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a b s t r a c t 

The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early 
life spanning 20–45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal 
MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing 
pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded 
neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has 
been designed to specifically address the challenges that neonatal data presents including low and variable con- 
trast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which 
includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust 
multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess 
these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated 
into the pipeline provide substantial reduction in movement related distortions, resulting in significant improve- 
ments in SNR, and detection of high quality RSNs from neonates. 
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. Introduction 

An increasing focus of neuroimaging science is building accurate
odels of the human brain’s structural and functional architecture at the
acro-scale ( Kaiser, 2017 ) through large scale neuroimaging enterprises

 Van Essen et al., 2013 ). The mission of the developing Human Connec-
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ome Project (dHCP, http://www.developingconnectome.org ) is to fa-
ilitate mapping the structural and functional development of brain sys-
ems across the perinatal period (the period before and after birth).This
s being achieved through the acquisition of multi-modal MRI data from
ver 1000 in- and ex-utero subjects of 20–45 weeks post-menstrual age
PMA), combined with the development of optimised pre-processing
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ipelines. The ambitious scale of the project will enable developing
etailed normative models of the perinatal connectome. The raw and
rocessed data from the project, along with genetic, clinical and de-
elopmental information ( Hughes et al., 2017 ), will be made publicly
vailable via a series of data releases. 

As the human infant enters the world, core functional neural systems
re rapidly developing to provide essential functional capabilities. Char-
cterisation of the perinatal brain using fMRI can provide insights into
he relative developmental trajectories of brain systems during this cru-
ial period of development ( Cusack et al., 2017 ). FMRI has been used to
haracterise the neural activity associated with the sensorimotor sys-
ems ( Arichi et al., 2010 ), olfaction ( Arichi et al., 2013 ), and visual
 Deen et al., 2017 ), auditory ( Anderson et al., 2001 ), vocal ( Dehaene-
ambertz et al., 2002 ), and emotional perception ( Blasi et al., 2011 ;
raham et al., 2013 ). However, whilst task-based studies are informa-

ive, they are difficult to perform in young, pre-verbal infants. Studies
f spontaneous brain activity are ideally suited to the perinatal period
nd can provide an overall view of the spatial and temporal organisa-
ion of functional systems and their maturation. Using this approach,
 number of studies have explored the emergence of the resting-state
unctional networks (RSNs) in infants ( Fransson et al., 2007 ; Lin et al.,
008 ; Liu et al., 2008 ). These RSNs are found to be emerging in the
reterm period and are largely present at the age of normal birth (40
eeks PMA), ( Doria et al., 2010 ; Fransson et al., 2007 ; Gao et al., 2015 ;
e and Parikh, 2016 ; Smyser et al., 2010 ), increasing in strength over

he first year of life ( Damaraju et al., 2014 ). 
Acquisition, pre-processing, and analysing MRI data from the fe-

al and neonatal population presents unique challenges as the tis-
ue composition, anatomy, and function undergo rapid changes dur-
ng the perinatal period and markedly differ from those in the adult
rain ( Ajayi-Obe et al., 2000 ; Dubois et al., 2014 ; Gilmore et al.,
012 ; Inder et al., 1999 ; Kapellou et al., 2006 ). These differences
emand re-evaluation of established pipelines ( Cusack et al., 2017 ;
ongerson et al., 2017 ; Smyser et al., 2016 ). Changes in tissue composi-

ion, due to processes such as myelination, and neural and vascular prun-
ng ( Dubois et al., 2014 ; Kozberg and Hillman, 2016 ) affect imaging con-
rast ( Goksan et al., 2017 ; Rivkin et al., 2004 ). These changes require be-
poke developmental structural templates ( Kuklisova-Murgasova et al.,
011 ; Schuh et al., 2018 ; Shi et al., 2018 ) and optimised registration
echniques ( Deen et al., 2017 ; Goksan et al., 2015 ). Care is required
o ensure that the effects of changing relative voxel resolution and
NR on analyses are ameliorated and monitored ( Cusack et al., 2017 ;
ao et al., 2015 ). Infant brain haemodynamics differ from adults, and
an show substantial changes over the perinatal period ( Arichi et al.,
012 ; Cornelissen et al., 2013 ; Kozberg and Hillman, 2016 ). Impor-
antly, levels of head motion over extended fMRI scans are typically high
nd differ in nature from adults ( Cusack et al., 2017 ; Deen et al., 2017 ;
atterthwaite et al., 2012 ; Smyser et al., 2010 ). As motion and pulsatile
rtefacts can have profound effects on measures of resting-state connec-
ivity, great care with motion and distortion correction is required in
he neonate ( Deen et al., 2017 ; Power et al., 2012 ). 

A major focus of the dHCP project is therefore the advance-
ent of acquisition and analysis protocols optimised for the in-

ant brain ( Bastiani et al., 2018 ; Bozek et al., 2018 ; Hughes et al.,
017 ; Makropoulos et al., 2018 ). The present report provides a de-
ailed description of the dHCP resting-state functional MRI (rfMRI)
re-processing pipeline for neonates. The pipeline is inspired by the
uman Connectome Project (HCP) minimal pre-processing pipelines
 Glasser et al., 2013 ) and the FSL FEAT pipeline ( Jenkinson et al., 2012 )
or adults; however it is designed to specifically address the challenges
hat neonatal data present. Each stage of the pipeline has been assessed
nd refined to ensure a high level of performance and reliability. The
ipeline includes integrated dynamic distortion and motion correction, a
obust multimodal registration approach, bespoke ICA-based denoising,
nd an automated QC framework. We assess these components, showing
esults from an initial cohort of dHCP subjects. The processed data from
hese pipelines are currently available for download. We apply PRO-
UMO ( Harrison et al., 2015 ), a Bayesian group component decomposi-
ion algorithm (with a customised neonatal HRF prior), to demonstrate
igh quality RSNs from these data. A companion paper ( Baxter et al.,
019 ) assesses the pipeline, applying it to a stimulus response dataset. In
rder to present the clearest description of the pipeline stages through-
ut the paper, we do not separate out Methods and Results sections,
ut intermix descriptions of methods, their assessment procedures and
esults. 

. Subjects and fMRI acquisition 

.1. Subjects 

MR images were acquired as a part of the dHCP which was approved
y the National Research Ethics Committee and informed written con-
ent given by the parents of all participants. 

Data from two cohorts of dHCP subjects are used in this paper, re-
erred to as dHCP-538 and dHCP-40. The dHCP-538 is a large cohort
hat comprises 538 scans and is used to evaluate overall performance of
he dHCP neonatal fMRI pipeline, as well as to assess most processing
tages. The dHCP-40 is a smaller subset that comprised 40 scans and is
sed to specifically contrast and evaluate the more computationally de-
anding motion and distortion correction algorithms (see Section 3.4 ).

The dHCP-538 cohort comprises 538 scans that passed upstream QC
rior to the dHCP neonatal fMRI pipeline described in this paper (see
upplementary section 9.2), and had been processed with the pipeline
s of the time of writing. These 538 scans were obtained from 422 sub-
ects scanned once and 58 subjects scanned twice (480 subjects in total).
he first scan was pre-term, < 37 weeks PMA, and second scan was term
quivalent age. The dHCP-538 contains 215 females and 265 males, and
as a mean PMA at scan of 39.81 weeks ( 𝜎= 3.36). This cohort is a su-
erset of the 1st (2017) and 2nd (2019) dHCP public data releases. The
HCP-40 scans are from 40 subjects (all scanned once) that were re-
eased in the 1st dHCP data release, in 2017. The dHCP-40 contains
5 females and 25 males and has a mean PMA at scan of 39.81 weeks
 𝜎= 2.17). The joint distribution of age-at-birth and age-at-scan for both
ohorts is presented in Fig. 1 

.2. Acquisition protocol summary 

All data were acquired on a 3T Philips Achieva with a dedicated
eonatal imaging system including a neonatal 32-channel phased-array
ead coil ( Hughes et al., 2017 ), sited within the neonatal intensive
are unit at the Evelina London Children’s Hospital. Anatomical images
T1w and T2w), resting-state functional (rfMRI) and diffusion acquisi-
ions were acquired without sedation, with a total examination time of
3mins. 

