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The fundamental brain organizing principles of segrega-
tion into functionally specialized areas and integration into 
highly connected macroscale brain networks form the basis 

of neuroscientific research into brain structure and function1. 
Over recent decades, the ability to noninvasively measure inher-
ent activity fluctuations from the whole brain using resting-state 
functional MRI (rfMRI) has offered many insights into this mac-
roscale functional organization. In rfMRI, similarities (between dif-
ferent brain regions) in the spontaneous fluctuations of the blood 
oxygenation level dependent (BOLD) signals—termed functional 
connectivity—can be used to explore intrinsic functional rela-
tionships across brain areas and examine how these vary across 
healthy and disease states and through the population2. However, 
the field of rfMRI is fractionated, with ongoing debates regarding 
preprocessing strategies and brain parcellations, as well as extensive 
divergence of post-processing analysis methods and endpoints3,4. 
These challenges greatly impact the ability of the field to achieve  
reproducible progress.

A key source of these issues is the challenge of brain represen-
tation. Like many modern scientific fields, rfMRI generates large 
amounts of data per participant, comprising ongoing activity mea-
surements from tens of thousands of voxels over a period of up to 
an hour. A key task of analysis is to distill the enormous complex-
ity of the measured brain activity into an accessible and interpre-
table form. We use the term ‘brain representation’ here to refer to 
the combined methodological steps that are taken to derive a lower 
dimensional set of features from an individual’s rfMRI data set for 
subsequent analysis and interpretation. Brain representations are 
multifaceted descriptions of the acquired rfMRI data that often 
encompass both a spatial definition of brain units (i.e., parcella-
tion) and a summary measure that extracts interpretable features 
at the level of the brain units (for example, pairwise correlation 

between brain unit time series, discussed further in “A primer on 
brain representations” below). As the determinant of the building 
blocks for further analyses, the choice of how to represent brain 
data fundamentally underpins descriptions of brain connectivity 
and organization.

Representation of the brain is often considered a task of map-
ping, aiming to delineate boundaries of functionally and neuro-
anatomically distinct areas of the neural tissue1,5. However, the task 
of brain representation is broader than mapping, encompassing a 
more comprehensive range of representational forms and address-
ing additional aspects of how data are transformed into these rep-
resentations. The goal of this article is to provide a primer on the 
representational challenges of rfMRI, with the intention of improv-
ing consensus and reproducibility in the field.

The lack of consensus on brain representations results in part 
from a lack of knowledge of the true underlying functional orga-
nization of the brain. In the absence of this ground-truth, further 
divergence arises from differences in opinion about what we want 
to achieve. The organization of the brain is multifaceted, dynamic 
and hierarchical, leading to many complexities and trade-offs for 
the question of brain representation. On the one hand, brain repre-
sentations should strive to accurately reflect neural units to achieve 
biological interpretability6. On the other hand, the accuracy of clini-
cally relevant predictions derived from representations may be pri-
oritized7. A standardized brain representation that is generalizable 
across groups, ages and clinical populations would provide a com-
mon language for the communication of findings, facilitating repli-
cation and aggregation of results. However, standardization would 
come at the cost of optimization for the specific research question, 
study population, experimental protocol or individual participant. 
In this Primer, we aim to clarify these issues and provide guidelines 
for the choice of brain representation.
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A key principle of brain organization is the functional integration of brain regions into interconnected networks. Functional MRI 
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Approaches to representing rfMRI data are diverse, and we 
therefore start with a short primer on a number of distinct families 
of brain representations. Despite their differences, each family of 
representations faces similar fundamental challenges, ranging from 
subtle mathematical biases and confounds to the interpretability of 
their final outputs. The section “Challenges for brain representa-
tions” surveys and dissects these issues, which may be addressed 
in a variety of ways, contributing to the dispersion of brain rep-
resentations. Finally, we put forward a set of explicit suggestions 
and guidelines to resolve the fractionation of the field and achieve 
a consensus that it is expected to improve reproducibility and col-
laboration (“Recommendations and future directions for brain rep-
resentations”). As part of our recommendations, we advocate for the 
use of state-of-the-art preprocessing methods to avoid unnecessary 
discordance resulting from outdated practices and for improved 
transparency in reporting to inform and encourage debate about 
similarities and differences in brain representations. While we focus 
on rfMRI brain representations, many of the issues that we discuss 
are shared with other measurement domains such as diffusion MRI 
and local field potentials.

A primer on brain representations
Brain representations can take a variety of approaches to reduce 
the complexity of measured BOLD data into a set of features 
for analysis. A majority of brain representations identify (i) a 
low-dimensional set of brain units (for example, spatial parcels) and 
(ii) a summary measure that is applied at the level of brain units 
(for example, pairwise correlation between brain unit time series). 
Together, these reduce the rfMRI data down to the features used 
in subsequent statistical or prediction analyses. We use the term 
‘brain unit’ to indicate any spatially defined neural entity that can 
be treated as a basic functional processing unit. The concept of a 
brain unit therefore generalizes beyond the rfMRI domain, with 
strong parallels to for example, Hebbian cell assemblies8. We define 
the ‘summary measure’ of a brain representation as a method for 
computing features, defined in relation to brain units, from the 
rfMRI data. The computed features vary freely across participants 
and/or conditions and are used to answer the research question. The 
summary measures of a brain representation are therefore relatively 
domain-specific and informed by the measurement type. A smaller 
number of brain representations do not use brain units and summary  

measures and instead estimate features that represent complex spa-
tiotemporal patterns of activity (see section “Complex spatiotempo-
ral brain representations”).

