method to perform
noise reduction even if the noise process has a similar spectrum as

the signal (Schreiber, 1999). To separate two signal components
s1 and s2 with overlapping spectra, one simply applies LPNR
to remove one of the components, say s1 (usually, the faster
and smaller component), in order to obtain an estimate of the
other component s2. This is achieved by setting ε equal to the
peak-to-peak amplitude of s1, which is typically obtained by
visual inspection. Subtracting the estimate of s2 from the raw
input signal then yields an estimate of the first component s1
(Schreiber and Kaplan, 1996b). This process is illustrated in
Figure 2, where s1 corresponds to the heartbeat and s2 to the
respiration signal.

By design, LPNR operates on the entirety of the input data,
meaning it is technically not a filter but a smoother. However,
fast online approximations to the LPNR algorithm have also been
developed (Schreiber and Righter, 1999).

Adaptive Parameter Estimation
One of the main weaknesses of LPNR-based methods is the
choice of the parameters, and specifically the choice of ε. The
general approach is to choose this parameter via visual inspection
(Kantz and Schreiber, 2002). While this approach might work in
applications where the analysis is done offline (see, e.g., Schreiber
and Kaplan, 1996b; Effern et al., 2000), it is not feasible for
systems that are designed to operate autonomously. This problem
is most relevant for mechanically measured heartbeat signals
acquired by unobtrusive home monitoring systems, because
the signals tend to display non-stationary behavior due to the
long observation periods. Additionally, these systems most likely
employ some kind of automatic gain control to deal with the
uncertainty of the measurement environment. Hence, a fixed
parameter setting will not work for such systems.

We have previously introduced an algorithm for estimating
a suitable value for ε for the separation of BCG component
(Yao et al., 2013). Critically, we have shown using simulated
BCG recordings that the estimate for ε scaled correctly with the
amplitude of the cardiac component. However, the parameter
estimator was not tested on real data. In this paper, we introduce
a new adaptive parameter estimation scheme based on a similar
principle as the one proposed in Yao et al. (2013) and apply the
scheme to real world recordings of medical radar data.

FIGURE 1 | (Left) Embedding a deterministic signal results in delay vectors on a low dimensional manifold. (Middle) Noise causes the delay vectors to spread into
all dimensions of the delay space. However, the original manifold can be recovered by calculating the main eigenvector of the delay vectors within a region of size ε

as shown by the gray ellipse (in this plot ε = 1). (Right) By projecting on the main eigenvector (principal axis of the gray ellipse), one can reduce the noise level.
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FIGURE 2 | Signal separation using LPNR. The input signal (here radar)
containing respiration, heartbeat and noise is filtered using LPNR with
parameter settings such that heartbeat and noise are removed (specifically, ε

approximately equals the heartbeat amplitude). Subtracting respiration from
the input and applying LPNR again, with parameter settings such that noise is
removed, extracts the heartbeat component.

Similar to our approach in Yao et al. (2013), we collect the
maximum amplitude difference 1at within slices 1st of the
high-pass-filtered signal s = (s0,. . . , st ,. . . , sT). The slice length
τ is chosen to be slightly longer than the expected beat-to-beat
interval (τ = 1.5s in the current implementation):

1st = (st, ..., st+τ) (5)

1at = max(1st)−min(1st) (6)

Next, we calculate the median ma of the amplitude differences
from all slices:

ma = median({1at : t = 0s, 1.5s, 3s, . . .}) (7)

The median of a set X of values xn is defined as the value that
is, at the same time, smaller or equal and larger or equal than half

of all values in X:

median(X) = xm with xm ∈ X such that

|{xn : xn ≤ xm}| = |{xn : xn ≥ xm}| = dN/2e
(8)

The estimate for ε is then taken as 1.5 times the median:

ε := fscma, with fsc = 1.5 (9)

Figure 3 illustrates this process for a segment from a medical
radar recording containing both cardiac and respiratory signal
components. On first sight, scaling the median by an arbitrary
factor seems to be inferior to using the 70% quantile and rejecting
the remaining 30% as outliers, as done in Yao et al. (2013).
However, the median is generally much more stable than the tails
of a distribution. Notably, the value of the 70% quantile might
change considerably depending on the presence or absence of
outliers. In the example from Figure 3, the histogram in the right
plot shows that the outlier at 1.8 is correctly rejected; although,
the estimator also rejects a small part of the signal (the part
beyond the red line and below 1).