Anatomical acquisition and pre-processing : T2w (TR = 12 s; TE = 156 ms;
ENSE factor: axial = 2.11, sagittal = 2.58) and inversion recovery T1w
TR = 4795 ms; TI = 1740 ms; TE = 8.7 ms; SENSE factor: axial = 2.26,
agittal = 2.66) multi-slice fast spin-echo images were each acquired in
agittal and axial slice stacks with in-plane resolution 0.8 × 0.8 mm 

2 and
.6 mm slices overlapped by 0.8 mm (see Table 1 for a summary). Both
2w and T1w images were reconstructed using a dedicated neonatal mo-
ion correction algorithm ( Cordero-Grande et al., 2018 ). Retrospective
otion-corrected reconstruction ( Cordero-Grande et al., 2018 ) and inte-

ration of the information from both acquired orientations ( Kuklisova-
urgasova et al., 2012 ) were used to obtain 0.8 mm isotropic T2w

nd T1w volumes with significantly reduced motion artefacts. Anatom-
cal pre-processing of the T2w and T1w images was performed using
he dHCP neonatal structural processing pipeline ( Makropoulos et al.,
018 ). Several outputs of the dHCP neonatal structural pipeline are
equired by the dHCP neonatal fMRI pipeline described in this paper;
pecifically, the bias corrected T2w image in native space, the bias cor-
ected T1w image sampled to T2w native space, and the T2w tissue
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Fig. 1. Joint distributions of post-menstrual age-at-birth (weeks) and post-menstrual age-at-scan (weeks) for the dHCP-538 (left) and dHCP-40 (right) cohorts. 

Table 1 

Acquisition sequence parameters. 

Sequence Parameters Scan duration 

T2w Fast Spin Echo 2 × 03:12.0 

TR = 12 s 

TE = 156 ms 

SENSE factor: axial = 2.11, sagittal = 2.58 

Sagittal and axial slice stacks 

In-plane resolution = 0.8 × 0.8 mm 

2 

1.6 mm slice thickness overlapped by 0.8 mm 

290 × 290 × 203 voxels 

T1w Inversion Recovery Fast Spin Echo 2 × 05:45.2 

TR = 4795 ms 

TI = 1740 ms 

TE = 8.7 ms 

SENSE factor: axial = 2.26, sagittal = 2.66 

Resolution matched to T2w 

290 × 290 × 203 voxels 

Multiband 

EPI 

(func) 

Single-shot EPI 15:03.5 

TE = 38 ms 

TR = 392 ms 

Flip angle = 34°

MB factor = 9x 

2300 vol 

2.15 mm isotropic 

67 × 67 × 45 × 2300 voxels 

Single- 

band 

EPI 

(sbref) 

Bandwidth matched readout to multiband EPI 00:19.4 

TR = 3871 ms 

TE = 38 ms 

4 vol 

67 × 67 × 51 voxels 

Spin- 

echo 

EPI 

(field 

map) 

Bandwidth matched readout to multiband EPI 01:52.7 

TR = 8040 ms 

TE = 63 ms 

4xAP/PA interleaved phase-encoding directions 

67 × 67 × 51 × 8 voxels 

Dual- 

echo- 

time 

(fieldmap) 

Dual-TE gradient-echo 00:20.2 

TR = 10 ms 

TE1 = 4.6 ms; TE2 = 6.9 ms 

flip angle = 10°

3 mm isotropic in-plane resolution, 6 mm slice thickness 

52 × 53 × 18 voxels 
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egmentation (9 labels). The structural pipeline outputs used by
his neonatal fMRI pipeline were pre-processed with dHCP structural
ipeline version 1.1 ( Makropoulos et al., 2018 ). 

rfMRI : High temporal resolution multiband EPI (TE = 38 ms;
R = 392 ms; MB factor = 9x; 2.15 mm isotropic) specifically developed
or neonates ( Price et al., 2015 ) was acquired for 15 min. No in-
lane acceleration or partial Fourier was used. Single-band EPI refer-
nce (sbref) scans were also acquired with bandwidth-matched read-
ut, along with additional spin-echo EPI acquisitions with 4xAP and
xPA phase-encoding directions. Reconstructions follow the extended
ENSE framework ( Zhu et al., 2016 ) with sensitivity maps computed
rom the matched single-band data. Field maps were obtained from
n interleaved (dual TE) spoiled gradient-echo sequence (TR = 10 ms;
E1 = 4.6 ms; TE2 = 6.9 ms; flip angle = 10°; 3 mm isotropic in-plane res-
lution, 6 mm slice thickness). Phase wraps were resolved by solving a
oisson’s equation ( Ghiglia and Romero, 1994 ). 

. Pre-processing pipeline 

.1. Pipeline overview 

The dHCP neonatal fMRI pipeline is inspired by the HCP minimal
re-processing pipelines ( Glasser et al., 2013 ) and the FSL FEAT pipeline
 Jenkinson et al., 2012 ) for adults; however it is designed to specifically
ddress the challenges that neonatal data presents. These challenges and
heir solutions are detailed throughout the paper. 

The goal of the pipeline is to generate high-quality minimally pre-
rocessed rfMRI data for open-release to the neuroimaging community.
he motivation for “minimal ” pre-processing is to ensure that the scien-
ific community will not be restricted in the subsequent analysis (includ-
ng further pre-processing) that they can perform on the data. There-
ore, in building the pipeline we have restricted ourselves to the pre-
rocessing steps that we consider absolutely crucial for the widest pos-
ible range of subsequent analyses. 

The inputs to the pipeline are the raw multi-band EPI functional
func), single-band EPI reference (sbref), and spin-echo EPI with op-
osing phase-encode directions, as well as the dHCP structural pipeline
re-processed outputs: bias corrected T2w structural image (struct), bias
orrected T1w image aligned with the T2w, and the T2w discrete seg-
entation (dseg). 

The primary output is the minimally pre-processed 4D functional im-
ge which is motion corrected, distortion corrected, high-pass filtered
nd denoised. The secondary outputs are transforms to align the pre-
rocessed functional images with the structural (T2w) and template (at-
as) spaces. 

A schematic of the dHCP neonatal fMRI pipeline is presented in
ig. 2 . The main parts of the pipeline are: 

1 Fieldmap pre-processing: estimate the susceptibility distortion field
and align it with the functional data (see Section 3.2 ) 

2 Registration: align all images with the native T2 space and the neona-
tal atlas space (see Section 3.3 ) 

3 Susceptibility and motion correction: Perform slice-to-volume mo-
tion correction and dynamic susceptibility distortion correction, and
estimate motion nuisance regressors (see Section 3.4 ) 

4 Denoising: Estimate artefact nuisance regressors and regress all nui-
sance regressors from the functional data (see Section 3.5 ) 

.2. Fieldmap pre-processing 

The EPI sequence is sensitive to field inhomogeneities caused by dif-
erences in magnetic susceptibility across the infant’s head. This results
n distortions in the image in the phase-encode (PE) direction, partic-
larly at tissue interfaces. However, if the susceptibility-induced off-
esonance field is known, these distortions are predictable and can be
orrected. 
The dHCP neonatal fMRI pipeline uses FSL TOPUP ( Andersson et al.,
003 ) to estimate the susceptibility-induced off-resonance field from the
pin-echo EPI with opposing phase-encoding directions, and converts
hat to a voxel displacement field to correct the EPI distortions. The
nput to TOPUP is two volumes of the spin-echo EPI for each phase-
ncoding direction. These volumes will have different distortions be-
ause of the differing PE directions, so TOPUP uses an iterative process
o estimate an off-resonance field that minimises the distortion corrected
ifference between the two images. 