Defining a brain unit. As a whole-brain noninvasive imaging modal-
ity, the spatial measurement resolution of rfMRI easily reaches 2 ×  
2 × 2 mm in modern scans. This results in about 100,000 voxels 
within gray matter across the adult human brain. In rfMRI, these 
voxels (or vertices when representing the cortical gray matter sur-
face as a tessellated mesh9) are the smallest measurable brain units. 
However, the voxel or vertex unit, while ideally chosen with refer-
ence to brain anatomy such as cortical thickness10, does not represent 
any particular level of the neuroanatomical hierarchy. It is therefore 
common to group voxels or vertices together into a smaller set of 
brain units to achieve a meaningful lower-rank brain representation. 
The size of this set varies greatly in the literature, from fewer than 
ten large networks to hundreds of smaller brain units5,11,12.

A brain unit may be spatially contiguous (i.e., adjacent voxels or 
vertices) or non-contiguous (i.e., made up of several spatially dis-
tinct regions spread throughout the brain). Contiguous brain units 
are consistent with the concept of functionally specialized cortical 
areas (Fig. 1a)1,13. Conversely, non-contiguous brain units are able 
to capture complex network structure within the hierarchically 
organized and largely hemispherically symmetric brain (Fig. 1b; 
see Box 1 for a discussion on brain unit nomenclature). In addi-
tion, brain units may be binary, such that each voxel or vertex is 
assigned uniquely and fully to one unit (i.e., a hard parcellation), 
or weighted, where each voxel or vertex can contribute to multiple 
units as described by its weights (i.e., a soft parcellation).

A wide variety of approaches can be used to define brain units. 
Parcellations based on established atlases defined from histol-
ogy, lesions, gyrification or other features are obvious choices14–16. 
However, these atlases are typically derived from a small number of 
participants, and the anatomically defined brain unit boundaries do 
not necessarily match the functional organization. A recent com-
parison between anatomically and functionally defined brain units 
in the contexts of rfMRI predictions reported consistent improve-
ments in prediction accuracy when using functionally defined 
brain units17. A wide variety of methods have been developed that 
use rfMRI data to generate parcellations. These may provide brain 
units that are more targeted to the specific resolution and contrast 

Non-contiguous weighted brain unitsContiguous binary brain units
a b

Fig. 1 | Example brain representations. a, Example binary parcellations adapted from Glasser10 (left; Nature Publishing Group) and Schaefer18 (right; 
Oxford Univ. Press). b, Example weighted resting-state networks obtained from a 50-dimensional independent component analysis (ICA) decomposition 
(publicly released Human Connectome Project maps estimated from 1,003 participants).
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of rfMRI, and can provide greater flexibility in the parameters  
of the parcellation.

Clustering and related approaches have produced a number of 
high-quality rfMRI-derived binary parcellations (that are often 
also contiguous)18–22. Algorithms that parcellate rfMRI data into 
weighted units (that are often also non-contiguous) include prin-
cipal component analysis (PCA), independent component analysis 
(Fig. 1b; spatial or temporal), non-negative matrix factorization, 
probabilistic functional modes and dictionary learning23–26. A num-
ber of these methods, in particular independent component analy-
sis, have been extensively employed in rfMRI studies.

Parcellations defined from rfMRI rely on the ability of the 
spontaneous BOLD fluctuations to resolve brain units, which pos-
sibly limits their wider applicability. For example, specific fMRI 
task activity may reveal further division of brain units not appar-
ent during rest. Multimodal approaches that use combinations of 
structural, rest and task functional imaging may provide parcel-
lations with improved generalizability across different modali-
ties. However, these multimodal parcellations may generalize less 
well to new out-of-sample rfMRI data, compared with unimodal 
(for example, purely rfMRI) parcellations, reflecting the trade-off 
between optimal modality-specific fit versus accounting for  
cross-modal disagreement10.

Defining the summary measures. Functional connectivity sum-
mary measures. The most common type of information that is of 

interest in rfMRI is functional connectivity, which is defined as sta-
tistical similarities between signals measured from different brain 
regions and is thought to be indicative of functional integration27. 
For example, graph-based connectomics methods capture func-
tional connectivity information by conceptualizing each individ-
ual brain unit as a node within a graph (for reviews see refs. 28,29). 
Pairwise functional connectivity between nodes is commonly esti-
mated as the correlation coefficient between summary time series 
from different brain units, but a variety of other summary measures 
can be used (Box 2). Connectomics refers to the study of all possible 
pairwise node-to-node functional connections (edges), which can 
be summarized in matrix form (network matrix; Fig. 2a)30,31.

Alternatively, in representations that use weighted brain units, 
functional connectivity information may be captured in the spatial 
voxel or vertex weights, which can be used as features that vary freely 
across participants (for example, using dual regression as the sum-
mary measure to estimate participant-specific maps32). Depending 
on the dimensionality and definition of the brain units, functional 
connectivity can therefore be represented either temporally (i.e., 
in terms of the temporal correlation between a pair of separate 
brain units) or spatially (i.e., by combining multiple brain regions 
into the same non-contiguous brain unit and using the voxel-wise 
spatial weights to capture the relative strength of connectivity). 
This ambiguity leads to challenges in the interpretation of brain  
representations as discussed further in the “Representational ambi-
guity” section.

While the majority of summary measures consider static func-
tional connectivity (i.e., averaged across the full rfMRI scan), a 
number of dynamic brain representations explicitly aim to capture 
time-varying functional connectivity in the summary measures33,34. 
While static functional connectivity estimates are informed by 
time-varying signal fluctuations, the key difference is that only one 
estimate of connectivity is obtained across the entire scan, whereas 
dynamic connectivity methods calculate multiple estimates of con-
nectivity separately for different periods of time over the course of 
the scan. Many dynamic functional connectivity methods aim to 
identify distinct dynamic states, for example by performing clus-
tering on sliding window estimates35 or using a hidden Markov 
model (Fig. 2b)36. These are then used to generate the features for  
further analysis.