In practice, we apply parameter estimation to epochs of 1 min.
The estimate of ε is then used for LPNR-based signal separation
on the given epoch and the whole procedure of estimation and
separation is repeated for each epoch. Combining the adaptive
parameter estimation method with LPNR-based signal separation
eliminates the need to manually choose the parameter ε and
results in an algorithm that can adapt itself to signals with
non-stationary amplitudes. Hence, we call this algorithm locally
projective adaptive signal separation (LoPASS).

Previously, we have shown that LPNR-based signal separation
is relatively robust against small misspecifications of the ε

parameter (Yao et al., 2014). Here, we perform a sensitivity
analysis in order to quantify the robustness of LoPASS toward the
choice of fsc. For this purpose, we vary fsc between 1 and 2 and
compare the output of LoPASS to the output obtained with the
standard setting of fsc = 1.5. Specifically, we calculate the relative

FIGURE 3 | For parameter estimation the raw signal (upper left) is high-pass-filtered and the maximum altitude difference in slices of 1.5 s are collected throughout
the signal. One such slice is shown in the lower left plot. The median of these amplitude differences is multiplied with 1.5 and used as the estimate (green and red
lines, right plot).
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variance of the difference signal:

erel =
var(cx − c1.5)

var(c1.5)
, with x = 1, ..., 2 (10)

Here, cx denotes the output of LoPASS obtained with fsc = x.
The result, which is shown in Figure 4A, indicates that changing
fsc by up to 50% only results in changes of the output of about
5% on average. The histogram of input signal amplitudes in
Figure 4B shows that this result is not simply due to a lack of
variation in the input signals. Hence, we conclude that LoPASS is
extremely robust with respect to the choice of fsc.

Medical Radar
In this paper, we demonstrate that LPNR-based signal separation
can be applied to recordings obtained from medical radar.
Medical radar has been proposed as contactless vital signs
estimation method for use in infection screening systems (Sun
et al., 2011a,b, 2012a,b, 2013; Yao et al., 2016) and depression
screening systems (Sun et al., 2016). It works by recording the
motion of the body surface induced by left ventricular ejection

and aortic blood flow. When measured on the chest wall it is also
known as apexcardiography (Lin et al., 1979).

Similar to BCG, radar can be used in a bed-mounted
configuration as shown in Figure 5. Such a setup is suitable for
both home monitoring application or scientific investigations
involving the mechanical heartbeat activity. Compared to BCG,
which uses pressure sensors, or SCG, which uses body-mounted
accelerometers, radar has the advantage that it is a truly
contactless modality. This is of importance in applications
where direct contact is undesirable, e.g., in infection screening
systems (Sun et al., 2012a). Additionally, the radar receiver can
be more easily repositioned to adjust for differences in body
size or posture, while BCG sensors are generally fixed to the
frame of the bed.

Data Acquisition
In this paper, we perform a preliminary analysis on recordings
from medical radar obtained in a controlled laboratory
experiment. The main goal of this analysis is to assess the ability of
LoPASS to extract the cardiac components from radar recordings.
Figure 5A shows the measurement setup. Several recordings,

FIGURE 4 | (A) Result of sensitivity analysis: Varying the scaling factor fsc by up to ±50% results in a relative change of the output erel (blue circles) by around 5% on
average. Error bars indicate one standard deviation. (B) Histogram over standard deviations of radar recordings. Note the logarithmic scale of the x-axis.

FIGURE 5 | (A) Measurement setup used to obtain the experimental recodings analyzed in this paper. (B) Block diagram of the radar receiver.
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FIGURE 6 | A sample segment from the radar recording (first row) with cardiac components extracted via the LoPASS algorithm (second row) and conventinal
bandpass filtering (third row). The simultaneously recorded ECG reference is also shown (fourth row).