The dHCP spin-echo EPI has 8 vol with 2 PE directions (4 x AP, 4 x
A). Movement of the subject during acquisition results in striping arte-
act in the PE direction (see Supplementary Fig. 1). The two-best spin-
cho EPI volumes (1 per PE direction) are selected as inputs to TOPUP.
ere, "best" is defined as the smoothest over the z-dimension, which
voids motion artefact characterised by intensity differences between
lices, a characteristic "stripy" appearance. This z-smoothness metric is
btained per volume by calculating the voxel-wise standard deviation
f the slice-to-slice difference in the z-dimension and then selecting the
inimum standard deviation per volume. Distributions of z-smoothness

re presented in Supplementary Fig. 2. 
The method described above worked well for selecting the best spin-

cho EPI volume pair, but it was difficult to find a threshold to deter-
ine if this pair was still "good enough". It was therefore combined
ith visual inspection, and 12.7% (75 of 590) were visually identified
s having significant movement contamination in all of the volumes for
he given subject. In this circumstance, the fall-back procedure was to
se the dual-echo-time-derived fieldmap instead of the spin-echo-EPI-
erived fieldmap. Where possible, the spin-echo-EPI-derived fieldmap
as used in preference to the dual-echo-time-derived fieldmap due

o higher anatomical contrast in the magnitude image allowing more
eliable registration to the structural T2w image (see Supplementary
ig. 3). Furthermore, the lack of contrast in the dual-echo-time-derived
eldmap magnitude meant that it was often impossible to adequately

udge the quality of the registration. 
To ensure that the dual-echo-time and spin-echo-EPI derived

eldmaps could be used interchangeably, we evaluated the similarity
etween the two and found them to be qualitatively and quantitatively
imilar (see supplementary section 9.1). 

.3. Registration 

There are two main target volumetric alignment spaces within the
HCP neonatal fMRI pipeline (see Table 2 ); 1) the within-subject struc-
ural space defined as the subject’s native T2w space, and 2) the
etween-subject group standard space defined as the 40-week template
rom the dHCP volumetric atlas ( Schuh et al., 2018 ). We refer to these
paces as structural and template respectively. 

The brain is undergoing rapid developmental changes during the
erinatal period, that require explicit consideration when registering to
hese spaces. Specifically, 

1 The myelination and water content of the white matter is still matur-
ing, resulting in inversion of T1w/T2w MRI contrast when compared
to adult brain scans. The impact of this inhomogeneous myelination
can be mitigated by using the T2w image as the structural target
space, as opposed to the T1w which is more typical in adult cohorts.
Furthermore, we use the BBR cost-function for intra-subject regis-
trations, which only samples the image intensity along the high-
contrast GM/WM boundary to create an intensity gradient, and is
more resistant to the inhomogeneous myelination than other regis-
tration cost functions that uniformly sample the whole image. 

2 The brain increases greatly in both size and gyrification during the
perinatal period, which makes it challenging to define an unbiased
common template space for group analyses. Therefore, we use a be-
spoke developmental atlas developed using dHCP data ( Schuh et al.,
2018 ) (see Fig. 5 ). The dHCP volumetric atlas contains T1w/T2w
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Fig. 2. Schematic of the dHCP fMRI neonatal 
pre-processing pipeline. The schematic is seg- 
regated into the 4 main conceptual process- 
ing stages by coloured background; fieldmap 
pre-processing (red), susceptibility and motion 
correction (orange), registration (green), and 
denoising (purple). Inputs to the pipeline are 
grouped in the top row, and the main pipeline 
outputs are grouped in the lower right. Blue 
filled rectangles with rounded corners indicate 
processing steps, whilst black rectangles (with 
no fill) represent data. The critical path is de- 
noted by magenta connector arrows. (dc) = dis- 
tortion corrected; (mcdc) = motion and distor- 
tion corrected. 

Table 2 

Spaces and transforms used in the dHCP neonatal fMRI pipeline. Superscript (-1) refers to the inverse of the 
transform. 

Spaces 

functional (func) Native multiband EPI space 

sbref Native single-band EPI reference space 

structural (struct) Native T2w space 

fieldmap (fmap) Derived fieldmap space 

template dHCP 40-week template space 

Primary registrations Degrees of freedom 

(a) fieldmap-to-structural rigid 

(b) sbref-to-structural rigid 

(c) functional-to-sbref (distorted) rigid 

(d) functional-to-sbref (undistorted) rigid 

(e) template-to-structural nonlinear 

Composite registrations 

(a) ⊕ (b) − 1 ⊕ (c) − 1 fieldmap-to-functional rigid 

(d) ⊕ (b) functional-to-structural (undistorted) rigid 

(d) ⊕ (b) ⊕ (e) − 1 functional-to-template (undistorted) nonlinear 
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volumetric templates per week from 36 to 43 weeks PMA. We have
augmented it with week-to-week nonlinear transforms estimated
using a diffeomorphic multi-modal (T1w/T2w) registration (ANTs
SyN) ( Avants et al., 2008 ). 

An additional registration challenge is that the dHCP uses a fast-
ulti-band EPI sequence which is advantageous with regard to minimis-

ng the impact of motion (see Section 3.4 ), but which results in poorer
issue contrast. We mitigate this by using a single-band reference im-
ge (sbref) as an intermediate registration target, as per the adult HCP
re-processing pipelines ( Glasser et al., 2013 ). 

Another consideration when developing the registration protocol
as to ensure reliability across a large cohort so that we could min-

mise manual intervention. We found empirically that BBR was more
obust than other registration cost functions. We attribute this to
he fact that BBR only samples the image along the more reliable
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Fig. 3. Distribution of the z-scored normalised 
mutual information between the source im- 
age and the reference image (both in refer- 
ence space) for each of the primary registra- 
tion stages fieldmap-to-structural, functional- 
to-sbref (distorted), functional-to-sbref (undis- 
torted), sbref-to-structural, and template-to- 
structural. More positive NMI z-scores indi- 
cate more similarity and more negative NMI z- 
scores indicate less similarity. 
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igh-contrast WM/GM boundary and is therefore less susceptible to im-
ge defects. BBR performance was evaluated with detailed visual scoring
f registration quality by multiple judges on a subset of subjects. 

To achieve alignment to structural and template spaces we perform
ve primary registrations (see Table 2 ): (1) fieldmap-to-structural, (2)
bref-to-structural, (3) functional-to-sbref (distorted), (4) functional-to-
bref (distortion-corrected), and (5) template-to-structural. In the event
hat the age of the subject is outside the range covered by the atlas,
he closest template age within the atlas is used. From these five pri-
ary registrations, a variety of composite alignments can be calcu-

ated, most importantly: (1) fieldmap-to-functional, (2) functional-to-
tructural (undistorted), and (3) functional-to-template (undistorted).
hese registration steps are described schematically in the green box of
ig. 2 , and further detail is presented in Supplementary Section 9.3. 

Registration quality was assessed on the dHCP-538 dataset for each
f the primary registrations by evaluating the similarity of the source
moving) image (re-sampled to reference space) and the reference
fixed) image. Normalised mutual information (NMI) was used as a met-
ic of similarity. 

The distribution of the NMI for each of the primary registration steps
s presented in Fig. 3 . All the distributions appear unimodal and there are
ery few outliers on the lower tail (i.e., less similar). The pipeline flags
hese outliers for manual investigation. Furthermore, these registrations
ere also manually visually checked. 

Fig. 4 presents example representative alignments of the fieldmap-
o-structural, the sbref-to-structural and the standard-to-structural regis-
rations, at differing levels of quality as quantified by the NMI similarity
etric (see Supplementary Fig. 9 for preterm examples). We selected the
th, 50th and 95th percentile of NMI distribution, with the 5th repre-
enting the lower-end of alignment quality (whilst excluding outliers).
he 5th percentile fieldmap in this figure is a dual-echo-time-derived
eldmap magnitude and the lack of tissue contrast is clear; this not
nly makes registration to the structural space difficult, but also makes
t hard to judge the quality of the registration. At the 50th and 95th
ercentiles, the fieldmap magnitude images are spin-echo-EPI-derived
nd have good tissue contrast and alignment to the structural space.
he GM/WM boundary of the sbref-to-structural qualitatively appears
o align well at all three percentiles; however, at the 5th percentile there
re clear anterior distortions which would impact the quantitative as-
essment of registration quality. Given that the sbref has been distortion
orrected, we conclude that these distortions are irrecoverable signal
oss. There are some observable alignment errors in the template-to-
tructural, most noticeably at the 5th percentile. However, this appears
ualitatively comparable to aligning adult data to a common template. 