A further variant of functional connectivity summary measures 
is to aim for causal inference by estimating the directed connection 
from one brain unit to another (Fig. 2c; also referred to as ‘effective 
connectivity’27). Indeed, a recent article by Reid and colleagues pro-
posed causal neural interactions as a unifying conceptualization of 
functional connectivity3. While the conceptual considerations and 
ambitions of this aspirational framework are of great importance, their 
suggestions may appear somewhat abstract to investigators grappling 
with their own rfMRI data, in part because some of the key analytic 
decisions that researchers need to make are not fully addressed.

Univariate (node-based) summary measures. While the summary 
measures of most rfMRI brain representations assess functional 
connectivity (i.e., integration) in some form, several alternative 
summary measures describe aspects of the data at each brain unit. 
Examples include the localized signal amplitude (i.e., BOLD signal 
strength)37–39, the size of brain units or the spatial overlap of weighted 
brain units40,41. Despite their different nature, these univariate mea-
sures are often not independent from functional connectivity. For 
example, changes in signal amplitude may directly influence func-
tional connectivity (see “Representational ambiguity” below)42.

Complex spatiotemporal brain representations. While all approaches 
discussed so far start with the definition of a brain unit, some brain 
representations avoid this step and estimate complex spatiotem-
poral patterns from the full data. For example, rfMRI data can be 

Box 1 | Brain unit nomenclature

In this article we define a ‘brain unit’ as a basic functional pro-
cessing entity. Within the rfMRI literature, brain units have been 
described in a number of different ways. We briefly clarify the 
semantic distinctions between some of these different conceptu-
alizations of a brain unit:

•	 Cortical area: a cortical area benefits from having the clear-
est definition, being a region of cortex that is distinct from 
neighboring cortex in terms of its function, cytoarchitecture, 
connectivity or topographic organization93.

•	 Parcellation: the verb ‘parcellate’ refers to the process of sub-
dividing the brain into a number of brain units. By extension, 
an individual brain unit may also be referred to as a parcel.

•	 Region of interest (ROI): in some sub-disciplines of rfMRI, 
a brain unit may also be described as a ‘region of interest' 
or ROI. For example, one possible rfMRI brain representa-
tion is to define one brain unit (ROI) as the seed and esti-
mate the whole-brain (voxel-wise) correlation map with the  
seed ROI94.

•	 Edge: one way to study interactions between brain units is 
to use the mathematical structure of a graph, where each 
individual brain unit is referred to as a ‘node’ and pairwise 
connections between brain units are known as ‘edges’28. In 
practice for rfMRI, a node often (but not always) describes a 
contiguous binary brain unit that is part of a high-dimensional 
(50+) parcellation.

•	 Network: another common naming that fits with our intui-
tive understanding for a grouping of items is a ‘network'. In 
rfMRI, ‘network’ may refer to the brain as a whole (i.e., in 
‘network neuroscience’)95, to a set of multiple brain units that 
are similar to each other (for example, defined using hierar-
chical clustering)28 or to a single non-contiguous weighted 
brain unit (popularly known as ‘resting state networks’, or 
RSNs)83. Overall, the term ‘network’ tends to refer to the 
highest organizational level of the brain into a relatively small 
number of macroscale functional patterns (<25).
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represented as one (or more) connectivity gradient(s) that capture 
variation in functional connectivity along a continuous axis of spa-
tial location43. This approach can be used to identify overlapping 
modes of organization within a predefined brain unit44 or to map 
the principal global (whole-brain) pattern of cortical organiza-
tion from primary sensorimotor to multimodal association cortex  
(Fig. 2d)45. As a further example of complex brain representations, 
some dynamic methods directly take voxel or vertex rfMRI data as 
input to estimate a movie-like brain representation of spatially and 
temporally varying patterns, known as ‘propagating waves’46.

Challenges for brain representations
The current divergence of brain representations (i.e., combined 
descriptions of brain units and summary measures) of rfMRI data 
is natural and expected as part of an initial exploration phase that 
has been echoed in other disciplines47. However, now that the field 
is maturing to include biomarker discovery, efforts toward conver-
gence to validated representations are needed to build a cumulative 
scientific framework.

Such efforts are complicated by the absence of a gold standard 
metric for the validation and comparison of brain representations. 
The underlying neural organization in an individual is not fully 
accessible by noninvasive technologies (and such detailed circuitry 
data would provide major representational challenges of its own48). 
Representations derived from rfMRI may therefore correspond to 

different features of this underlying neural organization. As such, 
comparisons across different representations necessarily rely on 
indirect metrics such as behavioral prediction accuracy, genetic 
heritability, within-parcel homogeneity, variance explained, test–
retest reliability, comparisons against other data modalities such as 
structural imaging and histology, and simulations. In this section 
we lay out a number of challenges for brain representations that 
come about as a result of this lack of ground truth knowledge, with 
the goal of promoting awareness of the issues that are in some cases 
rarely explicitly considered or taught.

Heterogeneity and dimensionality of brain units. A common 
assumption inherent to the majority of brain representations is 
that an individual brain unit is functionally homogeneous, such 
that its relevant activity can be accurately reflected in a single 
summary time series. However, functional heterogeneity within a 
brain unit can be produced by measurement noise, structured arti-
facts, between-participant variability and ‘true’ heterogeneity at 
the level of neural processing. In addition to heterogeneity, func-
tional multiplicity occurs when the same part of cortex encodes 
different types of information. Examples of this multiplicity can be 
seen in visual cortex, which simultaneously encodes a retinotopic 
map and stimulus orientation, or in parietal cortex, where differ-
ent somatotopic maps converge and overlap49. The inevitable pres-
ence of some neuronal functional heterogeneity and/or multiplicity 
within brain units is typically acknowledged or even assumed1, yet 
the implications for brain representations are rarely considered or  
accounted for.