FIGURE 7 | Top row: Template of mechanical heartbeat calculated from the cardiac radar signal extracted with LoPASS (Left) and linear filters (Right) from the radar
recording of subject 1. Errorbars show the standard deviation. Bottom row: Twenty samples chosen at random from the pool of all samples used to calculate the
template in the top row. In all plots, the x-axis shows the time relative to the cardiac cylce, where 0 corresponds to the occurrence of the previous R-peak and 1
corresponds to the occurrence of the next R-peak.

each 10 min long, were obtained for each subject, with the radar
placed at different positions under the bed, while the subject was
lying on the bed in a supine position and breathing normally.
The cohort consisted of a total of 10 university students without
known cardio-respiratory diseases (9 males and 1 female, average
age: 22 years). Examples of raw data from 10 subjects are provided
in Supplementary Table S1. These examples correspond to the
part of the dataset that was used for the analysis presented in
“Results” Section. This dataset has not been previously published.

In this study, we focus on extracting the cardiac component.
Therefore, the radar was located around the apex of the heart (left
fifth intercostal space) with a distance of 3–5 cm.

Since the 24-GHz radar system (SHARP, DC6M4JN3000,
Japan) used in the experiments was a prototype, which lacked
automatic gain control, the amplification of the system was
manually adjusted for each recording, with signal amplitudes
differing by more than one order of magnitude across
recordings (see Figure 4B). Hence, the recordings in the
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dataset poses sufficient variability to challenge the ability of
LoPASS to adapt itself to substantial variations in signal
amplitude and morphology.

The experiment was approved by the ethics committee
of the University of Electro-Communications, Tokyo, Japan.
All participants were fully informed of the purposes and
experimental procedures before they gave their written
consent to participate.

Since the objective of the analysis is to assess the extraction
of the cardiac component, we visually inspected all recordings
and selected one representative, artifact free segment per subject.
By excluding movement artifacts from the analysis, we focus on
the ability of the separation algorithm to distinguish between
respiration and heartbeat and minimize the possibility that our
result might be biased by potential differences in resistance
against artifacts between linear and non-linear preprocessing
methods. Following this approach, we do not assess the resilience
of LoPASS to movement artifacts. However, since it is known
that movement artifacts assert a strong influence on mechanical
heartbeat signal (Inan et al., 2010a,b), we think that the most
promising approach is to perform artifact rejection using a
separate algorithm optimized for this task, before performing
signal separation. Hence, in the current analysis, we focus only
on cardiac component extraction from artifact free recordings.

RESULTS

In this section, we present the results of our preliminary analysis.
The main goal of this analysis is to compare LoPASS-based
preprocessing to conventional linear filter-based preprocessing.
Therefore, all analysis steps are carried out on two sets of data:
(i) the artifact free radar recordings which were preprocessed
using LoPASS and (ii) the same recordings preprocessed with
linear filters. A secondary goal of this analysis is to assess the
viability of radar as an unobtrusive and non-invasive modality
for investigating medical questions of interest involving the
mechanical heartbeat activity. For these reasons, we performed
two benchmark applications: template construction and peak
timing analysis. The following sections describe the analysis
performed and the result.

The raw data used in the analysis presented in this section is
released in the Supplementary Table S1.

Additional data not included in the Supplementary Table S1
was used for the sensitivity analysis in Section “Adaptive
Parameter Estimation.”

ECG Assisted Template Construction
In the first benchmark application, we use the R-peaks of a
simultaneously recorded ECG signal to construct a template
of the cardiac radar component. Template construction is
an important step in the analysis of mechanical heartbeat
signals in both classical (Starr and Noordergraaf, 1967) and
modern (Inan et al., 2009b) analysis approaches, as well as
in some heart rate estimation methods (Paalasmaa et al.,
2014). However, constructing templates is sensitive to the
consistency of the signal morphology, which can be affected

by non-stationarities (e.g., change of posture) but also by the
influence of high frequency parts of the respiratory component
on the heartbeat signal. An example of such a situation
can be observed in Figure 6 at 218 s, at 227 s, and at
231 s. Although, the radar signal (Figure 6 first row) does
not contain any visible artifacts at these time points, the
upward flank of the respiratory component contains high
frequency parts that remain after bandpass filtering and cause
visible artifacts in the heartbeat signal (third row). Notably,
the cardiac component extracted using LoPASS is not visibly
affected (Figure 6 second row).