Fig. 5 presents the dHCP 40-week T1w/T2w template, as well as
roup average and standard deviation across subjects of (1) the struc-
 

ural T2w in template space, and (2) the temporal-mean of the functional
n template space. The group mean structural (T2w) has good anatom-
cal contrast, although it is not as sharp as the template image, which
ikely reflects our decision to balance alignment with regularisation as
iscussed in Supplementary Section 9.3. The group mean functional also
emonstrates anatomical contrast, but there are two distinct areas of
ower intensity (observed in the mean) and high variability (observed
n the stdev). The first is in inferior temporal and frontal areas which are
ost affected by susceptibility distortions and signal loss, and the sec-

nd is in inferior occipital and superior-anterior cerebellum. It appears
hat this latter effect may be related to higher susceptibility induced
ariation (compared to adults) close to the transverse sinus in neonates,
hich is large in diameter and “ballooned ” in the neonatal period as the
enous system is still developing ( Okudera et al., 1994 ). This observa-
ion is under further investigation. 

.4. Susceptibility and motion correction 

It is well documented that rfMRI analyses are very sensitive to sub-
ect head motion ( Power et al., 2014 ). Head motion results in a number
f imaging artefacts, many of which are not typically corrected in tra-
itional adult pipelines, specifically: 

1 Volume and slice misalignment . Volume misalignment is due to inter-
volume movement and is usually effectively corrected using rigid-
body registration-based motion correction. Intra-volume movement
artefacts are a consequence of rapid subject movement during the
sequential acquisition of the slices, or multi-band groups of slices,
that constitute a volume. If, for example, the subject moves between
the acquisition of the first and the second group of slices, the slices
will no longer constitute a true volumetric representation of the ob-
ject when stacked together, most noticeably by jagged edges of the
brain (see Fig. 6: Raw). 

2 Susceptibility-by-movement distortion . Placing a subject in the scan-
ner disrupts the static magnetic field because different tissues have
different susceptibility to magnetisation. This field inhomogeneity
results in distortions in the acquired image. The exact details of the
disruption are defined by the configuration of tissue and air (sinuses,
ear canals etc). To correct these distortions, it is common to esti-
mate the field and use this to correct (unwarp) the acquired image.
However, any subject movement that involves a rotation of the head
around an axis non-parallel to the magnetic flux (z-axis) changes that
field, which in turn changes the distortions in the image. That means
that volumes acquired with the subject in different orientations will
be subject to different distortions, and correction with a static es-
timate of the field, even with a rigid-body (re-)alignment, will not
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Fig. 4. Examples of fieldmap, sbref, and tem- 
plate images resampled to the native struc- 
tural reference space. The outline of the native 
structural white matter discrete segmentation 
is overlaid in green. Examples were selected at 
the 5th, 50th and 95th percentile of normalised 
mutual information between the source im- 
age and the reference image (both in refer- 
ence space). Note: the 5th percentile fieldmap 
is dual-echo-time-derived and therefore lack- 
ing tissue contrast, whilst the 50th and 95th 
percentile fieldmaps are spin-echo-EPI-derived. 
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be sufficient to correct the changing distortions due to motion (see
Fig. 7: Rigid). 

3 Spin-history artefacts . Movement during scanning can cause subse-
quent excitations to be misaligned with previous ones, resulting in
differential excitation of magnetization at the slice boundaries; this
leads to a striping effect in the image intensity (see Fig. 9: Multi-band
Artefact). The dHCP neonatal fMRI pipeline employs an ICA-based
denoising method to remove spin history effects (see Section 3.5 ). 

Spike regression ( Satterthwaite et al., 2012 ) and scrubbing
 Power et al., 2014 , 2012 ), collectively referred as frame censoring, are
opular and potentially effective alternative methods of dealing with
ead motion. We present a brief comparison of our approach with a
rame censoring strategy in Supplementary Section 9.4. We have opted
or a principled approach of correcting for artefacts introduced by mo-
ion (described in this section) combined with ICA-based denoising (see
ection 3.5 ) which enables us to mitigate the effects of motion with-
ut excluding any subjects or time-points. Censoring methods remain a
ownstream option for researchers using the released data. 

Motion and distortion correction (MCDC) are performed using the
SL EDDY tool. EDDY was designed for diffusion data and its exten-
ion for functional data is novel. When applied to fMRI, EDDY does not
odel eddy currents (as these are extremely low in fMRI), it instead

reats each fMRI volume as a diffusion B0, using the temporal mean
s a predictive model. The motivation for using EDDY on fMRI data
s that it is capable of correcting for intra-volume movement artefacts
 Andersson et al., 2017 ) and for artefacts associated with susceptibility-
nduced off-resonance field changes (susceptibility-by-movement arte-
acts) ( Andersson et al., 2001 ). 
EDDY performs a slice-to-volume (S2V) reconstruction to correct
or intra-volume movement. This is achieved by using a continu-
us discrete cosine transform model of movement over time with
egrees of freedom less than or equal to the number of slices (or
ultiband groups) ( Andersson et al., 2017 ). EDDY corrects for the

usceptibility-by-movement distortion (MBS) by estimating rate-of-
hange of off-resonance fields with respect to subject orientation
 Andersson et al., 2018 , 2001 ). These form parts of a Taylor-expansion
f the susceptibility-induced field as a continuous function of subject
rientation and allows for the estimation of a unique susceptibility field
or each volume. The fieldmap in native functional space (fieldmap-to-
unctional, see Section 3.2 ) is input to EDDY and is used as the zeroth
erm of the Taylor-expansion of the field. The full MCDC proceeds by
rst estimating volume-to-volume movement, followed by estimation
f slice-to-volume (intra-volume) movement. Finally, the changing sus-
eptibility field is estimated, interspersed with updating of the slice-
o-volume movement estimates. Once all the parameters have been es-
imated a single resampling of the data is performed using a hybrid
D + 1D spline interpolation ( Andersson et al., 2017 ). 

MCDC was evaluated on the dHCP-40 fMRI. For comparison, a
igid-body (between-volume) motion correction was also applied to
he fMRI data using FSL MCFLIRT ( Jenkinson et al., 2002 ). Tempo-
al signal-to-noise (tSNR) spatial maps were calculated for each sub-
ect on the raw (RAW) fMRI time-series, after rigid-body motion cor-
ection (RIGID), after slice-to-volume reconstruction (S2V), and after
2V and susceptibility-by-movement distortion correction combined
S2V + MBS). The tSNR maps, for each MCDC condition per subject, were
esampled to standard space and voxel-wise group differences between
he MCDC conditions calculated. Statistical evaluation of each of the
SNR difference maps was performed with a voxel-wise one-sample t -test
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Fig. 5. Upper: 40-week T2w and T1w dHCP templates. Middle: group mean and standard deviation ( N = 512) of structural T2w in template space. Lower: group 
mean and standard deviation ( N = 512) of functional (mean) in template space. 

Fig. 6. Exemplar single-volume of an EPI from 

a single-subject with intra-volume movement 
contamination from a left-right head move- 
ment (upper) and a front-back head movement 
(lower), before (Raw) and after motion and sus- 
ceptibility distortion correction (MCDC), and 
after FIX denoising (Denoised). 
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sing FSL RANDOMISE with 5000 permutations ( Winkler et al., 2014 ).
hresholded group activity maps were corrected for multiple compar-

sons with false discovery rate (FDR) correction and a threshold of 1.67%
calculated as 5% divided by the number (3) of tests). 