One way to potentially reduce problems with functional het-
erogeneity and multiplicity is to split parcels up into ever-smaller 
brain units, to achieve a more fine-grained brain representation. 
However, an excessively fine parcellation, with multiple brain units 
representing the same functional entities, may lead to complexi-
ties with modelling and interpretation. For example, if a functional 
region is inappropriately divided into multiple brain units, this can 
lead to incorrect estimates of functional connectivity when using 
partial correlation and can detrimentally affect causal connectivity 
models. Determining the optimal number of brain units in a brain 
representation that balances the trade-offs between homogeneity 
and model complexity is challenging.

No consensus has been reached on the question of the optimal 
dimensionality of brain representations, with recent suggestions 
varying from six macroscale systems12 to several hundred parcels13,17. 
This wide range is in part due to the hierarchical organization of the 
brain, such that it can be meaningfully represented at multiple dif-
ferent levels of granularity, depending on the research question50. 
For example, topological features of functional brain organization 
can be studied at different dimensionalities29, and different patterns 
of within- and between-participant variability may dominate at dif-
ferent scales51. However, increased dimensionality estimates can 
also occur due to inadequate handling of between-participant vari-
ability, resulting in a misleadingly detailed granularity (see section 
“Dealing with variability”). Notably, the effective dimensionality of 
rfMRI data is subject to biological limits imposed by dependencies 
of the hemodynamically mediated BOLD signal on the architecture 
and latency of the brain’s microvasculature52.

These challenges of heterogeneity point to a disconnect that 
exists between the best model of the human brain and the best 
model of the rfMRI measures that are acquired. There is ample evi-
dence in humans and other species for the presence of functionally 
specialized neural populations organized into neuroanatomically 
distinct cortical areas. Following this evidence, a binary parcellation 
into contiguous brain units may therefore be the best macroscale 
model of the brain1. However, despite rapid advances in recent 
years with the help of accelerated acquisition methods53, the spa-
tial and temporal resolution of fMRI are many orders of magnitude 

Box 2 | Example summary measures

A variety of summary measures can be used to calculate features 
of interest from the preprocessed rfMRI data that has been par-
cellated into brain units. Some example summary measures that 
have been used in the literature are summarized here.

•	 Edge-based measures describe functional connectivity 
between pairs of brain units, which can be combined to form 
network matrices. Edge-based summary measures include 
full or partial correlation28 and mutual information.

•	 Directed (effective) connectivity measures are edge-based 
measures that aim to estimate the directionality as well as  
the strength of connectivity between pairs of brain units. 
Example measures include dynamic causal models96, Patel’s 
conditional dependence measures97, pairwise likelihood 
ratios (LiNGAM)98, Bayes nets99 and dynamic graphical 
models100.

•	 Dynamic functional connectivity measures reflect variations  
in functional connectivity over time (typically without 
attempting to estimate causality). One option for investi
gating dynamic functional connectivity is to estimate edge- 
based measures listed above from short, sliding time windows  
(instead of from the entire scan) and cluster the resulting  
network matrices into brain states35. To overcome challenges  
with window-based dynamic analyses33, statistical approaches 
such as the hidden Markov model offer alternative summary 
measures for estimating dynamic features92.

•	 Univariate (node-based) measures, such as the amplitude of 
the BOLD signal, can be estimated at the brain unit level or at 
the voxel level, based on the time series standard deviation39 
or the relative strength of low-frequency power37.

•	 Spatial maps describe the topographical organization of brain 
units. Inter-individual variability in spatial properties can 
also be used as features, for example using summary meas-
ures that estimate participant-specific weighted resting-state 
networks32, or participant-specific brain unit boundaries in 
binary parcellations69.
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removed from the scale of neural populations and action potentials. 
Similarly, the physiology of the hemodynamic response implies 
limits on resolution, independent of advances in MR image acqui-
sition52. Therefore, data obtained with rfMRI provide a crude mea-
surement that collapses information both spatially and temporally. 
As a result, weighted parcellations that allow for overlapping organi-
zation and fuzzy boundaries may provide a better model of the data 
measured from rfMRI. Indeed, previous comparisons have sug-
gested that weighted brain representations may perform better in 
terms of predicting behavioral traits than binary parcellations17,54–57. 
However, care is required when interpreting such weighted parcel-
lations. For example, spatial overlap between brain units may be an 
important summary measure to take into consideration (see section 
“Representational ambiguity”)40.

Dealing with variability. Brain representations are often defined 
based on a large number of participants to achieve correspondence 
across individuals for group comparisons and to overcome the lim-
ited signal-to-noise ratio in single-participant data. However, vari-
ability across individuals in measured functional brain organization 
may result from spatial misalignment across individuals58,59 or ‘true’ 
individual differences in brain structure60,61 and/or function62,63. 
Despite advances in surface-based alignment methods designed 
to address this variability64,65, recent studies of extensively scanned 
individuals point to detailed individualized features of organization 
that are misrepresented in group-derived brain representations66–68.

A number of recent approaches aim to address these issues of 
between-participant variability by estimating individualized parcel 
boundaries32,41,69,70, integrating group and participant estimates in the 
same Bayesian framework24,71, adopting naturalistic movie-watching 
paradigms to control variability during data acquisition72 or moving 

toward connectivity-based hyperalignment across participants73. It 
is yet to be seen how successful these methods will be in generating 
brain representations that are robust to variability, yet sensitive to 
valuable inter-individual information.