In order to quantify the resistance of LoPASS to these
kinds of high frequency respiratory interference and its
advantage compared to bandpass filtering, we extract the cardiac
component from artifact free segments of the radar signal with
both LoPASS and linear filters. The linear filters consisted of
a finite impulse response (FIR) low-pass filter with order 128
and a cutoff frequency of 10 Hz, which was used to remove
high frequency noise components. In addition, an FIR high-
pass filter with order 256 and cutoff frequency of 0.75 Hz was
used to remove the respiratory component. Using separate filters
for these two tasks allowed us to adapt the filter steepness to
each task separately. Furthermore, since the exact heart rate is
not known in advance, we chose conservative cutoff frequencies
resulting in a relatively wide bandwidth, in order to account for
changes in heart rate.

For both separation methods, the resulting cardiac component
was segmented using the R-peaks detected in the simultaneously
recorded ECG reference, and a template of the mechanical
heartbeat signal was calculated by resampling and averaging.
In addition, we also calculated the standard deviation, which
quantifies the deviation from the template. This procedure
was performed for each subject individually. The resulting
templates for subject 1 are shown in Figure 7 along with 20
randomly chosen samples. From visual inspection, it is evident
that the cardiac component extracted with LoPASS is much
more consistent than the cardiac component extracted with

TABLE 1 | Average standard deviations across the templates calculated based on
LoPASS and linear filter-extracted cardiac signal and their ratio.

Subject
no.

Mean standard
deviation LoPASS

Mean standard
deviation BP

Ratio std BP/std
LoPASS

1 0.0235 0.0758 3.22

2 0.0327 0.0743 2.27

3 0.1104 0.2645 2.40

4 0.0253 0.0677 2.68

5 0.0939 0.1988 2.12

6 0.0392 0.0810 2.07

7 0.2198 0.5436 2.47

8 0.0206 0.0569 2.76

9 0.0243 0.0617 2.53

10 0.0735 0.2575 3.50

Average ratio std BP/std LoPASS across all subjects: 2.6

Only the ratio is comparable across subjects, since the standard deviations
themselves depend on the subject specific amplitude of the raw signals.
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FIGURE 8 | Relevant time points for the second benchmark application
illustrated for one cardiac cycle. First vertical bar indicates the ECG R-peak
(beginning of the cardiac cylce). Second bar marks the main peak in the radar
signal (maximum mechanical activity). Third bar marks the T-peak
(repolarization). In the benchmark application, we compare the interval
between first and second bar to the interval between first and third bar. Note
that these two intervals relate to different events in the cardiac cylce and
hence, are not identical but are presumed to be correlated with each other.
See Table 3 for mean and standard deviations of the intervals for
each subject.

linear filters. This impression is also confirmed quantitatively
by the standard deviation listed for the all 10 subjects in
Table 1. Since value of the standard deviation depends on
the position in the cardiac cycle, we calculated the mean
standard deviation across the whole template. The mean standard
deviation for the cardiac component extracted by the linear filter
is consistently more than twice as large as the mean standard
deviation of the LoPASS-extracted cardiac signal. Note that the
absolute value of the standard deviation also depends on the
amplitude of the radar signal and thus cannot be compared
across subjects.

This result demonstrates that LoPASS-based cardiac
component extraction leads to both visually and quantitatively
more consistent templates as opposed to linear filter-based
cardiac signal extraction. Judging from the samples shown in the
lower row of Figure 7, this effect is not only due to a superior
baseline removal achieved by LoPASS, but also due to a more
consistent signal morphology, which is especially evident in the
second half of the cardiac cycle. This has profound consequences
for applications which rely on detailed investigation of the
cardiac signal morphology on a beat-to-beat basis. One example
of such an application is introduced in the following section.

Peak Timing and R-T-Interval
In the second benchmark application, we look at the relationship
between the timing of the major peaks in the cardiac radar
signal measured with respect to the R-peak of the simultaneously
recorded ECG and the R-T-interval. The R-peak in the ECG
signal marks the depolarization of the ventricle, while the
T-wave marks the repolarization (Chan-Dewar, 2012). However,

it is the mechanical activity of the heart which causes the
cardiac component observed in radar or BCG recordings.
Specifically, it is thought that the ejection of blood from the
left ventricle causes the first major peak of each cardiac cycle
in the BCG signal (Starr and Noordergraaf, 1967). With respect
to the electrical cardiac cycle, ventricular ejection takes place
between the R- and T-peak (Chan-Dewar, 2012). Variations
in the duration of ventricular systole are likely to affect the
timing of ejection and T-peak in a similar way. Hence, we
conjecture that the timing of the first major peak of each
cardiac cycle in the cardiac radar component is correlated with
the R-T-interval.