Rigid-body (RIGID) motion correction significantly improves tSNR
ompared to the RAW data (see Fig. 8 ) mostly at the cortex and edges
f the brain. S2V correction significantly improves tSNR compared to
IGID across the whole brain, and S2V + MBS further improves tSNR
n anterior and posterior areas where susceptibility distortions are ex-
ected. The correction of intra-volume motion artefacts can be visually
bserved in an exemplar volume from a single subject in Fig. 6 (MCDC),
nd the correction of susceptibility-by-movement distortions can be ob-
erved in an example subject in Fig. 7 (MCDC). On the larger cohort, the
ombined motion and distortion correction stage (comprising S2V and
BS) significantly improves tSNR across the whole brain compared to

he raw data ( Fig. 12 ). 
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Fig. 7. Five exemplar volumes of an EPI from a 
single-subject with susceptibility-by-movement 
distortion due to head motion. The rigid data 
in the top row have been rigid-body motion 
corrected, and anterior distortions can be ob- 
served in volumes 1154 and 1156 where the 
front of the brain extends beyond the reference 
line (green-dashed line). The anterior distor- 
tions are diminished after motion and suscepti- 
bility distortion correction (MCDC), and more 
so after denoising. 

Fig. 8. Left: mean tSNR ( N = 40) for raw EPI 
(RAW), rigid-body motion correction (RIGID), 
slice-to-volume motion correction (S2V), and 
S2V + susceptibility-by-movement distortion 
correction (S2V + MBS). Centre and right: differ- 
ence maps and t-statistics for RIGID tSNR mi- 
nus RAW tSNR (upper), S2V tSNR minus RIGID 

tSNR (middle) and S2V + MBS tSNR minus S2V 

tSNR (lower). Only significant results shown. 
Multiple comparison correction was achieved 
by FDR correction with a 1.67% threshold (5% 

divided by the number of tests). The slice co- 
ordinates for the difference maps and t-statistic 
maps were selected by the maximum t-statistic. 
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.5. Denoising 

Even after motion and susceptibility distortion correction there are
till residual motion-related artefacts (for example, due to spin history
ffects) that need to be dealt with. There are also a number of addi-
ional structured noise artefacts, unrelated to head motion, that need
o be addressed. Therefore, we perform a denoising procedure based on
patial independent component analysis (sICA) to remove these struc-
ured noise artefacts. SICA has proven to be a powerful tool for sep-
rating structured noise from neural signal and is widely used for de-
oising fMRI in both adults and infants ( Alfaro-Almagro et al., 2018 ;
riffanti et al., 2017 ; Mongerson et al., 2017 ; Smith et al., 2013 ) and
as proven to be of great value in connectome projects including the
adult) Human Connectome Project and UK Biobank. 

.5.1. sICA 

The (motion and distortion corrected) single-subject functional time-
eries was high-pass filtered (150 s high-pass cutoff) to remove slow
rifts, but no spatial smoothing was performed. SICA was performed us-
ng FSL MELODIC ( Beckmann and Smith, 2004 ). The sICA dimension-
lity was automatically set using MELODIC’s Bayesian dimensionality
stimation, however it was capped at an upper limit of 600 components
26% of the number of timepoints). Whilst we were conscious of not
anting to reduce the DOF too much, the decision to implement the

ap was a pragmatic attempt to reduce the computational cost of the
ipeline. We found in earlier iterations of the pipeline on smaller sub-
ets of data that very few subjects were constrained by the 600 cap,
nd those that were constrained mostly contained a higher number of
nclassified noise components (data not shown). It is also important to
ote that sICA is mathematically unable to separate global confounds
 Glasser et al., 2019 ), however most of the confounds of interest (as
etailed below) are spatially specific. 

The main types of component observed in the dHCP sICA (see Fig. 9
or examples) were: 

1. Signal. Characterised by low frequencies and spatial clustering. Un-
like adult ICs we often observe residual motion related jumps in the
signal time-course, therefore we do not use that as a basis for exclu-
sion. 

2. Multi-band artefact. Characterised by the “venetian blind ” effect
(stripes in the sagittal and coronal planes) in the spatial maps and
the time-course typically shows jumps that correlate with motion
spikes. This artefact likely comprises the spin-history effects (de-
scribed Section 3.4 ) as well as inter-slice leakage. Leakage results
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Fig. 9. Exemplar spatial maps (left), time- 
courses (centre), and power spectra (right) for 
independent components (IC) from a single 
subject. Each row is a different IC that was 
manually classified as stereotypical for signal, 
multi-band artefact, head movement, arteries, 
sagittal sinus, and unclassified noise. Frame- 
wise displacement is plotted in the last row as 
a reference for the amount and timing of move- 
ment for this subject. 

Fig. 10. Distribution across decompositions of percentage of components (per 
decomposition) classified as signal or noise by FIX. 
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from imperfect multi-band reconstruction, and therefore residual
signal from any given slice can “leak" to co-excited slices after sepa-
ration, which results in correlations between the slices over time. 

3. Residual head-movement. Characterised by a ring (or partial ring)
at the edge of the brain in the spatial map, and time-course that
strongly reflects the motion parameters or framewise displacement. 

4. Arteries. In adults this would be characterised by activity in the spa-
tial maps in the middle cerebral branches and a distinctive high-
frequency spectrum. However, with the neonates we do not have
sufficient spatial resolution and so rely almost exclusively on the
power spectrum. This artefact is less commonly observed than the
other artefacts in the dHCP data. 

5. Sagittal sinus. Similar to adults, the main characteristic used to iden-
tify the sagittal sinus artefact is the superior inter-hemispheric ring
in the sagittal plane of the spatial map. The sagittal sinus was often
difficult to identify, and potential candidates were often labelled as
“unknown ” because the rater was not completely confident in the
classification. 

6. Unclassified noise. Does not clearly belong to one of the other struc-
tured noise categories and is characterised by a scattered spatial pat-
tern, and often has jumps in the time course consistent with motion
spikes. 

7. CSF pulsation. Although not shown in the figure, we occasionally
observe CSF pulsation characterised by a spatial overlap with the
ventricles. 

.5.2. FIX 

Artefactual independent components (ICs) were identified auto-
atically using FMRIB’s ICA-based Xnoiseifier (FIX) v1.066 ( Salimi-
horshidi et al., 2014 ) which uses an ensemble machine learning clas-
ifier to label ICs as either artefact or not (ergo signal). 

FIX was trained on a subset of manually labelled independent compo-
ents (ICs) from 35 subjects. This subset was labelled using the scheme
utlined in Griffanti et al. (2017) by a single investigator as signal, arte-
act, or unknown. The age range of the 35 subjects was 27.2 – 45.1
eeks PMA, the total number of manually labelled ICs was 4947. The
anual labels for a subset of ICs from 5 subjects were double checked by

wo additional investigators with considerable experience of identifying
rtefacts in fMRI data (adult and neonatal), and who were following the
pecific guidelines given in Griffanti et al. (2017) . The concordance of
he primary rater with the first additional rater was 98.6%, and with the
econd additional rater was 100%. 

As is the general theme of this paper, the nature of the neonatal data
osed specific challenges for the manual IC labelling. In particular, the
ow spatial resolution relative to the size of the brain and the resulting
artial-voluming made it more challenging to identify some of the com-
onents that would typically rely heavily on spatial features in adults,
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Table 3 

Quality control metrics used in the dHCP fMRI pipeline. 

Metric Description 

Motion parameters (MP) 6 rigid-body motion time-series (3 rotation, 3 translation) as estimated during motion correction 

DVARS DVARS is the RMS intensity difference between successive frames ( Power et al., 2012 ) 

DVARS outliers Binarised DVARS with threshold = 75th percentile + (1.5 x inter-quartile range) 

Framewise displacement (FD) FD is calculated as the average of the rotation and translation motion parameter differences ( Power et al., 2012 ) 

FD outliers Binarised FD with threshold = 0.25 mm 

Temporal signal-to-noise ratio (tSNR) Per-voxel temporal mean divided by the temporal standard deviation 

Contrast-to-noise ratio (CNR) Temporal standard deviation of the contrast divided by the standard deviation of the noise, where the contrast is 

the functional image minus the noise, and the noise is the residual of dual regressing the group spatial maps 

onto the functional image. 