In addition to between-participant variance, instability of 
brain representations within an individual over time (for exam-
ple, between-session variance or even within-session dynam-
ics within an individual) is a further source of variance for brain 
representations. While some studies have reported stable trait-like 
characteristics of brain representations74–76, other work has shown 
state-dependent changes based on task demands77, as well as 
fluctuations associated with arousal states39,67 and physiology78. 
Within-participant longitudinal changes that occur as a function 
of development, aging or disease progression have yet to be char-
acterized. Together, these potential sources of within-participant 
variability point to the importance of disambiguating trait and state 
effects in brain representations.

Complex interactions between within-participant variability, 
between-participant variability and dimensionality form a major 
challenge for the definition and interpretation of brain represen-
tations. Applications of brain representations mostly aim to inves-
tigate between-participant effects (for example, patient–control 
comparisons; fingerprinting identification of individuals; predic-
tion or regression with respect to behavior, cognition or diagno-
sis). Determining which brain representations are most sensitive 
to between-participant effects is therefore critically important. 
For example, estimating individualized brain unit boundaries to 
remove misalignment as a source of between-participant effects will 
improve interpretability. Furthermore, comparisons to empirically 
inform the best dimensionality and summary measure for specific 
between-participant questions are of great importance. A recent 

Network matrix
a

c

b

d

Dynamic connectivity

Connectivity gradientDirected network matrix

1.0

0.5

Pr
ob

ab
ilit

y 
of

st
at

e 
ac

tiv
at

io
n

0.0
0 s 30 s 60 s

Time

–1 10

–1 10
Dorsal

LH

Gradient 1
–6 6

Ventral

Fig. 2 | Different functional-connectivity-based versions of summary measures in different brain representations. a, Edges between nodes are shown 
in graphical form on the left (positive and negative correlations in red and blue, respectively; line thickness indicates correlation strength) and in matrix 
form on the right. b, Example of different dynamic brain states and their fluctuations over time derived using a hidden Markov model (figure adapted from 
ref. 92, Elsevier). c, Directed edges may have different reciprocal connections strengths, shown as separate arrows in the graphical form, and resulting in 
a non-symmetrical network matrix. d, Principal global connectivity gradient from primary sensorimotor regions (blue) to multimodal association cortex 
(red) (figure adapted from ref. 45, US National Academy of Sciences).

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Review Article NATuRe NeuRoscIence

example of such a benchmarking study performed by Dadi and col-
leagues provided specific recommendations, showing that weighted 
brain units and tangent space embedding of edges outperformed 
alternative brain representations17. Additional future comparative 
work will be of great value.

Non-neural confounds in functional MRI (fMRI) data add 
yet another source of unwanted variance. Structured artifacts can 
be caused by participant head motion, cardiac and respiratory 
cycles, and interactions of these participant factors with the mag-
netic field (in-)homogeneity, excitation pulses and image readout. 
Current preprocessing methods for removing non-neural con-
founds are imperfect79, and their application to rfMRI data can 
have unwanted side-effects80–82. The summary measures of rfMRI 
brain representations are mostly based on similarities in the mea-
sured BOLD signal, and therefore require one or more source(s) 
of stochastic variation (for example, spontaneous neural activ-
ity fluctuations). The uncertain nature of these sources increases 
the impact of confounds for rfMRI (in general more than with 
task fMRI). The development and comparison of improved data 
preprocessing strategies is therefore an active area of research  
and discussion.

Representational ambiguity. The importance of comparing and 
consolidating across available brain representations is underscored 
by their diverging interpretations. To demonstrate this, we take 
the example of a group of patients and a group of healthy controls, 
where the patients have relatively weaker functional connectivity 
between the frontal and parietal cortex. When these data are sum-
marized using different brain representations, all will likely capture 
the group differences in some way. However, depending on the 
methodology, the results will potentially be represented very differ-
ently, leading to conflicting interpretations.

In a brain representation that defines a low-dimensional set 
of non-contiguous weighted brain units and allows the spatial 
voxel-wise weights to change across participants as the features 
(for example, as estimated from dual regression), the weaker 
frontoparietal functional connectivity in patients will be cap-
tured as lower weights in the frontoparietal brain unit map in 
patients. The interpretation of this finding would be described as 
a between-group difference in the spatial topography of the fron-
toparietal network. Alternatively, in a brain representation that  
defines a high-dimensional set of contiguous binary brain units 

and investigates between-unit edge connectivity as the summary 
measures, the above example will be captured as weaker pairwise 
functional connectivity estimates (i.e., edges) between frontal and 
parietal brain units in patients. Here the interpretation would be 
explained as a between-group difference in the amount of inte-
gration (or coupling) between frontal and parietal brain regions. 
Furthermore, in a connectivity gradient brain representation, the 
frontal and parietal regions may end up further apart in the embed-
ding space in the patients, as a result of their connectivity patterns 
with the rest of the brain. This could result in a shift of one region 
relative to the other along the principal gradient, which would be 
interpreted as a difference in the organizational hierarchy of pro-
cessing streams for multimodal integration in patients compared 
with healthy controls. In a final alternative example of a brain rep-
resentation in which the signal amplitudes of brain units are con-
sidered as the features, the above group difference may be observed 
as a reduction in the signal strength in the frontal and/or parietal 
brain unit(s) in patients, leading to an interpretation in terms of 
between-group differences in levels of activation.

