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A B S T R A C T

The hypothalamus and insular cortex play an essential role in the integration of endocrine and homeostatic signals
and their impact on food intake. Resting-state functional connectivity alterations of the hypothalamus, posterior
insula (PINS) and anterior insula (AINS) are modulated by metabolic states and caloric intake. Nevertheless, a
deeper understanding of how these factors affect the strength of connectivity between hypothalamus, PINS and
AINS is missing. This study investigated whether effective (directed) connectivity within this network varies as a
function of prandial states (hunger vs. satiety) and energy availability (glucose levels and/or hormonal modu-
lation). To address this question, we measured twenty healthy male participants of normal weight twice: once
after 36 h of fasting (except water consumption) and once under satiated conditions. During each session, resting-
state functional MRI (rs-fMRI) and hormone concentrations were recorded before and after glucose administra-
tion. Spectral dynamic causal modeling (spDCM) was used to assess the effective connectivity between the hy-
pothalamus and anterior and posterior insula. Using Bayesian model selection, we observed that the same model
was identified as the most likely model for each rs-fMRI recording. Compared to satiety, the hunger condition
enhanced the strength of the forward connections from PINS to AINS and reduced the strength of backward
connections from AINS to PINS. Furthermore, the strength of connectivity from PINS to AINS was positively
related to plasma cortisol levels in the hunger condition, mainly before glucose administration. However, there
was no direct relationship between glucose treatment and effective connectivity. Our findings suggest that
prandial states modulate connectivity between PINS and AINS and relate to theories of interoception and ho-
meostatic regulation that invoke hierarchical relations between posterior and anterior insula.
1. Introduction

Food intake in humans is determined and affected by non-
homeostatic (i.e. external) factors, such as the social situation and
time, and homeostatic (i.e. internal) factors related to the body’s energy
needs, such as hunger and starvation (Begg and Woods, 2013; Woods,
2009; Woods and Ramsay, 2011). However, controlling food intake and
energy homeostasis under different metabolic, i.e. prandial states
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(hunger vs. satiety), is remarkably complex in humans since it is influ-
enced by the interaction of the endocrine system and brain structures
involved in monitoring interoceptive signals (Begg and Woods, 2013; De
Silva et al., 2012; Mayer, 2011). Interactions between brain function and
body energy homeostasis can be further altered by various pathophysi-
ological conditions such as increased blood lipids in obesity (Murray
et al., 2014; Morton et al., 2014; Val-Laillet et al., 2015). For instance, in
overweight subjects, body mass index (BMI) and insulin levels are asso-
ciated with variations in resting-state functional connectivity (FC) after
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Abbreviations

AAL Automated-Anatomical-Labeling
AINS anterior insula
ANOVA analysis of variance
BMI body mass index
BMS Bayesian model selection
BOLD blood oxygen level dependent
CFS cerebrospinal fluid
CSD cross-spectra density
DARTEL diffeomorphic anatomical registration through

exponentiated Lie algebra
DCM dynamic causal modeling
DPARSFA data processing assistant for resting-state fMRI advanced

edition
EC effective connectivity
FC functional connectivity
GLM general linear model
LH lateral hypothalamus

LAINS left anterior insula
LPINS left posterior insula
LME linear mixed-effects
MLR multiple linear regression
NPCs neuronal parameter components
NPEs neuronal parameter estimates
PCs principal components
PCA principal component analysis
RAINS right anterior insula
RPINS right posterior insula
PINS posterior insula
rmANOVA repeated measures ANOVA
rs-fMRI resting-state functional magnetic resonance imaging
ROI regions of interest
SCD singular value decomposition
spDCM spectral DCM
TE echo time
TR repetition time
VMN ventromedial hypothalamus nucleus
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an overnight fast (Kullmann et al., 2012). Furthermore, FC imbalance
between brain regions associated with impulsivity (i.e. inferior parietal
lobe), response inhibition (i.e. frontal pole) and reward (i.e. nucleus
accumbens) is correlated with increased food approach behaviors and
obesity in children (Chodkowski et al., 2016). Nevertheless, FC captures
purely correlational relationships between regions and does not yield
information about the direction of influences. Therefore, studying how
the directed connectivity within brain networks involved in homeostatic
regulation is modulated by physiological (prandial) states constitutes an
important step forward to understand the neural control of food intake.

Both the hypothalamus and insular cortex respond to hunger- and
satiety-inducing signals (Mayer, 2011; Schloegl et al., 2011; Valassi et al.,
2008; Wright et al., 2016). For instance, whilst hunger increases activity
of the hypothalamus (Lizarbe et al., 2013), satiety exerts suppressive
effects on the hypothalamic signal, as occurs after exogenous glucose or
insulin administration, (Kullmann et al., 2013; Little et al., 2014; Smeets
et al., 2007, 2005; Thomas et al., 2015). However, most brain imaging
studies used a typical resting-state fMRI (rs-fMRI) approach to investigate
the FC between seeds (i.e. hypothalamus, AINS and PINS) and brain areas
involved in appetite regulation (Cauda et al., 2011; Frank et al., 2013;
Moreno-Lopez et al., 2016; Wright et al., 2016) and thus cannot clarify
the directionality of connections between these regions. For example, a
study using seed-based analysis to investigate the effect of fasting and
satiation on FC in healthy subjects found an enhancement of FC between
the posterior insula and superior frontal gyrus, and between the hypo-
thalamus and inferior frontal gyrus after overnight fasting (Wright et al.,
2016).

Much of our understanding on how the central nervous system gov-
erns ingestive behavior is based on experiments in rodents, which has
proven especially fruitful to uncover functional sub specializatzions
within the hypothalamus (Timper and Brüning, 2017). However, the
markedly larger and more gyrified neocortex observed in humans (Sun
and Hevner, 2014) complicates direct comparisons in cortical processing
between humans and rodents. Non-human primates offer a more valid
animal model with which to delineate the neural architecture of appetite
regulation. Indeed, convergent evidence from studies in non-human and
human primates suggests a highly conserved architecture underlying the
neural processing of food. Specifically, the AINS –which contains the
primary gustatory cortex-appears to code for the physical properties of
food (i.e. texture, temperature), whereas the orbitofrontal cortex (OFC)
tracks the subjective pleasantness of flavors and smells (Rolls, 2006).
Subcortical areas such as the hypothalamus or the brain stem do not seem
to be involved in these evaluative processes to the same degree. Rather,
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these structures receive interoceptive information signaling hunger and
satiety (DelParigi et al., 2005; Pelchat et al., 2004; Rolls, 2006). This
information is then relayed through the PINS towards the AINS and from
there to orbitofrontal areas, where subjective valuation of the organisms’
metabolic state presumably takes place (Craig, 2014, 2005; Dagher et al.,
2017).