Normalised mutual information (NMI) The normalised mutual information between a source image and a reference image (both in reference space). 

Fig. 11. Correlation of the number of ICs clas- 
sified by FIX as signal (left) and noise (right) 
with head movement, where mean framewise 
displacement is used as a surrogate for motion 
contamination. Age is the post-menstrual age- 
at-scan in weeks. 
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uch as overlap with GM, WM and CSF. Therefore, we tended to rely
ore heavily on the time-courses. However, even in the time-courses,
riffanti et al. (2017) would recommend that signal should be “with-
ut sudden, abrupt changes ” which we found to be too constraining in
hese data. Clearly stereotyped artefact components (head-movement,
ulti-band artefact, sagittal sinus, arteries, CSF pulsation, and unclassi-
ed noise) were labelled as “noise ”. Any components that were unclear
nd/or difficult to judge were labelled as “signal ”. 

FIX was trained on the manually-labelled sICA data with a leave-one-
ut (LOO) training scheme. The median LOO true positive rate (TPR)
as 100% and the median true negative rate (TNR) was 96%, indicat-

ng that the classifier erred on the side of inclusion (i.e. more likely to
nclude noise than discard signal). This is a desired characteristic and is
he reason that uncertain components were labelled as “signal ”. 

MELODIC/FIX was applied to the dHCP-538 dataset. The minimum
umber of ICs decomposed for a subject (i.e., ICA dimensionality)
as 42, whilst the cap on the automatic dimensionality estimation of
ELODIC resulted in 40 (7.4%) decompositions being constrained to
he maximum dimensionality of 600. The proportion of ICs per sub-
ect/decomposition classified as noise and flagged for removal ranged
rom 53.2% to 100%, with a mean of 92.1% (see Fig. 10 ). This is con-
istent with adults where the mean percentage of ICs classified as noise
s typically ~70–90% ( Griffanti et al., 2017 ). The number of ICs per
ubject/decomposition classified as signal, and therefore flagged for re-
ention, ranged from 0 to 46.8% with a mean of 7.9%. 

There were 19 subjects for whom all ICs were classified as noise.
owever, this does not necessarily mean that these data contained no

ignal, rather it means that signal information was not contained within
he (constrained) reduced dimensionality on which the ICA was per-
ormed (and hence such signal would not be removed by the ICA de-
oising). Therefore, these data were still retained for further analysis. 

Fig. 11 shows that motion has a strong impact on the IC classifi-
ation with the number of signal ICs decreasing with head movement
Spearman r = -0.5) and the number of noise ICs increasing ( r = 0.64).
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Fig. 12. Left: mean tSNR ( N = 512) for raw 

EPI (RAW), motion and distortion corrected 
EPI (MCDC), and denoised EPI. Centre and 
right: difference maps and t-statistics for MCDC 
minus RAW tSNR (upper), and denoised mi- 
nus MCDC tSNR (lower). Only significant re- 
sults shown. Multiple comparison correction 
was achieved by FDR correction with a 2.5% 

threshold (5% divided by the number of tests). 

Fig. 13. Unbiased group RSN template maps 
created from MCDC and Denoised data. 
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ge has a smaller impact with older babies tending to have more sig-
al ICs ( r = 0.44) and less noise ICs ( = -0.28). However, given that older
abies tend to move more (see Supplementary Fig. 7), and movement
orrelates with decreased signal classification, there could be an inter-
ction where the true impact of age on signal classification is masked by
he movement-signal effect, and vice-versa. Alternatively, the age-signal
orrelation may simply be a consequence of relative spatial resolution,
ith younger babies having smaller brains relative to the resolution of

he acquisition 

.5.3. Nuisance regression 

The FIX noise ICs and the motion parameters (see Table 3 ) were
imultaneously regressed from the motion and distortion corrected
unctional time-series. The pipeline also supports inclusion of other
uisance regressors, such as FD outliers and DVARS outliers (see
able 3 ), physiological noise regressors, and tissue regressors. The inclu-
ion of FD/DVARS outliers would effectively perform spike regression
 Satterthwaite et al., 2013 ). However, given our objective to perform
 minimal pre-processing we have not included additional nuisance re-
ressors (beyond artefact ICs and motion parameters). 

TSNR spatial maps were calculated for each subject on the raw
Raw) fMRI time-series, after motion and distortion correction combined
MCDC), and after denoising (Denoised) (see Supplementary Fig. 9 for
reterm examples). The tSNR maps were resampled to standard space
nd voxel-wise group differences between conditions calculated. Statis-
ical evaluation of each of the tSNR difference maps was performed with
 voxel-wise one-sample t -test using FSL RANDOMISE with 5000 per-
utations ( Winkler et al., 2014 ). Thresholded group activity maps were

orrected for multiple comparisons with FDR and a 2.5% threshold (cal-
ulated as 5% divided by the number of tests). After FIX denoising, the
SNR is substantially and significantly improved across the whole brain,
ith the greatest improvement seen in cortical areas (see Fig. 12 ). 

TSNR informs us that there is less variance after denoising, but it does
ot delineate between noise variation or signal variation. Therefore, we
dditionally evaluate performance using spatial and network similarity
o an unbiased group RSN template. Spatial and network matrix simi-
arity to an unbiased group template was calculated for the raw (Raw)
MRI, after motion and distortion correction combined (MCDC), and af-
er ICA + FIX denoising (Denoised). This involved running a group ICA
dimension = 50) across all pre-processed data (all subjects; MCDC and
enoised) to generate group spatial maps that would not be biased to

avour either MCDC or Denoised data in subsequent similarity calcula-
ions. The unbiased group maps were visually inspected and 13 RSN con-
istent maps identified (see Fig. 13 ). All the unbiased group maps were
hen dual-regressed ( Nickerson et al., 2017 ) onto the individual subject
MRI (Raw, MCDC, and Denoised) to yield subject-specific time-courses
nd spatial maps. Spatial similarity to the unbiased group template was
hen calculated as the spatial correlation between each subject-specific
patial map and the 13 unbiased group RSN maps. A network matrix was
onstructed for each subject by calculating partial correlation between
ll pairs of dual-regressed subject-specific time-courses. This resulted in
 13 × 13 matrix of partial correlations between all pairs of the 13 unbi-
sed RSN-consistent group maps. The subject-specific network matrices
ere z-transformed and averaged (all subjects; MCDC and Denoised) to
enerate an unbiased group average network matrix. Network matrix
imilarity to the unbiased group average was then calculated as the cor-
elation between each subject-specific network matrix and the unbiased
roup network matrix. The unbiased group RSN maps and group net-
ork matrix represent typical group output measures, and therefore ef-

ective pre-processing should increase similarity to the group templates.
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Fig. 14. Mean paired-difference (Denoised- 
MCDC, and MCDC-Raw) of spatial similarity to 
the unbiased group template per map. Asterisks 
indicate significant differences. (Lower) Distri- 
bution of paired differences (Denoised-MCDC, 
and MCDC-Raw) of spatial similarity to the un- 
biased group template pooled over all spatial 
maps. 

Fig. 15. Distribution of paired differences 
(Denoised-MCDC, and MCDC-Raw) of network 
matrix similarity to the unbiased group net- 
work matrix. 

 

(  

F  

p  

t  

g  

1  

m  

S  

s  

R  

g  

(
 

c  

b  

t
 

o  

a  

w  

P  

a  

t  

g  

r  

p
 

a  

s

Group paired-differences in spatial and network similarity between
a) MCDC and raw, and (b) denoised and MCDC, were calculated using
SL RANDOMISE ( Winkler et al., 2014 ) with 5000 permutations. Multi-
le comparison correction was achieved by FDR correction. Compared
o Raw data, MCDC pre-processed data has significantly ( p < 0.025)
reater spatial similarity to the unbiased group RSN maps in all of the
3 maps (see Fig. 14 ), and significantly ( p < 0.025) greater network
atrix similarity to the unbiased group network matrix (see Fig. 15 ).

imilarly, compared to MCDC pre-processed data, Denoised data has
ignificantly ( p < 0.025) greater spatial similarity to the unbiased group
SN maps in 11 of 13 maps (see Fig. 14 ), and significantly ( p < 0.025)
reater network matrix similarity to the unbiased group network matrix
see Fig. 15 ). 