Depending on the research goal of a given study, these repre-
sentational ambiguities may be more or less critical to the resulting 
conclusions. More general insights into functional brain organiza-
tion (such as the similarity between resting state and task organi-
zation83) should be relatively independent of the specifics of the 
chosen brain representation. Similarly, the choice of brain represen-
tation may not be critical if the goal is to achieve accurate clinical 
or behavioral predictions (for example, the clinical prediction accu-
racy is potentially similar for all options described in the example 
above, because each brain representation captures the patient–con-
trol differences). However, the different brain representations have 
strongly diverging implications with respect to the hypothesized 
mechanism of psychopathology, with potentially conflicting treat-
ment suggestions. Therefore, the ‘best’ brain representation should 
inform theories on the origin (as opposed to downstream effects) of 
disease mechanisms and generate testable hypotheses for follow-up 
research. The absence of such biological interpretability may be 
acceptable if the goal is to adopt rfMRI purely for clinical or behav-
ioral prediction. Unfortunately, however, ill-founded explanations 
often end up being given for such predictions.

The examples and studies discussed in this section illustrate two 
possible scenarios of representational ambiguity. First, we observe 
representational contamination, such that apparent changes in one 

Overlap is source of connectivity change

a b

Minimal network overlap

Extensive network overlap

Network 1
Network 2

Amplitude is source of connectivity change

r = 0.7

r = 0.5

r = 0.8
Added signal amplitude

Added noise amplitude

Frontal node

Parietal node

Fig. 3 | Toy examples of representational ambiguity. a, Individual differences in the degree of spatial overlap between two separate networks can be 
the underlying source of apparent changes in functional connectivity. Depending on the type of representation, network overlap may result in apparent 
connectivity changes through averaging mixed signals for hard parcellations or subtle biases in dual regression (weighted networks)40. b, The amplitude 
of the measured BOLD signal may increase in one region due to either added noise or added signal, which can result in apparent connectivity changes 
between this node and one or more other nodes42.
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Box 3 | Best practice guidelines

	1.	 Avoid the use of outdated anatomic definitions of brain 
units
There is robust evidence that parcellations derived purely 
from gyral and sulcal anatomy, such as the automated ana-
tomical labeling (AAL), Harvard–Oxford atlas or FreeSurfer 
folding-based parcellations, are not suitable brain units for 
use in functional rfMRI brain representations17,101, particular-
ly when they are based on only small numbers of participants. 
Instead, definitions of brain units that take into account func-
tional data (potentially alongside other imaging modalities) 
should be used.

	2.	 Include a justification for the chosen brain representation
We recommend that all articles report a justification for the 
chosen brain representation and a clear description of the as-
sociated assumptions in relation to challenges raised in the 
section “Challenges for brain representations” (see checklist 
in Box 4). These assumptions should be explicitly acknowl-
edged and considered when the results are discussed (see 
guideline #10). This level of transparency will help with the 
interpretation of findings within the broader literature and 
will inform follow-up work.

	3.	 Adopt established, state-of-the-art data acquisition stand-
ards and appropriate confound monitoring
Recent findings clearly indicate advantages of eyes-open in-
structions (ideally with fixation cross), longer data acquisi-
tion and/or multiple sessions per participant, faster repetition 
time (potentially using accelerated imaging methods) and ad-
equate spatial resolution9,10,102. In addition, concurrent track-
ing of physiology and arousal states are beneficial78. If these 
recommendations are not possible to implement (for example 
in legacy data), then be aware of the limitations this imposes 
on downstream analyses (in terms of, for example, the resolu-
tion of brain units it is possible to utilize).

	4.	 Implement optimal data preprocessing, alignment and 
harmonization methods
While consensus on optimal preprocessing pipelines is 
lacking (see guideline #5), it is clear that nuisance regres-
sion of head motion, white matter and cerebrospinal fluid 
regressors, combined with low-pass filtering, is insuffi-
cient for denoising79,103. Instead, spatial ICA-based cleanup 
methods should be used where possible (and/or volume 
censoring where not). In addition, when possible, studies 
should use multimodal surface-based alignment to reduce 
between-participant variability64. For transparency, the use of 
validated and published methods and pipelines (for example, 
refs. 104,105) is preferable over preprocessing scripts developed 
in-house. Lastly, when collating data from different studies 
or centers, data harmonization techniques (beyond a sim-
ple site regressor) are required to appropriately account for  
site effects106.

	5.	 If global signal regression changes your findings, also pre-
sent results without it
Aside from the recommendations in #4, some studies remove 
(i.e., regress out) any variance that can be explained by the 
whole-brain (globally averaged) BOLD time series in an at-
tempt to remove spatially diffuse confounds107. However, 
this practice (termed ‘global signal regression’ or GSR) has 
been shown to affect the definition of brain units by shift-
ing boundaries10 and to affect summary measures by shifting 
the edge distribution108. Therefore, if authors wish to publish 

findings with the use of GSR, these should be accompanied 
by comparable results without GSR (potentially placing one 
in the supplementary files). This will facilitate comparisons 
across studies and may inform the discussion. The use of al-
ternative approaches that avoid some of these biases, such 
as physiological models109 and/or temporal ICA cleanup110, 
should also be considered. It should also be noted that the 
use of partial correlation instead of full correlation to estimate 
edges removes the need for GSR28.

	6.	 Use well-powered samples and out-of-sample validation
A wide range of freely shared large-scale data are now avail-
able from healthy participants and various clinical cohorts. To 
overcome challenges with replicability, studies should make 
extensive use of these resources to achieve robust sample sizes 
and to validate results obtained from one dataset by including 
external replications in other datasets. Funding bodies play a 
role in recognizing such efforts by supporting ongoing analy-
sis of existing data resources.