Recent computational theories of interoception have proposed hier-
archically structured network models (Seth, 2013) that include recip-
rocal connections between hypothalamus, posterior insula and anterior
insula (e.g., see Fig. 7 in Stephan et al., 2016 and Fig. 3 in Manjaly et al.,
2019). These theories make predictions about patterns of effective con-
nectivity that are of relevance for the present study. Specifically, these
theories predict that in states of dyshomeostasis (such as hunger), for-
ward or ascending connections (which are assumed to signal deviations
between actual and expected bodily states, i.e. prediction errors) are
enhanced. Conversely, in states of homeostasis (such as satiation), for-
ward connectivity should be reduced, relative to backward or descending
connections (which are thought to transmit predictions about bodily
states).

Finally, it is unclear how prandial states affect the effective connec-
tivity (EC) between these regions. To fill this research gap, we applied
dynamic causal modeling (DCM; Friston et al., 2003) to infer effective
(directed) connectivity on latent (hidden) neuronal states frommeasured
brain data in a study that manipulated prandial state (hunger vs. satiety)
and energy availability (before and after glucose administration) in
healthy young men. DCM can be used to gather evidence favoring one
network model (hypothesis) over other models and to understand how
nodes (i.e. brain regions) might influence each other (Friston et al.,
2011). A recent DCM variant called spectral DCM (spDCM) estimates EC
from the intrinsic signal fluctuations present in rs-fMRI data (Friston
et al., 2014). Spectral DCM uses a variational Bayesian procedure to es-
timate the strengths of endogenous connectivity in the absence of
(known) external perturbations like tasks or stimuli.

The current data-set has been used in a previous publication, in which
we reported reduced FC of AINS after glucose application during both
hunger and satiety (Al-Zubaidi et al., 2018). Furthermore, we found that
increases in plasma insulin levels between hunger and satiety were
negatively related to PINS activity after glucose administration (Al-Zu-
baidi et al., 2019).

In the present investigation, we first used spDCM to estimate the EC
parameters for each participant and experimental condition (hunger vs.
satiety, before vs. after glucose administration) using rs-fMRI data.
Subsequently, we applied Bayesian model selection (BMS; Stephan et al.,



Fig. 1. Time course of the mean blood plasma concentrations for cortisol (A),
insulin (B) and glucose (C) under hunger and satiety conditions before and after
oral glucose treatment (time point 0). Boxes on the bottom of the graph indicate
the time points of meals on the second day (B ¼ breakfast, L ¼ lunch at 09:00
a.m. and 12:00 p.m., respectively). In each condition, the first rs-fMRI was
recorded 20 min before, the second rs-fMRI 20 min after the intake of oral
glucose. The black dashed lines on y-axis of the Figure (C) refer to hypoglycemia
(Hypo), euglycemia (Eugl) and hyperglycemia (Hyper) ranges for fasting glucose
levels pre- (left y-axis) and post-glucose administration (right y-axis, at 120 min
after glucose administration). The two lower panels are adapted from Al-Zubaidi
et al. (2019). Figure C is adapted from Al-Zubaidi et al. (2018).
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2009) to determine the most plausible model in each condition from a set
of competing hypotheses (i.e. models). Finally, we performed an analysis
of variance (ANOVA) on estimated neural parameters to test whether the
estimated connection strengths between hypothalamus, PINS and AINS
are affected by the prandial states and glucose treatment.

For the present analysis, it might be expected that increased forward
connectivity in the hypothalamus-PINS-AINS network during fasting
relative to satiety, in line with studies showing enhanced hypothalamic
activity (Lizarbe et al., 2013) and coupling with frontal structures
(Wright et al., 2016) in a hunger state. We further speculated that glucose
administration would act as a transient satiety signal (Kullmann et al.,
2013; Little et al., 2014; Smeets et al., 2007, 2005; Thomas et al., 2015)
and hence reduce the strength of these forward connections. By contrast,
predictions regarding the effect of prandial state and glucose adminis-
tration on backward connections are less straightforward because, in the
computational theories mentioned above, different backward connec-
tions have slightly different functions and depend on context. For
example, backward connections between insular areas are thought to
carry predictive signals that serve perceptual updating (and are thus
thought to change between hunger and satiation), whereas backward
connections from cortical visceromotor regions like anterior insula to-
wards effector regions such as the hypothalamus are assumed to carry
predictive signals which change homeostatic setpoints but are only
invoked in certain contexts (Stephan et al., 2016).

2. Experimental procedures and methods

2.1. Participants

The study was carried out in accordance with the Declaration of
Helsinki (2002) and was approved by the ethics committee of the Uni-
versity of Lübeck, Germany.

Twenty-four healthy male volunteers (mean age 25 � 5 years) with a
BMI within the normal range (mean BMI 22.5� 2.5 kg/m2) gave oral and
written informed consent before participating in our study. All partici-
pants were subjected to a medical interview and were excluded from
participation when reporting any drug consumption, somatic (e.g., dia-
betes, metabolic syndrome) or mental health disorders (e.g., depression
disorder, eating disorders) in the present or past. Participants were
financially compensated. In four subjects, we were not able to obtain a
sufficient normalization of the functional individual brain image into
standard space. Accordingly, these subjects were excluded from the an-
alyses (see section “Region-of-interest time-series extraction” for further
explanation).

2.2. Experimental design

Participants were examined twice, one time in the hunger condition
and the other time after receiving regular standardized meals. The par-
ticipants underwent these conditions in a randomized order. Each session
lasted two days with sessions scheduled exactly one week apart. On the
second day of each session at 1:05 p.m., functional resting-state MRI was
recorded. Participants were instructed to close their eyes, to lie as still as
possible and to avoid any particular cognitive activity. At 1:25 p.m., after
completing the first resting-state recording lasting for 6 min, participants
drank a water solution containing the equivalent of 75 g glucose. At 1:45
p.m., 20 min after the oral glucose intake, a second resting-state
recording was obtained (6 min). Also, 19 blood samples per subject
and condition were collected, of which 13 samples were drawn before
and six samples after glucose administration. Fig. 1 shows the time course
of the mean concentrations of plasma glucose, insulin and cortisol on the
second day of the experiment for hunger and satiety conditions. In each
condition, participants rated their subjective hunger feeling 20 min
before and 20 min after oral glucose intake with a visual analog scale
ranging from zero (not hungry at all) to nine (very hungry). The details of
the type of meals, the timing of collecting blood samples and image
3

acquisition parameters can be found in the supplementary material. This
information is also reported in detail in Al-Zubaidi et al. (2018).

2.3. Handling and analyses of blood samples and hunger ratings

Glucose concentrations were determined using the B-Glucose-Data-
Management device (HemoCue GmbH, Grossostheim, Germany). For
measuring the hormone levels, blood samples were centrifuged imme-
diately. The supernatants were stored at �80 �C until they were
analyzed. Blood serum and plasma were used to measure the insulin and
cortisol levels by commercial enzyme-linked immunoassay (Immulite
DPC, Los Angeles, USA; insulin: intra-assay coefficient of variation (CV)



Table 1
Coordinates of the individual 5-mm3 sphere clusters of the left and right ROIs of
the anterior and posterior insula, defined by Cauda et al. (2012) and Wright
et al. (2016). K represents the number of voxels that are common between the
insula ROIs and the insula masks from the Neuromorphometrics atlas provided
by SPM12.
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< 1.5% and inter-assay CV < 4.9%; cortisol: intra-assay CV < 1.7% and
inter-assay CV < 2.8%).