These results suggest that the combination of motion and distortion
orrection with ICA + FIX-based denoising can substantially improve SNR
y removing noise variance from the data, whilst at the same time main-
aining signal and ultimately improving outcome measures. 

Voxplots (aka. “carpetplots ” and “grayplots ”) comprise a heat-map
f voxel x time fMRI intensities (with mean and linear trend removed)
long with plots of nuisance time-series such as DVARS and frame-
ise displacement (surrogates for motion). Voxplots were developed by
ower (2017) and are advocated as an informative way to visualise and
sses scan quality. We have adapted them by converting each heat-map
o a z-score and using a diverging colormap so that it accentuates diver-
ence from the mean of zero. Voxplots for a single example subject for
aw, motion and distortion corrected (MCDC), and denoised fMRI are
resented in Fig. 16 . 

Strong vertical stripes can be observed in the pre-denoised data (raw
nd MCDC) that are contemporaneous with the worst spikes in the nui-
ance time-series (DVARS and framewise displacement). 
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Fig. 16. Voxplots for raw, motion and distortion corrected (MCDC), and 
denoised fMRI from a single exemplar subject. Voxplots are adapted from 

( Power, 2017 ) with the modification that each heat-map is converted to a z-score 
and a diverging colormap is used. Mean and trend were removed from each heat- 
map. GM = grey matter, WM = white matter, SC = sub-cortical, CB = cerebellum, 
BS = brainstem. 
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After motion and distortion correction, there is less variation in-
etween the vertical stripes compared to the raw fMRI, which can also
e observed in the DVARS plot as lower values between the major spikes.
he heat-map also shows that this reduced variation is largely limited to
he cerebral cortex and white matter. The intensity of the vertical stripes
lso drops after motion and distortion correction, which is difficult to
ee in the heat-maps because each map is independently normalised to
he standard score; however, it can be observed as lower amplitudes of
he major spikes in the in the DVARS plot. 

After denoising, there a several striking differences in the voxplot.
irstly, the strong vertical stripes are replaced with closer-to-zero verti-
al stripes, indicating that the denoising has removed much of the vari-
tion at these times and the remaining signal is closer to the mean. This
s represented by dips in the DVARS plot during these times. If spike
egression were used we would expect to see that these periods would
e exactly the mean and would thus be zero in both the heat-map and
VARS plot. Thus, ICA-based denoising seems to provide a qualitatively

imilar result to spike regression in these periods of time when motion is
he worst. Secondly, the tSNR difference between the white-grey-matter
nd the sub-cortical areas is further increased, consistent with the spa-
ial group-maps presented in Fig. 12 . 

ICA-based denoising can subsume the role of spike regression when
he motion is severe, however, it is less aggressive and does not simply
emove all information during these periods. In practise, it will often re-
ove much of the variance, but it can in principle leave residual signal

f it is not modelled as artefact. We consider that scrubbing and spike
egression are a “hard ” form of temporal censoring, whereas ICA-based
enoising is a less aggressive “soft ” spatio-temporal censoring. In either
ase, subsequent analyses must appropriately account for the noise re-
oval approach and the reduction or removal of BOLD signal during
igh motion periods. 

.6. Quality control/assurance 

The dHCP neonatal fMRI pipeline automatically calculates a num-
er of QC metrics (see Table 3 ) and generates an HTML QC report for
ach subject (Supplementary Fig. 10). The report presents the QC met-
ics for the individual within the context of group distributions for the
orresponding metrics. 

A subset of the metrics are converted to z-scores (using the median
bsolute deviation which is more robust to outliers than the standard de-
iation), and sign flipped as necessary so that more positive values are
etter and negative values are worse (see Fig. 17 ). Subjects that score
ess than -2.5 on any of the subset of metrics are considered to have
ailed the QC and are flagged for further manual inspection. The spe-
ific subset of measures used are mean denoised DVARS, mean denoised
SNR, func-to-sbref NMI, sbref-to-structural NMI, structural-to-template
MI, and fieldmap-to-structural NMI. Under this regime, out of the to-

al of 538 subjects, 5 subjects failed mean denoised DVARS, 4 failed
enoised tSNR, 3 failed sbref-to-struct NMI, 18 failed template-to-struct
MI, and 4 failed fmap-to-struct. However, there was overlap of subjects
etween these failures, with a total of 26 subjects failing and thus 512
ubjects passing. It is anticipated that a large proportion of the failed
ubjects can be recovered with improvements to the template-to-struct
egistration that are currently under investigation. 

.7. Resting-state networks 

Here we present group RSNs and their association with PMA as a
alidation that the dHCP neonatal fMRI pipeline can identify plausible
SNs, and to demonstrate the granularity of what can be extracted from

his challenging cohort with suitable pre-processing. 
For the derivation of resting-state networks, we use PROFUMO, an

mplementation of the probabilistic functional modes (PFM) model as
efined in Harrison et al. (2015) . This approach uses a hierarchical
ayesian model to decompose the data into a set of functional modes
i.e., RSNs). Unlike most ICA-based approaches, group and subject-
pecific spatial maps associated with these modes are estimated simul-
aneously. The PFM model includes a number of different terms that
egularise the decomposition, including, for example, hierarchical priors
hat encourage consistency in both the spatial layout of RSNs across sub-
ects, and their patterns of functional connectivity (i.e., connectomes).
he model also takes haemodynamics into account, as these dominate
he temporal characteristics of the BOLD signal. As such, we base these
riors on the work of Arichi et al. (2012) , who quantify haemody-
amic responses for neonates. Specifically, we used the FSL FLOBS tool
 Woolrich et al., 2004 ) to construct a term and pre-term HRF model
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Fig. 17. Group z-distributions of QC metrics. 
More negative z-scores indicate poorer quality 
on the respective metric. Z-scores less than -2.5 
(indicated by red dashed line) are flagged as 
failing the pipeline and require further inspec- 
tion. 
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sing the reported haemodynamic response characteristics described in
richi et al. (2012) . Supplementary Fig. 11 depicts the term and pre-

erm HRFs that we constructed, along with the default adult HRF used
n PROFUMO. Only a single HRF model can be used within a PROFUMO
nalysis, therefore we used the term HRF model as the majority of the
HCP neonatal cohort are term age. The term HRF is characterised by a
onger time to peak positive amplitude, a smaller positive peak ampli-
ude and a deeper negative undershoot period relative to the adult HRF
 Arichi et al., 2012 ). 

Formally, the PFM model simultaneously decomposes the dataset
rom each subject s and run r, D 

( sr ) , into a set of M modes. These con-
ist of subject-specific spatial maps P ( s ) , along with run-specific am-
litudes h ( sr ) , time courses A 

( sr ) and network matrices 𝛼( sr ) . These can
e combined into a matrix factorisation model at the subject level i.e.
 

( sr ) ≈ P ( s ) × diag ( h ( sr ) ) × A 

( sr ) . Note that for the data analysed here,
ll subjects only have one run of fMRI data; we therefore refer to all
arameters as subject-specific from now on. 

These subject-level decompositions are linked via a set of hierar-
hical priors, which represent the group-level description of the data
and include, amongst others, the group-mean spatial maps and con-
ectomes). This forms a complete probabilistic model for the data, and
he group- and subject-level information is inferred together via a vari-
tional Bayesian inversion scheme. This is covered in more detail in
arrison et al. (2019) . 