	7.	 Adopt robust statistical approaches
Quantitative statistical tests should be favored over qualitative 
descriptive results where possible. Many common methods 
such as clustering and canonical correlation analyses will by 
definition return results, and appropriate significance testing 
and stringent cross-validation are essential for robust infer-
ence111,112. Robust statistical methods should include correc-
tion for multiple comparisons with the use of appropriate  
statistical thresholds113.

	8.	 Compare different brain representation where possible
To aid the generalizability of results, we recommend that 
studies show how their findings vary as a function of brain 
representation. While articles are starting to include results 
across a variety of dimensionalities and/or using a number of 
different binary parcellations, broader comparisons are rare 
(although see refs. 17,114). Providing directly comparable find-
ings will be of great value in building an understanding of 
how different representations of the same data relate to each 
other. Additionally, comparative testing of different types of 
summary measures from the same brain units (such as signal 
amplitudes, network matrices and individualized brain unit 
shape and/or size) can reduce ambiguity and inform mecha-
nistic interpretability39,42,62.

	9.	 Publicly share all code, data and results
It is essential for transparency and replicability to make re-
search outputs publicly available115. Many excellent platforms 
are now available to share code (https://github.com/git), data 
alongside analysis pipelines (https://openneuro.org/) and 
results (https://balsa.wustl.edu/). Importantly, sharing data 
output facilitates meta-analytical approaches and allows the 
academic community as a whole to build on the research of 
others, as required for productive and cumulative scientific 
progress.

	10.	 Avoid over-interpretation of findings and clearly state 
caveats
When describing findings, we recommend that authors stay 
close to the empirical results and avoid terminology that is 
suggestive of biological mechanisms (unless directly warrant-
ed by the results). Explicitly discussing potential interpreta-
tional caveats (for example, in relation to the brain representa-
tion used, representational ambiguity or BOLD limitations) is 
encouraged (see the checklist in Box 4).
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summary measure (for example, connectivity) are driven by under-
lying changes in a different summary measure (for example, sig-
nal amplitude). This type of contamination is problematic because 
if researchers only test the contaminated summary measure (for 
example, connectivity), this would lead to an incorrect interpreta-
tion. Second, we observe the ill-posed nature of brain representa-
tions, because the same underlying effect may be represented either 
spatially or temporally depending on the dimensionality and char-
acteristics of the brain representations. As a result, there is no single 
unique solution, and different internally consistent and potentially 
equally valid interpretations may be invoked to explain the same 
aspect of the underlying data (for example, change in spatial net-
work shape or between-unit edge connectivity). Importantly, in the 
absence of ground-truth knowledge it can be difficult to distinguish 
whether a specific example constitutes an incorrect interpretation 
or one of several possible valid interpretations.

Studies reporting the types of representational ambiguity illus-
trated above have started to emerge. For example, data-driven 
simulations revealed that a large proportion of between-participant 
variance in network matrices was driven by inter-individual dif-
ferences in spatial network topography, shifting the interpretation 
from coupling to spatial organization (Fig. 3a)62. Furthermore, the 
additive signal change approach42 explicitly links different types of 
summary measures, by determining whether observed changes in 
functional connectivity network matrices are downstream effects of 
changes in signal amplitude (Fig. 3b)39.

Recommendations and future directions for brain 
representations
The previous sections have highlighted tensions related to the ques-
tion of brain representation. While a single gold standard repre-
sentation is attractive in terms of generalizability and replicability, 
it may lack the flexibility to appropriately capture and account for 
variability, and it may curtail complementary insights that could 
be derived from alternative representations. Instead of champion-
ing one specific brain representation, we therefore propose a set of 
best practice guidelines intended to improve the transparency and 
robustness of research.

Box 3 provides a number of recommendations aimed at applied 
researchers who wish to adopt existing brain representations in 

their basic or translational research. The complexity of MRI acquisi-
tion and analysis approaches means that outdated research practices 
can persist, exacerbating the fractionation of the field. Therefore, 
several items in Box 3 (for example, #1, #3–7) are intended to 
encourage researchers to review their analysis pipelines and identify 
state-of-the-art approaches. Important building blocks for unifying 
the field include ensuring that the challenges of brain representa-
tion are widely discussed and increasing validation and replication.  
Therefore, several of the recommendations in Box 3 (#2, #9, #10)  
touch on reporting and open science practices (see also the 
reporting checklist in Box 4), which will inform discussion and  
enable replication.

In Box 3 we recommend that authors should justify the choice 
of brain representation based on the research question and hypoth-
eses (#2) and encourage comparisons across multiple brain repre-
sentations (#8). To differentiate between brain representations and 
determine the most appropriate ones to test, there are a number of 
considerations to take into account.

•	 Brain representations that address some of the challenges laid 
out in “Challenges for brain representations” should be pre-
ferred over and above representations that do not. For exam-
ple, cortical brain units obtained from surface-based data with 
known improvements in between-participant alignment64 are 
preferable to volumetrically defined cortical brain units. Addi-
tionally, brain units that estimate individualized boundaries 
for each participant (see section “Dealing with variability”) are 
preferable over group-averaged brain units.

•	 It is important that the scale of the brain units is matched to 
the hypothesis. For example, if one expects lateralized effects, 
then an atlas or parcellation that defines left and right regions 
as separate brain units is appropriate. Similarly, if the hypothesis 
is specific to the posterior cingulate cortex, then the scale of the 
brain units should isolate this region instead of incorporating it 
within the larger default mode network.

•	 The population used for the definition of brain units should 
be matched to the population of interest. The majority of 
available functional atlases are derived from healthy young 
adult participants. These brain units may be less appropri-
ate to study developmental, aging or disease cohorts because 

GoalPhase Recommendations

Development Develop a new algorithm to define brain units and summary
measures or for a combined spatiotemporal brain representation.