To confirm our conjecture, we detect the main peak in
the cardiac radar signal for each cardiac cycle and calculate
the correlation coefficient between the R-T-interval and the
interval between R-peak and main peak of the radar signal (see
Figure 8 for an example). Subsequently, we perform statistical
testing whether the correlation coefficient differs significantly
from zero. This procedure is performed separately for each
subject and each preprocessing method (i.e., LoPASS and
linear filtering) leading to a total of 20 p-values summarized
in Table 2. Choosing a confidence level of 2.5%, we reject
the null-hypothesis of zero correlation between the R-T-
interval and the R-radar-interval for nine out of 10 subjects
based on the cardiac radar signal extracted with LoPASS.
However, when extracting the cardiac radar signal with linear
filtering (with same filter parameters as in the first benchmark
application), the null-hypothesis is rejected only for six of
the 10 subjects.

Table 3 summarizes the mean and standard deviation of
the R-T-interval and the R-radar-interval for all subjects and
both preprocessing methods, as well as the correlation between
the two intervals.

In summary, using LoPASS-based preprocessing, we
observe consistent results across almost all subjects (i.e., highly
significant correlation between R-T-interval and R-radar-
interval). However, using linear filter-based preprocessing, the

TABLE 2 | P-values for testing the significance of the correlation between
R-T-interval and R-radar-interval.

Subject no. P-values for LoPASS
based preprocessing

P-values for linear
filter-based

preprocessing

1 3.7 × 10−10 1.2 × 10−5

2 1.9 × 10−5 8.7 × 10−4

3 1.1 × 10−10 5.8 × 10−2

4 1.2 × 10−11 1.5 × 10−2

5 6.4 × 10−5 5.6 × 10−2

6 2.0 × 10−7 2.9 × 10−4

7 4.9 × 10−3 8.6 × 10−3

8 6.5 × 10−1 7.4 × 10−1

9 2.6 × 10−6 3.9 × 10−7

10 2.2 × 10−2 2.6 × 10−1

Significance level: 2.5% 9 out of 10 significant 6 out of 10 significant

The null-hypothesis states that the correlation between the two intervals is zero.
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TABLE 3 | Mean and standard deviation of R-T-interval and R-radar-interval and correlation between the two intervals for all subject separated by preprocessing method
(LoPASS vs. linear filtering).

Subject no. R-T-interval:
mean (SD) [ms]

R-radar-interval for
LoPASS: mean (SD) [ms]

Correlation between
intervals for LoPASS

R-radar-interval for
linear filter: mean (SD)

[ms]

Correlation between
intervals for linear filter

1 233 (4.5) 75 (5.9) 37% 184 (7.5) 21%

2 256 (4.9) 109 (4.7) 47% 298 (5.7) 35%

3 212 (4.2) 86 (6.3) 34% 277 (9.2) 9%

4 247 (9.2) 94 (7.5) 40% 275 (6.1) 12%

5 236 (4.9) 280 (7.1) 45% 282 (7.2) 27%

6 299 (4.3) 274 (5.8) 27% 100 (7.5) 18%

7 241 (6.6) 180 (6.7) 23% 195 (12.7) 21%

8 267 (7.5) 539 (26) −8.4% 551 (38.5) −15%

9 271 (8.0) 174 (6.0) 51% 182 (7.5) 55%

10 233 (5.4) 173 (8.4) 17% 171 (9.9) 6%

Overall 248 (30.0) 157 (91.6) 31.3% (average) 208 (77.0) 18.9% (average)

Note that the standard deviation of the overall data mostly reflects the inter-subject variability.

results are inconsistent with only about half of all subjects
exhibiting significant correlation.