To investigate differences between the two experimental conditions
(hunger and satiety) for plasma glucose, insulin and cortisol levels before
and after glucose administration (oral glucose intake) two averages
across the relevant samples of the second day were calculated for each
participant and condition: one before and one after the oral glucose
intake.

To test for differences, two-way repeated-measures ANOVAs (rmA-
NOVA) with factors prandial state (levels: hunger, satiety) and glucose
administration (levels: before, after glucose intake) were performed for
each of the dependent variables, i.e. hunger rating, plasma glucose, in-
sulin, and cortisol levels, separately. All analyses were performed using
SPSS software Version 22.0. Values are reported as mean (M) and stan-
dard deviation (�SD). Also, we included partial eta squared (η2p ) as a
measure of the effect size of the performed rmANOVAs.

2.4. Preprocessing

Preprocessing of the data was performed with the “data processing
assistant for resting-state fMRI” toolbox (DPARSF advanced edition,
version 3.2, available at http://rfmri.org/DPARSF). DPARSF uses a
subset of functions provided by SPM (SPM12, available at http://www.fil
.ion.ucl.ac.uk/spm/). The rs-fMRI images were preprocessed as follows:
(i) The first 7 vol of each dataset were discarded to allow the signal to
reach equilibrium and to allow the subjects to adjust to the scanning
noise; (ii) The origins of structural and functional images were manually
set to the anterior commissure and reoriented to enable a better align-
ment to the SPM template in order to prevent normalization errors and to
optimize between-subject alignment; (iii) Functional images were slice-
time corrected to the middle slice by means of Fourier phase shift
interpolation (Sladky et al., 2011). Head movement correction was per-
formed on data by volume-realignment to the mean volume using a rigid
body spatial transform to estimate the realignment parameters; (iv) Then,
the T1 structural image was co-registered to the mean functional image
of each subject; (v) Gray matter, white matter and cerebrospinal fluid
(CSF) segmentation, bias correction and spatial normalization of the T1
structural image were adjusted to the Montreal Neurological Institute
(MNI) template using the DARTEL algorithm (Ashburner and Friston,
2005); (vi) The functional images were spatially normalized to the
MNI-template by using the normalization parameters estimated by the
DARTEL algorithm with voxels size set to 3 mm isotropic; (vii) Spatial
smoothing was performed with a 6 mm full width at half maximum
(FWHM) Gaussian kernel.

2.5. Spectral dynamic causal modeling

SpDCM uses a Bayesian model inversion procedure to infer from the
measured cross-spectra density (CSD) of the BOLD signals on parameters
of connections that link neural states in pre-defined networks of regions.
The inverse Fourier transform of CSD corresponds to a cross-correlation
Fig. 2. Seeds superimposed on an average structural T1 image. (A) Middle picture an
(red and magenta) ROIs. Lower row: individual seeds in the right and left insula. (B
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function over time, which is the measure of the FC (Pearson’s correla-
tion) at zero lag (Friston et al., 2014; Razi et al., 2015; Razi and Friston,
2016). In other words, inverting a probabilistic forward model (from
hidden neural states to observed CSD of BOLD signals), spDCM estimates
the directed connectivity among hidden neuronal states that best ex-
plains the measured FC between brain regions. A summary of spDCM can
be found in supplementary material.
2.6. Region-of-interest time-series extraction

As regions of interest (ROI), we defined four ROIs located in the insula
(two insula ROIs per hemisphere) and one within the hypothalamus
(Fig. 2). For each insula ROI, we determined several coordinates
(Table 1) to cover the functional differentiation within human insula
(Wright et al., 2016). These coordinates were chosen based on FC studies
that provided the association of the specific ROIs of the insula with other
brain areas (Cauda et al., 2011) and which investigated the effect of
hunger and satiety on the insular cortex (Wright et al., 2016). Subse-
quently, each coordinate was used to generate a 5 mm3 sphere cluster
(Fig. 2A) by using the SPM Marsbar toolbox. Then, we summed up these
clusters to create one combined seed for every subregion of the insula
(i.e. anterior and posterior insula ROI). To avoid an overlap of the insula
seed regions and other anatomical brain regions (i.e. regions outside the
insula), we defined the final insula ROIs by finding common voxels be-
tween the insula ROIs and the corresponding insula masks from the
Neuromorphometrics atlas provided by SPM12. The middle insula was
not defined in order to avoid any overlap between the anterior and
posterior insula ROIs.

The hypothalamus is notoriously difficult to examine in fMRI exper-
iments as multiple factors can cause interference due to its anatomical
position and small size (Dagher et al., 2017). Even though the hypo-
thalamus has numerous subnuclei, we decided to focus our analysis on
the whole hypothalamus as it would have been unrealistic to achieve
d upper row: left and right anterior insula (green and cyan) and posterior insula
) Hypothalamus (blue) ROI. L, left; R, right.

http://rfmri.org/DPARSF
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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more spatially detailed results without running unique measurements
adapted to the hypothalamus, which was not the primary goal of this
study. The bilateral hypothalamus ROI (Fig. 2B) was based on the SPM
Wake Forest University (WFU) Pickatlas toolbox (http://www.fmri.wfub
mc.edu/cms/software, version 3.0; Maldjian et al., 2003).

The preprocessed rs-fMRI data for each subject per condition were
entered into the general linear model (GLM) with a constant term, the
confound regressors of the CSF signal and of the white matter signal and
24 head motion parameters (six standard realignment parameters, their
derivative and the quadratic terms of these 12 realignment parameters;
Friston et al., 1996), but not the average whole-brain signal. The applied
temporal high pass filter of 1/100 Hz was included in the GLM model to
remove slow frequency components caused by scanner drift. After esti-
mation of the GLM model, we extracted time series from our ROIs,
removing any signal that could be explained as a linear mixture of our 26
confound regressors. The time series was extracted using a singular value
decomposition (SVD) procedure implemented in SPM12 and the first
principal eigenvector was retained to represent the ROI time series
(Fig. 3B). Fig. 3C and 3D shows the predicted cross-spectral density of the
BOLD signals and the hidden neuronal states, respectively, of the winning
model for a single subject. In four subjects, we were not able to calculate
the time series of the bilateral hypothalamus ROI correctly because some
of the voxels within the hypothalamus ROI belonged to the CSF
(normalization artifact). Accordingly, these subjects were excluded from
estimating spectral DCM parameters and the associated analyses. How-
ever, all 24 subjects were used for physiological and behavioral analyses
as in our previous studies ( Al-Zubaidi et al., 2018, 2019).
5