In summary, PROFUMO not only infers subject-specific information
n a sensitive manner, but it also infers the group-level properties of
he RSNs themselves. The analysis was performed on the denoised vol-
metric data of 512 dHCP subjects that passed the pipeline QC (see
ection 3.6 ) to resolve resting-state networks (RSNs). Prior to PROFUMO
he data were spatially smoothed (FWHM = 3 mm) using FSL SUSAN,
ith an intensity threshold of 75% of the contrast between the median
rain intensity and the background ( Smith and Brady, 1997 ), and nor-
alised to the grand median intensity as per FSL FEAT ( Jenkinson et al.,
012 ). 16 RSNs were identified (see Fig. 18 ) that show good correspon-
ence to both adult ( Smith et al., 2013 ) and infant RSNs ( Doria et al.,
010 ; Mongerson et al., 2017 ). We also regressed the RSNs on age and
 s  
emonstrate significant changes in shape and amplitude of these net-
orks with development from 29–45 weeks post-menstrual age (see
upplementary Section 9.5). See Supplementary Fig. 9 for examples of
ual-regressed single-subject spatial maps from preterm subjects. 

. Discussion 

In this paper we present an automated and robust, open source
ipeline to generate high-quality minimally pre-processed neonatal
MRI data. The pipeline was developed to pre-process the neonatal rfMRI
ata from the dHCP project for open-access release to the neuroimaging
ommunity. Using this pipeline on the dHCP neonatal cohort, we have
een able to resolve 16 resting-state networks with fine spatial resolu-
ion that are consistent with adult networks from the Human Connec-
ome Project. Furthermore, we have sufficient spatio-temporal granular-
ty to demonstrate significant changes in shape and amplitude of these
etworks with development from 29–45 weeks post-menstrual age. 

A strong motivation during development of the pipeline was that
t should perform “minimal ” pre-processing to ensure that the scien-
ific community would not be restricted in the subsequent analysis that
hey can perform on the data (although the fully raw data are also
eing made available). To this end, we have sought to minimise pre-
rocessing, particularly resampling, whilst maximising output quality.
he pre-processing steps we have included were selected and evaluated
o ensure they provided a robust and principled approach to mitigating
he specific challenges of neonatal data. The pipeline was run on 538
ubjects from the dHCP neonatal cohort and only 26 failed due to quality
ontrol restrictions. These failures were mostly due to poor registration
f the structural T1w/T2w to the template/atlas space. This is discussed
urther below. 

Automation was another key motivator in developing the pipeline.
iven the number of subjects to be scanned as part of the dHCP project

t was important to minimize manual intervention as much as possi-
le. To this end, the pipeline is entirely automated including quality
ontrol and reporting. Operator intervention is required at only two
tages, 1) to manually label a subset of independent components to
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Fig. 18. PROFUMO modes qualitatively assessed as corresponding to adult resting-state networks. Hierarchical clustering based on spatial correlation between the 
modes. Warm colours are positive, and cool colours are negative. 
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rain FIX, and 2) to visually inspect cases flagged by QC as outliers.
urthermore, the FIX classifier trained on dHCP data will be released
long with the pipeline, which means that the first manual interven-
ion step may be avoided if one’s data are sufficiently similar to the
HCP acquisition data. However, users of the pipeline should perform a
horough evaluation if applying the dHCP trained FIX classifier to other
ohorts. 

Subject head motion is the most challenging confound observed in
he dHCP neonatal cohort. This motion disrupts the BOLD signal and can
esult in slice misalignments, susceptibility-by-movement distortions,
nd spin history artefacts. Such artefacts are not typically dealt with
n existing fMRI pre-processing pipelines. We present a novel applica-
ion of the EDDY tool, which was originally designed for diffusion data,
o correct for the slice misalignments and susceptibility-by-movement
istortions. We further incorporate an ICA-based denoising procedure
o remove spin-history effects and any residual motion artefacts. This
CA-based denoising can also account for a variety of other artefacts in-
luding multi-band artefacts, arteries, CSF pulsation, and sagittal sinus.
s a consequence of these pre-processing strategies, we see large and sig-
ificant improvement in tSNR across the whole brain, but particularly
n cortical areas. This improvement is driven largely by a reduction in
ariation from the aforementioned artefacts. 

An important consideration that needs to be made when using the
ipeline is that EDDY can only be run using a GPU. The EDDY-based mo-
ion and distortion correction on a single dHCP subject (2300 vol) takes
–12 h on a NVIDIA K80 GPU. If limited resources mean that EDDY is not
iable, the pipeline can fallback to a (CPU-based) rigid-body volume-to-
olume registration-based motion correction and static fieldmap-based
istortion correction. Substantial improvements in speed have already
een achieved in EDDY, and we expect the version in the next release
o be 3–4 times faster. Furthermore, an fMRI-specific version of EDDY
s intended to be released in a future version of FSL. 

The dHCP neonatal fMRI pipeline includes a robust registration
ramework to align the functional data with both the subject structural
pace (T2w) and the group standard space. Registration is made chal-
enging by the rapidly changing size and gyrification of the neonatal
rain, and the variable contrast caused by maturing myelination and
he fast-multi-band EPI sequence. The protocol uses a series of primary
egistrations which can then be combined into composite transforms
o move between the target spaces. Care was taken to achieve high-
uality primary registrations so that alignment errors would not accu-
ulate when creating the composite registrations. To this end, the BBR

ost function was found to be superior for intra-subject registrations
nd was used wherever possible. The weakest link in the registration
rotocol was the template-to-structural non-linear registration, which
esulted in 18 subjects being excluded by the automated QC due to in-
ufficient alignment quality. Ongoing work is examining improvements
o this registration step, including using the GM probability as another
egistration channel, as per Makropoulos et al. (2018) , and optimising
he parameters of the registration tools. 

The dHCP neonatal fMRI pipeline is not intended to be a single
tatic release just for processing the dHCP data. During development we
ave focussed on flexibility and generalisability of the pipeline beyond
he dHCP data. We have evaluated the pipeline on non-dHCP neona-
al task fMRI data ( Baxter et al., 2019 ), and collaborators within our
entre have been evaluating the pipeline on non-neonatal data. To co-
ncide with this paper, the first version of the pipeline will be released
ublicly ( https://git.fmrib.ox.ac.uk/seanf/dhcp-neonatal-fmri-pipeline )
nd this will mark the beginning of what we plan to be an ongoing, open,
nd hopefully collaborative, development process. To this end there is
 roadmap of future features that are either already under development
r planned: 

1. We have developed bespoke methods (adapted from adult HCP
pipelines) for mapping the fMRI data to the surface and writing out
to CIFTI format. These methods are still under evaluation. 

2. An fMRI-specific version of EDDY is under development that will
incorporate a model that is better suited to fMRI data. Significant
speed-ups have already been achieved and will be part of the next
FSL release. 

3. Improvements to template-to-structural registration. 
4. Partial BIDs derivatives support is implemented, but full support is

planned. 
5. Extensions for task fMRI have been developed and tested and will be

merged into the pipeline 

The second dHCP data can be obtained from the dHCP
ebsite ( http://www.developingconnectome.org/second-data-

elease ). This website also contains detailed release notes
 http://www.developingconnectome.org/release-notes ) that describes
ach file and will allow users to cross-reference this manuscript to the
ata. 

. Conclusion 

We have presented an automated and robust pipeline to minimally
re-process highly confounded neonatal data, robustly, with low failure
ates and high quality-assurance. 

https://git.fmrib.ox.ac.uk/seanf/dhcp-neonatal-fmri-pipeline
http://www.developingconnectome.org/second-data-release
http://www.developingconnectome.org/release-notes
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Processing refinements integrated into the dHCP fMRI framework
rovide substantial reduction in movement related distortions, result-
ng in significant improvements in SNR, and detection of high quality
SNs from neonates that are consistent with previously reported infant
SNs ( Doria et al., 2010 ; Mongerson et al., 2017 ). Ongoing analyses are
robing the fine structure of these networks, and their variability across
ubjects and age, with the aim of defining a multi-modal time-varying
ap of the neonatal connectome. The scientific community will be able

o apply this pipeline to explore their own neonatal data, or to use pub-
icly released dHCP data (pre-processed with this pipeline) to explore
eonatal connectomics. 
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