DISCUSSION

The results presented in the previous section demonstrate
that extracting the cardiac component of the radar signal
using LoPASS offers improved coherence as compared to
using conventional linear filtering. Specifically, we have shown
that using LoPASS leads to more coherent templates, which
could benefit, for example beat detection algorithms relying
on template matching techniques. Additionally, in our second
benchmark application, we discovered a significant correlation
between the R-T-interval in the ECG and the R-radar-
interval. This suggests that the major deflections of the
cardiac radar signal might indeed be closely related to
the mechanical oscillations caused by ventricular ejection.
Traditionally, the gold standard for measuring ventricular
ejection timing is to detect the first and second heart sound
using phonocardiography (Lin et al., 1979; Chan-Dewar,
2012). In future experiments, we will obtain simultaneous
phonocardiograms and compare these with the cardiac radar
component. If the relationship between radar signal and
ventricular ejection can be confirmed, medical radar might
be used as an unobtrusive and non-invasive alternative for
estimating ventricular ejection timing.

Note that here, we do not claim to have established a
connection between the radar signal and ventricular ejection.
Instead, we have shown that using LoPASS as a non-linear
preprocessing technique uncovered an interesting correlation
between medical radar and ECG, which points toward promising
avenues for future studies. Importantly, a consistent result across
all subjects was only observed for the LoPASS-extracted cardiac
radar component, suggesting that a faithful extraction of the
signal morphology is necessary for such an approach to succeed.

One important limitation of this study is the small
size of the dataset and the lack of heterogeneity in the

cohort. Hence, it is difficult to draw any medically relevant
conclusions from these results which generalize to the
entire population. However, drawing medical conclusions
is not the intention of this paper. Instead, this paper aims
to introduce LoPASS, and to demonstrate that (i) it can
be applied to medical radar recordings and that (ii) it
outperforms linear filters on the benchmark applications
reported here. Solving these questions for the dataset
at hand provided valuable insight which, in addition to
demonstrating the performance of LoPASS, will help to
design future studies that overcome the limitations of the
current dataset.

The improvements due to using LoPASS come at the
cost of an increase in computational complexity as LPNR
is significantly slower than linear filters (Yao et al., 2014),
which might preclude the use of LoPASS in applications
with limited computational resources (e.g., embedded systems).
This problem can be mitigated by applying LoPASS to
short epochs of the input data. Using this technique with
an epoch length of 1 min, our MATLAB implementation
of LoPASS requires a computation time which is less than
20% of the duration of the input signal. Hence, we are
able to achieve quasi-online performance, albeit at the cost
of a delay equal to the length of one epoch. Additional
speed-ups are possible by porting the algorithm to a faster
language like C. Alternatively, fast online approximations to
the LPNR algorithm that avoid the delay of the epoch-based
approach have also been developed. These algorithms work by
storing and reusing intermediate results and are described in
detail in Schreiber and Righter (1999).

One further consideration is given by applications
involving average signal characteristics, like, for example
the calculation of mean heart rate or mean respiration
rate. For these applications, we do not expect a significant
improvement from the use of LoPASS, since they do not
make use of the exact morphology of the signal. However,
for applications relying on the signal morphology and
especially for analysis methods investigating the signal
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on a beat-to-beat basis, applying LoPASS for cardiac component
extraction can lead to significantly improved results as
demonstrated in the Section “Peak Timing and R-T-Interval.”

Finally, it is worth pointing out that since the amplification
of the system was manually adjusted for each recording and
since the position of the radar differed between recordings, the
amplitudes of the cardiac and respiratory components of the
radar signals differed by more than one order of magnitude
between recordings (as indicated in Figure 4B). Hence, the
adaptive parameter estimation scheme introduced in this paper
was instrumental in obtaining the results reported here.

CONCLUSION

In this paper, we have adapted a non-linear signal separation
algorithm to extracting the cardiac component from medical
radar recordings. Additionally, we have augmented this
separation scheme with an adaptive parameter estimation
method, which addresses the weakness of having to estimate
the parameter for LPNR via visual inspection. The resulting
locally projective adaptive signal separation (LoPASS) algorithm
is best suited as a preprocessing step for analysis methods where
preserving signal morphology is critical. Using two benchmark
applications for radar recordings, we have demonstrated
the superiority of LoPASS as compared to linear filters. In
future projects, we will perform more detailed analyses of the
cardiac radar signal. These will include comparisons of the
cardiac radar signal to phonocardiograms, with the prospect of
establishing radar as an unobtrusive and non-invasive estimator
for ventricular ejection timing.
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