2.7. Spectral DCM and model space selection

The spDCM analyses were specified for each subject in each experi-
mental condition (satiety-before, satiety-after, hunger-before and
hunger-after oral glucose) separately using DCM12 (revision 7196)
implemented in SPM12 (revision 7219). For each condition and partic-
ipant, the average EC between the ROIs was modeled using different
models. These different models varied in their directed connections be-
tween the five ROIs and were specified in order to explore alternative
hypotheses of insula-hypothalamus network interactions. To avoid
testing too many hypotheses and risk overfitting at the level of models
(which, under flat priors on models, becomes more likely with the
number of models compared), we tried to keep the model space as small
as possible. For bilateral models, this is facilitated by the general
anatomical principle that, with very few exceptions (like V1), reciprocal
interhemispheric connections between homotopic areas in both hemi-
spheres exist. This principle has been established in tract tracing studies
in animals (e.g., see the early work in Macaques by McGuire et al., 1991)
and human studies of brain connectivity (e.g., see the discussion and
references in Stephan et al., 2007). The connections between hemi-
spheres were supposed to take place either via hypothalamus, PINS and
AINS (Fig. 4A: models 1–4) or via hypothalamic connections alone
(Fig. 4A: models 5–8). Endocrine signaling of gut peptides that are
related to promote meal initiation (e.g. ghrelin) or to promote meal
cessation (e.g. insulin and leptin) reach specialized neurons within the
hypothalamus and achieve their consequences by influencing brain re-
gions involved in food intake regulation (Druce et al., 2004; Mari�c et al.,
Fig. 3. Illustration of the hypothalamus-
insula network and the results of the win-
ning model for a single subject. The five
spheres in (A) denote the five ROIs used in
the spDCM analysis. The time series (B) from
the five regions are the principle eigenvari-
ates of the regions identified using a con-
ventional SPM analysis. The observed
(dashed lines) and predicted (solid lines)
CSD of BOLD signals (C) by the winning
model in the five ROIs. The underlying CSD
predicted for the hidden neural states (D).
Hypo ¼ Hypothalamus; AINS ¼ anterior
Insula; PINS ¼ posterior Insula; AU ¼ arbi-
trary units; CSD ¼ cross-spectral density; abs
¼ absolute.

http://www.fmri.wfubmc.edu/cms/software
http://www.fmri.wfubmc.edu/cms/software


Fig. 4. Different plausible hypotheses and Bayesian model selection. (A) Possible connections among the five ROIs to explain the effective connectivity in the
hypothalamus-insula network. Note that double arrow means reciprocal connections between two regions. (B) and (C) denote Bayesian model selection results per
experimental condition for expected and protected exceedance probability in 8 models compared using RFX BMS, respectively. Hypo ¼ Hypothalamus; AINS ¼
anterior Insula; PINS ¼ posterior Insula.

A. Al-Zubaidi et al. NeuroImage 217 (2020) 116931
2014; Mayer, 2011; Zanchi et al., 2017). Furthemore, the hypothalamus
is linked to brain regions, such as the insula and brainstem, which are
involved in controlling the homeostatic energy balance (Barbas et al.,
2003; Kullmann et al., 2014; Lemaire et al., 2011; Lips et al., 2014;
Purnell et al., 2014; Wijngaarden et al., 2015). Therefore, we abstained
from calculating models without any hypothalamic connections. The
models in Fig. 4A display eight possible connections (parallel, i.e. models
1,2,5 and 6, forward, i.e. models 3 and 7, and backward, i.e. models 4 and
8) between the hypothalamus, PINS and AINS. After inverting and esti-
mating the models, we used BMS to determine the most accurate model
structure to describe the measured fMRI data (Stephan et al., 2009). The
optimal model is determined by selecting themodel with the best balance
between data fitting (i.e. accuracy) and model complexity, as defined by
the free energy bound on the model evidence (Penny et al., 2004).
Random-effects BMS calculates the posterior model probability (that a
specific model generated the data of a randomly chosen subject) and the
protected exceedance probability (that a given model is more likely than
any other model considered). Treating the model as a random variable in
the population renders the method capable of dealing with population
heterogeneity whilst being robust to outliers, or equivalent (Stephan
et al., 2009).
6

To evaluate the success of model inversion or fit, the percent variance
explained (or R2) by the models for each experimental condition and
subject were calculated using spm_dcm_fmri_check.m., see Fig. S1; sup-
plementary materials.
2.8. Parameter estimate of the winning model

The random-effects BMS procedures were used to determine the
“winning model” for each prandial state condition (hunger or satiety)
and glucose treatment (before or after glucose administration), sepa-
rately. Then, we evaluated the endogenous connectivity parameters of
the winningmodel in each condition using a second-level frequentist test.
(Stephan et al., 2010). One-sample t-tests (p < 0.05/16, Bonferroni
corrected for multiple comparisons) were applied to test whether the
parameters of interest deviated significantly from zero. We reported the
strength of the connections in Hz across participants (mean� SD) and the
corresponding p-value.

The winning model of each condition resulted in the same model (see
results section). Thus, we can examine the influence of conditions on the
connections between ROIs. In the next step, the endogenous connectivity
parameters of the winning model were submitted to rmANOVA with
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factors prandial state (levels: hunger, satiety) and glucose administration
(levels: before, and after treatment).
2.9. Associations between DCM parameters, physiological and behavioral
responses

The rmANOVA on the NPEs (see Results section and Fig. 7), resulted
in a significant main effect of the prandial state on the endogenous
connection estimates from the right posterior to the right anterior insula
(RPINS→RAINS) and from the right anterior to the right posterior insula
(RPINS←RAINS). To investigate whether the changes in these connec-
tions were associated with physiological and behavioral responses, we
used linear mixed-effects (LME) analysis which allows us to perform
multiple regression while taking into account the repeated measures
design of our subjects (Gałecki and Burzykowski, 2013). The LME model
identifies the linear relationships between a dependent variable (e.g.
cortisol) and independent variables (e.g. NPEs), with coefficients that
explain variation in respect to one or more grouping variables (e.g.
experimental conditions). To this end, separate LME analyses were car-
ried out for each of the four dependent variables (i.e. plasma cortisol,
glucose and insulin levels as well as hunger ratings). Furthermore, only
plasma cortisol, glucose and insulin levels narrowly associated with the
rs-fMRI data collection were used as dependent variables (Fig. 1). For
each of these four models, we entered the prandial state (levels: hunger
vs. satiety) and glucose administration (levels: before vs. after glucose
administration) as well as EC of RPINS→RAINS and RPINS←RAINS as a
fixed effect with the intercepts for subjects as a random effect. As
Fig. 5. Mean plasma glucose (A), plasma insulin (B), plasma cortisol levels (C) an
administration of glucose. * and *** represent the significant differences between con
D are adapted from Al-Zubaidi et al. (2019). Figure D is adapted from Al-Zubaidi et
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post-hoc tests, a set of LME was used to analyze further the interaction
effects. All continuous variables were Z-scored. LME analyses were per-
formed using the lmer function in the lme4 package (Bates et al., 2015)
for R (R Core Team, 2017) and sjPlot (Lüdecke, 2018). For significant
slopes, we reported the regression coefficient parameter estimate (β).