Include test-retest and/or out-of-sample validation,
explicitly discuss assumptions and implications,
and share all code and results.

Variability Map between-participant spatial variability in brain unit boundaries
and, ideally, develop a method to estimate individualized brain units.

Limit variability as much as possible by using
state-of-the-art acquisition, preprocessing and
alignment tools (see Box 2 guidelines 3–5).

Generalizability
Test the applicability of the brain representation in different
populations (lifespan/disease), datasets (scanners/protocols),
and data types (rest/task).

Identify appropriate use cases of the brain
representation, while considering the role of
retrospective data harmonization methods.

Comparison
Compare results to different brain representations, first
within-family (e.g., other contiguous binary parcellations),
then across-family.

Report agreement in brain unit spatial boundaries
and features, shared and unique variance,
mathematical relationships.

Interpretability
Perform experiments using different measurement modalities
(EEG/MEG/invasive recordings/histology etc.) to inform
biological interpretability.

Use large-scale data to generate detailed
hypotheses that can feasibly be tested in a
dedicated study with limited sample size.
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Fig. 4 | Proposal for different phases of validation to provide increasing levels of evidence for brain representations.
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the brain representation is biased toward a subset of (control) 
participants. Related to this point, we recommend that exist-
ing and new brain representations should explicitly be tested  
for their generalizability and applicability across different  
cohorts (Fig. 4).

•	 Interactions between the brain units and the summary measure 
need to be considered. For example, if the intention is to use 
partial correlation as the summary measure to improve sensitiv-
ity to direct (rather than indirect) connections, then it is likely 
advantageous to combine left and right homologs together into 
a single brain unit to improve numerical stability, even with 
explicit regularization of the model fitting.

In addition to the best practice guidelines for adopting brain rep-
resentations (Box 3), we also propose a series of validation phases 
that should be applied to existing and future brain representations 
(Fig. 4). Following the development of new brain representations, 
we propose explicit steps to (i) measure between-participant vari-
ance and ideally estimate individualized brain units, (ii) explicitly 
test the generalizability across different disease and lifespan popu-
lations and across scanners, (iii) perform systematic and extensive 
comparisons against multiple existing types of brain representations 
and, ultimately, (iv) inform the interpretation of a brain representa-
tion based on multimodal experiments.

To aid our ability to synthesize and compare different represen-
tations, targeted theoretical and empirical work to establish direct 
relationships between different brain representations would consti-
tute a major contribution. For example, bottom-up biophysical sim-
ulations of neural firing (in which the ground truth is known) may 
provide a useful test environment to link different representational 
definitions of brain units and summary measures to each other and 
to elements of the underlying biophysiology58,84,85. In addition, math-
ematical efforts to establish known mapping functions between dif-
ferent brain representations, and/or between a common atlas and 
customized brain units of individuals or sub-groups, would greatly 
facilitate cross-study generalizability and replicability. These sug-
gestions for future work will be aided by continued efforts to char-
acterize and disentangle different sources of variance (confounds as 
well as between- and/or within-participant variation).

Establishing biological interpretability of fMRI-derived brain 
representations by studying the underlying neural circuitry and 
cellular mechanisms is critically important for the next generation 
of rfMRI research (Fig. 4). Specifically, gaining neurophysiological 
insights into different summary measures (such as between-region 

connectivity and signal amplitudes) is expected to reduce repre-
sentational ambiguity and inform appropriate interpretations. 
Integrating information across different (potentially invasive) 
measurement modalities is needed to determine how different 
brain representations derived from fMRI relate to neural firing 
and cellular processes86–88. Combining fMRI with complemen-
tary non-invasive electrophysiology, for example, electro- and/or 
magnetoencephalography (EEG/MEG), offers the opportunity to 
noninvasively probe large-scale brain networks with more direct 
neuronal measures, albeit with coarser spatial detail, but free from 
vascular confounds and at faster time-scales, thereby aiding in the 
validation of dynamic representations36,89. Additionally, electrode 
recordings in animals measuring local field potentials, neural spik-
ing and/or oxygen polarography, as well as tracer studies measuring 
structural connectivity, can offer more direct biological valida-
tion90,91. Taken together, multimodal research efforts are expected 
to provide insights into the biological basis of rfMRI-derived brain 
representations, which will be critical for determining the most 
appropriate representation and to inform a biological grounding 
to inferences.

Conclusion
The rfMRI field is fractionated by the divergence of brain repre-
sentations. Despite the importance of the chosen brain representa-
tion for study outcomes and interpretation, articles rarely include 
a clear justification for adopting a specific representation. Instead, 
it is common for laboratories to subscribe to a specific approach 
and apply this across all research projects with relatively little con-
sideration for the implicit assumptions of their chosen brain repre-
sentation. This tendency can produce research silos of segregated 
reasoning and assumptions that are at odds with the fundamental 
principles of cumulative science. Advancing the field beyond these 
research silos and toward successful collaborative brain mapping 
and interpretable biomarker discovery critically requires a better 
understanding of the relationships between different representa-
tions of the same data. Once we gain a clearer understanding of the 
relationships between different brain representations and between 
representations of rfMRI data and the underlying neurophysiology, 
some of the key concepts, interpretations, definitions and nomen-
clature in the field may need to be redefined or updated. This will 
require a commitment and willingness from members in the field 
to test, challenge and revise our assumptions and core principles. 
Improving the interpretability of rfMRI brain representations will 
increase the replicability of results across different research labora-
tories and improve the real-life clinical impact of rfMRI to inform 
diagnosis and treatment. The guidelines and suggestions proposed 
in this article are intended to bring the broader community together 
in setting new standards for the field.
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