In addition, we used multiple linear regression analysis to test for a
statistically significant relationship between all connectivity estimates
and participant’s physiological (plasma cortisol, glucose and insulin
levels) and behavioral (rating of hunger). For details, please see the
supplementary material.

3. Results

3.1. Physiological and behavioral effects

Please note that the data on plasma glucose levels across both
experimental days and behavioral response results have been published
previously (Al-Zubaidi et al., 2018). This also applies to the average
plasma glucose and insulin levels results of the second day of the
experiment (Al-Zubaidi et al., 2019). In the present work, the average
plasma levels of glucose, insulin and cortisol were calculated from the
second day of the experiment for each subject under hunger and satiety
conditions before and after glucose treatment (Fig. 1).

In order to familiarise the readers with the physiological and
behavioral effects of our intervention and provide context for the new
connectivity analyses, the following plasma glucous and insulin para-
graphs re-describe our previously published results (Al-Zubaidi et al.,
d hunger ratings (D) in the hunger and satiety conditions before and after the
ditions, at a threshold of p < 0.01 and p < 0.0001, respectively. Figures A, B and
al. (2018).
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2019). The analysis of plasma glucose concentrations resulted in signif-
icant main effects of prandial state (F(1,23) ¼ 23, p < 0.0001, η2p ¼ 0.50)

and glucose administration (F(1,23) ¼ 256, p < 0.0001, η2p ¼ 0.92) and a
significant prandial state * glucose administration interaction (F(1,23) ¼
53, p < 0.0001, η2p ¼ 0.70; see Fig. 5A). Post hoc t-tests performed to
reveal the interaction driving effects indicated that the glucose level
before the glucose administration was significantly (T(23) ¼ 4.5, p <

0.0001) higher in the satiated (M ¼ 4.6 mmol/L, SD ¼ 0.5, 95% CI[4.4,
4.8]) compared to the hunger state (M ¼ 3.9 mmol/L, SD ¼ 0.5, 95% CI
[3.7,4.1]). After glucose administration, this effect reversed and a
significantly (T(23)¼ 7.4, p< 0.0001) higher glucose level was seen in the
hungry (M ¼ 7.6 mmol/l, SD ¼ 1.1, 95% CI[7.2,8.1]) compared to the
satiated state (M ¼ 5.9 mmol/l, SD ¼ 0.7, 95% CI[5.6,6.1]). This effect
indicates reduced responsiveness to the circulating glucose during the
satiated state. For the pre-glucose administration (Fig. 1C, left y-axis)
hypoglycemia is defined as blood glucose levels below 3.9 mmol/l,
euglycemia as fasting glucose levels between 3.9 and 5.6 mmol/l, and
hyperglycemia as fasting glucose levels greater than 6.9 mmol/l. For the
post-glucose administration (Fig. 1C, right y-axis, at 120 min after
glucose administration), hypoglycemia is defined as glucose levels below
3.9 mmol/l, euglycemia is considered as glucose levels between 3.9 and
7.8 mmol/l, and hyperglycemia as glucose levels equal or greater than
11.1 mmol/l (all thresholds are according to the American Diabetes As-
sociation, 2020).

The analysis of plasma insulin (Fig. 5B) concentrations revealed a sig-
nificant main effect of glucose administration (F(1,23)¼ 106, p< 0.0001, η2p
¼ 0.82) and a significant prandial state * glucose administration interaction
(F(1,23) ¼ 102, p< 0.0001, η2p ¼ 0.81), but no significant main effect of the

prandial state (F(1,23) ¼ 0.65, p ¼ 0.4, η2p ¼ 0.03). The post hoc analysis
showed significantly (T(23) ¼ 13.5, p < 0.0001) higher insulin concentra-
tions in the satiated state (M ¼ 198.8 pmol/L, SD ¼ 65.2, 95% CI
[171.3226.3]) compared to the hunger state (M¼ 22.5 pmol/L, SD¼ 10.1,
95% CI[18.3,26.8]) before the administration of glucose. After glucose
administration, this effect reversed and significantly (T(23) ¼ 4.2, p <

0.0001) higher insulin concentrationswere observed in the hunger state (M
¼ 457.9 pmol/L, SD ¼ 185.6, 95% CI[379.6536.3]) than in the satiated
state (M ¼ 314.6 pmol/L, SD ¼ 123.5, 95% CI[262.5366.9]) indicating
reduced responsiveness to circulating insulin. Due to the fasting-induced
insulin resistance, the body secretes more insulin to overcome this
resistance.

Furthermore, for plasma cortisol (see Fig. 5C) significant main effects
of prandial state (F(1,23) ¼ 9.1, p ¼ 0.006, η2p ¼ 0.28) and glucose admin-

istration (F(1,23)¼7, p¼0.01, η2p ¼ 0.24)were revealedwith no significant

interaction (F(1,23)¼ 0.03, p¼ 0.9, η2p ¼ 0.001). Before glucose treatment,
the plasma cortisol level for the hunger state (M¼ 230 nmol/L, SD¼ 44.4,
95% CI [205.5253.1]) was higher (T(23) ¼ 2.1, p ¼ 0.4) compared to the
satiated state (M ¼ 196.6 nmol/L, SD ¼ 61.2, 95% CI[170.8222.4]). A
similar effect was found after glucose treatment, the plasma cortisol level
was greater (T(23) ¼ 2.2, p ¼ 0.4) in the hunger (M ¼ 260 nmol/L, SD ¼
68.3, 95%CI[230.8288.5]) compared to a satiated state (M¼230nmol/L,
SD ¼ 56.4, 95% CI[211.9249.4]). Our data thus do not provide evidence
for a significant impact of glucose treatment on how the prandial states
affected the plasma cortisol levels.

Finally, we also re-describe our previous published behavioral effects
(Al-Zubaidi et al., 2018, 2019). Concerning subjective hunger ratings
(Fig. 5D) a significant main effect of prandial state (F(1,23) ¼ 28.9, p <

0.001, ƞ2p ¼ 0.56) with higher hunger ratings in the hunger state (M ¼
5.2, SD ¼ 2.6, 95% CI[4.3,6.3]) compared to the satiated state (M ¼ 2.6,
SD ¼ 2.1, 95% CI[2.1,3.4]) was obtained but neither the main effect of
glucose administration (F(1,23) ¼ 0.34, p ¼ 0.6, η2p ¼ 0.02) or a prandial

state * glucose administration interaction (F(1,23) ¼ 0.02, p ¼ 0.9, η2p ¼
0.001). These findings confirm the success of our fasting treatment.
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3.2. Bayesian model selection

When testing for the model structure that explains the rs-fMRI data
best by using RFX BMS, model 1 (Fig. 4B) had the highest protected
exceedance probability (PXP ¼ 0.99) at the group level for each experi-
mental condition (shown in Fig. 4C). The lower evidence of models
without interhemispheric connections (models 5–8) indicates that lack of
inter-hemispheric connectivity led to a worse explanation of the partic-
ipants’ network activity. This result suggests that the reciprocal con-
nections, both within hemispheres (i.e. hypothalamus-PINS-AINS) and
between hemispheres were necessary network features.

3.3. Model parameters

We investigated whether the EC among the ROIs estimated using the
winning model were significantly non-zero separately for each condition.
In Table 2 and Fig. 6 we show the mean connection strength (in Hz) and
the results from the one-sample t-tests. For simplicity, self-connections
are not included in the table and graph. To sum up, in the satiety con-
dition after oral glucose intake we found that the connection strength
from left anterior insula (LAINS) to left posterior insula (LPINS) was
significantly different from zero (M¼ 0.5, SD¼ 0.48, T(19) ¼ 4.7, 95% CI
[0.28,0.73], p ¼ 0.0002, surviving Bonferroni correction of p < 0.5/16).
Furthermore, in the hunger condition before oral glucose intake we
found that the connection from the right posterior insula (RPINS) to the
right anterior insula (RAINS) was also significantly different from zero
(M ¼ 0.41, SD ¼ 0.46, T(19) ¼ 4, 95% CI[0.2,0.4], p ¼ 0.001, surviving
Bonferroni correction of p < 0.5/16), too. Finally, we did not find any
significant connections from or to the hypothalamus.

A two-way rmANOVA was conducted to determine the influence of
two independent variables (prandial state and glucose administration) on
endogenous connection estimates of the winning model. Both prandial
state (hunger and satiety) and administration (before and after glucose
intake) consisted of two levels. There were no significant effects of
glucose administration and interactions between both factors on all
endogenous connection estimates. We found a significant (p < 0.05)
main effect of prandial state on the endogenous connections from RPINS
to RAINS (forward connection, RPINS→RAINS) (F(1,19) ¼ 8.8, p ¼ 0.008,
η2p ¼ 0.32), indicating significant stronger connectivity during hunger (M
¼ 0.37 Hz, SD ¼ 0.49, 95% CI[0.2,0.6]) compared to satiety (M ¼ 0.15
Hz, SD¼ 0.54, 95% CI[-0.04,0.32]). Also, we observed a significant main
effect of prandial state on the endogenous connections from RAINS to
RPINS (backward connection, RPINS←RAINS) (F(1,19) ¼ 4.7, p ¼ 0.04, η2p
¼ 0.2) indicating that the satiated state (M¼ 0.12 Hz, SD¼ 0.49, 95% CI
[-0.05,0.29]) showed higher connectivity strength compared to the
hunger state (M ¼ �0.11 Hz, SD ¼ 0.55, 95% CI[-0.3,0.09]), as shown in
Fig. 7.

3.4. Associations between DCM parameters, physiological and behavioral
responses

LME analyses revealed significant interactions (β¼�0.8, 95%CI[-1.4,
�0.24], F(1,64) ¼ 7.7, p ¼ 0.007) between RPINS→RAINS connection
(forward connection) strength, prandial state and glucose administration
in explaining cortisol levels (Fig. 8A). To further analyze the interaction-
driving factor, we performed LME analyses per glucose treatment condi-
tion separately, as post-hoc tests. We found that the interactions between
RPINS→RAINS and prandial state predicting the cortisol levels was sig-
nificant (β ¼ 0.9, 95% CI[0.26,1.6], p ¼ 0.01) before, but not (β ¼ �0.5,
95% CI[-1.4,0.3], p ¼ 0.2) after oral glucose. More precisely, before oral
glucose treatment, the forward RPINS→RAINS connectivity showed a
strong positive (β ¼ 0.7, 95% CI[0.1,1.3], p ¼ 0.03) and negative (β ¼
�0.5, 95% CI[-0.92,-0.02], p ¼ 0.06) relation to cortisol levels in hunger
and satiety conditions, respectively. Whereas, after oral glucose treat-
ment, the relationship between RPINS→RAINS strength and cortisol



Table 2
Posterior estimates of effective connectivity (Hz) in the winning model (mean � SD) per experimental condition. Using one-sample t-tests, we tested whether the
effective connectivity was significantly different from zero.

Connections Satiety Hunger

Before Glucose After Glucose Before Glucose After Glucose

Strength (Hz) P-Value Strength (Hz) P-Value Strength (Hz) P-Value Strength (Hz) P-Value

LAINS → Hypo �0.07 � 0.61 0.8 �0.08 � 0.37 0.15 0.04 � 0.68 0.35 �0.01 � 0.44 0.21
LPINS → Hypo �0.06 � 0.29 0.9 �0.04 � 0.28 0.85 �0.12 � 0.41 0.85 �0.01 � 0.23 0.5
RAINS → Hypo �0.02 � 0.72 0.32 0.09 � 0.64 0.85 �0.11 � 0.51 0.07 0.09 � 0.51 0.92
RPINS → Hypo 0.07 � 0.56 0.46 �0.04 � 0.38 0.95 0.1 � 0.44 0.91 �0.11 � 0.42 0.26
Hypo → LAINS 0.03 � 0.61 0.62 0.17 � 0.51 0.34 0.13 � 0.62 0.77 0.18 � 0.61 0.89
LPINS → LAINS 0.09 � 0.43 0.16 0.15 � 0.53 0.46 0.26 � 0.35 0.03 0.2 � 0.39 0.04
RAINS → LAINS 0.24 � 0.59 0.16 0.31 � 0.51 0.008* 0.06 � 0.85 0.21 0.23 � 0.73 0.11
Hypo → LPINS �0.02 � 0.68 0.37 0.03 � 0.67 0.57 �0.01 � 0.68 0.2 0.13 � 0.83 0.87
LAINS → LPINS 0.29 � 0.89 0.35 0.5 � 0.48 0.0002# 0.12 � 0.72 0.07 0.15 � 0.63 0.06
RPINS → LPINS 0.25 � 0.73 0.12 0.003 � 0.72 0.43 0.42 � 0.75 0.006* 0.22 � 0.58 0.05
Hypo → RAINS �0.09 � 0.38 0.91 �0.07 � 0.45 0.55 0.13 � 0.32 0.36 0.01 � 0.38 0.43
LAINS → RAINS 0.16 � 0.47 0.08 0.19 � 0.39 0.009* 0.16 � 0.55 0.78 0.14 � 0.37 0.17
RPINS → RAINS 0.16 � 0.56 0.11 0.13 � 0.52 0.67 0.41 � 0.46 0.001# 0.32 � 0.53 0.004*
Hypo → RPINS �0.07 � 0.43 0.58 �0.01 � 0.59 0.65 �0.01 � 0.47 0.33 0.12 � 0.47 0.24
LPINS → RPINS 0.11 � 0.35 0.14 0.25 � 0.36 0.006* 0.1 � 0.54 0.11 0.21 � 0.42 0.02
RAINS → RPINS 0.19 � 0.52 0.23 0.05 � 0.46 0.29 �0.14 � 0.59 0.72 �0.08 � 0.52 0.82

The significant (p < 0.05) connections are shown in bold. The * and # represent significance at p < 0.01 and after Bonferroni correction (p < 0.05), respectively.
Abbreviations: LAINS, left anterior insula; LPINS, left posterior insula; Hypo, hypothalamus; RAINS, right anterior insula; RPINS, right posterior insula.
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disappeared for both the hunger (β¼�0.4, 95%CI[-0.98,0.02], p¼ 0.08)
and satiety (β ¼ �0.03, 95% CI[-0.62,0.7], p ¼ 0.9) conditions.

Finally, the interactions between the RPINS←RAINS connection
strength (backward connection) and prandial state significantly pre-
dicted cortisol levels (Fig. 8B; β¼� 0.7, 95% CI[-1.3,-0.13], F(1,64)¼ 5.7,
p ¼ 0.02) and the hunger ratings (Fig. 8C; β ¼ �0.6, 95% CI[-1.2,-0.08],
F(1,64) ¼ 5, p ¼ 0.03). More precisely, the backward RPINS ←RAINS
connection strength showed a positive relations to both, the cortisol
levels (β ¼ 0.5, 95% CI[-0.1,1.1], p ¼ 0.1) and hunger ratings (β ¼ 0.7,
95% CI[0.24,1.1], p ¼ 0.007) in the satiety condition. In contrast, in the
hunger condition, the RPINS←RAINS connection strength was negatively
Fig. 6. The winning model at the group level and its mean connectivity pa-
rameters (in Hz) per experimental condition. The significant (p < 0.05) con-
nections are shown in bold. The * and # represent significance at p < 0.01 and
after Bonferroni correction (p < 0.05), respectively.

9

and non-significantly associated with cortisol levels (β ¼ �0.3, 95% CI
[-0.65,0.1], p ¼ 0.2) and hunger ratings (β ¼ �0.5, 95% CI[-1.1,0.02],
p ¼ 0.08). In addition, we observed no significant relations between
the glucose or insulin levels and the forward RPINS→RAINS or backward
RPINS←RAINS connection strengths.

Using multiple linear regression, only blood cortisol levels before
glucose administration were significantly associated with connectivity
estimates (Fig. S3, supplementary material).

4. Discussion

The purpose of this study was to investigate the influence of prandial
state (hunger vs. satiety) and glucose administration on the pattern of EC
between hypothalamus, PINS and AINS as core components of networks
supporting both ingestive behavior and interoception. Applying spDCM
to rs-fMRI data, we estimated directed connection strengths between
brain regions of interest at neuronal states. Our results suggest that
effective connection strengths were modulated by changes in prandial
states, but not glucose administration. Specifically, during the hunger
condition, the forward connection strength from right PINS to right AINS
was increased, while during satiation, the backward connection strength
from right AINS to right PINS was increased (Fig. 7). These findings (in
particular the increase of forward connections during hunger) are
compatible with predictions of recent computational theories that view
interoception as a hierarchical Bayesian inference process and predict
differences in insular connectivity patterns between dyshomeostatic and
homeostatic states, such as hunger versus satiation (Stephan et al., 2016).
Furthermore, we found significant statistical associations between
insular connectivity on the one hand and cortisol levels and hunger rat-
ings on the other hand. Our findings are relevant to contemporary
research on interoception and ingestive behavior as they demonstrate
changes in brain connectivity that are consistent with theories of inter-
oception and illustrate that network properties are linked to both phys-
iological (endocrine) states and subjective experience.
4.1. Changes in physiological and behavioral responses related to
metabolic conditions

As previously reported (Al-Zubaidi et al., 2018), stronger feelings of
hunger in the hunger condition show that the experimental manipulation
was successful (Fig. 5D).

Moreover, we found the typical constellation of fasting-induced



Fig. 7. Effective connectivity parameters that showed a significant main effect of the metabolic state (hunger vs. satiety). (A) Strength of the forward connections from
RPINS to RAINS (RPINS→RAINS). (B) Strength of the backward connections from RAINS to RPINS (RPINS←RAINS). * and ** represent the significant differences
between conditions, p < 0.05 and p < 0.01, respectively.
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insulin resistance, reflected in increased glucose concentrations after
glucose administration in the hunger condition (Anderson and Matsa,
2011; Clayton et al., 2016; Frank et al., 2013; Schweinhardt et al., 2006).
In contrast, before glucose administration, the concentrations of plasma
glucose and insulin levels were higher in the satiety condition compared
to the hunger condition (Fig. 1B, C, 5A and 5B).

Finally, blood cortisol concentrations increased as expected during
the fasting relative to the satiety condition (Fig. 5C). Previous studies
have shown a direct relationship between increases in cortisol levels and
dieting or starvation due to changes in biological functioning such as
freeing of energy and psychological influences like resisting food temp-
tation (Johnstone et al., 2004; Tomiyama et al., 2010).

To conclude, our study shows differential effects in response to
glucose ingestion of three investigated physiological markers, glucose,
insulin and cortisol, during different prandial states, namely hunger and
satiation, in healthy normal-weight males.
4.2. Changes in endogenous connectivity related to metabolic conditions

Spectral DCM analysis is a framework to model the EC between ROIs
based on the FC in rs-fMRI data as well as make inferences about specific
parameter changes (Friston et al., 2014). BMS reveals the most likely
model (i.e. possible way of connections) among a set of different models
to explain the data by taking into account the balance between
complexity and goodness-of-fit (Penny et al., 2004; Pitt and Myung,
2002; Stephan and Friston, 2010). In this work, BMS suggested that the
fully connected model (model 1 in Fig. 4A) was the best model in all
experimental conditions (Fig. 4C).

After fasting, we observed a strong positive connection (þ0.36 �
0.05) in the right hemisphere from PINS to AINS (RPINS→RAINS; Figs. 6
and 7A) which suggests a more intense influence of interoceptive inputs
represented in PINS on AINS function (Chang et al., 2013; Kann et al.,
2016; Penfield and Faulk, 1955; Wang et al., 2008). In the same condi-
tion, a negative connection (�0.11� 0.03) from right AINS to right PINS
(RPINS←RAINS; Figs. 6 and 7B) indicated an inhibitory influence of the
anterior insula on posterior insula during hunger. These findings can be
interpreted in the context of recent theories of interoception that we
describe below.

Craig (2009) suggested a pathway that maps objective representa-
tions of body conditions onto a subjective representation of the physical
self, via posterior-to-anterior pathways within the right insula. Our re-
sults demonstrate that the connection strength from the right PINS to the
right AINS is increased in hunger relative to satiety. This finding
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indicates that the connectivity within the right posterior-to-anterior
insula pathway (RPINS→RAINS) can be altered by food intake because
those changes were only observed in response to changes in prandial
states, but not in glucose treatment. Our observations allow for the
speculative interpretation that changes within this pathway, which we
also found to be related to cortisol levels, could reflect the perceived
salience of internal bodily states (Craig, 2014; Kann et al., 2016). In
contrast, we observed a decreased strength of the backward connection
from right AINS to right PINS (RPINS←RAINS) during hunger compared
to satiety conditions. One could assume that the reduced strength of EC
from RAINS to RPINS might be the result of bodily signals forwarded
from posterior to anterior insula (RPINS→RAINS), which may become
more salient in the hunger condition. An alternative (and equally
tentative) interpretation refers to recent theories that PINS, AINS and
ACC are part of a hierarchical system for interoception, i.e. inference on
bodily (metabolic, immunological, physical) states and homeo-
static/allostatic regulation (Seth et al., 2012; Stephan et al., 2016). More
specifically, these theories view interoception as a “predictive coding”
(Friston, 2005; Rao and Ballard, 1999) process during which predictions
are transmitted via backward connections and prediction errors via for-
ward connections. Predictions concern expected bodily states, e.g. within
the typical homeostatic range, or represent forecast bodily consequences
of particular actions or environmental dynamics. The latter can be used
to adjust homeostatic setpoints in an anticipatory actions and thus
mediate prospective (allostatic) control (Stephan et al., 2016). By
contrast, (interoceptive) prediction errors signal the mismatch between
the actual and predicted bodily states. Interoceptive prediction errors
thus signal that bodily states deviate fromwhat is expected and serve as a
driving force behind homeostatic regulation (Pezzulo et al., 2015). Thus,
the strengthening of forwarding connections from PINS to AINS during
hunger states could be potentially interpreted as the reflection of toni-
cally increased prediction error signals, while the negative (inhibitory)
backward connections could reflect the effect of predictions (which, in
predictive coding, are subtracted from actual states).
4.3. Associations between DCM parameters, physiological and behavioral
responses

The relationship between the strength of RPINS→RAINS connection
(i.e. forward connection) and plasma cortisol levels was modulated by
prandial states before oral glucose intake (Fig. 8A). However, the mod-
ulation of the association between the strength of RPINS←RAINS
connection (i.e. backward connection) and both plasma cortisol levels



Fig. 8. Interactions between covariates in the
linear mixed effects model predicting individual
physiological and behavioral responses. (A)
Interaction of RPINS→RAINS connectivity (for-
ward connection) with the prandial state (levels:
hunger vs. satiety) and glucose administration
(levels: before vs. after glucose administration).
(B) and (C) interaction of RAINS←RPINS con-
nectivity (backward connection) with prandial
state predicting cortisol levels and hunger ratings,
respectively. Solid lines indicate linear regression
fit between the dependent variables (y-axis) and
covariates (x-axis). int.: interaction. RAINS: right
anterior insula. RPINS: right posterior insula. β:
slope coefficient parameter estimate resulting
from linear mixed-effects models. ns: represent
no significance.
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and hunger ratings depended only on the prandial states and were
therefore independent of glucose treatment (Fig. 8B and C, respectively).
Our findings suggest that glucose administration affected the relationship
between cortisol and forward connectivity estimates. However, no such
modulation was found for the relationship between cortisol and the
backward connection estimates.
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4.4. Limitations

Our study design and analyses have several noteworthy limitations.
First, there was no significant effect of hunger on connections from

the hypothalamus to AINS or PINS and vice versa. It has been shown that
nuclei of the hypothalamus stimulate feeding (lateral hypothalamus, LH)
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or inhibit feeding behavior (ventromedial hypothalamus nucleus, VMN)
(Mayer and Thomas, 1967; Suzuki et al., 2010). This dual function of
hypothalamic nuclei, as well as their small size, might have led to a
canceling of the two opposing signals (De Silva et al., 2012). Moreover,
the acquisition parameters of the fMRI were not optimized to differen-
tiate between different nuclei in such a small subcortical structure.
Additionally, the hypothalamic regions are located in close vicinity to the
air-tissue boundaries of surrounding sinuses and thus extracted BOLD
signals from such regions are susceptible to loss (Ojemann et al., 1997).
In the present study, we did not conduct any quality control procedures
that were specific for the hypothalamus.

Second, due to the rather small sample size, we could not directly
investigate the relation between all NPEs (i.e. connections) and hormone
variables (i.e. plasma glucose, insulin and cortisol levels) using standard
multiple linear regression and used principal components as regressors
instead. To establish a direct relationship between NPEs and hormonal
data, a replication of the current study with a larger sample would be
desirable.

Third, to limit the influence of the hormonal cycle, we only included
healthy lean young men in the current study, which therefore may not be
generalizable to other populations. Functional neuroimaging studies
have shown differences in response to food taste (e.g. sweet, liquid
meals) and even to odours of sweet (e.g. chocolate cake) under hunger
and satiety conditions in several sexually dimorphic and BMI-sensitive
brain regions (Bragulat et al., 2010; Carnell et al., 2012; DelParigi
et al., 2005; Haase et al., 2011). Future studies could address this ques-
tion by also including female and overweight participants and thus
discuss the relationship between spDCM results and sex or BMI.

Fourth, the finding that subjects showed enhanced cortisol levels in
the hunger condition suggests that subjects might have been more vigi-
lant in this condition. Future studies should actively control for alertness
(with e.g. eye-tracking) in order to rule out this confound.

Finally, as mentioned in the introduction, the hypothalamus and
insular cortex are involved in a variety of functions related to inter-
oception and homeostatic regulation in response to different metabolic
states. Here, we investigated a particular set of models comprising five
brain regions to address specific questions about relationships among
connectivity in this network and physiological states. It is important to
keep in mind that the models we examined are (necessarily) wrong in
that they are enormously simplified compared to the real neural system
and only consider a small number of potentially relevant regions.
Including additional regions and connections (e.g., hypothalamic sub-
nuclei) could change the input structure to (some or all) regions and may
alter the results. This “missing region” problem – and other caveats of
effective connectivity analyses with DCM (and other methods) – are well
known and have been discussed previously (e.g., Daunizeau et al., 2011).
It is therefore important to establish the “utility” of the particular model
we identified, for example, whether the inferred connection strengths
relate to independent variables (e.g., physiological states) and whether
these connectivity estimates allow for out-of-sample predictions. While
the former has been examined in this study, the latter will need to be
investigated in future work.

5. Conclusions

Hypothalamic and insular cortex activation has previously been
found to reflect changes in the homeostatic energy balance. By applying
spDCM and BMS analyses to rs-fMRI data, we examined whether the
prandial state (hunger vs. satiety) and glucose administration (before vs.
after) would modulate the EC between brain regions involved in inges-
tive behavior. Our most plausible model in all prandial and glucose
conditions comprised intra- and interhemispheric connections within a
bilateral hypothalamus-PINS-AINS network model. EC was significantly
increased for the forward connection RPINS→RAINS but decreased for
the backward connection RPINS←RAINS under hunger compared to
satiety, with no influence of glucose treatment. Furthermore, the strength
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of RPINS→RAINS connectivity was positively associated with plasma
cortisol levels in the hunger condition, particularly before glucose
administration. Overall, these results illustrate how connections among
brain regions involved in interoception and homeostatic regulation
change between hunger and satiety and provide a basis for future in-
vestigations of hypothalamic-insular networks in the context of food
intake.
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